HOTE TO: Lainas, Assistant Director for Safety Assessment, DL T. Novak, Assistant Director for Operating Reactors, DL.

FROM: I.. Rubenstein, Assistant Director for Core and Containment Systems, DSI

SUBJECT: 1 -2 EVENT VS CURRENT LICENSING CRITERIA

Enclosed is a discussion paper prepared by the Containment Systems Branch on the subject comparison.

Lester S. Rubenstein, Assistant Director for Core and Containment Systems Division of Systems Integration

Enclosure:
Discussion paper

1. Could an IP-2 event occur at other plants?

An IP-2 event could occur at any operating plant if the following conditions, which characterize the IP-2 event, are present:
a) operation of the normal sump pumps is not monitored in the control room; and the:pumps are inoperable;
b) normal sump level instrumentation is inoperable or indications of water collection are ignored by operators;
c) system leakage detection capability is not provided or is ineffective below a certain leakage rate; and
d) visual surveillance of containment conditions is infrequent during plant operation.
2. Are IP-2 events routinely analyzed in licensing case reviews?

IP-2 events, i.e., floeding of the containment floor and/or the reactor cavity during reactor power operation, as a result of water leakage from
\therefore low energy systems, are not design basis events that are analyzed in licensing case reviews.
3. Does adequate guidance presently exist which can be applied in evaluating plant design provisions to preclude IP2 events?

The appropriate application of Item II. 9 of SRP 6.2 .2 and Item II. 11 of SRP 6.2.4 should be sufficient to preclude IP2 events, but only for safety related systems since the two SRPs are only applied to such systems II.9 of SRP 6.2.2 is concerned with the instrumentation to monitor containment heat removal system operability and II. 11 of SRP 6.2 .4 is concerned with
the preservation of containment integrity following an accident. Present guidelines would have to be expanded to include the surveillance of nonsafety grade systems. Regulatory Guide 1.45 (Reactor Coolant Pressure Boundary Leakage Detection Systems) spec: iies that (normal) sump level and flow monitoring should be one of three leakage detection methods employed. This capability alone would be adequate to preclude an IP-2 event. However, in the case of Indian Point 2, indication of sump pump operation is not provided in the control room and the operators chose to ignore the sump level instrument because of past erratic behavior. One way to correct this is to revise Regulatory Guide 1.45 to stipulate more stringent design and performance criteria for sump level instrumentation and sump pump controls.
4. To what extent can leak testing provide assurance of continuing system integrity?

Appendix J to 10 CFR Part 50 and the changes that have been proposed only address components, systems and structures that comprise the containment boundary. Consequently, systems which do not constitute a containment isolation barrier would not be subject to leak testing.

The service water system at Indian Point 2 is an open system in that it draws water from, and returns it to, the Hudsen River; however, the portion of the system inside containment constitutes a containmer isolation barrier. The proposed changes to Appendix J would require periodic hydrostatic testing of the service water system to assure its integrity.

Hydrostatic leak testing of systems is being addressed in licensing case reviews, and probably should be imposed more vigorously in advance of revising Appendix J. Other guidance may have to be developed, outside Appendix J , if it is found that all liquid filled systems inside containment should be periodically leak tested to demonstrate continuing integrity.
5. Should the implementation schedule for TMI Action Plan Item II.F.l (containment water level monitor) be accelerated?

It should be noted that II.F. 1 of the TMI Action Plan only applies to emergency sumps. Therefore, the scope of II.F.1 may have to be expanded to include normal sump instrumentation if there is a desire to accelerate the implementation schedule for II.F.1. Furthermore, the decision to accelerate the implementaiton schedule for containment water level monitors should be based on the availability of reliable, safety grade instrumentation. The IP-2 operators ignored the readings from the level monitors based on past erratic behavior. Therefore, if operators refuse to respond to plant instrumentation, accelerating the implementation schedule will not result in :mproved safety.
6. Should new requirements be imposed?

IP-2 events should be included as part of a normal case review. Consequently, guidelines must be established which emphasize the need for monitoring the integrity of systems inside containment which could potentially flood the containment during normal operation. Both safety and non-safety grade systems must be addressed. The scope of Regulatory Guide 1.45 (which presently focuses attention on the reactor coolant pressure boundary) should be expanded to accomplish this.

Sump level instrumentation needs upgrading so that operators respond in a positive way to indications of water collecting in the sump. Normal sump pump controls need upgrading for more reliable pump performance and indication of operation. The sump level instrumentation and the monitoring of sump pump operation do provide some diversity in detecting the excessive collection of water in the containment; in this regard, sump level instrumentation should be separate from that used for sump pump control. In this regard, Item II.F. 1 of the TMI Action Plan (which only pertains to emergency sumps) should be revised to consider both normal and emergency sump instrumentation requirements.

The Service Water System (SWS) at Indian Point 2 has a post-accident safety function and, therefore, automatic isolation of the system will not occur under accident conditions; local manual isolation valves are provided. In view of the lack of maintenance of the integrity of the SWS during normal plant operation, the following actions should be considered at IP-2 and other operating plants, and in licensing case reviews:

1. Systems having a post-accident safety function and which becone extensions of the containment boundary, should be equipped with remote manual isolation valves, operable from the control room; local manual valves should no longer be accepted. Closed loop and open systems should be treated alike.
2. Proposed system leakage detection methods should be evaluated in sufficient detail to determine their effectiveness in alerting the operator of the need to isolate a system train to preserve containment integrity following an accident. (It should be noted that RG 1.97 presently contains no such requirements.)
3. Hydrostatic leak tasting of systems which become extensions of the containment boundary following an accident should be required; criteria for test acceptance and performance frequency must be established.

MAR

MEMORANDUM FOR: Th mas A. Rehm, Assistant for Operations to the Executive Director for Operations

FROM:

Carlyle Michelson, Director Office for Analysis and Evaluation of Operational Data

SUBJECT: ENGINEERING EVALUATION OF FEEDWATER TRANSIENT AND SYSTEM PIPE BREAK AT TURKEY POINT UNIT 3

Referen es: (1) Letter, William J. Dircks, Executive Director for Operations, Nuclear Regulatory Commission to The Honorable Dante B. Fascell, United States House of Representatives, dated January 29, 1981.
(2) Letter, Honorable Dante B. Fascell, Member of Congress, House of Representatives, to Mr. Carlton C. Kammerer, Director Office of Congressional Affairs, NRC, dated December 5, 1980.
(3) Letter, Warren Hoskins, President Conchshell Alliance to Congressman Dante B. Fascell, dated December 2, 1980.

Pursuant to your request, AEOD has reviewed the NRC response (Reference 1) to Congressman Fascell's letter of December 5, 1980 (Reference 2). The enclosure to Congressman Fascell's letter contained a letter from Mr. Warren Hoskins (Reference 3) concerning the series of events that occurred at Turkey Point Nuclear Power Station, Unit 3, on November 15, 1980. It is our belief that the issues presented and the information enclosed was responsive to Mr. Hoskin's concerns. Although the IE evaluation did not address the specific failures leading to the sequence of events, AEOD concurs in general with the NRC letter.

Based on our review of the letters, AEOD conducted an engineering evaluation to determine the causes for the reactor trips and the break of an alternate feedwater pipe from Fossil Unit No. 2. Our brief evaluation has concluded that the multiple failures of the Copes-Yulcan feedwater valves lead to the feedwater flow instabilities and subsequent reactor trips. The feedwader instabilities induced severe vibration in the secondary cooling system which apparently sheared the two-inch ancillary feedwater pipe. Enclosed is a description and sequence of occurrences at Turkey Point 3 and our evaluation of the event.

Carlyle Michelson, Director Office for Analysis and Evaluation of Operational Data

ENGINEERING EVALUATION OF FEEDWATER TRANSIENT AND SYSTEM PIPE BREAK AT TURKEY POINT UNIT 3 ON NOVEMBER 19, 1980

by the
Office for Analysis ind Evaluation of Operational Data
February 1981

DESCRIPTION AND SEQUENCE OF OCCURRENCES

The findings and evaluation contained in this report are based on information gathered through informal channels between Florida Power and Light Company and the Nuclear Regulatory Commission.

The following is a description of events taking place at Turkey Point Unit 3 on November 19, 1980. The sequence of occurrences (shown on Figure 1) is clarified in further detail below.

During power operation, a reactor trip was initiated at Turkey Point 3 due to a steam flow/feed flow (SF/FF) mismatch coincident with steam generator (S / G) low level signal on the " A " steam generator. The cause of the initial trip was believed to be due to a loose connection on the signal converter associated with the feedwater control valve to the "A" S/G. All systems responded as expected to the trip. The loose connection was repaired, the valve stroked and the Unit returned to power. However, during the power ascension stage, feedwater control problems were experienced on all three steam generators. In en attempt to stablize this condition, a second feedwater pump was placed into service to help stabilize the level oscillations in the steam generators and increase the feedwater pressure. Following the initiation of the second feedwater pump, secondary system vibration increased significantly. Based on these occurrences, load was being reduced in order to remove the urit from the line. During the load reduction, a two-inch alternate feed line connection to the "B" feedwater bypass line (shown on Figure 2) ruptured resulting in a reactor trip due to SF/FF mismatch coincident with low steam generator level on "C" S/G. The pipe rupture was manually
isolated within thirty minutes. Investigation revealed that the plug had separated from the stem on valve FCV-3-489 (indicated on Figure 2), S/G "B" feedwater flow control bypass valve. Repairs to the flow control valve and the ruptured two-inch alternate feed line were completed and the unit was returned to power.

During this second power ascension, feedwater control problems were again encountered due to inability to achieve flow through FCV-3-478, S/G "A" main feedwater flow control valve. The load increase to the unit was terminated at approximately 90 MWe . Control problems were also associated wit' FCV-3-479, S/G "A" feedwater flow control bypass valve such that the flow controller would only respond to permit flow between 30 and 100 percent. The unit was taken off line. Investigation revealed that the stem had separated from the plug on the S / G " A " main feedwater flow control valve and the flow control bypass valve was out of calibration. Repairs were made to the valves in question and the unit was returned to power and remained at power until the 26 th of November when it was taken off line due to increased leakage in the "B" steam generator from 0.6 to 11.0 gallons per hour.

FINDINGS CONCERNING THE EVENT

The underlying cause of the series of occurrences was the plug/stem separation of valve FCV-3-478, steam generator "A" main feedwater flow control valve. According to the licensee, the apparent cause of the stem failure was improper load distribution between the stem and plug due to the taper on the valve stem caused by improper manufacturing tolerances. This stem failure was the most probable cause of the flow oscillation and the feed control valve failing closed on the first reactor trip. When the unit tripped, the stem on the feed control valve was driven back into the plug on the feedwater isolation signal (reactor trip signal and low Tavg. < $554^{\circ} \mathrm{F}$). There is evidence to support this in that three rows of threads above the break on the stem were damaged.

However, this was not known at the time of the initial trip. It was assumed that the loose connection on the signal converter associated with the feedwater control valve was the cause of the trip. After effecting repairs to the converter the valve was stroked to verify operability. This by itself, would not have indicated that the plug had separated from the stem but rather that stem travel had been demonstrated. The feedwater control problems that resulted in the second reactor trip were probably precipitated when the broken plug dislodged from the stem. As the upward forces under the valve plug closely approximated the weight of the plug, oscillations were irduced into the feedwater system. These oscillations were further enhanced when the second feedwater pump was placed into service in an attempt to stabilize the level fluctuations in the steam generators. The end result was a reactor trip due to SF/FF mismatch coincident with low steam generator level on "C" S / G. However, according to the licensee, the damage to the main feedwater control valve was not discovered because the trip was attributed to visible
damage to FCV-3-489, feedwater flow control bypass valve, and the break of the two-inch ancillary feedwater pipe rather than the main feedwater control valve.

Hot feedwater flowing from the break (located on the main turbine deck outsis containment) resulted in the loss of several hundred gallons per minute for approximately 30 minutes. Licensee personnel using air eductors and water hoses cleared the area of steam vapor (caused by hot feedwater flashing to steam), located the break, and manually isolated the ruptured line. There was no blow-down from the steam generator through the break. This was prevented by closure of the feedwater flow control bypass valve and the upstream check-valve in the main feedwater line. Therefore, radioactivity release to the outside from the primary to secondary leakage was essentially non-existent. According to the resident inspector, radiological surveys conducted after the break showed no signs of contamination. The auxiliary feedwater system functioned normally and maintained S/G levels without difficulty. All safety systems functioned normally following the trip. The resident inspector attended licensee management meetings which covered their recovery plans. Action items involved during this time included: (1) repair of "B" feedwater flow control bypass valve (FCV-3-489), (2) calibration of all feedwater flow control bypass valves, (3) PCM (Plant Change Memo) issued to remove and capweld the remaining two-inch alternate feed sources to the bypass feed lines, and (4) visual inspection of all feed and condensate systems inside and outside containment. After the actions were completed the unit was brought back up to power. However, during this second power ascension stage, feedwater control problems were again exhibited by inability to pass flow through the steam generator " A " main feedwater flow control
valve. Control problems were also associated with the S/G "A" feedwater control bypass valve, in that the controller would only respond to a flow between 30 and 100 percent. The unit was removed from the line and investigation revealed the broken stem/plug on the main feed flow control valve and the bypass valve was out of calibration. Repairs were made to the valves and the unit was returned to power.

Becalse of these problems associated with this type of feedwater flow control valve (Eopes-Vulcan), the licensee has inspected all valve stem/plug interfaces on Units 3 and 4. The results of the investigation showed evidence of cracking at the interface point on two of three valves on Unit 4 in addition to the two valves repaired on Unit 3. This issue is not a new problem and has been identified in the past at this plant according to plant personnel. The original cage, plug and stem in the feedwater flow control valves were replaced with a modified cage, plug and stem in accordance with a Plant Change/Modification (PC/M) originating in 1974. Vendor replacement parts were not available and evidently the tolerances on the manufactured stem and plug were unacceptable. The valve stems on all three valves of both Units No. 3 and 4 have been replaced. Additionally, all connections to the alternate feedwater system from Fossil Unit No. 2 have been removed and caps welded in place.

EVALUATION

Although there was no evidence of a water hammer at Turkey Point Unit 3 during this event, there are generic concerns arising from such flow control instability and the unnecessary challenges to the feedwater system which
could compromise safety-related equipment and systems associated with it and the feedwater system itself. The flow control valves in main feedwater systems have the potential for producing significant water hammer loads as the result of relatively high fluid velocities and short closure and opening times. Twenty-two events are attributed to main feedwater flow control valve opening, closing, or instability. ${ }^{\text {1/ }}$ In several of these events the water hammer resulted from a sudden flow rate decrease following valve failure in which the plug separated from the valve stem. These valve failures could be attributed in part to piping vibrations during normal operation. Components damaged as the result of these water hammer events include piping supports and restraints, valve bodies and operators, and the piping. Resolution of feedwater control valve instability problems and measures to minimize operational transients would.reduce the challenges to the safety systems.

COMMENT

AEOD believes that there may be a potential need for informing the licensees of operating reactors regarding the possibility of valve iailures due to this mechanism of improper load distribution between the stem and plug. We believe that an IE Circular or Information Notice might be considered which cautions licensees to review their feedwater flow control valves and bypass valves to assure that those plants which utilize Copes-Vulcan valve components in their feed system are aware of this failure mode and can take steps to modify their system. However, unless additional events of this nature occur at another plant, we are not recommending any action at this time.

17
Water Hammer in Nuclear Power Plants, NUREG-0582, July 1979.

Date	Time (Approx)	Occurrence
11/20/80	1200	Return to power.
		Experienced feedwater control problems with S/G "A" feedwater valve (FCV-3-478) and bypass feedwater control valve (FCV-3-479).
		Unit removed from grid.
		Discovered S/G "A" feedwater valve broken (stem/plug separated).
		Discovered S/G "A" bypass feec rater valve out of calibration.
11/21/80	0500	Return to power.
,		

FIGURE 2 - TYPICAL FEEDNATER SYSTEM LAYOUT

Evacuation Time Estimates

for the Plume Exposure Pathway EPZ at
Three Mile Island
Nuclear Generating Facilities

General Public Utilities Service Corporation

$$
8108050134
$$

prepared by
Parsons Brinckerhotf Quade \& Douglas, Inc.
SectionPage
LIST OF TABLES i
LIST OF FIGURES iii
I. INTRODOCTION
A. Site Location and Emergency Planning Zone 1
B. General Assumptions and Methodology 1
II. DEMAND ESTIMATES
A. Emergency Planning Zone and Sub-areas 2
B. Population Estimates 4
C. Vehicle Estimates 32
III. EVACUATION ROUTES
A. Route Selection 45
B. Traffic Managenent Procedures 46
C. Roadway Link Characteristica 46
D. Capacity Determination 55
E. Reception Centers 56
IV. EVACUATION TIME ANALYSIS
A. Scenarios 60
B. Trip Generation and Assignment 70
C. Evacuation Time Estimate Components 71
D. Notification and Confirmation Time Estimates 72
E. Evacuation Time Estimates 73
P. Distribution of Population by Time 77
G. Critical locations 78
v. SUGGESTED ACTIONS 83
VI. LOCAL COMMENTARY 84
FOOTNOTES
APPENDICES
A. NUREG-0654: Appendix 4
B. Description of Sector Boundaries
C. Methodology to Estimate Roadway Travel Time During Evacuation
D. Evacuation Routes by ERPA
No. Title1. ERPA Description by Municipal Jurisdiction.3
2. Relationship between Sectors and Emergency Response Planning Areas.
3. Estimated 1980 Resident Population by County and 6,7 Municipal Jurisdiction within the 10 mile Energency Planning zone (EPZ).
4. Estimated Number of Persons With and Without Automobiles 8 by Emergency Response Planning Area.
5. Estimate of Tourist/Visitor and Business Travelers. 10
6. Estimated 1980 Employment and Transient Employment by ERPA 12 and Scenario.
7. Euployee Commuting Patterns by County and City of Barrisburg. 13-15
8. Schools Located in EPZ. 16-24
9. Special Facility Population Estimates by ERPA and County. 25-28
10. Major Day Care Centers. 30,31
11. Resident Population Estimates For $22 \frac{1}{\gamma}^{\circ}$ Sectors. 33
12. Transient Population Estimates for $22 \frac{1}{\gamma}^{\circ}$ Sectors. 34
13. Special Facilities Population Estimates For $22 \frac{1}{\gamma}^{\circ}$ Sectors. 35
14. Projected Number of Automobiles Used by Permanent 36 Residents by Emergency Response Planning Area.
15. Local Pick-up Points for Population without Auto. 37-39
16. Vehicle Generation Factors Por Employment by County 40 and City of Barrisburg.
17. Transportation Resources by County for the Evacuation 42,43 of Resident Population without Auto and Special Facilities
18. Transportation Resources by County For the Evacuaこion 44 of School Facilities.

LIST OF TABLES

ㅇ. Title Page
19. Selected Primary Evacuation Route Characteristics. 47-54
20. Primary Reception Centers. 57
21. School Reception Centers. 58,59
22a. Population in EPZ by ERPA (Best Estimate) 61,62
b. Population in EPZ by ERPA (Typical Weekly) 63,64
c. Population in EPZ by ERPA (Adverse Weather) 65,66
23a. Estimated Population by 90° and $36^{\circ} \mathrm{Sectors}$ 67
(Best Estimate)
b. Estimated Population by 90° and 36° Sectors 68 (Typical Weekly)
c. Estimated Population by 90° and $36^{\circ} \mathrm{Sectora}$ 69
(Adverse Weather)
24a. Summary of Evacuation Time Estimates for Each Sector 74
Scenario. (Best Estimate)
b. Summary of Evacuation Time Estimates for Each Sector 75
Scenaric. (Typical Weekday)
C. Summary of Evacuation Time Estimates for Each Sector 76 Scenario. (Adverse Weather)
25. Estimates of Time to Evacuate 50 and 90 Percent of the 76 EPZ Population.
26. Potential Critical Locations on Selected Evacuation Routes 79-82

List of Figures

Location Map
Emergency Planning zone \& Response Areas
Sector A-90 Degrees NE 2-Mile Radius
Sector B-90 Degrees SE 2-Mile Radius
Sector C-90 Degrees SW 2-Mile Radius
Sector D-90 Degrees NW 2-Mile Radius
Sector E-360 Degrees 2-Mile Radius
Sector F-90 Degrees NE 5-Mile Radius
Sector G-90 Degrees SE 5-Mile Radius
Sector E-90 Degrees Tw 5-Mile Radius
Sector I-90 Degrees NW 5-Mile Radius
Sector J-360 Detrees 5-Mile Radius
Sector K-90 Degrees NE 10-Mile Radius
Sector L-90 Degrees SE $10-\mathrm{Mile}$ Radius
Sector M-90 Degrees SW 10-Mile Radius
Sector N-90 Degrees NW 10-Mile Radius
Sector 0-360 Degrees 10 -Mile Radius Special Facilities 29
Population Summary (Resident) 33
Population Sumary (Transient) 34
Population Sumary (Special Facilities) 35
Evacuation Route Links 46
Reception \& Mass Care Centers 56

22a	Percent of Total Population Clearing the 10 mile EPZ as a function of time under: Time Scenario
22b	Percent of Total Population Clearing the 10 mile EPZ as a function of time under: Daytime Scenario
22c	Percent of Total Population Clearing the 10 mile gPz as a function of time under: Adverse Weather Scenario
23a	Critical Bottleneck Links/Scenario: Best Estimate
23b	Critical Bottleneck Links/Scenario: Typical Weekday
23 c	Critical Bottleneck Links/Scenario: Adverse Weather

In Criteria for Preparation and Evaluation of Radiological Emergency Response Plans and Preparedness in Support of Nuclear Power Plants (NOREG-0654, FEMA-REP-1: Rev. 1 November 1980 ; hereafter referred to as NUREG-0654, the O.S. Nuclear Regulatory Commission (NRC) and the Federal Emergency Management Agency (FEMA) called upon power plant licensees and state and local agencies to include in their emergency response plans time estimates for evacuation of the population within the 10 mile radius plume exposure emergency planning zone (EPZ). The approach for preparing the evacuation time estimates is specified in Appendix 4 of that document and is reprinted in Appendix A.
A. Site Location and Emergency Planning Zone

This report presents the estimates of time required to evacuate both the general population and special facilities (as defined in Section II) that lie within the 10 mile radius $E F Z$ of the Three Mile Island Nuclear Generating Station (TMI) in Londonderry Township, Dauphin County, Pennsylvania. TMI is located approximately 10 miles southeast of the City of Earrisburg, 12.5 miles north of the City of York and 21 miles west-northwest of the City of Lancaster. The location of TMI with reference to these and other major population centers is shown in Figure 1 . Figure 2 which shows the 10 mile radius EPZ super-imposed on a composite J.S. Coast and Geodedic Survey (USCGS) map of the region focuses on the political jurisdictions which are within the EPZ and the transportation network.

The USCGS maps were last updated in the early $1970^{\prime \prime} \mathrm{s}$. Therefore the zoadway network was modified to reflect recently completed roadway segments. These modifications were incorporated in the base map used in Figures 3-18 andi 20.
B. General Assumptions And Methodology

Both the general assumptions and methodologies used to produce these evacuation time estimates are detailed in the relevant sections of this report or in its appendices. For example, population information which was obtained from Census data, from regional planning agencies, and through telephone and written contacts with employers, institutions, and other facilities is detailed in section II. DEMAND ESTIMATION. Also, roadway capacity information and the comupter model used in this analysis are summarized in Section III. EVACUATION ROUTES and IV. EVACDATICN TIMES ANALYSIS and detailed in APPENDIX C.

ig. 1 Location Map

II. DEMAND ESTIMATES

A. Emergency Planning Zone and Sub-areas

A Plume Exposure Pathway EPZ hereafter referred to as the EPZ has been defined in accordance with NURBG-0654, for the purpose of determining the general population and the population of special facilities which would possibly be evacuated in the event of a general emergency at TMI. As can be seen from Figure 2, this EPZ represents an irregularily shaped border which approximates a 10 mile radius extending from the approximate center of Reactor Onits 1 and 2, latitude 40 degrees, 9 minutes, 12 seconds-longitude 76 degrees, 46 minutes, 28 seconds. These irregularities in the border occur because the perimeter of the EPZ follows either physical or political boundaries where practical to facilitate description of the potential risk area to the public. Furthermore, this boundary encompasses, where reasonable, entire populated urban areas which lie near the 10 mile radius, but would otherwise be bisected if a physical boundary were used to define the EPZ.

Within the EPZ, sub-areas have been delineated according to NUREG-0654 by 90° sectors which lie between 0° true north and 90° east, 90° east and 280° south, 180° south and 270° west and 270° west and 360° true nor th at distances of two, five and ten miles from TMI. These sectors are defined as:

Sectors A, B, C and D - Pour approximately 90° quadrants at the closest defineable boundary beyond a two-mile radius.

Sector E - A 360° sector which encompasses the entire two-mile radius.

Sectors F, G, B and I - Four approximately 90° quadrants including the area within the closest defineable boundary beyond the 5 mile radius.

Sector J - A 360° sector which generally encompasses the entire five-mile radius.

Sectors K, L, M and N - Pour approximately 90° quadrants including the area within the boundary of the 10 mile EPZ.

Sector 0 - A 360° sector encompassing the entire 10 mile EPZ.
The boundaries of these sectors, like the EPZ, usually follow physical or political boundaries; thus forming an irregularly shaped boundary which generally encompasses the 90° and 360° degree sectors. A description of these sector boudaries is presented in Appendix B.

For purposes of estimating the various population components, the sectors have been further subdivided into Emergency Response Planning Areas (ERPA's). An ERPA generally corresponds to a political subdivision such as a township or borough or a definable portion thereof. Table 1 shows the Emergency Response Planning Areas (ERPA's) and their associated political jurisdictions. The Sectors and associated ERPA's z^{-e} shown in Figures 3-17.

THREE MILE ISLAND
EVACUATION TIME ESTIMATES
FOR TEE 10 MILE RADIUS EPZ

TABLE 1
ERPA DESCRIPTION BY MUNICIPAL JURISDICTION

Municipal Jurisdiction

Londonderry - Three Mile Island Londonderry Township
Cony Township
Goldsboro Borough
Newberry Township
Royalton Borough
Middletown Borough
West Donegal Township
York Haven Borough
East Manchester Township (Portion)
Conewago Township
Fairview Township
Eighspire Borough
Lower Swatara Township
Bummelstown Borough - Derry Twp.
South Hanover Township
South Londonderry Township*
Mount Joy Township*
Elizabethtown Borough
East Donegal Township*
Eellam Township*
East Manchester Township and
Mount Wolf Borough
Springettsbury Township*
Manchester Township*
Dover Township*
Warrington Township*
Lewisberry Borough
Lower Allen Township*
New Cumberland Borough
Steelton Borough
Harrisburg City*
Paxtang Borough
Swatara Township and
Susquehanna Township*
Lower Paxton Township*

* Note: Only a portion of the political jursidiction and population lie within the EPZ.

```
TGREE MILE ISLAND
EVACUATION TIME ESTIMATES
FOR TEE 10 MILE RADIUS EPZ
```

TABLE 1
ERPA DESCRIPTION BY
MUNICIPAL JURISDICTION

ERPA Number (s)

1
2
3, 12
4
$5,6,15,17$
7
8
10, 11
13
14
$16,23,33$
$18,37,38,41$
19
20,46
21
22
24
25
26
28
29
30

31
32
34
35
36
39
40
42
43
44
45

47

Municipal Jurisdiction

Londonderry - Three Mile Island Londanderry Township
Conoy Township
Goldsboro Borough
Newberry Township
Royalton Borough
Middletown Borough
West Donegal Townshif
York Baven Borough
East Manchester Township (Portion)
Conewago Township
Fairview Township
Eighspire Borough
Lower Swatara Township
Bummelstown Borough - Derry Twp.
South Eanover Township
South Londonderry Township*
Mourt Joy Township*
Elizabethtown Borough
East Donegal Township*
Eellam Township*
East Manchester Township and
Mount Wolf Borough
Springettsbury Township*
Manchester Township*
Dover Township*
Warrington Township*
Lewisberry Borough
Lower Allen Township*
New Cumberland Borough
Steelton Borough
Barrisburg City*
Paxtang Borough
Swatara Township and
Susquehanna Township*
Lower Paxton Township*

[^0]

Fig. 4 Sector B -90 Degrees SE 2-Mile Radlus

Three Mile Island 도를

Fig. 5 Sector C -90 Degrees SW 2-Mlle Radlus

Three Mile Island Emergency Response Plan

Fig. 6 Sector D - 90 Degrees NW 2-Mile Radius

Three Mile Island Emergency Response Plan 10-Mile EPZ

Fig. 7 Sector E-360 Degrees 2-Mile Radius

Fig. 8 Sector F -90 Degrees NE 5-Mile Radius

Three Mile Island Emergency Response Plan Tr 3 10-Mile EPZ

Fig. 9 Sector G-9u Degrees SE 5-Mile Radlus

Three Mile Island Emergency Response Plan thenermem 10-Mile EPZ

Fig. 10 Sector H -90 Degrees SW 5-Mille Radlus

$\dot{1}$
Fig. $11 \begin{aligned} & \text { Sector } 1 \text { - } 90 \text { Degrees NW } \\ & \text { 5-Mile Radlus }\end{aligned}$ 5-Mile Radlus

Fig. 12 Sector J -360 Degrees 5-Mile Radius

Three Mile Island Emergency Response Pian 10-Mile EPZ

Fig. 13 Sector K -90 Degrees NE 10-Mile Radius

Three Mile Island Emergency Response Plan

Fig. 14 Sector L -90 Degrees SE 10-Mile Radius

Three Mile Island Emergency Response Plan

10 Miles

Fig. 15 Sector M -90 Degrees SW 10-Mile Radius

Fig. 17 Sector O-360 Degrees 10-Mile Radius

Three Mile Island Emergency Response Plan

Table 2 shows the relationship between Sectors and Energency Reponse Planning Areas (ERPA's) and the corresponding figures upon which they are depicted.

B. Population Estimates

Estimates of population for the 10 mile EPZ were made for three population components as described in NUREG-0654: i.e. Permanent Resident Population, Transient Population and persons in Special Pacilities. Population estimates which are in the county emergency plans and were presented in previous evacuation time estimates were based on projections of 1979 census or regional planning data for the total residert population. These projections did not provide separate figures for transient or special facility populations. Therefore, population estimates were developed for each population component based on preliminary 1980 Census data.

1. Permanent Resident Population: An estimate of this population component was made using preliminary resident population figures by appropriate 1980 Census tracts. Figures by political jurisdiction or portions theref which are within the EPZ were estimated based on apportionment by area, then refined by topography, location of demographic concentrations, and published local estimates and finally balanced to 1980 preliminary Census housing units. These 1980 resident population estimates are listed in Table 3 by municipal jurisdiction.

Since the Census resident population includes all persons residing in households and group quarters in an area, residents of long-term care facilities and penal facilities were subtracted from these figures to derive estimates of permanent resident population by Energency Response Planning Area. A similar apportionment procedure was then followed in allocating the estimated resident population to ERPA's as shown in Table 4.

Table 4 also shows a further division of the estimated permanent resident population into persons with and without automobile. This estimate of persons without automobiles was predicated upon previous local estimates and 1970 Census, ${ }_{1}$) (ata regarding households without autos for the respective
2. Transient Population According to NOREG-0654, this population roup which constitutes a component of the general population consists c tourists caming to and those passing through the EPZ, visitors both for business and social purposes, migrant workers and employees who immigrate on a daily basis into an area. Available data regarding each of these sub-groups was obtained from the Chambers of Commerce, the Botel and Motel Association, Regional Planning Agencies, the Pennsylvania 6 O.S. Detmant
to Work.
(5)
$(6)(7)(8)(9)(10)$
a. Recreation/Vacation and Business Travelers - Estimates of these elements of the transient population were made from the 1977 National

Table 2
Three Mile Island
Evacuation Time Estimates
For The 10 Mile Radius EPZ

Relationship between Sectors and
 Emergency Response Planning Areas

Pigure	Sector	Emergency Response Planning Areas
3	A	1,2
4	B	1,2,3
5	c	1,4,5
5	D	1,4,6
7	E	1-6
8	F	1,2,7-10
9	G	1-3,10-15
10	日	1,4-6,14-17
11	I	1,4,6-8,18-20
12	J	1-20
13	K	1,2,7-10,21-26
14	1	1,2,3,10-15,25-31
15	M	1,4-6,14-17,30,32-37
16	N	1,4,6-8,18-20,22,37-47
17	0	1-47

A description of the boundaries of each Evacuation Sector can be found in
Appendix B .

THREE MITE ISLAND
EVACUATION TIME ESTIMATES
FOR THE 10 MILE RADIUS EPZ

County and Municipal Jurisdiction

1970 Census
Resident
Population

9,803
$(13,690)$
685
10,488

$$
1,124
$$

$$
16,045
$$

$$
7,407
$$

$$
1,724
$$

$$
(68,061)
$$

$$
37,434
$$

$$
2,947
$$

$$
4,723
$$

$$
3,453
$$

$$
(26,517)
$$

$$
3,978
$$

$$
5,267
$$

$$
9,080
$$

$$
2,160
$$

$$
1,040
$$

$$
1,943
$$

$$
8,556
$$

$$
(17,008)
$$

$$
513
$$

$$
17,178
$$

$$
115,441
$$

$$
\begin{gathered}
1,977 \\
(3,003) \\
2,252 \\
8,072 \\
(4,228) \\
2,325 \\
3,719 \\
18,345
\end{gathered}
$$

$$
\begin{gathered}
(3,754) \\
1,319
\end{gathered}
$$

$$
1,319
$$

1980 Prel.	1980 Prel.
Census Total	Census Resident
Housing Units	Population

3,278	8,063
$(4,857)$	$(14,051)$
243	703
3,521	8,766

2,456
18,010
13,215
1,397
$(53,1.13)$
29,212
2,952
4,265
5,138
$(34,782)$
5,217
6,777
10,211
1,661

982

4,054
6,492
$(18,017)$
541
18,725
116,693

794	2,318
$(1,400)$	$(4,072)$
1,050	3,054
3,042	8,242
$(1,646)$	$(5,128)$
905	2,820
1,335	4,859
7,126	21,293
$(1,361)$	$(3,771)$
482	1,387
482	1,387

County and
Municipal Jurisdiction

1970 Census	Census Prel.	1980 Prel.
Resident	Census Total	Census Resident
Population	Housing Units	Population

York County

Conewago Township	3,719	1,720	4,955
Dover Township*	$(8,975)$	$(4,346)$	$(12,560)$
Within EPZ	449	217	628
East Manchester Township	1,735	1,286	3,542
Fairview Township	9,248	4,255	11,971
Goldsboro Borough	576	191	477
Hellam Township*	(3.158)	$(1,681)$	$(4,487)$
Within EPZ	158	84	224
Lewisberry Borough	490	113	310
Manchester Borough	2,391	781	2,028
Manchester Township*	$(6,979)$	$(2,718)$	$(7,578)$
Within EPZ	6,630	2,582	7,199
Mount Wolf Borough	1,811	560	1,526
Newberry Township	5,978	3,477	10,063
Sprjngettsbury Township*	$(19,399)$	$(7,050)$	$(19,634)$
Within EPZ	970	353	982
Warrington Township*	$(2,494)$	$(1,214)$	$(3,561)$
Within EPZ	125	61	178
York Haven Borough	671	263	746
TOTAL YoRK COUNTY	34,951	15,943	44,829
		74,951	192,968

NOTES: Total housing units includes all occupied and unoccupied housing units as defined by Census Bureau. Resident population includes for Census purpose all persons residing in households and group quarters in an area, including residents of institutions and other group quarters.
(U) Unincorporated communites as defined by Census Bureau.

* Only a portion of the political jurisdiction and population lie within the EPZ. Figures for sub-jurisdiciion areas are estimates based on apportionment by area, refined by topography, location of demographic concentrations, and published local estimates.
SOURCE: U.S. Bureau of the Census, Preliminary Report, 1980 Census of Population and Housing.
Emergency Response
Planning Area (ERPA)

Number of Persons Without Automobiles	Number of Persons Using Automobiles
0	0
108	1,433
64	515
43	434
57	748
143	1,870
118	864
1,389	8,462
247	3,282
103	823
71	565
193	1,546
68	678
75	988
228	2,992
281	3,683
286	3,739
184	2,410
490	2,462
567	4,155
2,362	17,830
284	3,770
172	2,284
86	1,301
313	2,507
1,098	5,854
280	2,242
339	2,715
16	208
428	5,605
70	912
511	6,688
70	921
45	583
13	165
28	282
184	2,407
482	6,304
67	636
621	7,442
0	0
1,759	4,733
11,029	18,148 -
199	1,462
2,198	16,122
163	1,192
601	4,406
28,133	158,368

Estimates of tourist/visitor and business travel within the EPZ were developed by ERPA and are presented in Table 5. The basic data on travel to and through Pennsylvania: which are used to derive these estimates is as follows:

```
Total Person Trips = 42,611,000
motal Person Nights = 57,493,000
Recreation/Vacation Person Trips = 20,000,000
Recreation/Vacation Person Nights = 32,301,000
Non Rec-eation/Vacation Person Trips = 22,611,000
Non Recreation/Vacation Person Nights = 25,192,000
```

The approximate person-days for the two subcategories are:

```
Recreation/Vacation 'erson Days = 38,179,000
Non Recreation/Vacation Person Days = 43,163,000
```

Recreation/Vacation trips were allocated to ts region based on the state study that indicated that 6.6 percent of tive total non-business trips in or to Pennsylvania are to the Earrisburg-York-Lancaster area. These trips were then proportioned to the EPZ using population. The EPZ represents about 17 percent of the Earrisburg-York-Lancaster area in population. Non-Recreation/Vacation trips, which include business trips, were allocated to the region for initial estimates on the basis that the EPZ contains approximately 2 percent of total state employment.

Seasonal variation also was derived from the state study which indicated that in the Barrisburg-York-Lancaster area 19.7 percent of the non-business trips were during the winter. This percentage was used for all trips except business trips (13 percent of total trips) which were assumed to be constant year-round. Thus, in the area, the winter trips averaged about five-sixths of the typical weekday estimates.

In order to provide a basis to estimate the travel patcerns of the touristtransient group within the EPZ, the day fiqures for recreation/vacation travelers within the region were statisticaliy allocated to each ERPA based on population. Non-recreation/vacation figures were allocated for the day scenario based on employment. The figures for the City of Earrisburg within the EPZ were treated as a special case and were adjusted upward due to the proximity of the government center. The figures for recreation/vacation and non recreation/vacation were then totaled by ERPA.

The estimates for the night scenario were based on available data for hotel/motel facilities and campsites plus parks in the area and total person-nights derived from the state totals. The figures were allocated to individual ERPAs by location of hotel/motel and campsite/major paik

TABLE

ESTIMATE OF

ERPA	$\begin{gathered} \text { Day } \\ \text { Scenario } \\ \hline \end{gathered}$	Night Scenario	Adverse Wea Scenario
1	41	0	37
2	21	7	17
3	99	153	23
4	6	2	5
5	10	3	8
6	24	8	19
7	13	4	10
8	141	45	111
9	50	16	39
10	13	4	10
11	19	6	15
12	25	8	20
13	9	3	7
14	12	4	9
15	39	13	30
16	47	15	36
17	212	265	61
18	31	10	24
19	41	13	32
20	81	26	65
21	1029	1964	244
22	56	18	44
23	34	11	27
24	9	3	6
25	249	443	56
26	115	37	91
27	36	12	28
28	66	21	55
29	2	1	2
30	72	23	55
31	12	4	9
32	86	28	66
33	12	4	9
34	8	3	6
35	520	1026	303
35	4	1	3
37	31	10	24
38	169	344	142
39	11	4	9
40	131	42	106
41	0	0	0
43	140	45	116
43	2,179	711	1,897
44	23	7	18
45	316	786	230
46	18	6	1.4
47	73	161	58
Total EPZ	6,335	$\overline{6,320}$	4,19i

facilitie with the remainder proportioned by the total figures assigned to an ERPA from the day scenario. The adverse weather figures were derived in a similar manner using the seasonal variations.
b. Resident/Non-Resident Employment - The number of employees in the portions of the five counties which are encompassed by the 10 mile EPZ were estimated from the 1970 Census Journey to Work. An update of this data yas made using 1970-78 county business patterns extrapolated to 1980. (16) The employee estimates were apportioned to each ERPA based on population and demographic features after deleting known major industrial employment concentrations. The number of employees in the latter group such as Bethlehem Steel Corporation, Bershey Foods, New Cumberland Army (Supply) Depot, Earrisburg International Airport, TMI and Capitol City Airport were obtained from the 1980 Pennsylvania Industrial Directory, Chambers of Comerce and contacts with employers. (9), (17), (18), (19), (20), (21), (22) The estimated 1980 total employment and transient employment by ERPA is presented in Table 6.

In order to reduce the impact of double counting of employees who reside in an ERPA in estimating the transient employment category, a separate estimate of the number of employees who work in an ERPA but reside elsewhere was made. Siice data involving employee commutation patterns by political jurisdiction within a county is not readily available, the percentage of employment distribution was estimated on a county and major sub-division level from the 1979 Census, Journey to Work for the Bairisburg, Lancaster and York SMSA's. This distribution (which is shown in Table 7) presents the percentage of employees who reside outside the EPZ and commute to work in the five counties and the City of Barrisburg which lie within the EPZ. This table also shows the percent distribution of employees who live and work aithin the six areas as well as commute between areas.

A separate estimate of the number of employees by ERRA was made for day and night to coincide with the selected scenarios defined in Section IV-A. Information on the numberg ρf employees by shift was obtained from area industrial employers.

Data on permanent staff (approximately 1,140 employees) and the contractors (about 500 workers) employed at Three Mile Island who would be evacuated in the event of an incident were provided by General public Utilities. It is anticipated that the contract work force will be on site until Units 1 and 2 are made operational. The anticipated completion dates are 1981 and 1986 respectively.

Estimates of the number of personnel by major employers or public facilities who would be required to remain behind for security, shut-down or maintenance of facilities was not readily available.
3. Special Facility Population: ${ }^{(8)},(23),(24),(25),(26),(27)$ An estimate of the average number of people confined to or enrolled at special facilities which were identified in the 10 mile EPZ and the name of each facility is presented in Tables 8 and 9 by county. These facilities include schools (Table 8), colleges, long-term care facilities, hospitals and penal institutions (Table 9) which require special evacuation techniques

THREE MILE ISLAND		TABLE 6		
EVACUATION TIME ESTIMATES				
FOR THE 1	MILE RADIUS EPZ		ESTTMATED	
		1980	EMPLOYMEN	AND
		TRANSIENT EMPLOYMENT BY ERPA		
			ID SCENARI	
ERPA	Total	Transient Employment		
	Employment	Day	Night	Adverse
1	1,602	1,202	400	601
2	478	- 88	10	44
3	178	32	4	16
4	112	21	2	11.
5	184	34	4	17
6	460	85	9	42
7	292	54	6	27
8	3,107	478	159	239
9	1,089	201	22	100
10	284	52	6	26
11	423	78	9	39
12	542	100	11	50
13	174	32	4	16
14	245	45	5	23
15	736	136	15	68
16	899	166	18	83
17	920	170	19	85
18	593	110	12	55
19	903	167	18	84
20	1,871	288	96	144
21	6,771	1.249	139	625
22	1,221	225	25	113
23	743	137	15	69
24	50	9	1	5
25	872	161	16	81
26	2,556	472	52	236
27	799	148	16	74
28	1,851	341	38	171
29	51	9.	1	5
30	1,380	255	28	128
31	225	41	5	21
32	1,635	302	33	151
33	225	41	5	21
34	145	27	3	14
35	41	7	1	4
36	72	14	1	7
37	593	110	12	55
38	5,032	774	258	387
39	280	51	6	26
40	3,220	594	66	297
41	0	0	0	0
42	3,965	610	203	305
43	37,545	6,927	770	3,464
44	505	94	10	47
45	5,842	1.078	120	539
46	398	74	8	37
47	1,593	294	33	147
Total EPZ	92,700	17,583	2,696	8,799

	$\begin{gathered} \text { All Means } \\ \text { of } \\ \text { Transportation } \\ \hline \end{gathered}$	Percent	Private Auto	Percent
Total Dauphin County:				
Living in Dauphin County	93,652	100.0	74,794	100.0
Working in Dauphin County	70,342	75.1	55,075	$\frac{100.0}{73.6}$
Working Outside Dauphin Co.:				
EPZ Counties:	10,970	11.7	10,259	13.7
Cumberland Co.	7,287	7.8	6,882	9.2
Lancaster (Outside City)	936	1.0	834	1.1
Lebanon Co.	827	0.9	809	1.1
York (Outside City)	1,920	2.1	1,734	2.3
Elsewhere	12,340	13.2	9,460	12.6
Working in Dauphin County	108,554	100.0	90,649	100.0
Living in Dauphin County	70,342	64.8	55,075	60.8
Living Outside Dauphin Co.:				
EPZ Counties:	28,006	25.8	26,243	29.0
Cumberland Co.	16,030	14.8	15,171	16.7
Lancaster (Outside City)	3,370	3.1	2,807	3.1
Lebanon Co.	4,095	3.8	3,996	4.4
York (Outside City)	4,511	4.2	4,269	4.7
Elsewhere	10,206	9.4	9,331	10.3
Cumberland County:				
Living in Cumberland Co.	65,513	100.0	56,176	100.0
Working in Cumberland Co.	38,817	59.3	31,812	$\frac{56.6}{}$
Working Outside Cumberland Co.:				
EPZ Counties:	18,031	27.5	17,039	30.3
Dauphin Co.	16,030	24.5	15,171	27.0
Lancaster (Outside City)	452	0.7	390	0.7
York (Outside City)	1,549	2.4	1,478	2.6
Elsewhere	8,665	13.2	7,325	13.0
Working in Cumberland Co.	56,273	100.0	48,022	100.0
Living in Cumberland Co.	38,817	69.0	31,812	66.2
Living Outside Cumberland Co.				
EPZ Counties:	12,019	21.4	11,238	23.4
Dauphin Co.	7,287	12.9	6,882	14.3
Lancaster (Outside City)	1,228	2.2	1,083	2.3
Lebanon	134	0.2	120	0.2
York (Outside City)	3,370	6.0	3,153	6.6
Elsewhere	5,437	9.7	4,572	10.4

```
THREE MILE ISLAND
TABLE }
EVACUATION TIME ESTIMATES
(Continued)
FOR THE }10\mathrm{ MILE RADIUS EPZ
```

	All Means of Transportation	Percent	Private Auto	Percent
Lancaster Co. (Outside of City):				
Living in Co. Outside of City	109,695	100.0	87,705	100.0
Working in Co. Outside of City	ty 70,807	64.5	52,599	60.0
Working Outside:				
EPZ Counties:	6,858	6.3	5,924	6.8
Cumberland Co.	1,228	1.1	1,083	1.2
Dauphin Co.	3,370	3.1	2,807	3.2
Lebanon Co.	424	0.4	403	0.5
York (Outside of City)	1,836	1.7	1,631	1.9
Elsewhere	32,030	29.2	29,182	33.3
Working in Co. Outside of City	83,671	100.0	63,823	100.0
Living in Co. Outside City	70,807	84.6	52,599	32.4
Living Outside:				
EPZ Counties	3,470	4.1	3,188	5.0
Cumberland Co.	452	0.5	390	0.6
Dauphin Co.	936	1.1	834	1.3
Lebanon Co.	932	1.1	894	1.4
York (Outside of City)	1,150	1.4	1,070	1.7
Elsewhere	9,394	11.2	8,036	12.6
York County (Outside of City:				
Living in Co. Outside of City	92,899	100.0	81,896	100.0
Working in Co. Outside of City	ty $\overline{51,722}$	55.7	43,501	53.1
Working Outside:				
EP2 Counties	9,031	9.7	8,492	10.4
Cumberland Co.	3,370	3.6	3,153	3.9
Dauphin Co.	4,511	4.9	4,269	5.2
Lancaster (Outside of City)	ty) 1,150	1.2	1,070	1.3
Elsewhere	32,146	34.6	29,903	36.5
Working in Co. Outside of City	70,203	100.0	60,582	100.0
Living in Co. Outside of City	Living Outside:			
EPZ Counties	5,305	7.6	4,843	8.0
Cumberland Co.	1,549	2.2	1,478	2.4
Dauphin CO.	1,920	2.7	1,734	2.9
Lancaster Co.(Outside of Cit	City) 1,836	2.6	1,631	2.7
Elsewhere	13,176	18.8	12,238	20.2

NOTE: In addizion to the above Counties, a small portion of Lebanon County lies within the EPZ; because the County is not within an SMSA, only partial data is available.
SOURCE: U. S. Bureau of the Census, Journey to Work, 1970, June 1973.

THREE MILE ISLAND
EVACUATION TIME ESTIMATES
FOR THE 10 MILE RADIUS EPZ

TABLE 8

SCHOOLS LOCATED IN EPZ

Cumberland County

ERPA	Map No.	Facility/ Address	Enrollment	Staff	School District
40	1	Manor Elementary School * Elm \& Coolidge Streets New Cumberland	142	11	West Shore
40	2	St. Theresa Park Avenue New Cumberland	```340 CCD Program - 300 (7:00 - 8:15 PM, M & W)```	$\begin{aligned} & 22 \\ & 20 \end{aligned}$	Diocese of Harrisburg
40	3	```New Cumberland Middle School* 9th Street New Cumberland```	622	40	West Shore
40	4	Hillside Elementary School* 7th and Sharon Streets New Cumberland	487	45	West Shore

[^1]* Majority of students walk to school

Dauphin County

TABLE 8 (Continued)

```
Dauphin County
    - Continued -
    -2-
```

ERPA	Map No.	Facility/Address	Enrollment	Staff	School District
20	15	Middletown Area High School 1155 North Union Street Middletown	850	*	Middletown
21	16	Annie B. Nye Elementary School*** High 6 John Streets Hummel stown	391	$*$	Lower Dauphin
21	17	Lower Dauphin Jr. and Sr. High School Lard Street Hummelstown	$\begin{aligned} & \text { JHS }=561 \\ & \text { SHS }=1303 \end{aligned}$	*	Lower Dauphin
21	$\begin{aligned} & 18 \\ & 19 \end{aligned}$	Price Elementary School ** Water \& High Streets Short \& John Streets Hummel s town	$\begin{aligned} & 185 \\ & 196 \end{aligned}$	$\begin{array}{r} 8 \\ 27 \end{array}$	Lower Dauphin
21	20	St. Joan of Arc 300 W. Areba Street Hershey	300	17	Diocese of Harrisburg
21	21	Hershey Sr. High School Hershey	636	*	Derry Twp.
21	22	Hershey Elementary School Bershey	920	*	Derry Twp.
21	23	Hershey Jr. High School E. Granada Road Hershey	812	*	Deray Twp.
21	24	Hershey Internediate School Hersiney	$\begin{aligned} & \text { El em. - } 400 \\ & \text { JHS - } 200 \\ & \text { SHS - } 600 \end{aligned}$	$\begin{aligned} & 42 \\ & 20 \\ & 62 \end{aligned}$	Derry Twp.
21	25	Hershey School Milton Hershey	$\begin{gathered} 1250-1300 \\ \text { All Residential } \end{gathered}$	600	Derry Twp.

* Information not provided
** Buildings at two locations

```
THREE MILE ISLAND
EVACUATION TIME ESTIMATES
    THE }10\mathrm{ MILE RADIUS

\section*{Dauphin County \\ - Continued - \\ -3-}
\begin{tabular}{|c|c|c|c|c|c|}
\hline ERPA & Map No. & Facility/Address & Enrol1ment & Staff & School District \\
\hline 22 & 26 & \begin{tabular}{l}
South Hanover Elementary School \\
W. Union Deposit Road \\
Union Deposit
\end{tabular} & 402 & * & Lower Dauphin \\
\hline 23 & 27 & Conewago. Elementary School Schoolhouse Road Conewago Township & 201 & * & Lower Dauphin \\
\hline 42 & 28 & \begin{tabular}{l}
Aasumption of the Blessed Virgin Mary School ** \\
833 South 2nd Street \\
Steelton
\end{tabular} & 150 & 12 & Diocese of Earrisburg \\
\hline & 29 & \begin{tabular}{l}
St. Peter School ** \\
385 South 2nd Street \\
Steelton
\end{tabular} & 81 & 6 & Diocese of Harrisburg \\
\hline 42 & 30 & \begin{tabular}{l}
Steelton Main Elementary School*** 4th \& Walnut Streets \\
Steelton
\end{tabular} & 445 & 45 & SteeltonHighspire \\
\hline 43 & 31 & Foose Elementary School 1301 Sycamore Street Harrisburg & 512 & 42 & Harrisburg City \\
\hline 43 & 32 & \begin{tabular}{l}
Sacred Heart School \\
823 S. Cameron Street Earrisburg
\end{tabular} & 195 & 9 & Diocese of Harrisburg \\
\hline 43 & 33 & Shimmell Elementary School 548 s. 17 th Street Harrisburg & 427 & 30 & Harrisburg City \\
\hline 43 & 34 & Melrose Elementary School 2041 Berry Hill Street Harrisburg & 534 & 40-45 & Harrisburg City \\
\hline
\end{tabular}

TABLE 8
(Continued)

Dauphin County
- Continued -
-4-
        65 th Street
        Ratherford Heights

43 Chamber Eill Elementary School
        Chamber Hill Road
        Swatara Township

44 Swatara Jr. High School
Bennett \& Carton Streets Oberlin Gardens

24 Diocese of Harrisburg 4000 Derry Road Oakleigh

167
9 Diocese of Earrisburg 1424 Market Street Harrisburg

218 25th Berry Hill Streets Harrisburg

39 St. Francis of Assisi

40 Paxtang Elementary School Paxtang Avenue
Paxtang

41 St. Catherine Laboure School
15 Central Dauphin


Swatara Township


\section*{Lancaster County}
\begin{tabular}{|c|c|c|c|c|c|}
\hline ERPA & Map No. & Facility/Address & Erro11ment & Staff & School Mistr: ct \\
\hline 12 & 56 & \begin{tabular}{l}
Bainbridge Elementary School \\
Second Street \\
Bainbridge
\end{tabular} & \[
\begin{aligned}
& 325 \\
& \text { (incl. } 54 \\
& \text { Kindergarten) }
\end{aligned}
\] & 16 & \begin{tabular}{l}
Elizabetht own \\
Area
\end{tabular} \\
\hline 25 & 57 & \begin{tabular}{l}
Fairview Elementary School Route 3 \\
Elizabethtown
\end{tabular} & ```
    1 7 6
(incl. Kinder-
    garten: 25-AM,
    18-PM)
``` & 15 & Elizabethtown Area \\
\hline 26 & 58 & \begin{tabular}{l}
East 且igh St. Elementary School 800 East High Street \\
Elizabethtown
\end{tabular} & 300 & 22 & Elizabethtown Area \\
\hline 25 & 59 & Elizabethtown Area Middle and Senior School 600 East Eigh Street Elizabethtown & \[
\begin{aligned}
& \text { Middie }-1100 \\
& \text { Serior }-800
\end{aligned}
\] & 150 & Elizabethtown Area \\
\hline 26 & 60 & \begin{tabular}{l}
Mill Road Elementary School \\
Elm Road \\
Elizabethtown
\end{tabular} & 275 & 12 & \begin{tabular}{l}
Elizabethtown \\
Area
\end{tabular} \\
\hline 26 & 61 & \begin{tabular}{l}
Elizabethtown El ementary School* \\
70 South Poplar street \\
Elizabethtown
\end{tabular} & 145 & 8 & \begin{tabular}{l}
Elizabethtown \\
Area
\end{tabular} \\
\hline 26 & 62 & \begin{tabular}{l}
St. Peter \\
55 Washington Street \\
Elizabethtown
\end{tabular} & 108 & 4 & Diocese of Harrisburg \\
\hline 27 & 63 & \begin{tabular}{l}
Rheems Elementary School School Lane \\
Rheems
\end{tabular} & \[
\begin{array}{r}
300-A M \\
21-F M
\end{array}
\] & 20 & \begin{tabular}{l}
Elizabethtown \\
Area
\end{tabular} \\
\hline 28 & 64 & Maytown Elementary School North River Street Maytown & 430 & 30 & Donegal \\
\hline
\end{tabular}
```

THREE MILE ISLAND
F* TUATION TIME ESTIMATE
THE }10\mathrm{ MILE RADIUS EPZ

```

TABLE 8
(Continued)

York County
\begin{tabular}{|c|c|c|c|c|c|}
\hline ERPA & Map No. & Facility/Address & Enrollment & Staff & School District \\
\hline 15 & 65 & York Haven-Newberry Elem. School Manchester & 167 & 14 & Northeastern \\
\hline 16 & 66 & Conewago Elementary School Manchester & 408 & 25 & Northeastern \\
\hline 17 & 67 & \begin{tabular}{l}
Newberry Elementary School \\
RD 2 \\
Etters
\end{tabular} & 580 & 52 & West Shore \\
\hline 30 & 68 & \begin{tabular}{l}
Manchester Elementary School Harding Street \\
Manchester
\end{tabular} & 210 & 14 & Northeastera \\
\hline & 69 & \begin{tabular}{l}
Orendorf School \\
Maple \& Hartman Streets \\
Manchestar
\end{tabular} & 680 & 35 & Northeastern \\
\hline 30 & 70 & Mount Wolf Elementary School 6th \& Maple Streets Mount Wolf & 247 & 19 & Northeastern \\
\hline 30 & 71 & Northeastern Jr. \& Sr. 日igh Sch. High Street Manchester & \[
\begin{aligned}
& \text { JHS - } 540 \\
& \text { SHS }-820
\end{aligned}
\] & \[
\begin{aligned}
& 40 \\
& 66
\end{aligned}
\] & Northeastern \\
\hline 32 & 72 & Hayshire School 2801 Hayshire Drive Lakeview Heights & 460 & 30 & Central York \\
\hline 32 & 73 & Roundtown Elementary School Church \& Lewisberry Roads Roundtown & 147 & 12 & Central York \\
\hline 37 & 74 & York Christian Elementary School Greenbriar \& Church Roads Foustown & 500 & 36 & Non-public School \\
\hline
\end{tabular}
```

IHREE MILE ISLAND
EVACUATION TIME ESTIMATE
$\frac{\text { York County }}{- \text { Continued }}$

ERPA	Map No.	Facility/Address	Enrollment	Staff	School District
38	75	Mount Zion Elementary School RD 2   Lewiaberry	320	22	West Shore
38	76	Red Land Senior High School RD 2   Lewisberry	1320	118	West Shore
38	77	Fishing Creek Elementary School   RD 2   Lewisberry	603	55	West Shore



3879 | Fairview Elementary School |  |
| :--- | :--- |
| 480 Lewisberry Road |  |
|  | Fairiew Township |



* HREE MILE ISLAND

DAUPHIN COUNTY

ERPA	Map   No.	Pacility/Address	Max. Cap.	Avg.   No.	Ambulatory	Wheelchair	Stretcher
		Hospitals:					
21	80	Hershey Medical Center 500 University Drive Hershey	350	315	104	211	--
		Nursing © Group Homes:					
8	81	Frey Village Retirement Center 1020 N. Union Street   Middletown	230	230	152	61	17
8	82	Oddfellows Home of Pa. 999 W. Harrisburg Pike Middletown	169	130	50	80	--
9	83	Children's Care Center Humnelstown	70	68	-	68	--
21	84	hipine Retirement Center Ruhenhaus Lane Hershey	200	183	92	91	--
45	85	Dauphin County Home and Hospital Paxton \& S. 28th Streets Harrisburg	563	535	143	92	300
45	66	Aspin Center   Paxton \& S. 28th Streets Harrisburg	21	21	--	21	--

THREE MILE ISLAND
EVACUATION TIME ESTIMATES
FOR THE 10 MILE RADIUS EPZ

ERPA	$\begin{aligned} & \text { Map } \\ & \text { No. } \end{aligned}$	Facility/Address	Max, Cap.	Avg.   No.	Ambulatory	Wheelchair	Stretcher
45	87	Beistline House South 28th Street Harrisburg	200	110	110	--	--
47	88	Leader Nursing \& Rehab. Center 800 King Russ Road Harrisburg	240	210	105	53	52
47	89	Villa Theresa Nursing Home 1051 Avila Road llarrisburg	Administrator would not supply information				
		Colleges:					
8	90	Penn State University Capitol Campus Middletown	Students - 1600 commuting, 700 resident, regular semesters Faculty \& Staff - 345, regular semesters; 245, summer, 200, between semesters				
21	91	State Police Academy   Route 743   Hershey	80 residential (year round)				
Prisons:							
45	92	Dauphin County Prison	280	280			

Students - 1600 commuting, 700 resident, regular semesters Faculty \& Staff - 345, regular semesters; 245, summer, 200, between semesters

80 residential
(year round)

280280
L.ANCASTER COUNTY

ERPA	Map   No.	Facility/Address	Max.   Cap.	Av. No.	Ambulatory	Wheelchair	Stretch3r
		Hospitals:					
25	93	Elizabethtown Children's Hospital Elizabethtown	45	42	--	21	21
		Nursing \& Group Homes:					
11	94	Masonic Home Masonic Drive Elizabethtown	725	725	275	225	225
26	95	Leader Nursing Home s Rehab Center 320 S. Market Street Elizabethtown	87	87	65	22	--
27	96	Lehman's Guest coarding Home Broad St. © Heisy Avenue Rheems	50	50	35	10	5
		Colleges:					
26	97	Elizabethtown College	$\begin{array}{r} \text { Per S } \\ 11203 \\ 213 \end{array}$	mest   - re   - $\mathbf{c o}$	$1416$   dential   uting)		

THREE MILE ISLAND EVACUATION TIME ESTIMATE FOR THE 10 MILE RADIUS EPZ

CANPGROUND/RECREATIONAL VEHICLE PARKS - POPULATION ESTIMATES BY ERPA

FAMTLY CAMPING	ATTENDANCE
Year-   Round	- Season (Summer Months) :   50-75 persons/day   (Average)   - Off-Season (Winter) :   20 persons/day   (Average)
Year-   Round	- Season (Summer Months) : 30,000 camper units e 4 persons/unit
YearRound	- Season (Summer Months) :   300 persons/day (Maximum)   150 persons/day (Average)   - Off-zeason (Winter):   20 persons/day
Year-   Round	- Season (Summer Months) : 100-500 persons/day   - Off-Season (Winter) : 25 persons/day
Year-   Round	- Season (Summer Months) :   75 sites occupied/day e average 3 persons/unit   - Off-season (Spring/Fall): 40*-50 sites occupied/day (average 3 persons/unit (Winter):   25 persons/day (maximum)
Year-   Round	- No cabins   - 3 persons/site (Average)
	June 1980 60,800
	July 1980 144,000
	Aug. 1980 77,000
	Sept 1980 46,000
	Oct. 1980 16,000
	Dec. 1980 15,000

and vehicle transportation. Separate estimates for day and nighttime populations were made to account for resident schools and colleges and staff differentials. The locations of these facilities by map number are shown in Pigure 18.

In addition, several summer camps were identified in the EPZ and approximately one hundred summer cottages are located on the several islands near TMI in the Susquehanna River. One of the largest of these islands, Shelley Island lies within the Exclusion Radius for TMI and is almost entirely owned by Metropolitan Edison Company (Met.Ed.). The cottages on this island are used by Met. Ed. employees. According to Met. Ed., these cottages, like those on Bill Island and a number of smaller islands in the EPZ, are inhabited by summer visitors and are accessible only by small boat. In an emergency, these visitors (most of wham are area residents) would be within the warning siren coverage area. According to Met. Ed., it takes less than fifteen minutes to reach the mainland by boat; therefore, evacuation of these visitors should not pose a problem. Also, it was noted by PEMA, that the river is used by local residents for fishing and boating. Likewise, these daytime visitors could be evacuated in a short period. An estimate of the number of recreational $\nabla$ isitors for both the islands and river area is not readily available, but both PEMA and Met. Ed. believe that such activity is rather small.

Campers and day $\nabla$ isitors to the area's parks (such as Gifford Pinchot State Park) and to campsites were also considered. An estimate of the number of $\nabla$ isitors sas compiled from data furnished by the State Department of Community Affairs and camp directors. Because these visitors are within the proposed siren coverage area and would self-evacuate, they were included is the transient population component. The location of the campsites and major park facilities are identified on Pigure 18 and are listed in Table 9.

The special facilities and their locations were identified either through review of the County emergency plans, various planning maps or by contact with state and county agencies and facility administrators.

Data regarding the makeup of a facility's population was generally obtained by contacting the various facility administrators. An estimate of the special facility population in each ERPA by facility type for both day and night is presented in Section IV.A., Table 22. For conservatism, this estimate is based on the facility's maximum capacity rather then present population listed in Tables 8 and 9.

In addition to these special facilities, data on approximately 20 Day Care Centers and 186 at-home child care facilities which accommodate approximately five chitdren was obtained from the office of Children Youth and Pamilies. 28 ) Because these facilities normally do not provide door to door transportation, it is assumed that the children will be picked up by their parents or guardians; therefore a separate evacuation time estimate for these facilities has not been made. A list of the major Day Care Centers is provided in Table 10.


Fig. 18 Special Facilities
Prame
Tincturbm

Three Mile Island Emergency Response Plan 10-Mile EPZ

County
Dauphin

Name of Facility
George Frey Center 15
210 Oakley Ave. Harrisburg 17111

Dauphin County Child Care Services ( $A-D$ )
A. Hill Area Child Development Center 35

15 and Forster Sts.
Harrisburg 17111
B. Middletown Area Child Development

Glad Tidings Assembly of God Church 1325 Vince St. Middletown 17057
C. Steelton Child Development Center 50

130 Watson St.
Steelton 17113
D. Dauphin County Group and Family Day 110 Care Homes

17 South Second St.
Harrisburg 17101
Downtown Day Care37

21 South River St. Harrisburg 17101

Dauphin County Headstart Centers30

Cloverly Heights Church of God
1019 South 19th St.
Harrisburg 17104
Neighborhood Day Care Centers (A,B) 129
A. Boas School DCC

909 Reen St.
Harrisburg
B. Glenwood Center

60
1950 Locust Lane
Harrisburg

```
Marcus Garvey128Camp Center YMCA6 and woodbine Sts.Harrisburg 17110
```

THREE MILE ISLAND

Capacity
$1^{n-}$
667 Cherry Dr.
Hershey 17033
Little People - Harrisburg East 110
4075 Londonderry Rd.
Harrisburg 17109
$\begin{array}{ll}\text { Playmate Day Care Center } & 63 \\ 4900 \text { Constitution Ave. } & \\ \text { Harrisburg }\end{array}$
Strawberry Garden Ltd.
47
1107 North 17th St. Harrisburg

York	Sunshine Day Care Center   Missionary Alliance Church   R.D. 2 Box 10A   New Cumberland 17070   York CPC Child Development Center   Main St.   Wellsville 17365	66 40
Cumberland	Arthur Bursel West Shore Childrens Center Grace V. M. Church   313 Herman Ave.   Lemoyne 17045	23
	Brookside Learning Center Poplar and Erford Rd. Camp Hill 17011	43
	Heimbach's Day Care Center St. Paul's V. M. Church Frort and Locust Sts. Wormleysburg 17043	54
Lancaster	Elizabethtown Child Care Center   75 East High t.   Elizabethtown 17022	60
NOTE: Not i appro liste	Not included in the list above are 186 day care centers, each with approximately 5 children maximum capacity. Although they are not listed, they have been accounted for in the residents population	

4. Summary of Population Components: As required by NORBG-0654 section J.10.b, a summary of the three major population components has been prepared for the two, five and ten mile radius at $22 \frac{1}{\%}$ degree increments. These resulting sub-areas are designated as $22 \frac{1}{5}$ degree Sectors. The $22 \frac{1}{5}$ degree Sectors as shown in Pigures $19 \mathrm{a}, \mathrm{b}, \mathrm{c}$, are centered about the sixceen major compass points and defined in terms of their compass direction and the radius rings between which they lie. The estimates for the various population components by $22 \frac{1}{5}$ Sector are listed in Tables 11-13.
C. Vehicle Estimates
5. Permanent Resident Population with Autos - An estimate of the number of automobiles which might be generated by this component of the general population was made by proportioning the number of autos registered by county in 1978 according to the county population and to the respective populations in the political jurisdictions which lie within the EPZ. Table 14 shows the projected number of automobiles by permanent residents by ERPA.
6. Permanent Resident Population without Auto - Based on procedures set forth in the various county emergency plans, this component of the general population will be evacuated by private and available school buses from predesignated assembly or pickup points in each political jurisdiction to assigned reception centers for the community. The assembly or pick-up points by jurisdiction are listed in Table 15.

It was noted by PEMA, that approximately one hundred of the residents without an auto located principally in the portion of Lancaster County in the EPZ are Amish. The Mennonite Council has assured PRMA that their people would self-evacuate in the event of an incident at TMI. (9)
3. Trancient Population - Recreational/Vacation and Business: An estimate of the number of autos generated by these components of the transient population are based on assumed vehicle occupancy rates:

> Recreation/Vacation Travelers -3.0 persons per vehicle Non-Recreation/Vacation Travelers -1.6 persons per vehicle
4. Transient Population - Employment: The estimate of the number of vehicles generated by transient employment in the EPZ is based on the number of autos per employee by county as derived from the 1979 fensus Journey to Work for the Barrisburg, Lancaster and York SMSA's. (8) These figures are statistically apportioned to account for vehicles generated by employees living within a county and those working outside a county or major sub-area in the EPZ as shown in Table 7. Thus, separate factors were developed for each county in the EPZ and the City of Barrisburg to be applied to the employment estimated by ERPA. This statistical vehicle generation factor accounts for those people who work at home, use public transit, walk to work or are at locations other than their normal place of business. The vehicle generation factors by county and the City of Earrisburg are presented in Table 16.

TGREE MILE ISLAND EVACUATION TIME ESTIMATES POR TGE 10 MILE RADIUS EPZ

TABLE 11
RESIDENT POPULATION
POPULATION ESTIMATES POR $22 \xi^{\circ}$ SECTORS Day (Night)

Direction	0-2		2-5		5-10	
N	154	(189)	7,654	$(9,439)$	9,280	$(11,538)$
NNE	175	(216)	1,122	$(1,378)$	13,100	$(16,394)$
NE	251	(308)	842	$(1,034)$	2,353	$(2,831)$
ENE	150	(185)	659	(809)	1,409	$(1,759)$
E	63	(77)	566	(792)	6,696	$(9,731)$
ESE	38	(46)	219	(317)	1,698	$(2,364)$
SE	73	(97)	397	(539)	2,195	$(3,959)$
SSE	250	(324)	472	(594)	3,835	$(4,619)$
s	0	(0)	1,851	$(2,228)$	6,545	$(8,836)$
SSW	7	(8)	1,296	$(1,557)$	2,653	$(3,186)$
SW	13	(16)	881	$(1,059)$	1,158	$(1,392)$
WSW	162	(196)	1,319	$(1,586)$	2,157	$(2,593)$
พ	275	(333)	1,557	$(1,874)$	2,920	$(4,006)$
WNW	7	(9)	961	$(1,227)$	5,898	$(10,721)$
Nw	0	(0)	724	(893)	17,369	$(24,442)$
N*W	0	(0)	3,433	$(4,409)$	11,013	$(13,698)$
	1618	(2004)	23,953	$(29,735)$	90,279	$(122,069)$
			Total	pulation	115,850	$(158,226)$

[^2]

Fig. 19a Population Summary Permanent Resident Population

TGREE MILE ISLAND
EVACUATION TIME ESTIMATES
FOR THE 10 MILE RADIUS EPZ

TABLE 12
TRANSIENT POPOLATION
POPULATION ESTIMATES FOR $22 \frac{1}{2}^{\circ}$ SECTORS Day (Night)

Direction	Distance from TMI (Miles)					
	$0-2 *$		2-5		5-10	
N	14	(2)	607	(184)	827	(434)
NNE	15	(2)	102	(15)	1,915	$(1,919)$
NE	22	(3)	78	(11)	204	(48)
ENE	14	(2)	60	(9)	176	(41)
E	5	(1)	64	(10)	1,178	(524)
ese	9	(1)	117	(154)	194	(32)
SE	19	(1)	44	(6)	465	(68)
SSE	52	(4)	60	(6)	226	(40)
$s$	0	(0)	124	(20)	478	(75)
SSW	0	(0)	87	(13)	173	(27)
Sw	1	(0)	67	(9)	144	(13)
WSW	16	(2)	240	(263)	733	$(1,044)$
พ	19	(3)	111	(16)	337	(121)
WNW	1	(0)	70	(10)	1,195	(533)
NW	0	10	233	(11)	4,310	$(1,036)$
NNW	0	(0)	249	(106)	1,036	(548)
	187	(21)	2,313	(843)	13,591	$(6,503)$

Note: $\quad 0$ Data obtained from the 0.S. Bureau of the Census, 1980 Preliminary Census Predictions.

- Reference tables to Pigure 18 for location of sectors.
- Transient employees are defined as those working in the EPZ but leaving in communities outside.
*These population estimates do not include the total daytime/night employment population, 1202 (400) respectively for TMI.

TGREE MILE ISLAND EVACOATION TIME ESTIMATES FOR TEE 10 MILE RADIUS EPZ

TABLE 13
SPBCIAL FACILITIES*
POPULATION ESTIMATES POR $22 \frac{1}{2}^{\circ}$ SECTORS Day (Night)


Note: Pigures given represent resident population for those special facilities identified in this study.

Reference tables to Figure 19 for sector location.


Emergency Response Planning Area (ERPA)

> Number of Persons Using Automobiles

Projected Number
of Automobiles
Used By
Permanent Residents

0
797
1,433 $515 \quad 256$
434
222
$748 \quad 383$
1,870
957
864
480
4,705
1,825
410
281
770
347
506
1,532
1,886
1,914
1,234
1,369
2,310
9,913
2,096
1,270
637
1,248
2,915
1,117
1,352
106
2,870
467
3,424
472
298
84
144
1,232
3,228
334
3,9\%
0
2,632
10,090
813
8,964
663
2,450
84,910
THREE MIIE ISIAND
EVACUATION TIME ESTIMATES
FOR THE 10 MILE RADIUS EPZ
table 15
LOCAL PICKUP POINTS
FOR POPULATION WITHOUT AUTOS


```
RZE MILE ISLAND
 CUATION TIME ESTIMATES
R THE }10\mathrm{ MILE RADIUS EPZ
```

    TABLE 15
    (Continued)

County

Municipality	ERPA	Assembly Areas
Harrisburg City	43	1. Marshall School   2. Melrose School   3. Edison School   4. Schimmel School   5. Lincoln School   6. 14th \& Market Streets   7. Webster School   8. Boas School   9. Front \& Vine Streets   10. Foose School   11. 17th \& Hanover streets   12. 19th \& Sycamore Streets
Highspire Borough	19	1. Flour Mill   2. 2nd \& Race Streets   3. Firehouse   4. Boro Hall Eshelman Street   5. Franklin \& Eshelman Streets
Huxmelstown Borough	21	1. Boro Building
Londonderry Township*	2,9	
Lower Paxton Township**	47	2. Vocational Technical School   2. Union Deposit Mall
Lower Swatara Township	46,20	1. Market Street Exit   2. Olmstead Plaza   3. Shopes Garden Civic Ctr.   4. Lower Swatara Fire Co.   5. Route 441 \& Longview Drive   6. Youth for Christ, Eisenhower Blvd.
Middletown Borough	8	1. Market \& Catherine   2. Middletown plaza   3. Giant Store Parking Lot   4. Liberty Fire House   5. Pineford Rental Office   6. Grandview School   7. Oakhill \& Spruce   8. Deatrich \& Fry
Paxtang Borough	44	1. Boro Building
Royalton Borough	7	1. Boro Building   2. Strawsburg \& Penn Street



Notes: * The County Plan does not list any pickup points for these municipalities ** unly a portion of the political jurisdiction and population lie within the 10 mile EPZ.

Living in Harrisburg	0.430
Living Outside Harrisburg	0.720
Remainder of Dauphin Co.	0.703
Cumberland Co.	0.760
Elsewhere	0.724
Total	0.640
Working in Remainder Dauphin Co.:	
Living in Remainder Dauphin Co.	0.662
Living Outside Remainder Dauphin Co.	0.765
Harrisburg	0.670
Cumberland Co.	0.836
Elsewhere	0.768
Total	0.703
Working in Cumberland County:	
Living in Cumberland County	0.691
Living Outside Cumberland County	0.772
Harrisburg	0.693
Remainder of Dauphin Co.	0.829
Elsewhere	0.763
Total	0.716
Working in Lancaster Co. (Outside City):	
Living in Co. (Outside City)	0.629
Living Outside Co. (Outside City)	0.717
Total	0.642
Working in York Co. (Outside City):	
Living in Co. (Outside City)	0.723
Living Outside Co. (Outside City)	0.758
Total	0.733

NOTE: Vehicles per total employment represents the number of automobiles associated with total employment in a locality. Employee base is total employment as used in this study, which includes persons who on the day of enumeration walked to work or worked at home. In addition to the above Counties, a small portion of Lebanon County lies within the EPZ; because the county is not within an SMSA, data by place of work is not available.
SOURCE: U. S. Bureau of the Census, Journey to Work, 1970, June 1973.
5. Special Pacilities - Hospitals/Wursing Eomes ${ }^{(1),}{ }^{(30)}$ - According to the county emergency plans, the specific transportation needs for these facilities will be determined at the time of an incident based on patient or resident characteristics such as number of ambulatory or non-ambulatory persons. County transportation resources including ambulances and buses would then be allocated to each facility to supplement facility owned or operated vehicles to evacuate the facility to a predesignated host center.

A list of the primary transportation resources identified in the County plans is presented in Table 17. Secondary resources from adjacent counties as identified in the County Plans have also been assumed to be available. Those secondary resources are listed is Section 7 -suogeswin icrion under' D. Potential Additional Vehicle Needs.
6. Special Pacilities - Schools/Colleges ${ }^{(1)}{ }^{(23)}$ (30) $^{(10}$ - It has been determined in the county emergnncy plans that evacuation of school children will be among their first priorities. The children who normally are assigned to district school buses will be taken to designated reception centers where they will be released to the custody of parents or guardians. Where schools do not normally provide bus transportation, students who normally walk to school will be sent home to evacute with their families or provisions will be made for parents to pick them $\mathrm{l}_{\mathrm{p}}$ at the school. According to discussions with school administrators, parochial school children who relie on public transportation, would have to find their own means of transport if district school bus are not provided. The schools without existing bus transportation are denoted in Table 8. Where a resident student population exists, it has been assumed that bus transportation will be allocated from the County's transportation resources. For students who drive to class, primarily those attending colleges and high school, the county emergency plana assume that they will self-evacuate, presumably to their homes to leave the risk area with their family. A list of the number and size of available school buses by county, school and school district is shown in Table 18.

Because the concept for evacuation of school children varies by county emergency plan and by school district, a conservative approach has been taken in this evacuation time estimate. It is assumed that available school buses will be allocated to all schools in the EPZ to evacuate the student population to their designated reception centers.

## 7. Special Pacilities - Penal Institutions <br> (1), <br> - The only major

 penal facility identified in the EPZ is the Dauphin County Prison. The vehicle estimate for the evacuation of staff and inmates was extracted from the draft of the Dauphin County Emergency Plans and confirmed by contact with the prison warden. Three buses with a capacity of 40-50 passengers (including guards) will be supplied by the National Guard to transport male inmates to the Euntington State Prison. The buses will travel along Route 22 to Euntington, Pennsylvania. Female inmates will be transported in two caged-station wagons to the State Correctional Institution for Women at Muncy, Pennsylvania. A convoy will be formed with two police cars at the front and rear of the convoy and one police car between each bus.County
York
$\qquad$

Bue Transportation Resource	Approximate Humber of Vehiclea P ailable	Vehicle Capacity	Ambulance Transportation Resource	Approximate Number of Vehicles Ayailable
York Ares Transit Authority	20 buses	40 seated,   20 standing	```Fairview Trp. Ambulance Club R.D. }1 Box $60 New Cumberland, PA 17070```	1
York Transportation Club	17 vane 1 bus	10 people/van   20 people/bue with wheelchair facilities	Lewisberry Fire Co. Ambulance Club Front Street   Lewiaberry, PA 17339	1
Red Lion Transit Bus Company*	18 motor coaches 110 school buses	39-49 people/conch 72 prople/bua	Manchester Ambulance Club 201 York street   Hanchenter, PA 17345	1
Capital Area transit*	20 buses	55 people/bus	Conewngo Township	0
Greyhound Bus Co.	15 busee	55 people/bue	Derry Townehip	5
Capltal Bue Company*			Highspire Boro	1
Capital Bus Company*	53 buses 1 van	46 people/bue   12 people/van	Humelatown Boro Londonderry Townehip	2
			Lower Paxton Township	3
Cantral Dauphin* School District	82 buses	72 people/bue	Lower Swatara Township Middletown Boro	1
			Paxtang Boro	1
Harrisburg City* School District	40 buses	72 people/bus	Royalton Boro   South Hanover Township	0
			stealton Boro	2
Lower Deuphin* Bchool District	41 buses	72 people/bu*	Susquehanna Township	1
Schlagal Bue Co.*	23 buses	66 people/bus		
Harris Busen	15 buses	72 people/bu*		

Bourcer Three Mile Island Emergency
Evacuation Plans (Drafta) for
Lancaste :, Dauphin, Labanon, York and Cumberland County, April 1979

Tiree mile isiand
EVACUKTIO TIME ESTIMATE TABLE IT FOR THE 10 MILE RADIUS EPZ


Source: Three Mile Island
Emergency Evacuation Plana
(Drafte) for Lanoaster, Dauphin, Lebanon, York and Cumberland County, April 1979.
(Continued)


[^3](Drafte) for Lancaster, Dauphin, Lebanon, York and Cumberland County. and Cumberl

THREE MILE ISLAND
EVACUATION TIME ESTIMATES
FOR THE 10 MILE RADIUS EPZ

TABLE 18

TRANSPORTATION RESOURCES BY COUNTY FOR THE EVACUATION OF SCHOOL FACILITIES

County	Transportation Resource	Approximate Number of Vehicles Available	Vehicle Capacity
York	Red Lion Transit Bus Co.*	110 buses 18 motor coaches	72 students/bus 39-40 students/ Motor Coach
	West Shore School District*	2 buses   4 buses   24 buses   34 buses	24 students/jus 84 students/bus 66 students/bus 72 students/bus
	Gross School Bus Service	25 buses	72 students/bus
	Central York School District	31 buses	62 students/bus
Cumberland	West Shore School District*	66 buses	66-84 students/bus
Lancaster	Red Rose Transit Authority*	10 buses	40-50 s cudents/bus
	Conestoga Transportation Co.*	2 buses   3 buses   5 buses   3 buses	49 students/bus   47 students/bus   45 students/bus   41 students/bus
	Johnson Bus Company*	90 buses	55 students/bus
	Warfel Bus Service*	65 buses	48 students/bus
	Schultz Transportation*	30 buses	48 people/bus
	Raymond E. Groff Buses	23 buses	72 people/bus
Dauphin	Capital Area Transit*	20 buses	55 people/bus
	Capital Bus Company	53 buses 1 van	46 people/bus   12 people/van
	Central Dauphin School District	82 buses	72 people/bus
	Harrisburg City School District	40 buses	72 people/bus
	Lower Dauphin School District	41 buses	72 people/bus
	Schlagel Bus Company*	23 buses	66 people/bus
	Harris Buses*	15 buses	72 people/bus

[^4]
## EVACUATION ROUTING

A. Route Selection - The primary evacuation routes used in this evacuation are shown in Figure 20. These routes represent a composite of the original evacuation route network which was selected by the Pennsylvania Emergency Management Agency (PEMA) in concert with the Pennsylvania Department of Transportation (PENNDQT31) and supplemental routes which were selected by Parsons Brinckerhoff. ${ }^{31}$ These primary routes generally inch-ie the major State and Interstate highways as well as major local routes in the 10 mile EPZ. The primary routes were selected to provide a contigious network which if expanded beyond the 10 mile EPZ could be used to expedite an evacuation of the population out to ${ }_{3} 2 \rho$ miles as suggested in the Pennsylvania Emergency Respanse Plan. (33) The supplemental routings cireumvent, where practical, potential bottleneck locations (32). The selected evacuation routes were then traveled in order to assess their sufficiency for evacuation purposes and to determine the characteristics (number of lanes, lane and shoulder widths or lateral clearance, location and operation of traffic controls, and operating and posted speeds) required for capacity determinations.

The majority of local roads are of a rural character which, based on limited field observations made by Parsons Brinckerhoff on January 56, 1981 constitute narrow two lane pavements 18 to 22 feet in width with abrupt vertical curves, no shoulders and little side clearance and in some instances sharp horizontal alignment. These geometric restrictions not only limit a d-iver's sight distance; but restrict traffic carrying capacity and travel speed. Thus, these routes are used as secondary evacuation routes for local residents to access the primary routes. In the event a primary route is blocked, local roads could provide a back-up capability for the local communities.

In selecting the original primary evacuation routes, PENNDOT established several objectives upon which to base their decision including their


- The route must be in the general direction of the Reception Centers to which the community has been assigned.
- The route from community should be as direct as possible causing the least interference with internal traffic movements and evacuation routings from adjacent communities.
- The route should provide the safest and quickest controlled path from the risk area.
- Traffic should be distributed to routes in such a manner as to minimize potential delays because of overloading.
- Routes where physical conditions exist such as narrow bridges, flooding or abrupt changes in available traffic lanes should be avoided.
B. Traffic Management Procedures - PENNDOT has also indicated that special traffic management procedures y $1 \frac{1}{3} \frac{1}{\}}$ be enacted to facilitate the flow of traffic from the risk area. ${ }^{(34)}$ Such procedures would include:
- Assigning traffic control personnel at major points where evacuation routes meet and at interchange ramps.
- Detouring through-traffic on limited access facilities by barricading the roadway at the EPZ and at strategic interchanges.
o Directing motorists to use two lanes at single lane on-ramps where shoulders are sufficient.
- Opening right-of-way gates to linited access highways such as at the Middletown Service Area on Route $7 \%$, at Bighspire and at Colebrook.

In addition, PENNDOT has arranged with the Pennsylvania Turnpike Authority to open the toll barriers on Route 76 to expedite the flow of evacuees from the area. Moreover, it is assumed that tha primary evacuation routes would operate with normal two-way traffic patterns except on any existing one-way streets or ramps. This operational strategy would not only permit emergency units, special transportation vehicles and residents of the evacuation zone to circulate in the EPZ, but would also minimize the possibility of a total blockage of a route because of an incident such as a vehicle accident. If an accident did occur, other traffic could be directed around that point in the opposing travel lane(s). Bowever, in the event a primary route would become impassible, local roads could be utilized.

The rerouting of evacuees to a local roads would be at the direction of the State Police or PENNDOT. The actual implementation of such a diversion could be accomplished by traffic control personnel assigned to strategic detour locations and/or by emergency radio broadcasts.
C. Roadway Link Charactezistics ${ }^{(31)},(32)$, (35)

The characteristics of the selected evacuation routes are summarized in Table 19. These characteristics are identified by the major links in the evacuation route network as shown in Pigure 20 . A link represents a contiguous roadway segmenc where the physical and operating characteristics are similar, a portion of a contiguous route which is intersected by another primary evacuation route or where additional traffic is loaded on to the route. When a route crosses a Sector boundary, the number is extended one link beyond the sector being evaluated to facilitate time estimates. The links are identified by route name and/or number, number of lanes (outbound direction), free flow travel speed, designated capacity and route classification, i.e.:
(LA) - Limited Access Bighway;
(PG) - Primary 日ighway;
(SE) - Secondary Bighway;
(SR) - Slip Ramp;
(LR) - Loop Ramp;
(DC) - Direct Connnection;


Fig. 20 Evacuation Rute chics Pyome
themernm

Three Mile island Emergency Response Plan 10-Mile EPZ

GELECTED PRIMARY EVACUATION ROUTE CHARACTERISTICS

$\begin{aligned} & \text { LINK } \\ & \text { NUNBER } \\ & =* * *=0 \end{aligned}$	LINK DESCRIPTIUN			11 NK		Jumber OF LANES OUTBOUND	CAPACITY		
	GAINLINE	FROM	T0	LENGTH (MILES)	$\begin{aligned} & \text { SPEED } \\ & \text { (MPH) } \end{aligned}$		out bouno	roamay	
	-x*****************)	- $=$	-**a*********						
1	AIR ACC RD	HAR AIRPRT	EXIT 283\%	1.6	55	2	4000	LIMITED	CCESS
2	AIR ACC RO	EXIT 283E	RT 283 M OC	0.3	55	1	1600	PRIMARY	CLESS
3	RAMP	AIRAACC RD	RTE. 283 W	C. 3	35	1	1500	RAMP	
4	RTE 283W	AIRPT CDNN	1283 N Ramp	1.1	55	2	4000	Linited	CCESS
5	1283 N	I-233 K RAP	CH HL RAMP	1.6	55	2	4000	LIMITED	ACCESS
6	1283N	CH. HL. RAMP	BEGIN SEVR	0.0	55	2	+000	LIMITED	access
7	RAMP	BEGIN SR	RTE 322E	0.3	35	1	1200	Ramp	
8	RTE 322E	$t 283 \mathrm{~W}$ ACC	MUSH HL RD	3.5	55	2	1400	LIMITED A	ACCESS
9	RTE 322E	NuSh HL RO	CH HL RO	1.0	53	2	950	PRIMARY	HWY
10	RTE 322E	CH ML R ${ }^{\text {a }}$	LO SWAT LM	0.6	55	2	3800	Primary	HWY
11	RTE 3228	LO SWAT LN	RT 39 Losp	1.3	55	2	3800	PRIMARY	HWY
12	RAMP	BEGIN IR	END IR	0.2	20	1	800	RAMP	
13	RT 39	ENO LR	JNC T39/743	2.2	45	1	550	PRIMARY	HWY
14	GR ANDVIEWR	HARGATE DR	RTE 39	0.8	25	1	1140	SEC ONDAR	HWY
15	Ot VOnShtre	ESTHAVRTMS	RTE $39^{\circ}$	1.1	25	1	1060	SEC ONDARY	HIY
16	RED TOP RD	STOUDT RD	RTE 39	1.5	25	1	1060	SEC ONDARY	Hir
17	Grn yetley	HOERNERSTN	RTE 39	1.5	30	1	1060	SEC ONDARY	HMY
18	RTE 39	GRNUVEN DR	RED TOP RD	1.3	50		1300	Primary	HWY
19	RTE 743	JNC T743/39	SND BCH RD	4.0	45	2	2330	PRIMARY	har
20	RTE 743	SND BCH RD	SSa 743EXT	1.0	45	2	3920	Primary	Hmy
21	RTE 743	SSa T63ExT	INTGRVL RD	0.6	45	1	1200	PRIMARY	HWY
22	RTE 743	INTGRVLRDE	DERRYTWSPL	0.7	45	1	1600	PRIMARY	Hwy
23	RTE 7435	RTE 743N.	CHOC.AVE.	0.5	35	1	100	PBIMABY	HWY-
24	CHOC AVE	ORCHARD RD	RIDGE RD	0.3	35	1	I2y0	Primary	Huy
25	CHOC AVE	RIJGE RD	JNCT 743 N	0.1	35	1	1490	PRIMARY	HWY
26	CHOC AVE	JNCT 743 N	JNCT 743 S	0.0	35	1	1490	PRIMARY	HWY
27	CHOC A VE	JNCT 7435	HOME STEDRD	0.1	25	1	1490	PRIMARY.	Hwr.
28	W MAIN ST	HOMESTED R	5 LINGEL A	1.6	40	1	1490	PRIMARY	HWY
29	W main St	S LINGEL A	NES RR ST	1.2	25	1	1490	-PRIMAR	HWY
30	M MAIN ST	NES RR ST	NES GRNT 5	0.1	35	1	1320	PRIMARY	HWY
31	- main St	NES GRNT S	JNCT 1175	0.3	35	1	950	PRIMARY.	HWY
32	RTE 422	JNCT 1175	N LDND TMN	1.2	45	2	3800	PRIMARY	HWY
33	RTE 7435	RTE 422	ELM AVE	0.2	25	,	1230	SECONDARY	hwy
34	RTE 7435	ELA AVE	governor r	0.5	35	1	410	SEC ONDARY	Himy
35	RTE 7435	GOVERNOR R	FISHBURN R	0.5			1140	PRIMARY.	HWY
36	RTE 7435	FISHBURN R	MULENBRG A	0.6	35	1	1490	PRIMARY	HWY
37	RTE 322 E	RT 143 NES	HMESTD RD.	0.5	40	1	560	PRIMARY	Hwy
38	RTE 322E	HMESTD RD.	MEADOW LA	0.7	40	1	1490	Primary	HWY
39	RTE 322E	MEADOW LA	DPAN CO LN	1.2	55	1	1490	PrImary	HWY
40	RTE 322E	DPAN CO LN	LYMAR AVE	0.7	35	1	1490	Primary	HWY
41	RTE 322E	LTMAR ave	JNCT 117NS	0.7		1	500	PRIMARY	HWY
42	CLBROUK RD	RTE 322E	BELL RD	0.3	30	1	990	SECONDARY	hay
43	BELL RO.	CLEBRK RD	LAWN RD	1.0	30	1	1410	SECONDARY	HWY
44	BELL RD	LAWN RD	PATRICK RD	1.5	45	1	1410	SEC ONOARY	HWY
45	Patrick rd	LBNN CO LN	RTE 117	1.2	45	1	1060	SECONDARY	HWY
46	PATRICK RO	RTE 117	LAWN RO	1.5	45	1	1060	SECONDARY	HWY





THREE MILE ISLAND
EVACUATION TIME ESTIMATES
FOR THE 10 MILE RADIUS EPZ

TABLE 19
(continued)



0.0	20	1
0.1	25	1
0.1	25	1


| 193 | DtRRY ST | 19 TH ST |
| :--- | :--- | :--- | :--- |
| 17 Oth ST |  |  | 144

145 146 147 148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
162
163
163 RUTHRFORD
164 LUCUST LA A
$\begin{array}{ll}165 & \text { LDCUST LA } \\ 166 & \text { RTHRFORDRD }\end{array}$
$\begin{array}{ll}166 & \text { QTHRFORDRD } \\ 167 & \text { YIRGINIAST }\end{array}$
168
169 CC
169 CCMWAYRO. LY
$\begin{array}{ll}171 & \mathrm{NY} \\ 172 & \mathrm{NY}\end{array}$
172
173 DVNSHKHGTS
174 DCAVUN RO
175 JUNESTOWNR
176
177
177 RA
178
17
18
181 US11
$\begin{array}{ll}182 & \text { I-83N } \\ 183 & \text { RTE }\end{array}$
183 RTE 262
184 RTE 262W PLESANTVIW
185

LINK LINK UESCRIPTION				PRACTICAL   CAMBER CAPACITY					
$\begin{aligned} & \text { LINK } \\ & \text { YUABER } \end{aligned}$	MA INL INE	FRUM	T0	LENGTH   (MILES)	SPEED   (MPH)	OF LANES	OUT BOUND		
*****	********				(MPN)	OUTBOUND	(PCE/HOUK)	CLASSIFIC	ATION
186	RTE 11\%	CMERLNDCOL	LISBURN RD	0.8	25	1			
187	FURGE RO	OL OSTAGERD	IISBURN RD	1.2			1140	SECONDARY	HWY
188	FURGE RU	SPNGR SMLLR	IISBURN RD	1.2	40	1	1140	SEC ONDARY	HWY
189	FIRRE RD	LEWISBERKY	CL. DSTAGERD	1.0	35	1	1140	SECONDARY	HWY
190			SPNGRSMLLR	0.0	35	1	1140	SECONDARY	HWY
	LEWISOEKRY	JNCTRTE 83	FORGE RD	1.1	40	1	1140	SEC ONDARY	HWY
191	RAMP	QTE 114	1-83N	0.2	25	1	1000	RAMP	
192	RTE 114	SUSOHNNTRL	I-83	1.0	45	1	1490	PRIMARY	
193	RTE 262	SUSOUA TRL	1-83N ENT	0.0	35	1	1410	PRIMARY	HMY
194	KIE 262	1-835 ENT	I-B3N ENT	0.1	35	1	1410	PRIMARY	HWY HWY
195	RAMT	RTE 262	I-23N	0.2	25	1	1000	PRINARY   RAMP	HWY
196	RTE 262E	SUSOHNNTRL	RTE 177	0.5	45	1	1140	PRIMARY	
197	RTE 262E	BIGSPRNGRU	OLD YORKRD	1.6	45	d	1060	SECONDARY	HWY
198	RTE 262E	OLU YORKRD	183 OVERPSS	0.2	45	1	1140	SECONDARY	
199	WYUAMEREPD	POTTSHILLR	1830 VERPSS	0.3	45	1	1140	PRIMARY	HWY
200	RAMP	susgene ${ }^{\text {re }}$	I-83N	0.2	30	1	1000		
201	CL OYORK RD	KTE 392W	RTE 392E	0.6	40	1	1410	PRIMARY	
202	YOC UMT OWIIR	REDMILL RD		0.7	40	1	1140	PRIMARY	HWY
203	YUC UNT OUNR	VALLEY RD	REO MILLRD	2.2	40	1	1140	PRIMARY	
204	VALLEY RD	PINES RD	TOCUMTOWNR	1.6	45	1	1140	PRI里ARY	HMY
205	WISLER RD	CLY RD	TORX HAVEN	2.0	40	1	1140	SECONDARY	
206	REESERSHLL	CLY RD	YORE HAYEN	0.3	30	1	1140	SECONDARY	HKY
207	THRKHA VENR	RLESERSHLL	WIStat mo	2.6	40	1	1230	PR : MAR Y	
208	RTE 382w	183 N8	YORK RD.	1.5	35	1	1490	PRIMARY	HWY
209	R $\triangle M P$	HTE 382	1-83N	0.1	30	1	1000	PRIMARY	
210	RTE 382 W	YORK RD	RTE 117	2.2	35	1	1490	PRIMARY	
211	RTE 1775	LEWISBRYRD	BORTMCsMunce	1.0	55	1	1490	PRIMARY	HWY
212	bortwcaridge	CONLEY RD	RTE 745	3.7	45	1	1410	SECDNDARY	HWY
213	CJNE WA CORD	RHLRSCHRCH	OLDCRLSLRD	0.7	45	1	1140	SECONDARY	HWY
214	RHLRSCHRCH	LWSBRRY RD	CONEWAGURD	4.8	45	1	1140	SEC ONDARY	HWY
215	YRK/LYBRYR	EKNEY RD	ANORSNT WNR	1.6	45	1	1060	SECDNDARY	HWY
216	t-83N	SUSQUEH TR	OVRPSSR262	2.2	55	2	3760	LIMITED AC	CESS
217	RAMP	1-83N	1-76W	0.5	25	1	1000	R AMP	
218	RTE 76 W	76W WENDER	1-83 ENT	3.6	55	2	3760	LIMITED AC	
219	RTE 76 W	76W EENDAR	76W WENURR	1.0	50	2	3240	IIMITED AC	CESSS
220	RTE 76 W	I-83 ENT	RTE 15	5.6	55	2	3760	LIMITED AC	
221	RAMP	RTE 283 W	I-283N	0.2	45	1	1200	CIMITEAMP	
222	I-76w	HARRI SBRGE	76W EBRENO	0.6	55	,	3760	LIMITED AC	
223	18 ts	PENN AVE	SOUTH DR	0.3	25	1	1060	PRIMART	HWY
224	1815	SOUTH DR	WERTZ AVE	1.0	55	1	1140	PR IMARY	HKY
225	1315	WERT2 AVE	CONE WAGO	0.5	40	1	1140	PRIMARY	HWY
226	1815	CONEWAGO	E MAN SRDG	0.1	20	1	1490	PRIMARY	HWY
227	1315	[ MAN BRDG	PARKVIEW	1.0	40	1	1140	PRIMARY	HEY
228	1815	PARKVIEW	MAPLE ST	0.5	35	1	1140	PRIMARY	HWY
229	MAPLEST	FRONT ST	1815	0.6	35	1	540	PRIMARY	HWY
230	1315	HAPLE ST	BESH SCH R	1.2	35	1	1490	PRIMARY	HWY
231	1315	bt SH SCH R	EMIG RD	1.5	40	1	1410	PR INARY	HWY


LINK LINK DESCRIPTIJN				NUMBER			PRACTICAL   CAPACITY		
$\begin{aligned} & \text { I INK } \\ & \text { IU AARER } \end{aligned}$	MA I INL I Nt	-ROM	T0	LENGTH   (MILES)	$\begin{aligned} & \text { SPEED } \\ & \text { (MPN) } \end{aligned}$	OF LANES GUTBOUND	QUT BOUNU (PCE/MOUR)	$\begin{array}{r} \text { ROADWA } \\ \text { CLASSIFIC } \end{array}$	YTION
							-w	***	-***
232	IAIS	EMIG RD	WOUDVW OR	1.5	40	1	1490		
233	RAMP	1815	I-835	0.1	40	1	1200	PRIMARY	HWY
234	RAMP	SUSQUA TRL	!-835	0.3	30	1	1200	RAMP	
235	1835	1e15	RTE 250	1. 1	55	2	1000 3760	RAMP	
236	SUSUUNA TR	IIGHTNER R	RT30 AT 83	1.12	35 35	2	3760	LIMITED A	CCESS
237	SUSOUAA TR	SINKING SP	LIGHTNER R	2.1	40	1	1410	PRIMARY	
238	CHURGH PU	SUSQUHA TR	183 S RAMP	0.1	40	1		PRIMARY	HWY
239	RAMP	CHURCH RD	1-835	0.5	25	1	1040	PRIMARY	HM
240	SUSQUHA TR	Mr. Iask.m.	CHURCH RD	2.5	45	1	1230	RAMP	
241	MT. WASH. RD.	SUSQUHA TR	CANAL RD	0.0	25	1	1140	PREIMARY	HMY
242	Mr. WASH. RD.	BUTLER RD	SUSOHMNTRL	1.3	40	1	1140 1140	SECONUARY	HWY
243	RTE 9ELS	MISSLER ST	I-83	0.5	40	1	1140	SECONDARY	HWY HWY
244	SHERMAN ST	LONG RD	CDRUSFRNCE	0.7	40	1	1140	SECONDARY	
245	RTE 245	SHERMAN ST	MT ZION RD	2.5	45	1	1140 1140	SEC ONDARY SECONDARY	HWY HWY
246	MT ZION RD	SHERMAN ST	DRUCXVALLY	0.3	35	1	1200	ORIMARY	HWY
247	AT LICN ST	DR UCKVALLY	JNC TRTE230	1.6	35	1	1140	PRIMARY	HWY
248	OHUCKVALL ${ }^{\text {P }}$	CRYDERCREK	MT ZION RD	3.2	35	1	1140	SECONDARY	HWY HWY
249	Fuanace ru	MILLSTONE	ACCOMAC RD	1.3	40	1	1060	SECONDARY	HWY HWY
250	ACCOMAC RU	FURNACE RD	JNC TRTE 230	1.3	40	1	1060	SECONDARY	HWY HWY
251	RTE 238W	HNCHSTRTML	RTE 74 NES	1.0	35	1	1140	PRIMARY	HWY
252	RTE 233 H	LWSBERRYRD	MNCHSTRTML	2.6	40	1	1140	PRIMARY	HWY
253	SNKIUGSPRGS	SUSOHNNTRL	LWS8ERRYRD	0.6	40	1	1140		
254	1-935	RTE295 ECW	RTE 238 ECH	4.5	55	2	3760	LIMITED	HWY
255	RAMP	Q TE295 ECW	RTE 1-83 5	0.2	40	1	1200	LINITEDAP	
256	SUSJUA TRL	1-835 ENT	HYKESMILL	1.2	40	1	1410		
257	89106	HYKESMILLR	ENDOF BRDGE	0.5	20	1	1060	PRIMARY	
258	TMI NBRJGE	NORTH LOTS	RTE 44IN	0.5	20	1	1140	SECONDARY	HW1 HWY
259	THI NBRDGE	SOUTH LOTS	RTE 4415	1.2	10	1	1060		
260	PRUGRESSAV	OLDTWNSHP	RTE 22	1.2	35	1	1230	SECDNDARY PRIMARY	HWY HWY
261	PROGRLSSAV	RTE 22	ELMERTONAV	1.0	35	1	1700	PRIMARY	HWY
262	Pr. OGRESSAY	ELMERTONAV	1-81	0.3	35	,	1230	PRIMARY	HWY
263	DUWHOWER	UNIONDPOST	GALIOM ST	0.5	30	1	1140	SECONDARY	HWY
264	GALION ST	DCWHOWER	ETTA RD	0.3	30	1	1140	SECONDARY	HWY
265	TAYLGR 3R	FRONT ST	OPHNC OLINE	0.7	35	2	3520	PRIMARY	HWY
266	BRIJGE ST	IOTH ST	MARKET ST	1.5	35	2	1410	PRIMARY	HWY
267	CARISLE RJ	BRANDT ST	18 TH ST	1.1	35	1	1230	PRIMARY	HWY
268	CARISLE RD	1月TH ST	SMPSNF RRYR	0.5	35	1	620	PRIMARY	HWY
269	STPSNH RRYR	CARISLE RD	RTEL5OVRPS	0.5	35	1	1230	PRIMARY	HWY
270	PLES VW DR	PRIVATE RD	RTE 262	0.5	35	1	+380	SECONDARY	HWY
271	RTE 441	HARRISB ST	EISENH BLV	0.5	35	1	510	PRIMARY	HWY
272	RAMP	176 ACC RO	I-76E	0.5	30	1	1000	RAMP	
273	EISEN BLVO	FULLING RD	176 ACC RD	0.6	45	1	1550	PRIMARY	HWY
274	EISEN BLVO	RTE 441	FULLING RD	0.7	45	1	1040	PRIMARY	HWY
275	EISEN 3LVJ	CHAM HL RU	RTE 4-1	0.5	45	,	910	PRIMARY	HWY
276	FULLITGG RJ	HISSLEY DR	EISENH BLV	1.0	40	1	470	PRIMARY	HWY
277	mIOULTM RU	RTE 293	RTE 76	1.1	40	1	1490	PRI MARY	HWY

TABLE 19
(continued)

	LIHK DESCRIPTION			LINK   LENGTH   (MILES)	$\begin{aligned} & \text { SPEED } \\ & \text { (MPH) } \end{aligned}$	NUMBER Cf lanes UUT BOUND	PRACTICAL		
NUMBER	MaINLINt	FRUM	10				OUT BDUND	ROLDWA	
-							(PCE/HOUR)	CLASSIFIC	Cation
278	poosevelt	MAN TUN LN	RTE 30 OVP	0.3	40				
279	RTE 921	MIL CRK RD	BULL ROAD	1.2	40	1	1410	Primary	HWY
280	R TE 921	bull road	RTE 74	1.6	40		700	PRIMARY	HWY
281	BUTLER RD	LEMSSOY RD	BULL RD	1.6	40		1410	PRIMARY	Hiny
282	BULL RUAJ	BUTLER RD	RTE 921	1.5	40		1410	SECONDARY	Y Himy
283	BOAKO ROAD	RTE 238	T941	1.5	35		\%100	Primary	Hwy
284	1791	BCARD ROAD	RTE 921	1.3	35	1	1140	PRIMARY	Hiwy
285	CLOVERLEAPRD.	butier mo	RTE 295	0.6	35		1140	PRIMARY	HWY
286	george st.	sursury rd	RTE 74	1.0	40	1	1140	SECONOARY	保 HMy
287	NURSURY RD	crorce 5 S.	croncz st.	0.1	40	i	1140	SECONDARY	Hey Hay
288	CEERYYOCHRD.	bull roao		1.0	40	1		SECONOARY	He HWY
289	decoatie rd	RTE 230	RTE 341	3.0	40	1	1230	SECONOARY	Y HWY
290	R1E 382	RTE 117	simprount	0.3	25	1	1230	PRIMARY	Hay
291	stmomaurg	RTE 3月2	Lerissamay zo	2.5	35	1	1490 1140	PRIMARY	Hiwy
292	LEWISBERRY R0	stbienayma	1916	0.3	35	1	1140	Primary Primary S	HWY
293	nountainrd	hecrsury id	OLDCNELETE	0.5	35	1	1140	SECONDAR	HWY
294	OLDCARLISIE	MOUMEAETRD	RTE 74	0.3	35	1	1140	SECONOARY	HKY
295	RTE 230	SThornetrg	1283 ACCRD	1.7	40	1	1140	SECONOARY	HWY
296	xreuticr. R0.	druckvality		0.5	35		1410	Primary	Hwy
297	Crevtzer, re.	1948	RTE 30	1.1	40		1140	SECONOARY	HIWY
298	R TE 441	1-283N ACC	KECKLER RD	0.5	40	1	1140	PRIMARY	HWY
299	KECKLER RD	RTE 4-1	Chmbrhil ${ }^{\text {do }}$	0.5	35		1490	PRIMARY	HWY
300	Chmprhllrr	kECKLER RD	SOTH ST	2.5	40	1	1140	PRIMARY	HWY
301	RTE 382	Mester ro.	1-83N	1.0			1140 1230	PRIMARY	HWY
302	183 N	RTE 382	Susque trl	1.5	55	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	1230 3760	PRIMARY	HWY
303	RTE IS 3N	RTE 114	176	0.2	55	2	3760	LIMITED AC	CCESS
304	RTE 183N	176	RTE 11W	2.0	55	2	3760 3760	LIAITED AC	CCESS
305	RTE 114	LISGURN RD	LANTZ CEM	1.1	25	1	3760	LIAITED AC	CCESS
306	FOSTER ST.	TTH.ST.	FRDNT ST.	0.5	35	3	1140   5820   800	SECDNOARY	HWY
307	STATE ST	Foster st	$18 \mathrm{TH} . \mathrm{ST}^{\text {c }}$.	1.0	35	3	5820 5820	PRIMARY	HWY
308	RTE 921	1-83	COPENHAFER	0.7	40	1	3820 1410	Primary	HWY HWY
309	UN. OEPOSIT	UOWHONER	RUTHERFORD	0.2	35	1	1490	Primary	
310	RAMP 1283 N	RT 441	1-283N	0.2	40	1	1200	RAMP	HWY
311	R1E 921	susoua trl	MIL CRK R	1.8	40	1	1410	Primary	MWY
312	RTE 39	JNCT T43/39	GRNDVEK RD	1.5	50	1	1300	Primary	Hwy
313   314   15	RTE 39	RED TOP RD	OVNSHRE RD	0.1	50	1	1300	PRIMARY	
314	RTE 34	OVNSHRE RD	GRNHLL RD	0.3	50	1		PRIMARY	HWy
315	RTE 34	GRNHLL RD	RTE 22	0.7	So	,	1300	PRIMARY	Hwr
316	1-283N	R TE 322	1-83N	0.3	55	2	3760	LIMITED ACC	
317	1-83N	Un.ueposit	RT. 22	1.0	55	2	3760	LIMITED ACC	CCESS
318	Paxton St	29 TH ST	1-83E	0.7	35	2	3520	CIMITED ACC	
319	t-83E	PAXION ST	t-83N RAMP	0.5	50	2	3520	PRIMARY	HWY
320	[-83N	I-gse ramp	EISEN BLVO		55		4760	LIMITED ACCE	CLESS
321	RAMP	1-93E	1-83N	0.2	30	1	3760	LIMI TED ACC	CCESS
322	R1E-322E	1-83n Ramp	1-283W RMP	0.3	55	2	1000	RAMP	
324	LFWI SHRYRU	RTE 382w	RTE 1775	0.7	35		1490		CCESS



These characteristics have been compiled from previous evacuation time estimates, review of regional maps, discussions with officials at PEMA and PENNDOT 1 imited field observations and a physical inventory of the selected evacuation route network. This inventory was made by members of Parsons Brinckerhoff's staff on Pebruary 11,-14, 1981.

## D. Capacity Determination

The principal roadway capacities were determined by procedures presented in the Federal Eighway Administration's 1965 Eighway Capacity Manual and the Traffic Engineering Series: Capacity Analysis Procedure for Signalized Intersections published by the Traffic Institute, Northwestern Oniversity. Capacities were estimated at roadway operating Levels of Service (L.O.S. D and E). These values vere used to appraximate a range for evacuation time estimates representing an upper and lower bound determined by 1 imiting the roadway capacity to L.O.S. D and E respectively. This range is used to approximate the range of evacuation times for the best estimate and typical weekday scenarios as defined in Section IV.A. The upper and lower bounds of this range are defined as:

- Opper Bound - A relative value of time which reflects a poor state of readiness of emergency forces and resources due to the sudden development of a possible future incident at TMI which leads to a spontaneous order for a General Evacuation.
- Lower Bound - A relative value of time which assumes a good state of readiness and nearly full deploywent of emergency forces and resources. Such a state could occur as a potential incident at TMI developes slowly and various levels of action are invoked: for example the general population and special facilities are placed on an alert status during which time emergency forces are mobilized followed by a declaration of a site emergency, selective evacuation and finally a general emergency.

Por an adverse weather condition, the evacuation time estimates are computed using a restrained roadway capacity as defined by L.O.S. D minus twenty percent. This restrained capacity reflects the longer headways between veilicles and reduced manueverability resulting from poor driving and roadway conditions which also produces lower travel speeds. It is used herein to represent an upper bound for evacuation $t$ ime estimates. The lower bound is estimated by using L.O.S. D which still reflects the poor driving and roadway condition which may still be prevalent under such adverse conditions and type of incident.

In urban aras, the impact of existing traffic control signals was considered in determining link approach capacities. Basedon a first estimate of evacuation times for the selected network assuming normal operation
of all controls, potential bottlenecks at such controlled locations were identified as described in Section IV.E Critical Locations. A second estimate was then prepared assuming that traffic control personnel would be assigned to these critical locations.

A detailed explanation of the methodology used to determine roadway capacity is provided in Appendix D. Separate capacities though have been selected with the concurrence of PENNDOT and assigned to all interchange ramp links because of theppossible sensitivity of interchange ramps as noted in NURBG-0654. (37) The capacities (shown below) are based on typical design capacities for single lane ramps based on geometric conditions published by thes American Association of State Bighway and Transportation Officials.

- Loop ramp - 800 to 1000 passenger cars per hour (pcph)
- Slip ramp with acceleration/deceleration lane - 1C00 to 1200 pcph
- Direct connection between limited access highways - 1500 pcph

These capacities do not account for terminal conditions where a ramp intersects local streets. Major at-grade intersection points on evacuation routes, were evaluated separately as described in Section IV.E, Critical Locations to identify potential critical bottlenecks.

## E. Reception Centers

As described in the county emergency plans, reception centers have been designated in areas well, peyond the 10 mile EPZ, in most cases more than 20 miles from TMI. (1) These centers, according to PGMA, would serve as staging areas and registration locations for school children and the general population who are in need of assistance. Each center has been assigned to serve a political jurisdiction and schools therein. The location of these centezs in relation to the 10 mile EPZ and to the major routes in the area are shown in Figure 21 . The centers are identified in Tables 20 and 21 by Map Number. These centers are listed by ERPA's and schools which they serve as previously described in Tables 4 and 8 respectively.


THREE MILE ISLAND
EVACUATION TIME ESTIMATES
FOR THE 10 MILE RADIUS EPZ

TABLE 20

PRIMARY RECEPTION CENTERS

Map No.	County	Municipality	ERPA	Reception Center
	Cumberland	New Cumberland	40	Newville (Big Spring School Dist.)
2		Lower Allen	39	Shippensburg (Shippensburg School District)
7	Dauphin	Conewago	23	Pottsville
9	Dauphin	Derry	21	Wilkes Barre
8,6		Harrisburg	43	Sunbury or Lewisburg
3		Highspire	19	Bedford
7		Hummelstown	21	Pottsville
7		Londonderry	2,9	Pottsville
9		Lower Paxton	47	Wilkes Barre
7		Lower Swatara	46,20	Pottsville
5		Paxtang	44	Hazelton
7		Royalton	7	Pottsville
5		South Hanover	22	Hazelton
3		Steelton	42	Bedford
7		Swatara	45	Pottsville
14	Lancaster	conoy	3,12	Park City Mall
13		West Donegal	11,27	Dutch wonderland
13		Mount Joy	13	Dutch Wonderland
13		Elizabethtown	26	Dutch Wonderland
13		East Donegal	28	Dutch Wonderland
19	Lebanon	South Iondonderry Township	24	Eastern Lebanon County Middle School
20,21	York	Conewago Townsh1p	16,23	Susquehannock school Complex or Clearview Middle School
22		Dover Township	34	Gettysburg
20,21		East Manchester Township	30	Gettysburg
20		Hellam Township*	29	Clearview Middle School
22		Lewisberry Borough	36	Gettysburg
20,21		Manchester Borough	32	Cl=arview Middle School
20,21		Manchester Twp.	32	Susquehannock School Complex
20,21		Mount Wolf Borough	30	Clearview Middle School
20,21,22		Newberry Township	$\begin{array}{r} 5,6 \\ 17,15 \end{array}$	Gettysburg or Susquehannock   School Complex
20,21		Springettsbury	31	Susquahannock High School
22		Warrington Township	P 35	Gettysburg
20,21		York Haven Borough	13	Susquehannock School Complex




* Note: Reception Centers to be identified for these schools


## IV. EVACUATION TIME ANALYSIS

## A. Scenarios

Evacuation time estimates for TMI's 10 mile EPZ were prepared to serve as approximate indicators and tools to assist PEMA, PENNDOT and local emergency coordinators in refining their emergency response plans as well as to aid emergency officials in selecting protective actions. Since the estimates of the resident population and employment represent the current total figures and the population of special facilities excluding schools represent the capacities of these facilities, the only population group wich may vary is the tourist/visitor and business traveler element of the transient population. Based on the estimates presented in Tabie 22b for a Typical Weekday, this component accounts for less than five percent of the general population in the 10 mile EPZ. Assuming the normal seasonal and day of week fluctuations in tourism for the Harrisburg -Lancaster -York area as developed by the Pennsylvania Department of Commerce and the location of the major tourist attractions in this area which primarily lie outside the EPZ, the variations in population number would not be significant in terms of this time estimate. With these guidelines, three scenarios were selected to model a best estimate, a typical weekday and an adverse weather condition. The scenarios are described as follows:

- Best Estimate - A night when most families are together at home, special facilities have reduced staff and tour ist/business travelers are at local transient accommodations;
- TYpical Weekday (Normal Condition) - An afterncon when children are in school, businesses are in operation (the family unit is separated), tourist and business travelers are dispersed throughout the area and special facilities are operating with normal staff;
- Adverse Weather - A winter morning following an average snowfall when businesses are open but worker absence is increased and tourist/visitor and business travel is curtailed (it is assumed that approximately 50 percent of the transient employees are unable to drive to work), classes have been cancelled at local schools and colleges, and other special facilities are operating with reduced staff.

These scenarios encompass the typical variations in population concentrations which can be reasonably approximated in the 10 mile EPZ. The adverse weather scenario assumes a snow emergency condition when roads would be rendered temporarily impassable until the Pennsylvania Department of Transportation and local jurisdictions could clear them of accummulated snow. PENNDOT estimated that it should take about four hours after a snow storm to plow all major routes which are normally given priority. (34) An estimate of the population for each of these scenarios is presented in Table 22. These estimates have also been compiled for the various 90 degree sectors and the EPZ as shown in Table 23.

POPULATION IN EPZ BY ERPA



continued


| 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{8}{41}$ |




thale 22 C
(continued)


8

a MILE ISLAND
EVACUATION TIME ES
EVACUATION TIME ESTIMATES
FOR THE 10 MILE RADIUS EPZ
Acenaxies Adrerese weather
fcenazler Adrores wether

THREE MILE ISLNND
EVACUATION TIME ESTIMATES FOR THE 10 mile radius epz
cenario Best Eotimate


- Includes employeses who reaide in eector or EPZ




## B. Trip Generation and Assignment

A traffic simulation process has been developed by Parsons Brinckerhoff to estimate cvacuation times and evaluate the selected evacuation route network in terms of identifying critical links and delsy times. This model uses zone trip generation assigned to a pre-selected evacuation route to estimate evacuation times to the EPZ boundary taking into account the degradation of free flow travel speed and applying calculated delay penalties as the volume to capacity ratio approaches unstable flow and finally forced flow conditions. The two major steps used is this simulation process are described below.

## 1. Irip Generation

The population estimates presented in Table 22, (except resident pupulation with auto) were converted to vehicle equivalents by applying the estimating procedures derived in Section II D. Where buses are involved, a weighted ayerags capacity was used to account for variations in available bus type, seating capacity and number of units presented in Tables 17 and 18. The number of estimated bus trips was then converted to passenger car equivalents (PCE's) - with each bus equivalent to two RCE's - in order to account for the bus size and operating characteristics which vary from that of - passenger car. Ambulances and vans are assumed to have handiing characteristics similar to passenger cars; therefore, no conversion is used. The number of passpenger cars estimated for the resident population with suto group is found in Table 14.

## 2. Zone Trip Assignments

Bach ERPA was sub-divided, where necessary, into traffic zones prior to assigning vehicle trips to the selected evacuation route network for each scenario by 90 degree and 360 degree sectors at distances of two, five and ten miles from TMI. A traffic zone identifies a population cluster in an ERPA which is accessible to a selected evacuation route. The relationship of the evacuation routes to each ERPA is shown in Figure 20.

The number of vehicie trips generated in each traffic zone by the general population is assumed to be a function of the number of dwelling units or in an urban area the proportion of area between zones, of the location of major employment centers and of tourist/visitor accommodations and attractions. The allocation of trips from special facilities are related to the location of the facilities within a defined traffic zone. The trips from the Dauphin County Prison and schools are assigned to predesignate routes as stipulated in the county emergency plans.

The number of vehicle trips generated by each traffic zone was then assigned to the selected routes for evacuation based on a general radial dispersion in the direction of the designated reception centers. A computer program was developed which uses as input a description of roadway characteristics (e.g., speed, link length, and capacity) for the selectei evacuation routes; the evacuation routes selected for each
traffic zone; the zonal trip generation tiae; and terminal time (for vehicles originating at home the time to travel to the primary evacuation route and for special vehicles, the time to travel to the assigned traffic zone). The output of the computer program is a summary of travel times and delays for all of the evacuation routes and other statistical information which could be used in evaluating the oute selection.

It was assumed that all $t r i p s$ would be on the route at the same instant in making an assignment of PCEs to the evacuation routes. This approach is somewhat conservative because the temporal distribution of evacuees that would most likely occur would not result in all vehicles being on the routes simultaneously.

## C. Evacuation Time Estimate Components

In accordance with NUREG-0654, estimates of evacuation times were made separately for the general population (with and without autos) gnd for spegial facilities for each selected scenario and sectors at $90^{\circ}$ and $360^{\circ}$ st distances of two, five and ten miles from TMI. These estimates as requested by NRC are based on evacuation of these population groups to the EPZ boundaries. Such a procedure obviously involves the movement of a larger segment of the population and Increases the evacuation time estimates slightly more than actually would occur if an estimate were made to the radius rings. However, according to a discussion with NRC, the approximate evacuation time estimates to the EPZ are intended to serve as a guide to evacuation planners since these estimates then account for some evacuation yhich would more than likely occur immediately outside the actual risk area . As defined in NUREG-0654, the composition of these population groups are as follows:

- General Population - permanent resident population with auto plus transient population. (Transient population is composed of tourist/visitors, business travelers and employees who commute into the area plus those persons visiting recreational areas including parks and campsites.)
- Special Facilities - persons residing in, attending or employed at bospitals, long term care facilities, schools/colleges and penal institutions and resident population without autos.

The estimates of evacuation times for each of these categories are comprised of the following components:

- Terminal time - for vehicles departing from bome, the time to drive via 1 lall feeder streets to the predesignated primary evacuation $r 46$ for buses and special vehicles, the time to travel if te bus garage, storage or staging area to the as: is,$\quad t$ Eic zone.
- Roadway ravel the - the time required for a vehicle to traverse the entire length of the evacuation route. This time is estimated on normal operating speeds on the road and delays because of conditions where the vehicle volumes approach or exceed
the capacity of the roadway at a particular location. Bence, the roadway travel time is the sum of the time for the first vehicle to traverse the evacuation route, assuming normal operating speeds, and subsequent travel times taking account of speeds at heavier loadings and including delay time.
- Adverse weather delay time - an additional twenty minutes to account for unpredictable isolated delays associated with adverse weather conditions.
- General population mobilization time - an additional twenty minutes to account Zor mobilization at home, at place of employment or at accommodatione.
- Special vehicle round trip time - the roadway travel time where a number of round trips were required by medical transport vehicles and buses for special facilities or to evacuate residents without auto, travel time beyond the evacuation limits to a predesignated host facility for all but the last trip, return time to the special facility for as many round trips as were required, and time for loading and unloading passengers was included. Where the facility administrators of special facilities gave an estimate of mobilization time which was greater than the roadway travel time, the mobilization time plus travel time to the perimeter of the evacuation area became the evacuation $t$ ime.

It should be noted that the times to evacuate general population without autos and ambulatory patients in special facilities were based on use of bus facilities within or in close proximity to the EPZ. These buses included school buses, senior citizens' buses, special facility buses, and public transit buses as dictated in the respective county emergency plans. For the purpose of assessing the evacuation time for schools, available district school buses were first allocated, to the schools closest to TMI and were then progressively assigned to schools further away.

A detailed description of the simulation model used to estimate roadway travel times during an evacuation is presented in Appendix C. This description also includes a discussion of the correlation of the static model applied herein with a dynamic simulation.
D. Notification and Confirmation Time Estimates

The request for evacuation times in NUREG-0654 Appendix 4 relates primarily to the time required to actually evacuate as opposed to the times required for either notification or confirmation. Notification and confirmation times as related to the general population are based on information obtained from GPO and PEMA for sectors A-O.

According to GPV, the permanent work force and contractors at TMI would be notified of an incident in less then fifteen minutes. It would then take about one hour to confirm that all non-essential personnel have
been accounted for and discharged from the site. This confirmation procedure would be handled in one of two ways.
o a muster of all personnel in the Warehouse from where all non-essential personnel would be dismissed or
' a check of all badge numbers at the Process Center.
As noted in Section II, notification of visitors on the islands adjacent to TMI in the Susquehanna River would occur simultaneously with the sounding of the warning sirens. GPO has arranged with the state Police to make a helicopter sweep (weather conditions permitting) of the islands to confirm that $\nabla$ isitors have been notified and evacuated. Such a sweep as estimated by GPU would take about one hour.

In an effort to obtain local approximations of notification and confirmation time as well as procedures. State emergency planners were contacted by GPU. The planners estimate that with present notification capabilities such as siren coverage, emergency broadcasts and telephone, it may take from two to three bour to notify one hundred percent of the population within the 10 mile EPZ after initial contact of the planners by the Utility. Bowever, according to PEMA and GPV, it is estimated that after July 1, 1981, the entire population within the EPZ will be notified within 45 minutes as stipulated by the Nuclear Regulatory Commission (NRC) in NURDG-0654.

PEMA further noted that confirmation would take place during evacuation; therefore extra time is not added to the evacuation time estimetes. According to PBMA confirmation that all people in the EPZ who wish to evacuate have done so will be carried out by the state Police. PBMA noted that in an effort to avoid confrontations with residents who wish to stay, the State Police stationed at the periphery of the risk area will monitor the flow of traffic from the area. When, traffic flow eases to a point that only sporadic vehicles are leaving the area, it would be assumed that evacuation from the area is basically complete.

## E. Evacuation Time Estimates

Based on the methodologies and time components described previously, simulations of evacuations for each of the Evacuation Sectors (A-0) under best estimate (night), typical weekday (normal condition) and adverse weather conditions were made. From these simulations, a range of approximate evacuation times estimates were developed for both the general population and special facilities to account for varying degrees of readiness of emergency forces and development of an incident. These approximations of evacuation times are summarized in Table 24 . The estimates as shown in this table should provide the emergency planner with sufficient information which can be used in conjunction with other inputs as a decision-making tool regarding the course of action to take in the event of an incident at TMI.

- mile istamis
evacuation tine estimates FOW The 10 mile radius epz

TABLE 24A
SLPMARY OP APPROXIMATE EVACUATION TIEE ESTIMATES FOR EACH EVACUATION SECTOR

(1) Ceneral population consists of residents and transients including non-essential tmi mployees.
(2) GPU has stated that as of July 1, 1981, a new warning aystem will be installed to ovide notificalion of 100s of the population within 45 minutes.
(5) Includes general population preparation time ( 20 minutes) and the roadvay travel time.
(4) Fir special facilities, it is assumed that notification will occur within fiftean minutes and that mobilization and evacuation will begin imeediately thereafter. Evacuation timea represent the longest entimated time for a apecial facility in the sector considered. Time includes terminal time, loading/unloading, travel time, and round trip time as required.
(5) The term Lower Bound reflects a good atate of emergency readiness utilizing atate amergancy resouroes and allowing the progresaion of an avscuation to procesd scoording to the atages defined in pera's disaster operation plan.
(6) The term thfer Bound reflects a leck of adequate time necessary for proper deployment of atate amergency resourcus due to an limediate deolaration of general evacuation.

THREE NIL is SiAt EVACUATICN TIME: ESTIMATES EOC TIE IO WIIE HADIUS EPZ

TABLE $24 B$
BLMMARY OF APPROXIMATE EVACUATION TIEE "O MATES For eachi evacuation sector

Bconariou Tyilcdi Wookday

	-	-		Ceneral Pop	ulation	(1) (2)					Speec	lal Faclil	$\operatorname{tiog}^{(4)}$	
		Travel	TIme			al Evacus	tion 7	Ime (3)	Trave	Time		vacua-   Time	Travel Time	Total Evacuation Time
	-W1th	Aulo	Without	Auto	With	Auto	Withou	Auto	Bch		Scho	ole		
Sector	Lewes $^{\text {(3) }}$	$\text { ypper }^{(6)}$	Lower $^{(5)}$	$\text { upper }^{(6)}$	$\text { Lower }{ }^{(5)}$	$\text { Upper }^{(6)}$	Lower ${ }^{\text {( }}$	$\text { E) }_{\text {ypper }}{ }^{(6)}$	Lover	$\text { upper }^{(6)}$	Lowar ${ }^{15}$	$\text { UPRPR }^{(6)}$	Others	Others
$\star$	1.10	2130	2,00	3,00	1.50	2,50	2,20	3,20	-	-	-	-	-	-
$\pm$	1,30	2,30	2,00	3:00	1.50	2,50	2,20	3,20	-	-	-	-	-	-
c	0.30	1.15	1,00	1,15	0.50	1.35	1,20	1.35	-	-	-	-	-	
D	1.30	2.00	2,00	2130	1,50	2,20	2,20	2,50	-	-	-	-	-	-
$\pm$	1,30	2130	2,00	3.00	1.50	2.50	2,20	3:20	-	-	-	-	-	
F	4, 30	6:00	4.45	6,30	4,50	6,20	5,05	6.50	4.45	6.30	5,00	6.45	5,00	5,00
$a$	1.45	2.45	2.15	3.15	2.05	3.05	2.35	3.35	1,45	2,30	2,00	2.45	6.45	6145
H	1.45	2.15	2130	3,00	2.05	2,35	2,50	3:20	0.45	1.45	1,00	2,00	-	-
1	2.45	3.45	3.00	4.15	3.05	4.05	3,20	4.35	3,00	4,25	3.15	4,30	4.45	4. 45
J	4: 30	6,15	4.45	6:30	4, 50	6,35	5.05	6:50	4.45	6:30	5,00	6.45	-	-
- E	6100	10:00	5.45	9145	6:20	10,20	6:05	10,05	5.45	9145	6,00	10,00	7.15	7:15
1	2145	4.30	3.00	4.65	3:05	4,50	3,20	5.05	2,30	4,15	2:45	4.30	6:00	6:30
$\cdots$	2115	3.45	2.45	4,15	2.35	4:05	3,05	4,35	2,30	4,00	2145	4.15	-	-
W	5130	8.00	5,30	8,00	5,50	8, 20	5:50	8. 20	5,30	8:00	5.45	8.15	8.00	8,00
0	$6: 00$	10,00	5.45	9.45	6,20	10,20	6:05	10.05	5.45	9,45	6:00	10,00	-	-

(1) Ceneral population consists of residents and transients including non-essential tmi empleyees.
a) GFU has otated that as of July 1, 1981, a new warning ayetem will be instalied to provide notification of 1002 of the population within 45 minutes.
(3) Includen yeneral population properation time ( 20 ainutes) and the roadray travel time.
(4) For special facilities, it is assumed that notification will oocur within fifteen minutea and that modilitzation and evecuation will begin ifmediately thereafter. Evacuation times represent the longeat iravol time, and round ifip focility in the sector considered. Time includes tersinal time, losing/unloading, travel time, and round trip time as reguired.
(5) The term Lower Bound rei sote a good atate of emergency readinese ufilizing etate amergency sesourcea and allowing the proyreasion of an evscuation to procesd acoording to the stages defined in pemi's olsaster operation plan.
(6) The term thyer Bound ruflecta a lack of adequate time neceseary for proper deployment of atate emergency resurice: due to an femediate deoiaration of general evecuation.

Thi-LE MILE ISIAND
evacuation time estimates
FOR THE 10 HILE RADIUS EPZ

TABLE 24A
SLAMMARY OF APPROXIMATE EVACUATION TIEE ESTIMAIES FOR EACH EVACUATION SECTOR

Evacuation Sector	General Population ${ }^{(1)}$ (2)							
	Travel time				Total Evacustion Time (3)			
	With Auto		Without Auto		With Auto		without Auto	
	Lower	ypper	Lower $^{(5)}$	$\text { UPper }^{(6)}$	Lower	Upper	Lower (	Upper $^{(6)}$
$\star$	0.30	1.45	0.45	2,00	0.50	2:05	1:05	2:20
B	0,30	1.45	0.45	2:00	0:50	2:05	1:05	2,20
c	0.30	0.30	1:00	1,15	0.50	0:50	1:20	1:35
D	0:30	1.45	1:15	2:30	0:50	2,05	1,35	2,50
E	0:30	1.45	1115	2,30	1:50	2,05	1:35	2,50
$F$	3.45	5,15	4,15	5.30	4.05	5:35	4:35	5:50
G	$1: 45$	2,45	2,00	3.00	2:05	3.05	2:20	3:20
\%	1.45	2,00	2:30	2.45	2:05	2:20	2:50	3:05
1	2.15	3,00	2145	3. 30	2,35	3:20	3:05	3:50
3	3:45	5,15	4.15	5.30	4:05	5:35	4,35	5,50
\%	5,30	9.15	5.30	9:00	5,50	9,35	5:50	9:20
L	2,30	3.45	2.45	4:00	2,50	4:05	3,05	4:20
\%	2:30	3,30	3:00	4,00	2,50	3:50	3:20	4,20
$\cdots$	5:15	7,15	5:30	7.15	5,35	7:35	5:50	7,35
0	5.30	91.15	5,30	$9: 00$	5,50	9:35	5,50	935 9.20


Travel Time	Total Evacuakion Time	Travel Time	Total Evacuation Time
Schools	Schools		
$\underline{L}_{\text {Lover }}{ }^{(5)}$ Upper ${ }^{(6)}$	Lover $^{(5)}$ Uppe_ $^{(6)}$	Others	Others
- -	- -	-	-
- -	- -	-	-
-	- -	-	-
- -	- -	-	-
-	- -	-	-
-	- -	5,00	5,00
- -	- -	6:15	6:15
-	- -	-	-
- -	- -	4.45	4.45
- -	- -	-	-
- -	- -	7.15	7.15
- -	- -	5145	5145
- -	- -	-	-
- -	- -	8,00	8:00
- -	- -	8:00	$8: 00$

(1) Ceneral population consists of residents and transients including non-essential TMI employees.
(2) GPU has stated that as of July 1, 1981, a new warning system vill be installed to provide notification of 1005 of the population within is minutes.
(3) Includes general population preparation time ( 20 minutes ) and the roadvay travel time.
(4) For special facilities, it is assumed that notification will occur within fifteen minutas and that mobilization and evacuation will begin imendiately thereafter. Evacuation times reoresent the longest estimated time for a special tacility in the sector considered. Time includes terminal time, loading/unloading, travel time, and round trip time an requiret.
5) The term Lower Bound reflects a good state of esergancy readinesa utilizing state esergency reacuroes and allowing the projression of an evacuation to procesd according to the stages defined in PEMA's Diasater operation Plan.
(6) The Lerm Ufper Bound reflects a lack of adequate time necessary for proper deployment of state emargency resources due to an imenediate declaration of genersl evacuation.
thres mill isiamis
EVACUAT:ON TIME ESTIMATES
FOR THE 10 HILE RADIUS EPZ

Evacuation$\qquad$ Sector	General Population (1) (2)								Special Facilities ${ }^{(4)}$					
	Travel Time				Total Evacuation Time (3)				Travel Time		Total Evacua-		Travel Tise	Total Evacuation Time
	With Auto		Without Auto		With Auto		Without Auto		Schools		Schools		Other	
	vower	ypper	Lower	Upper	Lower	Upper	Lover ${ }^{\text {( }}$	${ }^{5)} \text { Upper }^{(6)}$	Lower	ypper	Lower	Upper $^{(6)}$		Others
A	1:30	2.30	2:00	3:00	1:50	2:50	2:20	3:20	-	-	-	-	-	
B	1. 30	2,30	2,00	3:00	1:50	2:50	2:20	3:20	-	-	-	-	-	
C	0:30	1.15	1.00	$1: 15$	0,50	1.35	1,20	1.35	-	-	-	-	-	
D	1,30	2,00	2,00	2,30	$1: 50$	2:20	2:20	21:0	-	-	-	-	-	
E	1:30	2130	2:00	3.00	1:50	2:50	2,20	3,20	-	-	-	-	-	
$\boldsymbol{F}$	4:30	6,00	4.45	6:30	4:50	6.20	5:05	6:50	4.45	6,30	5,00	6.45	5,00	5:00
G	1:45	2.45	2.15	3.15	2,05	3:05	2:35	3:35	$1: 45$	2,30	2,00	2.45	6.45	6145
\%	1:45	2,15	2130	3,00	2,05	2,35	2,50	3:20	0.45	1.45	1:00	2,00	-	
1	2,45	3.45	3,00	4,15	3.05	4.05	3:20	4.35	3:00	4:15	3.15	4:30	4.45	4.45
J	4: 30	6:15	4.45	6:30	4:50	6:35	5:05	6:50	4.45	6:30	5,00	$6: 45$	-	-
\%	6:00	10,00	$5: 45$	9,45	6,20	10:20	6:05	10,05	5.45	9:45	6:00	10:00	7,15	7:15
L	2:45	4, 30	3:00	4.45	3.05	4,50	3:20	5:05	2:30	4:15	2:45	4:30	6,00	6:00
M	2:15	3.45	2.45	4.15	2,35	4.05	3.05	4:35	- 30	4,00	2:45	4:15	-	-
N	5:30	8,00	5,30	8.00	5:50	8.20	5,50	8:20	5:30	8.00	5.45	8:15	8.00	8,00
0	6,00	10,00	5:45	$9: 45$	6:20	10:20	6:05	10,05	5:45	9.45	6,00	10:00	400	8400

(1) General population consists of residents and transients including non-essential twi employees.
2) GPU has atated that at of July 1, 1981, e new warning aystem will be installed to provide notification of 1001 of the population within 45 minutes.
(3) Includes general population preparation time ( 20 ainutes) and the roadvay travel time.
(4) For special facilitios, it is asaused that notification wili occur within fifteen minutes and that mobilization and evacuation will begin imediately thereafter. Evacuation timen represent the longest estimated time for an special facility in th sector considered. Time includes terminal time, loading/unloading,
travel time, and round trip time as requirec.
(5) The term Lower Bound reflecte a good state of embyency readiness utilising state emergency wesources and allowing the progression of an evacuation to proceed according to the stages defined in PEMA's Disaster operation Plan.
(6) The term Upper Bound reflects a lack of adequate time neceasary for proper deployment of state esergency resources due to an imendiate declaration of general evacuation.


## P. Distribution of Population by Time

A further output of the simulation model which may be of use in determining the course of action to take in the event of an incident at TMI is the distribution of the percent of population evacuated under each scenario during the estimated evacuation time period. The model uses assigned traffic volumes in PCE's for each of the population components of a traffic zone and converts these back to population numbers using average vehicle occupancy rates and vehicle equivalency factors for the assigned mode of transportation. Based on the calculated speed along each route, the population which leaves the EPZ boundry is accumulated by time and percent of total population at fifteen minute intervals.

The approximate percent of the accumulated population which would be evacuated from the 360 degree- 10 mile EPZ for each scenario is shown in Figures 22a, b, c. Table 25 further shows a comparison of the time estimated to evacuate fifty and ninety percent of the population under each scenario assuming varying degrees of readiness and development: of possible incident.

TABLE 25
ESTIMATES OF TIME TO EVACUATE 50 and 90 PERCENT OF TEE EPZ POPOLATION


[^5]
(1) Ganeral population consista of reaidenta and transients including non-esasntial tMi eaployees.
(2) GPU has stated that at of July 1, 1901, a new warning eyatem will be inatalied to provide notification of 1001 of the population within 45 minutes.
(3) Includes general population proparation time ( 20 minutes) and the roadvay travel time.
(4) For special facilities, it is assumed that notification will oocur within fifteon minutes and that aobilization and avacuation will begin immediately thereafter. Evacuation times represent the longeat estimated time tor apecial facility in the sector coneldered. Time includee terminal time, loading/unioading, travel lime, and round trip time ae required.
(5) The tern Lower Bound reflecta good atate of emergency readinese utilizing atate emergency resources and allowing the projression of an evacuation to proceed according to the etages defined in prmis plasater operation plan.
(6) The term thier Bound reflecte a lack of adequate tise necesesry for proper deployent of atate emergency resources due to an imesdiate declaration of general evacuation.
(7) Includes an additional 20 sinutes to account for unknown conditions on the roadray syatem.

## F. Distribution of Population by Time

A further output of the simulation model which may be of use in determining the course of action to take in the event of an incident at TMI is the distribution of the percent of population evacuated under each scenario during the estimated evacuation time period. The model uses assigned traffic volumes in PCE's for each of the population components of a traffic zone and converts these back to population numbers using average vehicle occupancy rates and vehicle equivalency factors for the assigned mode of transportation. Based on the calculated speed along each route, the population which leaves the EPZ boundry is accumulated by time and percent of total population at fifteen minute intervals.

The approximate percent of the accumulated population which would be evacuated from the 360 degree- 10 mile EPZ for each scenario is shown in Figures $22 a, b, c$. Table 25 further shows a comparison of the time estimated to evacuate fifty and ninety percent of the population under each scenario assuming varying degree of readiness and development of possible incident.

TABLE 25
ESTIMATES OF TIME TO EVACUATE 50 and 90 PERCENT OF THE EPZ POPULATION

## Scenario

$\frac{\text { Percent Accumulated Population Evacuated }}{508}$

Estimated Evacuation Time Range (hr. min.) *			
Lower	Upper	Lower	Upper


BEST ESTIMATE   (Night)	$2: 30$	$3: 30$	$5: 15$	$7.008: 30$
TYPICAL WEEKDAY   (NORMA 1)	$3: 00$	$4: 30$	$5: 45$	$0.158: 30$
ADVERSE W.ATHER	$4: 00$	$5: 00$	$7008: 00$	$9: 00 ~ 11: 30$

[^6]


Fig. 22b


## G. Critical Locations

An output of the simulation model is the identification of the critical bottleneck links alang each route in the selected evacuation route network. These critical links represent the locations of potential maximum delay for evacuees assigned to that route. Figures $23 a, b$, and $c$ show these critical links as compared with selected evacuation route network.
A list of critical links and the associated delay time is given in Table 26 by scenario for a simultaneous evacuation of the entire 10 mile EPz . The delay time shown herein is the time penalty imposed by the computer model when the demand traffic volume exceeds the capacity of the link.

It was assumed that traffic control personnel would be required co expedite traffice flow. This assumption was made as the result of a first estimate of evacuation time for a 360 degree sector - 10 mile EPZ , where the operation of fixed traffic controls imposed high delay penalities on evacuees it was assumed that traffic control personnel would be required to expedite traffic flow.

These potential critical locations are also shown in Figures 23a, b, and $c$ and are listed by Scenario in Table 26.


Fig. 23a Critical Bottleneck Links Scencrio: Best Estimate



Fig. 23c Critical Bottleneck Links Scencrib: Adverse Weathei

```
THREE MILE ISLAND
EVACUATION TIME ESTIMAIES
FOR THE }10\mathrm{ MILE RADIUS EPZ
```

POTENTIAL CRITICAL LOCATIONS ON SELECTED EVACUATION ROUTES (10 mile EPZ)

Bottleneck (delay) Time Hour : Minutes

Best   EstimateTypical   WeekdayAdverse   Weather

THREE MILE ISLAND
EVACUATION TIME ESTIMATES
FOR THE 10 MILE RADIUS EPZ

TABLE 26
(continued)

Critical Bottleneck* Links/Locations	Best Estimate	Typical Weekday	Adverse Weather
172/Nyes Road (from Union Dep. Road to Devonshire Hgts. Road)	2:10	2:22	4:38
177/Ramp (from Union Dep. Road to I-83 *)	4:56	5:12	-
187/Forge Road (from Old Stage Road to Lisburn Road	-	-	1:44
191/Rarp (from Route 114 to I-83N)	1:51	1:59	-
192/Route 114 (from Susquehanna Trail to I-83)	-	-	2:39
195/Ramp (from Route 262 to I-83N)	1:49	2:01	-
213/Conewago Road (from Rhers Ch. Road to Old Carlisle Road	-	-	1:28
231/Route 1815 (from Besh Sch. Road to Emig Road)	-	-	5:01
233/Ramp (from Route 181 S to I-83S)	2:24	2:34	-
235/I-83S (from Route 181 S to Route 250)	1:21	1:27	2:10
237/Susquehanna Trail (from Sinking Sp. Road to Lightner Road)	1:43	1:52	3:49
247/Mt. Zion Street (from Druck Valley Road to Route 230)	1:57	2:10	4:22
251/Foute 238 W (from Manchester Town Line to Route 74)	-	-	1:42
260/Progress Avenue (from Old Township to Route 22)	1:31	2:47	4:39
266/Bridge Street (from loth Street to Market St.)	1:25	1:37	3:14
267/Carlisle Road (from Brandt Street to 18th St.)	1:54	2:08	4:18
270/Ples. Vw. Drive (from Private Road to Route 262)	-	-	3:07
276/Fulling Road (from Nissley Drive to Eisenhower Boulevard)	-	-	1:38
280/Route 921 (from Bull Road to Route 74)	-	-	1:13


Critical Bottleneck* Links/Locations	Bottleneck   Best Estimate	Typical   Weekday	: Minutes
			Adverse Weather
292/Lewisberry Road (frok Siddenburg Road to T916)	-	-	1:43
304/Route I-83N (from I-76 to Route 11W)	1:42	1:50	2:31
311/Route 921 (from Susquehanna Trail to Mil Crik. Road)	-	-	6:37
313/Route 39 (from Red Top Road to Devonshire Road)	-	1:47	-
315/Route 39 (from Grnhll. Road to Route 22)	1:39	-	3:42
317/I-83N (from Un. Dep. Road to Route 22)	3:36	3:48	5:17
326/Route 177 (from Route to Park to Route 745)	1:43	1:51	3:52
335/Elizabethtown Road (from Chestnut Street to Grand Tree Road)	1:40	1:53	3:50
$337 / \mathrm{N}$. Hanover Street (from Linden Street to Mount Gretna Road)	-	-	
340/Acc. Road 283 E (from Route 230 to EB On-Ramp)	-	-	6:23

[^7]```
THREE MILE ISLAND
EVACUATION TIME ESTIMATES
FOR THE }10\mathrm{ MILE RADIUS EPZ

The following intersections require traffic control personnel \({ }^{+}\) Second Street and Eisenhower Boulevard \((126,127)\)
S. Front Street and Swatara Street ( 127,128 )
S. Front Street and Locust Street (128, 129)
S. Front Street and Conestoga Road ( 129,354 )

Cameron Street and Paxton Street (130, 136, 137)
Paxton Street and S. Second Street (137, 136)
Derry Street and 17 th Street \((142,143)\)
Derry Street and 13 th Street \((143,144)\)
13 th Street and Market Street (144, 145)
Market Street and Cameron Street ( 145,146 )
Union D. Post and Dowhoner Road ( \(160,263,309\) )
Route 181 S and Maple Street (228, 229, 230)
Route 181 S and Woodview Drive \((232,331)\)
Susquehanna Trail and Lightner Road (237, 253, 330)
Route 238 W and Route 74 (251)
Progress Avenue and Route 22 (260, 261)
Bridge Street and Market Street (266)
Carlisle Road and 18th Street \((267,268)\)
Route 39 and Route 22 (315)
Main Street and Wilson Street (64, 115, 344, 345)
* For locations refer to Figured \(23 a-23 c\)
+ Personnel who are stationed at signalized intersections will either manually operate the traffic signals or manually direct traffic
V. SUGGESTED ACTIONS

As stated in NURBG-0654,... specific recommendations for actions that could be taken to significantly improve evacuation time shall be given." Such actions appear to be limited to those related to the factors and procedures utilized in developing the evacuation time estimates (such as evacuation route selection, route capacity, traffic assignment, special transportation considerations and notification/confirmation methods). During the course of this study, no specific recommendations have been identified that would significantly improve evacuation times cher than those described elsewhere in this report including the following local comentary.

In order to achieve a cooperative and comprehensive planning effort for this study, a number of meetings and discussions were held with State and local emergency planners and officials as well as with members of GFO Emergency Preparedness at Three Mile Island. In addition, numerous contacts have been made to gather relevant information and data not only from State, county and local agencies, but also private transit operators, administrators of special facilities, associations and major industrial employers and military in the five county area encompassed by the EPZ. These contacts are listed in the attached FOOTNOTES Section of this Report. The contributions of these agencies and people has been invaluable in the development of the information and data base used in this study.

On November 26, 1980 a meeting was held in the Transportation and Safety Building in Earrisburg, Pennsylvania at the Office of the Pennsylvania Energency Management Agency with representatives of the Met. Ed., PYMA, PEANDOT and Parsons Brinckerhoff, to review previous evacuation time studies, obtain information, discuss methodology and assumptions to be used in this study, and review the requirements of NURBG-0654, Appendix 4 of the November 1980 revision. Also, the coordination procedures among those present vas established.

On December 18, 1980, the District Traffic Engineer for PENNDOT was contacted to discuss PENNDOT's selection of evacuation routes, route capacities, trip assignment technique, and special traffic management procedures which have been proposed. Concurrence was also obtained on the use of separate capacities of interchange ramps.

At the request of GPO, a meeting was held at the FPMA office in Earrisburg, Pennsylvania with representatives from PZMA district and central offices, the five County Emergency Management (Operations) Coordinators and their deputies, the Manager of GPO-Nuclear Emergency Preparedness and Parsons Brinckerhoff. This meeting was held to review the methodology and assumptions used in this study, the status of the study, and additional data requirements. Also, the preliminary population figures, employment data needa, scenarios and location of the reception centers to be used in this estimate were discussed. Moreover, the description of the EPZ and internal Emergency Response Planning Areas (ERPA's) and the evacuation routes were presented. No objections to the use of these data for the purpose of estimating evacuation times in response to NUPDG-0654 Appendix 4 were voiced by those present. The requests made in the November, 1980 revision of NURBG-0654 Appendix 4 were also addressed.

During a conversation on January 30, 1981 with the Manager of Emergency Preparedness for GPU, comments on the draft of the reporc aubmitted to GPU on January 16, 1981 for distribution to PEMA were received. It was the consensus of the revievers that the initial route capacity information provided by PENNDOT was conservative. Through a refined evaluation of individual route capacities it appeared to be possible to develop more realistic route capecities and thus more realistic evacuation time estimates. PEMA noted no objection to the use of alternate or supplementary routing, if such actions would facilitate evacuation.

As directed by GPU, an independent assessment of roadway capacities based on actual physical and operating conditions and by the addition of supplemental routes to alleviate, where possible, potential bottlenecks uncovered in the evaluation of the PENNDOT evacuation route network was made. Such refinement was based an judgments and expertise gained from previous studies to provide an more realistic estimate of evacuation times. According to GPU these estimates are intended for use in the decision making process in conjunction with other variables such as weather, type of incident, and time available in assessing a specific situation and determining the proper protective action to be taken e.g. (sheltering or evacuation) in the event of an incident at TMI requiring the implementation of protective actions by the public.
- Take Union Deposit Road west to I-83 north.
- Rte 340 west to I-83. North on I-83.
- Follow Newside Road to Rutherford Road. Continue north on Rutherford Road to Virginia Street then turn left on Prince Street north toward Rte. 22.
- Take Conway Road to Union Deposit Road and continue toward Rte 22 as noted for ERPA 45.
- Take Bridge Street north te Market Street then turn left to Rte. 11.
- Follow same route as ERPA 39

ERPA 42
- Take S. Front Street nurth to Paxton Street. Turn inue lilouq Secund Stueat, St. to Pront Street north.

\section*{ERPA 43}
- Take Derry Street west to 12 th Street. Follow 12th Street north to Market Street then, turn right from Market Street to Rte. 230 north.
- Enter I-83 at 17 th Street and proceed west toward Rte. 15.
- Follow Progress Avenue north to I-81.

\section*{ERPA 44}
- Follow Progress Avenue north to I-81.

\section*{ERPA 45}
- Follow Conway Road to Union Deposit Road, take Union Deposit Road to Nyes Road and proceed north toward Route 22.
- Take Paxton Street eastbound to the entrance to \(I-83\) north.
- Take Galion Road north then continue on Dowhoner Rd. to Union Deposit Road. Turn left on Union Deposit Rd. to I-83N.
- Follow Chamberhill Road to Keckler Road. Turn right to Rte 441 west to I-83N.

\section*{ERPA 46}
- Take Rte. 441 northwest to I-83 north.
o Take Fulling Mill Road westbound to Eisenhower Blvd. Proceed south on Eisenhower Blvd to the entrance of Rte 283 to I-76 and then proceed to I-76 east.
- Take Anderson-Rohler Church Roads toward Rte 74.
- Take Mountain Road south to Old Carlise Road.
- Follow Cherry Orchard Road southwest to Nursey Road then turn right onto George Street toward Rte. 74.

\section*{ERPA 35}
- Take Boring Bridge Road toward Rte 74.
- Take Rte 177 toward Rte 74.

ERPA 36
- Take Rte 177 south toward Rte 74.

ERPA 37
- Take Siddenburg Road west to Lewisbury Road and continue.
- Take Lewisberry Road west Lisburn Road and continue.
- Follow Rte. 177 South toward Rte 74.

\section*{ERPA 38}
- Take Lewisberry Road toward Old Forge Road. Proceed on Old Forge Road to Lisburn Road.
- Take Lewisbury Road (Rte 114 west) to I-83 north.
- Take Fishing Creek Road east and turn north on I-83.

ERPA 39
- Take Simpson Ferry Road west to Carlise Road and continue toward T.S. Nte 15.
- Take Donagal Spring Road toward Mount Joy.
- Take Rock Point Road toward Rte 141.

O Take Rte 441 east toward Rte 23.

ERPA 29
- Take Furnace Road toward Hauser School Road, then proceed on Cool Spring Road south to Rte 30.
- Follow Kreutz Creek Road south to Rte 30.

ERPA 30
- Take Board Road south to the entrance to I-83 south at Church Road.
- Take Sherman Road south to Mount zion Road. Proceed on Mount zion down to Rte 30 .
- Take Rte. 181 south to the entrance ramp to I-83 south.

ERPA 31
- Take Mount Zion Road (Rte. 24) sodth to Rte 30.

ERPA 32
- Take Susquehanna Trail south toward York and I-83.
- Taie Rte 181 south to I-83 southbound entrance ramp.
- Take Rte 238 southwest toward Rte 74.

\section*{ERPA 33}
- Follow Cherry Orchard Road southwest to Nursery Road, then turn right to George Street Town Rte. 74.
- Take Rte 921 toward Rte 74.
- Take Butler Road east, to Bull Road south, then turn right on Rte 921 toward Rte. 74.
- Take Route 341 east.
- Take Patrick Rd east.

ERPA 24
- Take Patrick Road north to Rte 322.
- Take Rte 241 nor theast.
- Take Rte 341 east.

ERPA 25
- Follow Cloverleaf Road south to the entrance to Rte 283 east.
- Take Elizabeth Road east.
- Take Rte 241 northeast.
- Take Eershey Rd. northeast to Rte 283 east.

\section*{ERPA 26}
- Follow Elizabeth Rd, northeast.
- Take Rte 230 east toward Mount Joy.
- Take Rte 743 to the entrance ramp of Rte 283 east.

\section*{ERPA 27}
- Take Bainbridge Road north to S. Market St. turn left on S. Market St. and continue to Linden Avenue. Follow Linden Ave. east to No. Hanover St. Proceed north on Hershey Rd. to I. 283 E.
- Take Maytown Road to Foreman Drive turn east on to Rte 230.
- Take Cloverleaf Road north to Rte. 230 east.
- Take York - Levisbury Roads to Anderson Road. Proceed on Anderson Road southwest to Rohler's Church Road. Continue on Rohler's Church Rd.
o Take the Rte 382 west to Rte 177 South.
- Take Potts Hill Rd. to Susquehanna Trail, then onto the entrance ramp to I-83 n.

\section*{ERPA 18}
- Take Valley Road to the entrance to I-83 north from Creek Rd.
- Take York Road to the entrance to I-83 north from Creek Rd.

ERPA 19
- Take Rte 230 north to S. Front Street.

ERPA 20
o Take Rte 441 north (Oberline Rd.) to I-283 north. Proceed north on I-283 to I-83 north.
- Take airport connector highway to Rte 283 west. Continue on R-a 283 to I-83 north.

\section*{ERPA 21}
- Follow Chocolate Avenue (Rte 422) northeast.
o Take Fisburn Rd. (Rte 743) to Governor Road (Rte 322) east.

\section*{ERPA 22}
- Take Route 340 to Rte 39 north.
- Take Red Top Road to Rte 39 north.

\section*{ERPA 11}
- Take Rte 241 to Elizabethtown. Turn left on Market Street to E. High \(S t\). then turn right on Elizabethtown Road east.
- Take Turnpike Road east and proceed as in ERPA 10.

ERPA 12
- Take Rte 441 southeast to Rte 23.
- Take Rte 241 to Elizabethtown and proceed as in ERPA 11.
- Take Donegal Springs Road toward Mt. Joy.

ERPA 13
- Take Rte 181 south to I-83.

ERPA 14
- Take Rte 181 south te I-83.

ERPA 15
- Take Rte 181 south to I-83
- Take Rte 382 (York Eaven Road) northwest to the entrance ramp to I-83 north.
- Take Susquehanna Trail to \(I-83\) south entrance ramp.

\section*{ERPA 16}
- Take Cloverleaf Roac to the Susquehanna Trail entrance to I-83 south.
- Take Mount Washington Road southeast to Susquehanna Trail. Proceed south on Susquehanna Trail to York.
- Follow Pines Road to York Haven Road. Turn right to the entrance ramp to I-83 north.
o Take Rte. 262 (Yocumtown Road) to the Susquehanna Trail entrance to I-83 north.

\section*{EPA 7}
- Take Mudd Pike (Rte. 441 north) to Union Street in Middletown. Turn right on to East Main Street (Rte 230) and proceed to the entrance ramp of Rte. 283 east.

\section*{ERA 8}
- Take Middletown Road (Vine Street extension) north to the entrance ramp of Rte. 283 east.

O Take Bast Main Street (Rte 230) to the entrance ramp of Rte. 283 east.
- Take the Harrisburg Pike (Main Street west) to the Airport Access Road West. Proceed to Rte. 283 west and to turn north onto I-283 - I-83.

\section*{EPA 9}
- Take Colebrook Road to the entrance ramp to Rte. 283 east.
- Take Rte 230 to the entrance ramp to Rte. 283 east.
- Follow Colebrook Road (Rte. 341) east.
- Proceed on Deodate Road north to Colebrook Road. Turnright to Colebrook Road (Rte. 341) east.

ERMA 10
- Take Turnpike Road east to High Street, then turn left to Market Street in Elizabethtown. Proceed on Market Street to Linden Avenue. Turn left on to Hanover Street and proceed West on Rte 743 to the entrance ramp to Rte. 283 east.

\section*{ERPA 1}
- Take Geyerg Church Road northeast to Rte 230. Following Rte 230 east to the entrance ramp to Route 283 east.
- Take the north plant bridge to Geyers Church Road and continue as above.
- Take the south plant bridge to Rte 441. Turn right and proceed on Rte. 441 South.

\section*{ERPA 2}
- Take Hilldale Drive to Geyers Church Road. Follow Geyers Church Road to Rte. 230. Proceed on Rte. 230 to the entrance ramp to Rte. 283 east.
- Take Rte, 230 northwest to the entrance ramp of rite. 283 east. - Take Rte. 441 South.

\section*{ERPA 3}
- Take Falmouth Road east to W. High Street in Elizabethtown. Proceed on W. High Street to East High Street and then continue east on Elizabethtown Road.
- Take Rte. 441 South.

\section*{ERPA 4}
o Take Valley Road North to Rte. 262 (Yocumtown Rd.) to the Susquehanna Trail entrance to I-83 north.
- Take Wisler Road to Rte. 382. Turn right and proeed west to I-83 north entrance.

EPA 5
- Take Wisler Road to Rte. 382 Turn right and proceed west to I-83 north entrance.
- Follow York Haven Road to the entrance \(r^{2}-p\) to I-83 north.
S17กSヨY INヨWNSISS甘 JIW甘NAG aNV כIIV1S JO NOSI甘甘dWOJ
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Evacuation Route} & \multirow[t]{2}{*}{\begin{tabular}{l}
Total Vehicies Using \\
Evacuation Route
\end{tabular}} & \multirow[t]{2}{*}{Traffic Assignment Methodology} & \multicolumn{17}{|l|}{Percent of Total Vehicles Evacuated During the Following Tirne Period＊} \\
\hline & & & \[
\begin{aligned}
& 0: 45 \\
& 1: 00
\end{aligned}
\] & \[
\begin{aligned}
& 1: 45 \\
& 2: 00
\end{aligned}
\] & \[
\begin{aligned}
& \text { 2:00 } \\
& \text { 2:15 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 2:15 } \\
& \text { 2:30 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 2:30 } \\
& \text { 2:45 }
\end{aligned}
\] & \[
\begin{aligned}
& 2: 45 \\
& 3: 00
\end{aligned}
\] & \[
\begin{aligned}
& 3: 00 \\
& 3: 15
\end{aligned}
\] & \[
\begin{aligned}
& 3: 15 \\
& 3: 30
\end{aligned}
\] & \[
\begin{aligned}
& 3: 30 \\
& 3: 45
\end{aligned}
\] & \[
\begin{aligned}
& 3: 45 \\
& 4: 00
\end{aligned}
\] & \[
\begin{aligned}
& 4: 15 \\
& 4: 30
\end{aligned}
\] & \[
\begin{aligned}
& 4: 30 \\
& 4: 45
\end{aligned}
\] & \[
\begin{aligned}
& 5: 30 \\
& 5: 45
\end{aligned}
\] & \[
\begin{aligned}
& 5: 45 \\
& 6: 00
\end{aligned}
\] & \[
\begin{aligned}
& 6: 00 \\
& 6: 15
\end{aligned}
\] & \begin{tabular}{l}
6： 15 \\
6：30
\end{tabular} & \[
\begin{aligned}
& 7: 15 \\
& 7: 30
\end{aligned}
\] \\
\hline \multicolumn{20}{|l|}{East of River} \\
\hline Route 6 & 4，360 & Static Dynamic & - & - & & - & - & \[
-
\] & \[
-
\] & - &  & \[
\begin{array}{r}
100 \\
84
\end{array}
\] & - & \[
1 \overline{0}
\] & \[
-
\] &  & － & － & － \\
\hline Route 120 & 5 & Static Dynamic & \[
\begin{array}{r}
100 \\
33
\end{array}
\] & \[
-
\] & - & \(10 u\) & - & \[
-
\] &  & \[
-
\] & － & - & － & － & － & － & － & － & － \\
\hline Route 9A & 8，690 & Static Dynamic & － & － & \[
-
\] & \[
-
\] & \[
-
\] & - & \[
-
\] & \[
\begin{aligned}
& 100 \\
& 100
\end{aligned}
\] & － & － & － & － & － & － & － & － & － \\
\hline Taconic Parkway & 5，155 & Static Dynamic & － & \[
-
\] & \[
\begin{array}{r}
100 \\
92
\end{array}
\] & - &  & \[
-
\] & \[
1 \overline{0}
\] & - & － & － & － & － & － & － & － & － & － \\
\hline Amawalk Road & 2.676 & Static Dynamic & － & － & \[
-
\] & \[
-
\] & - & \[
\begin{array}{r}
100 \\
89
\end{array}
\] & - & \[
1 \overline{0}
\] & － & － & － & － & － & － & － & － & － \\
\hline Total East Routes & 20，785 & Static Dynamic & － &  & - & - &  & \[
-
\] & \[
-
\] & \[
-
\] & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{array}{r}
100 \\
93
\end{array}
\] & - & \[
1 \overline{00}
\] & － &  & － & － & － \\
\hline \multicolumn{20}{|l|}{West of River} \\
\hline Palisades Parkway & 8，655 & Static Dynamic & － & \[
-
\] & - &  &  & - & - & \[
\begin{aligned}
& - \\
& -
\end{aligned}
\] & \[
\begin{array}{r}
100 \\
97
\end{array}
\] & \[
100
\] & \[
-
\] & \[
-
\] & － & \[
\begin{array}{r}
(100) \\
(97)
\end{array}
\] &  & \[
(\overline{100})
\] & \[
-
\] \\
\hline Route 9W & 3,850 & Static Dynamic & － & － & - & \[
-
\] & - & \[
-
\] &  & \[
-
\] & \[
-
\] &  & \[
\begin{array}{r}
100 \\
99
\end{array}
\] & \[
100
\] & － & - & \[
-
\] & \[
\begin{array}{r}
(100) \\
(87)
\end{array}
\] & \[
(100)
\] \\
\hline Route 303 & 3,310 & Static Dynamic &  & \[
\begin{array}{r}
100 \\
88
\end{array}
\] & \[
-
\] &  & \[
\begin{array}{r}
\mathbf{( 1 0 0 )} \\
(90)
\end{array}
\] & \[
1 \overline{00}
\] & \[
(\overline{-}
\] & － &  & － & － & － & － & － & － & － & － \\
\hline Route 45 & 1,920 & Static Dynamic & － & - &  & \[
\begin{array}{r}
100 \\
98
\end{array}
\] & \[
-
\] & \[
1 \overline{0}
\] & \[
-
\] & & \[
\begin{aligned}
& (100) \\
& (100)
\end{aligned}
\] & \[
-
\] & － & － & － & － & － & － & － \\
\hline Little Tor Road & 3，025 & Static Dynamic & － & － & － & － & － & － & － & － & \[
\begin{array}{r}
100 \\
99
\end{array}
\] & \[
1 \overline{0}
\] & － & － & \[
\begin{array}{r}
(100) \\
(95)
\end{array}
\] & - & \[
(\overline{100})
\] & － & － \\
\hline Route 304 & 3,655 & Static Dynamic & － & － & - & \[
\begin{array}{r}
100 \\
99
\end{array}
\] & _ & \[
10 \overline{0}
\] & － & － & & \[
\begin{aligned}
& (100) \\
& (100)
\end{aligned}
\] & － & － & － & － & － & － & － \\
\hline Total West Routes & 24，415 & Static Dynarric & － & － & － & － & － & － & － & － & － &  & \[
\begin{array}{r}
100 \\
98 \\
\hline
\end{array}
\] & \[
1 \overline{00}
\] & － &  &  & \[
\begin{array}{r}
(100) \\
(95)
\end{array}
\] & \[
(\stackrel{-}{100)}
\] \\
\hline Total Network Routes & 45，200 & Static Dynamic & － & － & － & － & － & － & － & － & － & － & \[
\begin{array}{r}
100 \\
96
\end{array}
\] & \[
1 \overline{00}
\] & － & － & － & － & － \\
\hline
\end{tabular}
Note：Numbers enclosed by parentheses represent the percent of total vehicles along a route evacuated during the time period
Nurabers not enclosed by parentheses represent the percent of total velicies along a route evacuated during the time period using Level of Service E capacities．

Table 2 indicates that a 93 percent correlation between the two assignment model is possible on an aggregate basis for the roadway network east of the Hudson River. That is, in the time that the static assignment estimated complete evacuation of vehicles beyond the EPZ, the dynamic assignment estimated 93 percent of the vehicles would have cleared the EPZ. On a route by route basis, this correlation ranged between 100 percent for the most heavily assigned test route, and 33 percent for a minor test route, which was assigned only 5 vehicles during the evacuation with the second lowest correlation, Amawalk Road, being 89 percent.

On the west side of the Hudson River, where both normal and poor weather conditions were analyzed by both models, the correlations of the overall results between the two model were 98 percent and 95 percent, respectively. Under normal weather conditions, there was little disparity among all six routes, with the results varying between 97 percent (Palisades Parkway) and 99 percent (Route 9 W , Little Tor Road, and Route 304). Poor weather conditions resulted in route correlations ranging between 87 percent for Route 9 w and 100 percent for Routes 45 and 304.

Overall, for the entire rest evacuation network, comparison of the static and dynamic assignment results under normal weather conditions indicated a 96 percent correlation. Generally, when the static model estimated the network would be cleared (total vehicle evacuation), the dynamic model estimated 96 percent of the vehicles would have cleared the EPZ boundary. The dynamic assignment results indicated that complete evacuation of all vehicies beyond the EPZ boundary would occur 15 minutes later than the gtatic assignment estimate under normal weather conditions.

In addition to the evacuation times generated by each assignment technique, the location of hottl, necks by sach methodology was compared. The dynamic assignment produced as output for each link the percent of vehicles stopped during the evacuation. This statistic was used as a measure of the degree of congestion on each link. On a network-wide basis, the average percent stops for all links was 35 percent.

The 16 critical bottleneck links identified by the static model were identified in the dynamic assignment output as well. On these links, the average percentage of stops as indicated by the dynamic model output was 50 percent.

\section*{4. CONCLOSIONS}

The results of the benchmark analysis presented in this report indicate that Parsons Brinckerhoff's static traffic assignment model can be applied to roadway networks to estimate evacuation roadway travel times with a high degree of confidence.

Under identical circumstances, the static assignment model results have proven comparable with those produced by a state-of-the-art, complex dynamic assignment model, which simulates the evacuation process within the framework of time. Roadway travel times were estimated and congested roadways identified with a high jegree of correlation using the less complex static assignment methodology. A close correlation between assignment procedures exists for varying roadway types, weather conditions, and loading characteristics.

Table 2 indicates that a 93 percent correlation between the two assignment model is possible on an aggregate basis for the roadway network east of the Hudson River. That is, in the time that the static assignment estimated complete evacuation of vehicles beyond the EP2, the dynamic assignment estimated 93 percent of the vehicles would have cleared the EPZ. On a route by route basis, this correlation ranged between 100 percent for the most heavily assigned test route, and 33 percent for a minor test route, which was assigned only 5 vehicles during the evacuation with the second lowest correlation, Amawalk Roac, being 89 percent.

On the west side of the Hudson River, where both normal and poor weather conditions were analyzed by both models, the correlations of the overall results between the two model were 98 percent and 95 percent, respectively. Under normal weather conditions, there was little disparity among all six routes, with the results varying between 97 percent (Palisades Parkway) and 99 percent (Route 9 W , Little Tor Road, and Route 304). Poor weather conditions resulted in route correlations ranging between 87 percent for Route 9 w and 100 percent for Routes 45 and 304.

Overall, for the entire test evacuation network, comparison of the static and dynamic assignment results under normal weather conditions indicated a 96 percent correlation. Generally, when the static model estimated the network would be cleared (total vehicle evacuation), the dynamic model estimated 96 percent of the vehicles would have cleared the EPZ boundary. The dynamic assignment results indicated that complete evacuation of all vehicles beyond the EPZ boundary would occur 15 minutes later than the static assignment estimate under normal weather conditions.

In addition to the evacuation times generated by each assignment technique, the location of bottlenecks by each methodology was compared. The dynamic assignment produced as output for each link the percent of vehicles stopped during the evacuation. This statistic was used as a measure of the degree of congestion on each link. On a network-wide basis, the average percent stops for all links was 35 percent.

The 16 critical bottleneck links identified by the static model were identified in the dymamic assignment output as well. On these links, the average percentage of stops as indicated by the dynamic model output was 50 percent.

TABLE 1

COMPARSION OF STATIC AND DYNAMIC ASSIGNMENT TRAVEL TIME RESULTS

\section*{Travel Time for Last Vehicle to Clear EPZ}
\begin{tabular}{|c|c|c|c|c|}
\hline Evacuation Route & \multicolumn{2}{|l|}{Level of Service E} & \multicolumn{2}{|l|}{Level of Service D} \\
\hline \multirow[b]{2}{*}{East of River} & Er & Min & Hr & Min \\
\hline & Static & Dynamic & Static & Dynamic \\
\hline Route 6 & 3:50 & 4:45 & & \\
\hline Route 120 & 0:50 & 2:30 & & \\
\hline Route 9A & 3:20 & 3:30 & & \\
\hline Taconic Parkway & 2:05 & 3:15 & & \\
\hline Amawalk Road & 2:50 & 3:30 & & \\
\hline \multicolumn{5}{|l|}{West of River} \\
\hline Palisades Parkway & 3:35 & 4:00 & & \\
\hline Route 9w & 4:25 & 4:45 & \[
\begin{aligned}
& 5: 50 \\
& 6: 25
\end{aligned}
\] & 6:30 \\
\hline Route 303 & 2:00 & 3:00 & 2:40 & \(7: 30\)
\(3: 15\) \\
\hline Route 45 & 2:20 & 3:00 & 2:40 & \(3: 15\)
\(3: 45\) \\
\hline Little Tor Road & 3:35 & 4:00 & 5:45 & \(3: 45\)
6:15 \\
\hline Route 304 & 2:30 & 3:00 & 4:00 & 6:15 \\
\hline
\end{tabular}
* A dynamic analysis at Level of Service \(D\) was not performed east of the Hudson
River

\subsection*{3.2 Dynamic Assignment Results}

Table 1 also shows the results obtained from the dynamic traffic assignment Evacuation roadway travel times based on the output traffic statistics of the model are rounded up to the nearest 15 minutes. Thus, when a route exhibited zero volume within a given 15 -minute point in time, it actuslly was cleared of traffic at some point during the preceeding 15 -minute time interval.

Utilizing evacuation capacities calculated for ncrmal weather conditions, roadway travel times ranged from 2 hours 15 minutes to 4 hours 45 minutes for all routes east and west of the Hudson River. West of the river, evacuation capacities calculated for poor weather conditions resulted in roadway travel time estimates ranging between 3 hours and 7 hours 30 minutes.

\subsection*{3.3 Comparison of Results}

Por the benchmark analysis and evaluation of the test network, the evacuation roadway travel times obtained from the static assignment model were compared to the dynamic assignment model travel times to assess differences in the results of the two models and verify results of the static model.

As shown in Table 1, in all cases, the static assignment evacuation reaches 100 percent completion either before or at the same time as the dynamic assignment evacuation.

The benchmark analysis consisted of a series of static and dynamic assignments to obtain comparable estimetes of roadway travel time to evacuate residents of the Indian Point EPZ. Common to all of the traffic assignments, regardless of the model, were the number of trips generated by each zone and the test evacuation network. The test evacuation network consisted of the two southern quadrants of the Indian Point EPZ.

Separate benchmark analyses and evaluations were made for normal and poor weather conditions. The basic difference between these analyses was the roadway carrying capability (evacuation capacity). Level of Service E roadway capacity represented evacuation under normal weather conditions, whereas capacity at Level of Service \(D\) represented poor weather evacuation conditions. For poor weather conditions, free-flow speed reductions on the order of 20 percent were put into effect.

The static traffic assignment model was executed once for the entire test evacuation network (each quadrant to the west and east of the Hudion River) to obtain the evacuation roadway travel time estimates for all routes for a given weather condition. Hence, two runs were required to obtain the evacuation time estimates for the test network.

The dynamic traffic assignment model was analyzed separately for each quadrant and each weather condition. Three dymamic traffic assignments were made, which resulted in normal weather evacuation roadway travel time estimates for routes on both sides of the Hudson River, and poor weather evacuation roadway travel time estimates for routes west of the Eudson River.

\subsection*{3.1 Static Assignment Results}

For each of the evacuation routes included in the test evacuation network, the roadway travel times to clear the \(E P Z\) resulting from the static assignment, as shown in Table 1, ranged from 50 minutes to 4 hours 25 minutes under normal weather conditions (Level of Service E evacuation capacities), and from 50 minutes to 6 hours 25 minutes under poor weather conditions (Level of Service D evacuation capacities). Sixteen (iritical bottleneck links were identified as an output of the static assignme it model runs under both weather conditions.

It is anticipated that during an emergency evacuation, the traffic demand world approximate 90 percent in the direction of outbound movements. In the interest of providing a conservative yet realistic capacity estimate, 80 percent of capacity is assigned to the outbound direction.

Thus, from the above considerations, the base capacities at Levels of Service (LOS) D and \(E\) can be computed as follows:
\(\operatorname{LOS}_{\mathrm{D}}\) Base Capacity \(=2000 \times 0.58 \times 0.80=928 \mathrm{pph}\).
\(\operatorname{Los}_{\mathrm{E}}^{\mathrm{D}}\) Base Capacity \(=2000 \times 1.00 \times 0.80=1600\) vph.
Each segment of the evacuation roadway network has individual characteristics which further reduce its ability to meet the demand volume. From Table 10.8 of the Eighway Capacity Manual, factors associated with the lane widths and side clearances (referred to as a "W" factor) are applied to the base capacities to derive the segment's actual capacity. For example, for a segment with two twelve-foot-wide travel lanes and no shoulders, the base 928 capacity is multiplied by a factor of \(W=0.88\) to produce a capacity for the segment of 817 vehicles per hour at Level of Service \(D\).

Thus, from the above derivation, the Level \(D\) and \(E\) capacities for evacuation traffic are computed as shown below where \(W\) is the factor from Table 10.8 .

> Two Lane, Two-Way Roadways
> \(\operatorname{LOS}_{D}\) Capacity \(=928 \times \mathrm{w}\)
> \(\operatorname{LOS}_{E}\) Capacity \(=1600 \times \mathrm{w}\).
2. Two Way Stree, with Parking

Capacity and service volume for an urbanized area are determined by other factors, such as the presence or absence or parking, percent traffic turning, and allowable green time at a signalized intersection. To evaluate the effects of such factors on capacity, the Leisch Nomographs from the Traffic Engineering Series - Capacity Analysis Procedure for Signlized Intersections are used.

\section*{3. Four Lane Two-Way Highway, Divided Bighway}

Table 9.1 and 9.2 in the B ighway Capacity Manual are used for this category of road segment. The derivation of Level of Service \(D\) capacity assumes that, for emergency evacuation conditions, 0.95 was an appropriace peak hour factor, since the demand would be high and virtually constant during the evacuation period. Thus, as per Table \(9.1,4000\) Capacity at \(\operatorname{LOS}_{\mathrm{E}} \times 0.90\) (reduction for speed impediment) \(X 0.95\) (PGF) \(=3420\) or Capacity \(D\). W factors from Table 9.2 which adjust for lane and shoulder wi'ths when applied to Capacity D would yield the segment capacity at Level of service \(D\). Therefore, the calculated capacities for four lane divided highway segments are:

\footnotetext{
Pour Lane Dirides Bighway
LOS Capacity \(=3420 \mathrm{~K}\) w
\(\operatorname{LoS}_{D}^{D}\) Capacity \(=4000 \times \mathrm{X}\)
}
d. Summary of all destinations and the number of vehicles (by type) and passengers assigned to each.
e. Distribution of the percent of the total population evacuated as a function of time.

\section*{B. Evacuation Capacity}

A critical element in determining the amount of time needed to evacuate any given area is the capacity of the existing roadways to accommodate the anticipated vehicular volumes. Once the capacity calculations have been developed, the roadway travel time and congestion/delay time occuring during evacuation can be computed.

The procedure used to determine the evacuation area roadway capacities is based on the Federal Highway Administration's 1965 旦ighway Capacity Manual and the Traffic Engineering Series Capacity Analysis Procedure for Signalized Intersections. Definitions of specific technical terminology used throughout the following paragraphs are based on the Eighway Capacity Manual.

The roads and highway in the evacuation area were categorized into four groups:
- two lane, two-way highways
- two-way urban street
- two-way urban streets with parking
- four lane, two-way divided highway.

For each of these groupings, base capacities at Level of Service \(E\) and Level of Service D are calculated. Level of service E capacities are used in the adverse weather scenario. The base capacity is determined by using factors which take into account the impact on traffic operation caused by existing roadway width, shoulder area or lateral clearance. Other standard capacity inhibiting factors (such as passing sight distances, percent trucks and type of terrain) are considerably less significant for the emergency evacuation condition and, therefore, are not considered. All applicable factors were abstracted from the 旦ighway Capacity Manual using the tables cited in the following paragraphs or from the charts contained in Capacity Analysis Procedure for S' gnized Intersections.

\section*{1. Two Lane, Two-Way Roadways}

Table 10.7 of the Highway Capacity Manual shows the maximum service volume under ideal conditions for passenger cars traveling in both directions on a two lane highway as 2000 vehicles per hour ( Vph ). This value, which represents the base capacity as Level of Service \(\mathbf{Z}\) for two lane, two-way roadways, is modified to represent a one lane outbound flow as described below.

The base capacity for this type of roadway at Level of Service \(\bar{z}\) is further reduced by a factor of 0.58 to determine base capacity at Level of Service D. This factor, which is also show in Table 10.7 , represents a restricted average highway speed of 40 miles per nour with no restraint created by limited passing sight distance.
(V/C) relationship for the link. Pinally, the evacuation speed or delay time is computed for each link, depending on whether the V/C ratio was greater or less than 1.0 . The formula contained in the Pederal Highway Administration August 1973 Traffic Assignment Manual was adopted and modified as follows for use in computing the speed at which evacuees will travel.
\[
\text { Evacuation Speed }=\frac{\text { Free-Plow Speed }}{0.25\left[\frac{\text { Demand }}{\text { Capacity }}\right]^{4}+1}
\]

Following these calculations, the model computes the roadway travel time for each traffic zone's evacuation route (or routes since some buses and special vehicles had separate routes) by scanning the links comprising the evacuation route to determine the maximum \(V / C\) ratio along the route.

When the hourly evacuation capacity exceeds the total demand volume ( \(V / \mathrm{C}\) ratio less than 1.0 ) for all links along the route, the link evacuation speeds are used to compute link travel time, and the travel times for each link along the path are summed to obtain the zone-to-EPz-boundary roadway travel time for the route.

When the traffic volume exceeds the bourly evacuation capacity (V/C greater than 1.0 ) along any link of a traffic zone's evacuation route, the roadway travel time is represented by the maximum link delay time incurred along the route. Link delay time is calculated as the maximum volume/capacity ratio in hours along the route. The link with the maximum ratio is identified as the bottleneck link for the evacuation route for use in future planning. Other links along the route where the volume/capacity ratio exceeded 1.0 are also identified for planning purposes.

The roadway travel time as determined above is added to the terminal time and the free-flow travel time for each zone trip type to determine the total roadway evacuation time. The total roadway evacuation time resulting from this analysis represents the time for the last vehicle in the zone to clear the EPZ.

\section*{3. Outputs}

The computer program developed for the static assignment process provides five basic reports which are used in the evacuation planning process. The reports are described below:
a. Sumary of link statistics; link number, description, length, freeflow speed and time, vehicular demand, evacuation capacity, and demand/capacity ratio.
b. Summary of traffic zone statistics number of trips, evacuation route, destination, terminal time, free-flow travel time, roadway travel time, total evacuation time, and bottleneci link, for each trip type, sorted in ascending order by total evacuation time.
c. Sumary of all bottleneck links and the traffic zones which use

\section*{2. METHODOLOGY}

\section*{A. Static Traffic Assignment Process}

\section*{1. Inputs}

The static traffic assignmen: process developed to estimate roadway travel and delay times requires three basic types of input. The first type relates to the characteristics of the evacuation roadway network, which is comprised of one-directional links, each having its own ittributes. The links are described in terms of their capability to accomodate evacuating traffic (evacuation capacity), length, and free-flow speed (speed limit).

The second type of input required for this assignment prucess is zonal vehicle trip generation data. The EPZ is disaggregated into traffic zones, and the numbers of trips by each vehicle type (e.g., autos, buses, ambulances) are estimated in tarms of passenger car equivalents (PCP's) for each traffic zone. Buses are weighted as the equivalent of two passenger cars in this analysis. In addition, a terminal time for all trip types for each traffic zone are input. The terminal time for autos represents the time to frive from homes within the traffic zone via feeder streets to the first ink of the primary evacuation route. For buses and special vehicles, terminal time represents the total time for a special vehicle to travel from the point of origin (staging area, garages etc.) to the pick-up location; loading time; circulation time (multiple pick-ups); and the time to travel to the first link on a evacuation path.

The third input type wed in the static assignment process is evacuation path data. Evacuation routes are designated fixed paths extending from the traffic zones to the EPZ boundary via specific roadways. Separate paths are developed for each trip type (auto, bus, ambulance) and are expressed in terms of connecting link numbers. Destinations (i.e., reception centers) are defined for each traffic zone and input for the purpose of determining the number of vehicles and passengers expected at each destination. Average vehicle occupancies are used to estimate the number of passengers arriving in vehicles at the destination.

\section*{2. Static Assignment Algorithm}

A computer program was written to process the above input data and compute roadway evacuation times for each trip type by traffic zone.

Initially, the program calculates the total vehicular demand volume (in PCE's) on each link in the network by aggregating the vehicle trips generated by each traffic zone along the evacuation path. Implicit in this assignment is the assumption that all vehicles from all zones using a given evacuation route were on each link along the designated route concurrently. The assignment process is thus considered "static", berause the spatial movement of vehicles across the network as a function of time is not explicitly recognized.

For each link in the network, three additional computations are performed. Pirst, the free-flow travel time is calculated as the quotient of the link length and the free-flow speed. Second, the total vehicular demand volume is divided by the bourly evacuation capacity of the link to obtain the volume/capacity

\section*{1. INTRODUCTION}

On November 29, 1979, the United States Nuclear Regulatory Commission (NRC) requested all nuclear power reactor licensees to submit estimates of the time required to evacuate the population within a \(10-\mathrm{mile}\) radius of nuclear facilities. The estimates were to be made primarily for the purpose of providing those officials who would make evacuation decisions in an emergency situation with knowledge of the time required to complete an evacuation of one segment or all of the population.

Subsequent to this request for evacuation time estimates, a document entitled Criteria for Preparation and Evaluation of Radiological mergency Response Plans and Preparedness in Support of Nuclear Power Plants (NURBG\(0654 /\) FEMA-REP-1) was published in the Federal Register in November of 1980 by a joint Federal Emergency Management Agency/Nuclear Regulatory Comission Steering Committee. This document, the purpose of which is to provide a basis for NRC licenseen, State, and local governments to develop radiological emergency plans and imp rove emergency preparedness, requires, among other things, an evacuation tine assessment study for the 10 -mile plume exposure pathway Emergency Planning Zone (EPZ). The evacuation time assessment as describod in the document consists of estimates of notification time, preparation \(t i m e\), roadway travel and de ay time, and confirmation time.

In response to the initial NRC request in November 1979 and to NURBG\(0654 /\) FEMA-REP-1, Parsons Brinckerhoff Quade and Douglas, Inc. developed a fixed route traffic assignment model which loads the network and computes the route travel and delay times. It is a static model which assumes instantaneous loading of the evacuation network and concurrent vehicular demand on each roadway segments.

Section 2 of this report present the methodology, assumptions and traffic assignment algorithm structure used in an emergency evacuation time estimate simulation model. In addition, is an analysis of this static model and DYNEV, a dynamic model developed by KID Associates with which it was compared specifically in verifying the evacuation time estimates for the Indian Point Nuclear Generating Station is provided in Section 3.
(T845) and go west along this road to Carlisle Road (County Road 74). Continue west on this road to Rosstown Road (County Road 177) (LR 66006), turn northwest on this zoad to Portney Road (T912) and then continue northwest on this road to Mount Airy Road (LR 66032). Take this road north to the Warrington Corporate Boundary. Proceed north along this boundary to the Monaghan Corporate Boundary and then continue north along this boundary to the York County/Cumberland County Line. Follow this Line north to Cedar Cliff Road. Continue along this road east to Simpson Ferry Road (LR 21022), then east on this road to State Road 83 and north on this road to New Cumberland Corporate Boundary. Pollow this boundary east to the Dauphin County/Cumberland County Line. Take this Line north to the Interstate Route 83 bridge, then cross this bridge, east to the Conrail tracks and then nortio on these tracks to State Street (State koute 22). Proceed on this street east to the Harrisburg City Line, then go counterclockwise along this Line to Union Deposit Road (LR 22008) and follow on this road east to the Lower Paxton Corporate Boundary. Go north on this Boundary to Locust Street (LR 22071), and then turn east on this road to Nyes Road (T407). Follow on this road east to South Eanover Corporate Boundary and go north along this boundary to the point of origin.

A description of the primary evacuation routes from each of the Emergency Response Planning Areas (ERPA's) is presented in Appendix C. The descriptions depict the total path from each ERPA to the 10 mile Emergency Planning zone (EPZ). Time estimates for subradil ( 2 and 5 mile) are based on the use of portions of this total path to the defined border of the respective radius.

Line north to the Interstate Route 83 bridge, cross this bridge, east to the Conrail tracks and then proceed north along these tracks to State Street (State Route 22). Follow this street east to the Harrisburg City Line, follow counterclockwise along this Line to Union Deposit Road (LR 22008) and then proceed east on this road to the Lower Paxton Corporate Boundary. Follow north on this boundary to Locust Street (LR 22071), turn east on this road to Nyes Road (LR 22)18) and then proceed north on this road to Red Top Road (T407). Gc east on this road to the South Hanover Corporate Boundary. Follow this boundary north to the point of origin.

\section*{Sector 0 (ERPA's 1-47) (Pigure 17)}

Follow the South Hanover Corporate Boundary clockwise 'com its intersection with the Lower Paxton/West Hanover Corporate Boundaries to the East Eanover Corporate Boundary. Then follow this boundary clockwise to the Lebanon County/Dauphin County Line. Proceed along this Line south to Stouffers Road (T335), turn northeast on this road to Ville Rosd (LR 38035) and then go south on this road to Chestnut Kreider Road (T333). Follow this road south to Lawn Road (LR 38001), continue south on this road o Opper Lawn road (County Road 341) (T331) and then turn east on this road to Lawn Road (LR 38001). Follow this road south to the Lebanon County/Lancaster County Line, proceed along this line west to County Road 241 (FAS280), turn south again along this road to Trail Road (T328) and then continue south along this road to Quarry Road (T855). Proceed south along this road to Miltongrove Road (LR 36004), continue south on this road to Grandview Road (LR 36124) and then follow this road south to Orchard Road (LR 36069). Turn east on this road to Mussler Road (LR 36058), return south on this road to County Road 230 (FAS129) and then turn east to the East Donegal Corporate Boundary. Follow this Boundary south to Donegal Springs Road (LR 35002), turn west on this road to Church Road (T316) and then proceed south on this road to Kraybill Road ('2827). Take this road to Colebrook Road (LR 36004), turn south on this road to Rock Point Road (T673) and go west on this road to Puhrman Road. Proceed south on this road to Maytown Road (County Road 743) (LR 36070), and continue south on this road to a point where the road terminates near the Susquehanna River's eastern shoreline. Follow a straight line across the river to a point directly opposite Accomac Road (LR 66089). Follow this road south to Dark Hollow Road (T776), continue south on this road to Hauser School Road (LR 66018) and then turn west on this road to Furnace Road (LR 66152). Proceed west on this road to Millstone Road, turn south on this road to Spring Road (T783) and then go west again on this road to Druck Valley Road (LR 66019). Continue west on this road to Mount Zion Road (LR 66020), turn north on this road to Druck Street (LR 66021), turn southwest on this road to Mundis Hill Road (LR 66021) and then proceed once more west along this road to Woodland View Drive (LR 66086). Turn southwest along this road to N. George St. (County Road 181) (PAS250) to Lightner Road, continue west along this road to the Susquehanna Trail (LR 66003) and then turn south along this road to State Route 30 . Follow this road west to the City of York Corporate Boundary. Take this boundary northwest to the Manchester Corporate Boundary. Follow this boundary clockwise to the Dover Corporate Boundary. Proceed this boundary counterclockwise to Nursery Road (T823), turn west on this road to Old Carlisle Road
on this Line southeast to the East Manchester Corporate Boundary. Take this boundary clockwise to Mundis Hill Road (LR 66021) and then turn west along this road to Woodland View Drive (LR 66086). Procsed southwest along this road to N. George St. (County Road 181) FAS250) to Lightner Road, turn west along this road to the Susquehanna Trail (LR 66003) and then turn south along this road to State Road 30. Follow this road west to the City of York Corporate Boundary. Follow this boundary northwest to the Manchester Corporate Boundary. Proceed along this boundary counter-clockwise to Nursery Road (T823), turn west on this road to Old Carlisle Road (County Road 74). Go west on this road to Rosstown Road (County Road 177) (LR 66006), turn northeast on this road to Portney Road (T912), and proceed northwest on this road to Mount Airy Rd. (LR 66032). Go north along this road to the Warrington Corporate Boundary, continue north along this boundary to the Managhan Corporate Boundary and then proceed north along this boundary to the York County/Cumberland County Line. Take this Line east to Lewisberry Road (County Road 114) (FAS 416), continue east on this road to Navoo Road (LR 66103) and then turn southeast on this road to Horse Lane (T927). Take this road east to Ridge Road (T957) and continue east on this road to the Newberry Corporate Boundary. Follow this boundary to the Dauphin County/York County Line on the western shoreline of the Susquehanna River and then follow the shoreline to the Londonderry Corporate Boundary. Follow this boundary across the Susquehanna River to the eastern shoreline and the point of origin.

\section*{Sector \(N\) (ERPAs \(1,4,6-9,18-22,37-47\) ) (Pigure 16)}

Follow the South Haven Corporate Boundary clockwise from its intersection with the Lower Paxton/West Hanover Corporate Boundaries to the East Hanover Corporate Boundary. Then follow this boundary clockwise to the Lebanon County/Dauphin County Line. Proceed along this line south to Conewago Corporate Boundary and than follow this boundary counterclockwise to the Dauphin County/Lancaster County Line. Follow this Line west to Deodate Road (T305), then north on this road to Hertzer Road (T303) and then turl west to Brinser Road (T490). Follow this road north to Geyers Church Road (T696), turn southwest on this road to Pelker Road (T490) and then turn northwest on this road to Foxianna Drive (T315). Proceed west on this road to Hillside Drive (LR 22077), then turn northwest on this road to the Royalton Corporate Boundary and follow this boundary clockwise to the eastern shoreline of the Susquehanna River. Follow this shoreline south to the Dauphin County/Lancaster County Line, then follow this Line est across the Susquehanna River to where the Line meets the York County Line. Take this Line north to the Goldsboro Corporate Boundary, go along this boundary clockwise to Pines Road (LR 66003) to State Route 83 and then follow this road northwest to the Newberry Corporate Boundary. Proceed west along this boundary to Siddensburg Road (LR 66001) and then turn north on this road to the Managhan Corporate Boundary. Follow this boundary in a northern direction to the York County/Cumberland County Iine, then continue along this Iine north to its intersection with Green Lane Drive (T957) and then turn west on this road to Cedar Cliff Road. Follow this road east to Simpson Ferry Road (LR 21022), continue east on this road to State Route 83 and turn north on this road to New Cumberland Corporate Boundary. Follow this boundary east to the Dauphin County/Cumberland County Line. Take this

Take the Royalton Corporate Boundary northeast to Hillside Drive (LR 22077) then turn southeast along this road to Foxianna Drive (T315) and then proceed east along this road to Felker Road (T490). Follow this road southeast to Geyers Chruch Road (T696) and then turn northeast along this road to Brinser Road (T490). Proceed along this road south to Hertzer Road (T303), then go east to Deodate Road (T305). Turn south along this road to the Dauphin County/Lancaster County Line, then follow this line east to the Lebanon county/Lancaster County Line. Continue or this line east to county Road 241 (FAS 280), then turn south on this roi i to Trail Road ( T 328 ) and then remain south on this road to Quarry Road (T855). Continue south along this road to Miltongrove Road (LR 36004), then go south on this road to Orchard Road (LR 36069). Proceed east on this road to Mussler Road (LR 36068), then again turn south on this road to County Road \(2: 30\) (FAS 129) and then return east to the East Donegal Corporate Boundary. Follow this boundary South to Donegal Springs Road (LR 36004), then turn west on this road to Church Road (T316) and then move south on this road to Kraybill Road (T827). Continue along this road to Colebrook Road (LR 36004), proceed south on this road to Rock Point Road (T637) and then turn west on this road to Fuhrman Road. Take this road south to Maytown Road (County Road 743) (LR 36070), then south on this road to a point where the road terminates near the Susquehanna River s eastern shoreline. Take in a straight line south across the River to a point directly opposite Accomac Road (LR 66089). Follow this road south to Dark Hollow Road (T776), continue south on this road to Elauser School Road (LR 66018) and then turn west on this road to Furnace Road (LR 66152). Proceed west on this road to Millstone Road, turn south on this road to Spring Road (T783) and then return west on this road to Druck Valley Road (LR 66019). Follow this road west to Mount zion Road (LR 66020), turn north on this road to Druck Street (LR 66021), go southwest on this road to Mudis Hill Road (LR 66021) and then turn west along this road to Woodland View Drive (LR 66086). Proceed southwest along this road to N. George St. (County Road 181) (FAS250) to Lightner Road, turn west on this road to the Susquehanna Trail (LR 66003) and then turn south along this road to State Road 30. Follow this road west to the City of York Corporate Boundary. Proceed on this boundary northwest to the Manchester Corporate Boundary. Follow this boundary clockwise to the East Manchester Corporate Boundary, turn north along this boundary to the Conewago Corporate Boundary and then west along this boundary to State Route 83. Follow this road northwest to York Haven Road (County Road 382) (FAS250), turn east on this road to County Road 295 (LR 66002) and then at the termination of this road follow a straight line to the western shoreline of the Susquehanna River. Follow the shoreline to the Londonderry Corporate Boundary and then return eastward to the eastern shoreline of the Susquehanna River to the point of origin.

Sector M (ERPA's \(1,4-6,14-17,30,32-37\) ) (Figure 15)
Follow the eastern shoreline of the Susquehanna River south from the Londonderry Corporate Boundary to the Dauphin County/Lancaster County Line. Proceed along this line west across the Susquehanna River to where this Line meets the York County Line. Follow this Line southeast to the York Haven Corporate Boundary, then follow this boundary counterclockwise to the Lancaster County/York County Line and then proceed

Boundary. Turn south along this boundary to Harrisburg Avenue (LR 36117) and proceed west along this road to the Elizabethtown Corporate Boundary. Follow this boundary counterclockwise until it intersects Bainbridge Road (County Roud 241) (FAS 280), then follow along this road southwest to Bossler Road (LR 36072), turn southast along this road to Oak Road and then go south on this road to the Conoy Corporate Boundary. Proceed southwest along this boundary to the Lancaster County/York County Line on the western shore of the Susquehanna River. Follow the boundary counterclockwise to the Manchester Corporate Boundary. Then follow this boundary counterclockwise to Manchester Street (T951), and turn west along this route to Locust Point Road (LR 66038). Take this route northwest to the Manchester Corporate Boundary and follow the boundary clockwise to the Newberry Corporate Boundary. Continue on this boundary east to the Susquehanna Trail (T686) and then turn northwest along this road to Old York Road (LR 66215). Follow this road north to the Pennsylvania Turnpike (State Route 76 ), then proceed east on this road to County Road 283 and continue east on this road to the Londonderry Corporate Boundary which was the point of origin.

Sector \(\pi\) (ERPA's 1-10, 21-26) (Fiqure 13)
Follow the South Hanover Corporate Boundary clockwise from its intersection with the Lower Paxton/West Hanover Corporate Boundaries to the East Eanover Corporate Boundary. Then follow this boundary clockwise to the Lebanon County/Dauphin County Line. Proceed along this line south to Stouffers Road (T335), turn northeast on this road to Ville Road (LR 38001), go south on this road to Opper Lawn Road (County Road 341) (T331) and then turn east on this road to Lawn Road (LR 38001). Follow this road south to the Lebanon County/Lancaster County Line, take this line west to County Road 241 (FAS 280), then turn south along this road to Trail Road (T328) and again south along this road to quarry Road (T855). Continue south along this road to Miltongrove Road (LR 36004), and again on this road south to County Road 230 (FAS129). Turn east to the East Donegal Corporate Boundary. Follow this boundary south to Earrisburg Avenue (LR 36117). Proceed west along this road to the Elizabethtown Corporate Boundary and follow this boundary clockwise to Turnpike Road (LR 36001). Then turn west along this road to Black Swamp Road and go south along this road to Keener Road (T861). Take this road west to River Road (FAS 407), then follow this road to the Dauphin County/Lancaster County Line on the eastern shoreline of the Susquehanna River. Following this line west across the Susquehanna River to where it meets the York County Line. Take the York County/Dauphin County Line north along the western shoreline of the Susquehanna River to the Londonderry Corporate Boundary, then return eastward to the eastern shoreline of the Susquehanna River and turn west along the Middletom Corporate Boundary. Proceed north along the Middletown Corporate Boundary to the Lower Swatara Corporate Boundary and then continue north along this boundary to the Lower Paxton Corporate Boundary. Follow this boundary north to the point of origin.

Sector L (ERPA's \(1-3,10-15,25-32\) ) (Piqure 14)
Following the eastern shoreline of the Susquehanna River south from the Londonderry Corporate Boundary to the Royalton Corporate Boundary.
line southeast until it seets the western mainland shoreline of the Susquehanna River. Follow the shoreline northwest to a point directly east of Maples Street (LR 66153). Travel directly west to Maple Street (LR 66153) and follow this route southwest to the Mount Wolf Corporate Boundary. Follow the boundary counterclockwise te the Manchester Corporate Boundary. Continue along this boundary counterclockwise to Manchester Street (T951), then proceed west along this route to Conewago Avenue (T940) and west along this route to Locust Point Road (LR 66038). Take this route northwest to the East Kanchester Corporate Boundary, then south along this boundary to Lewisberry Road (LR 66003) and then go northwest along this road to Conewago Corporate Boundary. Follow the boundary clockwise to the Newberry Corporate Boundary and then follow this boundary clockwise to the Lewisberry Corporate Boundary. Continue along this boundary counterclockwise until it meets the Newberry Corporate Boundary. Then, follow this boundary to the Dauphin County/York County Line on the western shoreline of the Susquehanna River and follow the shoreline to the Londonderry Corporate Boundary. Take iis boundary across the Susquehanna River to the eastern shoreline and the point of origin.

\section*{Sector I (ERPA's \(1,4,6-9,18-20\) ) (Figure 11)}

Follow the eastern shoreline of the Susquehanna River south from the Royalton Corporate Boundary to the Dauphin County/Lancaster County Line. Then proceed on this line west across the Susquehanna River to where the line meets the York County Line. Follow this line north to the Goldsboro Corporate Boundary, and then west along Pines Road (LR 66003), to State Route 83. Follow State Route 83 northwest to the Newberry Corporate Boundary, then east aiong the boundary to Susquehanna Trail (T686) and then northwest along this road to Old York Road (LR 66215). Take this road north to the Pennsylvania Turnpike (State Road 76), then follow this route east to County Road 283 and then east on this road to the Londonderry Corporate Boundary. Follow this boundary clockwise, to the Conewago Corporate Boundary and then continue on this boundary clockwise south to the Dauphin County/Lancaster County Line. Take this line west to Deodate Road (T305), then proceed north on this road to Eartzer Road (T303) and then turn west to Brinser Road (T490). Follow this road north to Geyers Chruch Roed (T696), then proceed southwest on this road to Falker Road ( 7490 ) and then turn northwest on this road to Poxianna Drive (T315). Go west on this road to Hillside Drive (LR 22077), then take this road northwest to the Royal ton Corporate Buundary. Follow this boundary clockwise to the point of origin.

\section*{Sector J (ERPA's 1-20) (Piqure 122}

Pollow the Londonderry Corporate Boundary eastward from Swatara Creek to the Conewago Corporate Boundary. Proceed along this boundary south to the Dauphin County/Lancaster County Line. Follow this line east to County Road 241 (FAS 280), then turn south along this road to Trail Road (T328) and continue south along this road to Quarry Road (T855). Again proceed south along this road to Miltongrove Road (LR 36004), remain on this road south to Grandview road (LR 36124) and then continue south on this road to Orchard Road (LR 36069). Turn east on County Road 230 (FAS 129) and then continue east to the East Donegal Corporate
south along this road to Keener Road (T861). Continue along this road west to River Road (FAS 407), then north on this road to the Dauphin County/Lancaster County Line on the eastern shoreline of the Susquehanna River. Following this Line west across the Susquehanna River to where it meets the York County Line. Take the York County/Dauphin County Line north along the western shoreline of the Susquehanna River to the Londonderry Corporate Boundary, then return eastward to the eastern shoreline of the Susquehanna River and proceed west along the Middletown Corporate Boundary. Follow north aleng the Middletown Corporate Boundary to the Londonderry Corporate Boundary and continue north along this boundary to the point of origin.

\section*{Sector G (ERPA's 1-3, 10-15) (Fiqure 9)}

Following the eastern shoreline of the Susquehanna River south from the Londonderry Ccrporate Boundary to the Royalton Corporate Boundary. Proceed along the Royalton Corporate Boundary northeast to fillside Drive (LR 22077). Turn southeast along this road to Poxianna Drive (T315) and then east along this road to Folker Road (T490). Again proceed southeast along this road to Geyers Church Road (T696) and then northeast along this road to Brinser Road (T490). Continue along this road south to Bertzer Road (T303), and the Dauphin County/Lancaster County Line. Turn east along this Line to Harrisburg Pike (FAS 129) and then east along this road to the Elizabethtown Corporate Boundary. Pollow this boundary counterclockwise to Bain Bridge Road (County Road 241) (FAS 280), then southwest along this road to Bossler Road (LR 36072), then southeast along this road to Oak Road south to the Conoy Corporate Boundary. Proceed southwest along this boundary to the Lancaster County/York County Line on the western shore of the Susquehanna Piver. Follow the mainland shoreline to a point directly east of Maple Stieet (LR 66153), travel directly west to Maple Street (LR 66153) and follow this route southwest to the Mount Wolf Corporate Boundary. Follow the boundary counterclockwise to the Manchester Corporte Boundary, continue along the boundary counterclockwise to Manchester St. (T951), then west along this route to Conewago Ave. (T940). Continue in a westerly direction along this route to Locust Point Road (LR 66038). Follow this route northwest to the East Manchester Corporate Boundary, then north along this boundary to the Connewago Corporate Boundary and then west along this boundary to State Route 83. Proceed along this road northwest to York Haven Road (County Road 382) (FAS 250), then turn east along this road to County Road 295 (LR66002) and after this road terminates, fcllow in a straight line to the western shoreline of the Susquehanna River. Continue along the shoreline to the Londonderry Corporate Boundary and then return eastward to the eastern shoreline of the Susquehanna River to the point of origin.

\section*{Sector H (ERPA's 1, 4-6, 14-17) (Figure 10 )}

Pollow the eastern shoreline of the Susquehanna River south from the Londonderry Corporate Boundary to the Dauphin County/Lancaster County Line. Then follow this line west across the Susquehanna River to where the line meets the York County Line. Proceed along this line southeast to the York Haven Corporate Boundary, then follow this boundary counterclockwise to the Lancaster County/York County Line and continue on this

Sector D (ERPA's \(1,4,6\) ) (Fiqure 6)
Following the eastern shoreline of the Susquehanna River south from the Londonderry Corporate Boundary to the Dauphin County/Lancaster County Line. Take this Line west across the Susquehanna River to where the Line meets the York County Line then along this line north to the Goldsboro Corporate Boundary. West along Pines Road (LR 66003) to State Route 83. Follow State Route 83 northwest to the Newberry Corporate Boundary, then east along this boundary to the Dauphin County/York County Corporate Boundary on the western shoreline of the Susquehanna River. Follow this boundary southeast to the Londonderry Corporate Boundary, then east across the Susquehanna River to the point of origin.

\section*{Sector E (ERPA's 1-6) (Fiqure 7)}

Following the eastern shoreline of the Susquehanna River south from the Londonderry Corporate Boundary to the Royalton Corporate Boundary. Along the Royalton Corporate Boundary northeast to Rillsdale Drive (LR22077). Southeast along this road to Foxianna Drive (T315) and then east along this road to Felker Road (T490). Southeast along this road to Geyers Church Road (T696) and then northeast along this road to Brinser Road (T490). South on this road to Bertzer Road (T303) then east to Deodiate foad (T305). Then south along this road to the Dauphin County/Lancaster County Line and then west along this boundary to Turnpike Road (LR 36001). West along this road to Black Swamp Road and then south along this road to Keener Road (TB61). Follow this road west to River Road (PAS 407), then north on this road to the Dauphin County/Lancaster County Line on the eastern shoreline of tho Susquehanna River. Following chis ine west across the Susquehanna Rivez to where it meets the York County Line. Take the Dauphin County/York County Line north to a point directly east of County Road 295 (LR 66002). Follow in a straight line west to County Road 295 (L2 66002) and then west along this road to County Road 382 (FAS 250). West along this road to State Route 83 and then northwest on this route to the Newberry Indefinite Boundary. East along this boundary on the western shoreline of the Susquehanna River. Follow this boundary southeast to the Londonderry Corporate Boundary, then east across the Susquehanna River to the point of origin.

\section*{Sector \(F\) (ERPA's \(1-3,7-10,25\) ) (Fiqure 8)}

Pollow the Londonderry Corporate Boundary eastward from the Swatara Creek to the Cinewago Corporate Boundary. Along this boundary south to the Dauphin County/Lancaster County Line. Follow this Line east to the Lebanon County/Lancaster County Line east to County Road 241 (FAS 280), then south along this road to Trail Road (T328), and continue south to Quarry Road (T855). South along this road to Miltongrove Road (LR 36004), then south on this road to Grandview Road (LR 36124) and again south on this road to Orchard Road (LR 36069. Turn east on this road to Mussler Road (LR 36068), then south on this road to County Road 230 (FAS 129) and again east to the East Donegal Corporate Boundary. Follow this boundary south to Harrisburg Ave. (LR 36117). Turn west along this road to the Elizabethtown Corporate Boundary and follow this boundary counterclockwise until it intersects with Turnpike Road (LR 36001). Proceed west along this road to Black Swamp Road and then turn

Sectors A (EPRA's 1-2) (Pigure 3)
Following the eastern shoreline of the Susquehanna River south from the Londonderry Corporate Boundary to the Royalton Corporate Boundary. Following the Royalton Corporate Boundary northeast to Hillsdale Drive (LR 22077). Southeast along this road to Foxanna Drive (T325) and then east along this road to Felker Road (T490). Then southeast along this road to Geyerg Church Road (T696) and then northeast along this road to Brinser Road (T490). Along this road south to Hertzer Road (T303), then east to Duedate Road (T305). South along this road to the Dauphin County/Lanster County Line and west along this line to the eastern shoreine of the Susquehanna River. Following this Iine west acros the Susquehana River to where it meets the York County Line, then north along the York County/Dauphin County Line on the western shoreline of the Susquehanna River to the Londonderry Corporate Boundary. From this point, return eastward to the eastern shoreline of the Susquehanna River.

\section*{Sectors B (ERPA's 1-3) (Figure 4)}

Following the eastern shoreline of the Susquehanna River south from the Londonderry Corporate Boundary to the Royalton Corporate Boundary. Following the Royalton Corporate Boundary northeast to Hillsdale Drive (LR22077). Southeast along this road to Foxanna Drive (T325) and then east along this road to Felker Road (T490). Then southeast along this road to Geyers Church Road (T696) and then northeast along this road to Brinser Road (T490). Along this road south to Eertzer Road (T303) then east to Deedate Road (T305). South along this road to the Dauphin County/Lancaster County Line and then west along this Line to the Conoy Corporate Boundary. South along this Boundary to Turnpike Road (LR 36001), then west along this road to Black Swamp Road South along this road to Keener Road (T861), and west along this road to River Road (PAS 407), then north on this road to the Dauphin County/Lancaster County Line on the eastern shoreline of the Susquehanna River. Following this Line west across the Susquehanna River to where it meets the York County Line, then north along the York County/Dauphin County Line on the western shoreline of the Susquehanna River to the Londonderry Corporate Boundary. From this point, return eastward to the eastern shoreline of the Susquehanna River.

\section*{Sector \(C\) (ERPA's 1, 4,5) (Figure 5)}

Following the eastern shoreline of the Susquehanna River south from the Londonderry Corporate Boundary to the Dauphin County/Lancaster County Line, then following this line west across the Susquehanna River to where the Line meets the York County Line. North on the Dauphin County/York County Line to a point directly east of County Road 295 (LR 6002). Then in a straight iine west to County Road 295 (LR 66002). West along this road to County Road 382 (FAS 250). Continuing west along this road to Pines Road (LR 66003). Northeast along Pines Road to Goldsboro Corporate Boundary. Follow this boundary north, then east to the Dauphin County/York County Line along the western shoreline of the Susquehanna River to the Londonderry Corporate Boundary. Follow this boundary east across the Susquehanna River to the point of origin.

\section*{Appendix B}

\section*{Description of Sector Boundaries (Refer to Figures 3-17)}

*

Table 1: Example of Roadway Characteristies
\begin{tabular}{|c|c|c|c|c|}
\hline Segarent & \begin{tabular}{l}
Number \({ }^{1}\) \\
of Lanes
\end{tabular} & Type \({ }^{2}\) & Capadty \({ }^{3}\) & Comments \({ }^{6}\) \\
\hline & & & & \\
\hline & & & & \\
\hline & . & & \(\cdots\) & \\
\hline & & & & \\
\hline
\end{tabular}

NOTES: Total number of through ianes in both directions. If roadway eross section is not inflorm, use section with least number of lanes
\(2 F=\) Freaways and Expressways
\(U=\) Urban Streets
\(R=\) Rural Highways
\({ }^{3}\) If known
"Indicata any special conditions that may affect roadiway capacity.



Figure 4: Example of Additional Reporing Format for Time Estimates of Population Evacuation When Probability Distributions Are Used.

Wote: These arres are suggestive of a hypothetical 10 -mile radius EpZ. Sfmilar earres can be developed for sub-areas of the entire E?Z. The horizental displacement of these curves along the time axis as well as the slope of the curves will vary depending apon the characteristics of the EPZ or sub-areas of the EPZ.


Figura 3: Example of Evacuation Roadway Network

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{YEHICLES TOTALS} \\
\hline WING MILIS & AING VEMICLES & TOTAL MULES & \begin{tabular}{l}
Gumulative \\
VEHICLES
\end{tabular} \\
\hline 0.2 & & 0.2 & \\
\hline 2-5 & & 0.3 & \\
\hline 5-10 & & 0.10 & \\
\hline
\end{tabular}

Ftgure 2: Example of Format for Presenting Vehicle Oata By Sector


Figure 1: Example of Format for Presentating Population Data By Secter
their evacuation in order to shut down industrial facilities. Each special facility shall be treated on an individual basis. Weather conditions and time of day condftions shall be considered. Consideration shall be given to the impact of peak populations including behavioral aspects.

All of the results shall be reported in the format previously indicated. This format summarizes the maximum time for each component and for each sector. The components may or may not be directly additive based on the methodology used and stated in the report. Where distribution functions are used the percentage of the population as a function of time should be reported (See Figure 4 for an example format).

\section*{V. OTHER REOUIREMENTS}

The time required for confimation of evacuation shall be estimated. Candidate methods include visual confimation by aircraft or ground vehicles and telephone confimation.

Specific recomendations for actions that could be taken to significantly improve evacuation time shall be given. Where significant costs may be involved, preliminary estimates of the cost of implementing these recommendations shall be given.

A revfew of the draft submittal by the principal organizations (State and local) involved in emergency response for the site shall be solicited and comments resulting from such review included with the submittal.
distributions are combined to develop the time distributions for the various population segments departing their home or other facility from which they are being evacuated. For example, for the auto-owning population segment, these vehicles are then loaded onto the roadway network in order to compute travel times and delays.

Regardless of the means by which the time and amount of traffic to be loaded on the network is determined (i.e., sequentially or using distribution functions), it is necessary to calculate the on-road travel and delay times. In this step, traffic from each sector is assigned to available evacuation routes, and, if assigned volumes exceed capacity, delay times must be calculated using a queuing analyses. Traffic queue (backup) locations and estimated delay times should be indfcated on the area map.

An estimate of the time required to evacuate that segment of the non-car-owning population dependent upon public transport shall be made, in a similar manner to that used for the auto-owning population. This estimata shall include consideration of any special services which might be initiated to serve this population subgroup. Such services might include fixed-route departures from designated assembly points.

Estimates for special facilities shall be made with consideration for the means of mobilization of equipment and manpower to afd in evacuation, and the needs for designated employees or staff to delay
with long evacuation times. When distribution functions are used, estimates are made of the likelihood that each stage in an evacuation sequence will be accomplished within a given period of time. These conditional probabilities depend upon completion of the preceding stage. For example, formulation of family units or other evacuation groups does not commence until notification is received. Some of these distribution functions must be based on the judgment of the estimators. Computation of the joint distribution functions of evacuation times are made. Typically, the joint distribution assumes the form of an S-shape curve as shown in Figure 4. The evacuation time function is fairly smooth for large homogeneous population segments such as the general public. Special facilities, such as hospitals and industrial centers, produce less smooth functions, or discontinuous ones. The assessment of evacuation time may be easily updated should further analyses be conducted, assumptions changed, or new pians developed.

When distributions are used, distribution functions for notification of the various categories of the evacuee population shall be developed. The distribution functions for the action stages after notification predict what fraction of the population will complete a particular action within a given span of time. There are separate distributions for auto-owning households, school population, and transit dependent populations. These distribution functions can be constructed in a varifety of ways, depending greatly on the kinds of data avaflabie for the actual site being studfed. The preyiously developed conditional
population should consider rain, flooding, or fog as the adverse condition as well as snow with winter population estimates.

The text accompanying the table shall clearly indicate the critical assumptions which underlie the time estimates; e.g., day versus night, workday versus weekend, peak transient versus off-peak transient, and evacuation on adjacent sectors versus nonevacuation. The relative significance of alternative assumptions shall be addressed, especially with regard to time dependent traffic loading of the segments of the evacuation roadway network.

Some modification of the reporting format may be approoriate, depending on local circumstances.
B. Methodolocy

The method for computing total evacuation time shall be specified. Two approaches are accaptable. The simplest approach is to assume that events are sequential. That is to say, for example, that no one begins to move until all persons are warned and prepared to leave before anyone starts moving. The time is estimated by simply adding the maximum time for each component. This approach tends to overestimate the evacuation time.

The second approach, which is more complex and will be discussed further, is to combine the distribution functions for the various evacuation time components. This second approach may result in reduced time estimates due to more realistic assumptions. The added complexity of analysis, therefore, may be warranted at sites

The sector and quadrant houndaries shall also be indicated. (See planning elements J.10.a and b.).
B. Roadway Segment Characteristics

A table such as example Table 1 shall be provided indicating all the evacuation route segments and their characteristics, including capacity. The charactaristics of a segment shall be given for the narrowest section , or bottleneck if the roadway is not uniform in the number of lanes throughout the segment.

\section*{IV. ANALYSIS OF EVACUATION TIMES}

As indicated previously, evacuation time is composed of several components. Each of these components shall be estimated in order to determine the total evacuation time.

\section*{A. Reporting Format}

Table 2 shows the desired format for presenting the data and results for each type of evacuation. Each of the evacuation time components is presented along with the total evacuation time. Two conditions normal and adverse - are considered in the analyses. Adverse conditions would depend on the characteristics of a specific site and could include flooding, snow, ice, fog or rain. The adverse weather frequency used in this analysis shall be identified and shall be severe enough to define the sensitivity of the analysis to the selected events. These conditions wfll affect both travel times and capacity. More than one adverse condftion may need to be considered. That is, a northern site with a high summer courfst

> Populations shall be provided by evacuation areas as specified in planning element \(3.10 . b\). For the purpose of determining evacuation times it may also be useful to summarize population data by sector and distance from the plant. Figure 1 is an example of such a summary. Separate totals shall be provided for the three population segments. Figure 2 shows the population totals translated into the number of vehicies estimated to be used in evacuation.

\section*{III. TRAFFIC CAPACITY}

This section of the report shall show the facilities to be used in evacuation. It shall include their location, types, and capacities. A complete review shall be made of the road network. Analyses shall be made of travel times and potential locations for serious congestion in potential corridors. (The analyses may be simplified in extreme rural areas.) The entire road network shall be used but local routes shall be carefully selected and aiblyzed to minimize their impact on the major routes should queuing or cross traffic conflicts occur. Care shall be taken to avoid depending only on high-capacity intarstate and similar type routes because of limitations of on-ramp capacities. Alternatively, special traffic management plans may be developed to effectively utilize avaliable eapacity. Evacuation shall be based on general radial dispersion.

\section*{A. Evacuation Readway Network}

A map showing only those roads used as primary evacuation routes
shall be provided. Figure 3 is an example. The map need not show
local access streets necessary to get to the evacuation routes. Each
segment of the network shall be numbered in some manner for reference.
D. Emergency Planning Zone and Sub-areas

The sub-areas for which evacuation time estimates are required must encompass the entire area within the plume exposure EPZ. Additfonally, evacuation time estimates are also required for simultaneous evacuation of the entire piume exposure pathway. The areas to be considered are as follows:
Radius
about 2 miles
about 5 miles
about 10 miles (EPZ)
about 10 miles (EPZ)

Area
four \(90^{\circ}\) sectors
four \(90^{\circ}\) sectors
four \(90^{\circ}\) sectors
entire EPZ

When making estimates for the outer sectors, assume that the inner adjacent sectors are being.evaciuated simultaneously. The boundaries of the sub-areas shall be based upon the same factors as the EPZ, namely demography, topography, land characteristics, access routes, and local furisdictions. To the extent practical, the sector boundaries shall not divide densely populated areas. Where meteorological conditions such as dominant wind directions, warrant special consideration, an addftional sub-area may need to be defined and a separate estimate made for this case. The ERZ and its sub-araas shali be identified by mapping on United States Geological Survey (USGS) 7-1/2-minute serles quadrant maps when avallable. Special facilities shall also be noted on these maps, to the extent that their locations can be geographically specified.
without autos. The number of vehicles used by permanent residents is estimated using an appropriate auto occupancy factor. A range of two to three persons per vehicle would probabily be reasonable in most cases.

An alternative approach is to calculate the number of vehicles based on the number of households that own vehicles assuming one vehicle per household is used in evacuation. Regardless of the approach used, special attantion must be given to those households not having automoblles. The public transport-dependent population must, therefore, be considered as a special case.

\section*{3. Transient Pooulations}

Estimates of transient populations shall be developed using local data such as peak tourist volumes and employment data for large factories. Automobile occupancy factors would vary for different transient groups. Tourists might have automobile occupancy factors in the range of three to four while a factory would probably have a factor of less than 1.5 persons per vehicle. This population segment along with the permanent population subgroup using automobiles constitute the general population group for which an evacuation time estimate shall be made.

\section*{C. Soecial Facility Pcoulation}

An estimate for this special population group shall usually be done on an institution-by-institution basis. The means of transportation are also highly individualized and shall be described. Schools shall be included in this segment.
B. General Assumotions

All assumptions used in the analysis shall be provided. The assumptions shall include such things as automobile occupancy factors, method of determining roadway capacities, and method of estimating populations.

\section*{C. Methodology}

A description of the method of analyzing the evacuation times shall be provided. If computer models are used, a general description of the algorition shall be provided along with a source for obtaining further information or documentation.

\section*{11. DEMAND ESTIMATION}

The objective of this saction is to provide an estimate of the number of people to be evacuated. Three potential population segments shall be considered: permanent residents, transients, and persons in special facilities. Permanent residents includes all people having a residence in the area, but not in institutions. Transients shall include tourists, employees not residing in the area, or other groups that may visit the area. Special facillty residents include those confined to institutions such as hospitals and nursing homes. The school population shall be evaluated in the special facility segment. Care should be taken to avaid doubie counting.
A. Permanent Residents

The number of permanent residents shall be estimated using the U. S. Census data or other rellabie data, adjusted as necessary, for growth. (See planning element J.10.b.). This population data shall then be translated into two subgroups: 1) those using autos and those
\[
\mathrm{A}-2
\]

\section*{APPENDIX A}

\section*{EVACUATION TIME ESTMATES WITHIN THE PLUME EXPOSURE PATHWAY EMERGENCY PLANNING ZONE}

The following is an example of what shall be included in an eyacuation times assessment study and how it might be presented. The example includes a complete outline of material to be covered, but only a few typical tables and explanations are provided. The requirenents are intended to be illustrative of necessary considerations and provide for consistency in reporting. Because the evacuation time estimates will be used by those emergency response personnel charged with recormending and deciding on protective actions during an emergency the evacuation time estimates should be updatad as local conditions change (e.g., change in type or effectfveness of public notification system).

\section*{1. INTRCDUCTION}

This section of the report should make the reader aware of the general location of the nuclear power plant and plume exposure pathway emergency planning zone, and generally discuss how the analysis was done.
A. Site Location and Energency Planning Zone

A vicinity map showing the plant location shall be provided along with a detailed map of the plume exposure pathway emergency pianning zone (EPZ). The map shall be legible and identify transportation networks, topographical features and political boundaries. (See planning element J.10.a.)

Metropolitan York Pennsylvania: Visual Encyclopedia prepared by Marshall Penn-Yorik Co., 1979.

New Jersey/Pennsylvania Map prepared by American Automobile Association, 1980 edition.

South Eastern Pennsylvania Map: Visual Encyclopedia prepared Ly Marshall Penn-York Co., 1979.

Map of York: Pennsylvania and Vicinity prepared by Champion Map Corp.
Chamber of Commerce of the Greater Harrisburg Area, Greater Harrisburg, Pennsylvania: City and County, 1974.

Pennsylvania Recreational Guide prepared by Department of Environment Resources: Office of Resources Management and Bureau of State Parks, 1980.

Lancaster Count Pennsylvania, Street and Road Map; Alfred B. Batton, Inc.; 1979.

Southeastern Pennsylvania Zip Code Map; Alfred B. Lanton, Inc., 1974.
33. Pennsylvania Emergency Response Plan, Commonwealth of Pennsylania Department of Health; February 1980.
34. Personal conversation with Mr. Richard S. Hackman, District Traffic Engineer, Pennsylvania Dept. of Transportation. 12-18-80.
35. Disaster Operations Plan Annex E Fixed Nuclear Facility Incident, Commonwealth of Pennsylvania, March 28, 1980 (Revised Edition).
36. Personal conversation with Dr. Stephen S. Salomon, State Programs Officer of the NRC. 12-19-80.
37. Criteria for Preparation and Evaluation of Radiologial Emergency Response Plans and Preparedness in Support of Nuclear Power Plants NUREG0654 , FEMA-RYP-1. , REV. 1 APPENDIX 4, NOVEMBER 1980.
38. A Policy on Design of Urban Eighways and Arterial Streets; American Association of State Eighway and Transportation Officials (Washington, D.C.): 1977.
39. Personal conversation with Mr. Thomas Smith, GPU. Emergency Preparedness at TMI. 1-30-81.
40. D.S. Department of Transportation: Federal Eighway Administration; Manual on Uniform Traffic Control Devices for Streets and Highways; 1978.

Perscnal Conversation with Mr. Robert Johnson, President of the Johnson Bus Company. 1-13-81.

Personal conversation with Mr. Lester Warfel, owner of the Warfel Bus Service. 1-13-81.

Personal Conversation with Mr. Jerry Schultz, owner of Schultz Transportation.

Personal conversation with Mr. Raymond E. Groff, owner of Raymond E. Groff Buses. 1-13-81.

Personal conversation with Mr. Gerald Smith, Vice President of Traffic for the Capital Area Transit Authority. 1-13-81.

Personal conversation with Mr. Weire, Director of Transportation for the Northeastern School District. 1-13-81.

Personal conversation with Mr. Jim Eastman, executive for the York Area Transit Authority. 1-13-81.

Personal conversation with Mr. Bob Warren, Director of Transportation for the Central York School District. 1-13-81.

Personal conversation with owner of the Red Lion Transit Bus Company. 1-14-81.
Personal conversation with Mr. William Shaffer at the Lebanon County Emergency Preparedness office. 1-14-81.

Personal Conversation with Mr. Tom Blosser, Director of Cumberland County Emergency Preparedness Office. 1-14-81.

Personal conversation with Mr. John Brabits, official for the Dauphin County Bmergency Preparedness Office. 1-14-81.

Personal conversation with Mr. Paul Reese, County Coordinator for Buses for the Lancaster County Emergency Preparedness Office. 1-14-81.

Personal conversation with an assistant of Ms. Patricia Filnchbaugh, Director for the York Transportation Club. 1-14-81.

Personal conversation with an official for the Gross School Bus Service. 1-14-81.
31. Pennsylvania Emergency Management Agency (P.E.M.A.): Evacuation Time Estimates for Three Miles Island; October 28, 1980, volume I.

\section*{32. Maps Used for Information:}

United States Geological Survey Maps (U.S.G.S.); \(71 / 2^{\circ}\) quadrant maps; Middletown Area is the centroid quadrant with 22 quadrant maps extending outward to encompass a \(15-m i l e\) radius.
P.E.M.A. (Pennsylvania Emergency Management Agency) Evacuation Route Map: \(10-20\) mile radius; May 1980.
```

Frey Village Retirement Center
1020 N. Union St.
Middletown, Pa. 17057

```
Ms . Isabelle Warren
Homeland Nursing Bome
5 th \& Nuench St.
Harrisburg, Pa. 17102
Mr. George L. M. Deibert
Odd Fellows Home of Pa .
999 W. Harrisburg Pike
Middletown, Pa. 17057
Mrs. Constance May
Child Day Care Center
Eummel stown, Middletown Rd.
near Vine St. Exit
25. Lebanon Valley Chamber of Commerce; Lebanon Valley Industrial Directory; August 1979.
26. Department of Education: Diocese of Härrisburg, Pennsylvania Directory 1980-1981.
27. Office of the Lower Dauphin School District Superintendent; Lower Dauphin School District Emergency and Disaster Administration Plan, September 8, 1986.
28. Personal Conversation with Ms. Tilde Sprickel from the Office of Children Youth and Families and Ms. Constance May from the Childrens Care Center; 12-23-80.
29. Nationwide Personal Transportation Study: Automobile Occupancy; Report No. 1; U.S. Dept. of Transporation: Federal Administration; April 1972.

\section*{30. For Bus Transport:}

Personal conversation with Ralph Miller, General Manager at the Capital Bus Company. 1-13-81.

Personal conversation with Paul Bachman Director of Transportation of the West Shore School District. 1-13-81.

Personal conversation with the secretary for Klase Sunderland of Sunderland Chevrolet. 1-13-81.

Personal Conversation with Redd Rollman Director of the Red Rose Transit Authority. 1-31-81.

Personal conversation with Mr. Gerke, President of the Conestoga Transportation Company. 1-13-81.
```

 Hershey, Pa.
 Mr. Saff
 Community General Osteopathic Eospital
 4300 Londonderry Rd.
 Harrisburg, Pa.
Mr. Kelly Weist
Leader Nursing \& Rehab. Center
800 Ring Russ Road
Harrisburg, Pa.
Mrs. Dora Vaughan
Helen O. Snavely Memorial Home
R.D. \#1
Hummelstown, Pa. 17036
Mr. Richard Esterly
Alcoholism Services Inc.
1924 N. Second St.
Harrisburg, Pa.
Mr. John Logan, M.D.
\#arrisburg State Eospital
Cameron \& McClay St.
Harrisburg, Pa.
Mr. William Gibson
Elizabethtown Children's Hospital
Elizbethtown, Pa. 17022
Bugene LaRocco
Beistline House
S. 28th Street
Harrisburg, Pa.
Twin Oaks Nursing Eame
90 W. Main St.
Campbel1town, P. }1701
Mrs. Gene Blouch
Palmyra Nursing Eome
341 N. Railroad St.
Palmyra, Pa. 17078
Rev. Paul Boll
Lebanon Valley Brethren
1200 Grubb st.
Palmyra, Pa. 17078
Mr. Franklin Grayvill
Annville United Christian Church Home
R. D. 11
Annville, Pa. 17003

```

Personal conversation with Dr. William Gibson, official at the Elizabethtown Hospital for Children and Youth. 1-6-81.

Personal conversation with Mr. Eyer, an official at the Leader Nursing and Rehabilitation Center Elizabethtown. 1-5-81.

Personal conversation with Mr. Walter Wentzel, an official at the Masonic Home. 1-5-81.

Personal conversation with Ms. Nancy Thompson, an official at the Lehman Guest and Boarding Home. 1-5-81.

Personal conversation with Mr. Carl Bodner, an official at the Annville United Church of Christ Home. 1-5-81.

OORRESPGNDENCES MADE FOR SPECIAL FACILITY AND SCHOOL DATA
Mrs. Jayne Coover
Manor E.S.
Elm Coolidge \(S t\).
New Cumberland, Pa. 17070
Mr. A. Richart Bittle
Hillside E.S.
7 th and Sharon St.
New Cumberland, Pa. 17070
Mr. Robert Lisse
New Cumberland M.S.
9 th \& Broad Avenue
New Cumberland, Pa. 17070
Mr. John Whittle
Lawn Elementary School
Lawn, Pa. 17041
Sister Mary Stephen
Villa Teresa Nursing Home
1051 Avile Rd.
Harrisburg, Pa. 17109
Miss McGiven
Dauphin County Home \& Hospital
Paxton South 28 th Street
Harrisburg, \(P\). 17111
Mr. Prelesnik
Earrisburg Hspital
S. Front and Chestnut St.

Harrisburg, Pa. 17111
Mr. Prancis
Hershey Medical Center
500 University Drive

Personal conversation with Mr. Lawrence Kirschenbaum, official from the Jewish Home of Greater Harrisburg. 12-17-80.

Personal conversation with Mrs. Papacostas, official at the Blue Ridge Baven East. 12-18-80.

Personal conversation with Mr. William Landis, official at the Alpine Retirement Center. 12-18-80.

Personal conversation with Ms. Cerveris, Vice President of Planning of Hospitals Council of Pennsylvania. 12-18-80.

Personal conversation with Francis Fillipi and Harvey Wilson from the State Dept. of Justice. 12-23-80.

Personal conversation with Michael Faust, Deputy Warden at the Dauphin County Prison. 12/23/80.

Personal conversation with Ms. Angels Flohr, assistant at the Aspin Center. 12-23-80.

Personal conversation with Mr. Al Goodman in the press office at the Dept. of Public Welfare. 1-2-81.

Personal conversation with Mr. Gene Fasig at the State Dept. of Health Long Term Care Division. 1-5-81.

Personal conversation with Ms. Julia Cox, Emergency Coodinator for Long Term Facilities. 1-5-81.

Personal conversation with Ms. Gerry Fallinger, Long Term Care Division Assistant. 1-5-81.

Personal conversation with Ms. Susan Darhower from the Dept. of Public Welfare Office of Children Youth and Families. 1-6-81.

Personal conversation with Ms. Yuanita Mason, Director of Slyvan Eeights Home. 1-6-81.

Personal conversation with Mr. Kevin Lamont, Director of the Lodge at Alpine Hane. 1-6-81.

Personal conversation with Mr. William Landis official at the Alpine Retirement Center.

Personal conversation with Sr. Rosemarie Budd from the Mercy Crest Convent. 1-6-81.

Personal conversation with an official at the Alcoholism Services in Harrisburg. 1-6-81.

Personal conversation with Mr. David Mills, official at the Oddfellows Home. 1-6-81.

Personal corversation with Mrs. Curtis, official for St. Theresa School. 1-5-81.

Personal conversation with Mr. Richards, official for the New Cumberland Middle School. 1-5-81.

Personal conversation with Mrs. Connie Mohn, official for the Manor Elementary School. 1-5-81.

Personal conversation with Pather Richardson at St. Peters Rectory for Catholic Diocessan office number. 1-2-81.

Personal conversation with Sister Mary Anna, principal of St. Margaret Mary School. 1-5-81.

Personal conversation with Mrs. Kramarich, secretary at the Assumptin of the Blessed Virgin Mary School. 1-5-81.

Personal conversation with Sister Prancis, princifal of St. John's and St. Ann's Schools. 1-5-81.

Personal conversation with Sister Ann, prinripal of St. Peters School. 1-b-dl.
Personal conversation with secretary at Conewago Elementary School. 1-14-81.
Personal conversation with Mr. Fred Nole, Assistant Director for Catholic Schools. 1-5-81.
24. Special Pacility Data

Personal Conversation with Mr. Kel Knowlton, official for the State Dept. of Public Welfare. \(12-23-80\).

Personal conversation with Mrs. Gilde Sprickel for State Department Office of Children, Youth and Families. 12-23-80.

Personal Conversation with Ms. Constance May, Director of the Childrens Care Center. 12-23-80.

Personal conversation with Mr. Prelesnik, Director at the Harrisbug Hospital. 12-17-80.

Personal conversation with Mr. Robert Palmer, official at the Polyciinic Medical Center. 12-17-80.

Personal conversation with Mr. Lloyd, Personal Director of the Dauphin County Home and Hospital. 12-17-80.

Personal conversation with Mrs. Phillip Ernst, official from the Alpine Retirement Center. 12-17-80.

Personal conversation with Mrs. Susan Pope, official from Colonial Pines Golden Age Home. 12-17-80.

Personal conversation with Mrs. Earvey, office secretary for York Christian Elementary School. 12-30-80.

Personal Conversation with Mr. Stricker, principal of the Bainbridye Elementary School. 12-31-80.

Personal conversation with Mr. Shibley, official from the Locust Grove Elementary School. 1-5-81.

Personal conversation with Mr. Richard Henry, official from the Mt. Zion Elementary School. 1-5-81.

Personal conversation with Mr. Smith, official from the Red Land Sr. High School. 1-6-81.

Personal conversation with Mr. David Pertioro, official from the Lawn Elementary School. 1-6-81.

Personal conversation with Mr. Barbusky, official from the Price Elementary School. 1-6-81.

Personal conversation with Mr. Richard Rudisill from the Milton Heshey School. 1-6-81.

Personal conversation with Mr. Aichele, official from the Eershey Intermediate School. 1-6-81.

Personal conversation with Sister Rita Polchin, principal from St. Catherine Iabourne School. 1-6-81.

Personal conversation with Mrs. Lewis, official from the Eoly Pamily School. 1-7-81.

Personal conversation with Mrs. Getz, official from the Hillside Elementary School. 1-7-81.

Personal Conversation with Sister Prancis, principal from St. Johns School. 1-7-81.

Personal conversation with Sister Pauline, principal from St. Joan of Arc School. 1-7-81.

Personal conversation with Mr. Joe Shiara, official from Bishop McDevitt High School. 1-7-8i.

Personal conversation with Mr. Carl DeFebo, official for Susquehanna Township Middle School. 1-5-81.

Personal conversation with Mrs. Miles, official for the Progress Grade School. 1-5-81.

Personal conversation with Thomas Lyons, official for the State Police Acadery. 1-5-81.

Personal conversation with Mr. Katz, official from the Steelton-Highspire School District. 12-17-80.

Personal conversation with Mr. John Dunlop, official from the Susquehanna School District. 12-15-80.

Personal conversation with Mr. Ron Samuel, official from the Dauphin County Vo-Tech. 12-16-80.

Personal conversation with Mr. Glenn Motter, official from Harrisburg-SteeltonHighspire Vo-tech. 12-16-80.

Personal conversation with Mr. Bruce Conner, official from C.A.I.U. 12-16-80.
Personal conversation with Dr. Eversold, official from the Barrisburg Area Community College. 12-17-80.

Personal conversation with Mr. Ritch, official from the Central Dauphin School District. 12-18-80.

Personal conversation with Mrs. Booth, official from the Derry Township District. 12-18-80.

Personal conversation with Mr. Williams, official for the East Eigh Elementary School and the Mill Rd. Elementary School. 12-19-80.

Personal conversation with Mr. Paviglianti, official for the Rhems Elementary School and Pairview Elementary School. 12-22-80.

Personal conversation with Mr. Peters, official for the Elizabethtown Senior Eigh School and the Middle School. 12-22-80.

Personal Conversation with Mr. John Sauter, principal of the Maytown Elementary School. 12-22-80.

Personal Conversation with Mr. Dale Leckrone, principal of the Roundtown Blementary School. 12-29-80.

Personal conversation with Mr. Burton Schellhammer, official from the Central York School District, 12-29-80.

Personal conversation with Mr. Arthur Hendricks official from the Northeastern School District. 12-29-80.

Personal conversation with Mr. Thomas Jenkins, official from the Eastern School District. 12-29-80.

Personal conversation with Ms. Bonnie Forestall, secretary for Sister Joseph Delores, official for Catholic Schools in 10-mile radius area. 12-30-80.

Personal conversation with the owner of the Harrisburg East Campground. 2-18-81.
Personal conversation with Ms. Greta Synder of the Eershey Bighmeadow Campground. 2-18-81.

Personal conversation with Mr. Joe Coviello of the Ridge Run Campsites. 2-18-81.

Personal conversation with Ms. Elda Roof of the Shaw-N-Tee Campground. 2-18-81.

Personal conversation with Ms. Dot Greason from the Gifford Pinchot State Park. 2-18-81.

Personal conversation with Mr. Earl witsil of the Park Away Parks Campground. 2-18-81.
16. U.S. Department of Comerce; County Business Patterns, Pennsylvania, 1970 and 1978.
17. Pennsylvania Department of Commerce: Bureau of Statistics Research and Planning; 1980 Industrial Directory of the Commonwealth of Pennsylvania, 27 th edition.
18. D.S. Department of Comerce: Bureau of the Census; 1977 Census of Retad 1 Trade; Pennsylvania, March 31, 1980.
19. U.S. Department of Comerce: Bureau of the Census; 1977 Census of Service Industries; Pennsylvania, December 1979.
20. U.S. Department of Comerce: Bureau of the Census; 1977 Census of Wholesale Trade: Pennsylvanía, July 10, 1980.
21. Pennsylvania Department of Commerce: Bureau of Statistics Research and Plarning; Pennsylvania Industrial Census Series Release Number \(\underline{M-5-78}\) (for all five counties), 1980.
22. Cumberland County Industrial Enterprises; Cumberland County, Pennsylvania Industrial Enterprises pamphlet; 35 North Tenth St., Lemoyne, Pennsylvania 17043.

\section*{23. For School Data}

Personal conversation with Mr. James Buffington, official from the Earrisburg City School District. 12-16-80.

Personal conversation with Mr. Henty Hoerner, official from the Lower Dauphin School District. 12-16-80.

Personal conversation with Mr. Calabrese, official from the Middletown School
District. 12-17-80.

Personal conversation with Ms. Margaret Marfise from the State Department Bureau of Travel Development.

Personal conversation with Mr. Dick Hackman, District Traffic Engineer for Pennsylvania Department of Transportation. 1-8-81.

Personal ceiversation with Ms. Debra Staples from the Hotel/Motel Asseciation of Pennsylvania. 1-8-81.

Personal conversation with Mr. Loomis from the State Department on Labor and Industry. 1-8-81.

Personal conversation with Ms. Daphene Lewis from the Three Mile Island Travel Data Center. 1-8-81.

Personal conversation with Mr. James Rutter, Director of the Bureau of Data Reduction. 1-8-81.

Personal conversation with assistant to Ms. Anita Summers at the Public Management Unit for Wharton School of Business. 1-8-81.

Personal conversation with Major Meyer from the Olmstead Air Force Base. 1-8-81.

Personal conversation with Mr. George Giangi, TMI Emergency Preparedness. 1-13-81.

Personal conversation with Mr. Rayford Williams, Director of the State Department Bureau of Parks and Recreation. 1-15-81.

Personal conversation with Ms. Connie Sutton, assistant to Mr. Greg Gove from the State Department on Community Affairs. 1-16-81.
10. Commonweal th of Pennsylvania; Governors Office of Policy and Planning: The Socio-Economic Impacts of the Three Mile Island Accident; December
11. D.S. Department of Commerce, National Travel Survey 1977: 1979.
12. Pennsylvania Department of Commerce; 旦ighlights of Travel Development in Pennsylvania and U.S.A., 1980.
13. Hotel and Travel Index: Winter 1980-81; Volume 41; Number 4; Business Publications Division of Ziff-Davis Publishing Co. (New York) pp. B923-B948.
14. Pennsylvania Campground Guide; Pennsylania Bureau of Travel Development (Harrisburg, Pa.); Southeast Region; 1980.
15. Campgruund/Park Data

Personal conversation with Mr. Greg Gove from the State Department on Community Affairs. 1-16-81.

Personal conversation with the owner of the Harrisburg East Campground. 2-18-81.
Personal conversation with Ms. Greta Synder of the Hershey Bighmeadow Campground. 2-18-81.

Personal conversation with Mr. Joe Coviello of the Ridge Run Campsites. 2-18-81.

Personal conversation with Ms. Elda Roof of the Shaw-N-Tee Campground. 2-18-81.

Personal conversation with Ms. Dot Greason from the Gifford Pinchot State Park. 2-18-81.

Personal conversation with Mr. Earl Witsil of the Park Away Parks Campground. 2-18-81.
16. U.S. Department of Commerce; County Business Patterns, Pennsylvania, 1970 and 1978.
17. Pennsylvania Department of Commerce: Bureau of Statistics Research and Planning; 1980 Industrial Directory of the Commonwealth of Pennsylvania, 27 th edition.
18. D.S. Department of Commerce: Bureau of the Census; 1977 Census of Retail Trade; Pennsylvania, March 31, 1980.
19. U.S. Department of Commerce: Bureau of the Census; 1977 Census of Service Industries; Pennsylvania, December 1979.
20. U.S. Department of Comerce: Bureau of the Census; 1977 Census of Wholesale Trade: Pennsylvania, July 10, 1980.
21. Pennsylvania Department of Commerce: Bureau of Statistics Research and Planning; Pennsylvania Industrial Census Series Release Number M-5-78 (for all five counties), 1980.
22. Cumberland County Industrial Enterprises; Cumberland County, Pennsylvania Industrial Enterprises pamphlet; 35 North Tenth St., Lemoyne, Pennsylvania 17043.

\section*{23. For School Data}

Personal conversation with Mr. James Buffington, official from the Earrisburg City School District. 12-16-80.

Personal conversation with Mr. Henry Hoerner, official from the Lower Dauphin School District. 12-16-80.

Personal conversation with Mr. Calabrese, official from the Middletown School District. 12-17-80.

Personal conversation with Mr. Carl Neu from the York Area Chamber of Commerce. 12-29-80.
Personal \(\infty\). ersation with Mr. Edward Messner from Greater West Shore Area Chamber of Commerce. 12-29-80.

Personal conversation with Mr. Bob Walker from the Lancaster County Planning Commission. 12-29-80.

Personal conversation with Mr. Mark Mcknight of the York County Planning Commission. 12-29-80.

Personal conversation with Mr. Larry Baugher from the Bureau of Employment Security. 12-29-80.

Personal conversation with Mr. Keith Gingrich from the Department of Commerce Bureau of Statistics. 12-30-80.

Personal conversation with Mr. Feter Uhniat from the Pennsylvania Eapartment of Transportation Bureau of Advance Planning. 12-31-80.

Personal conversation with Mr. Robert Buxton, Chief of Information for the State Division of Motor Vehiclas. 12~31-80.

Personal conversation with Mr. Skip Becker from the State Commerce Department Bureau of Travel and Development. 12-31-80.

Personal conversation with the Director of Research at the York Public Library. 1-2-81.

Personal conversation with Ms. Jean Kelly from the Lebanon Valley Regional Travel Promotional Agency. 12-31-80.

Personal Conversation with Mr. Dale Vogelsony from the York hrea Regional Travel Promotional Agency. 1-8-81.

Personal conversation with Mrs. Lucy Rruger from the Cumberland Area Regional Travel Promotional Agency. 1-9-81.

Personal conversation with Ms. Joanne Garrett from the York Area Chamber of Commerce. 1-2-81.

Personal conversation with Mr. Allwein, Staff Representative for the Greater West Shore Area Chamber of Commerce. 1-5-81.

Personal conve-sation with Ms. Darleen Koonz, secretary for the Lebanon Valley Area Chamber of Commerce. 1-5-81.

Personal Conversation with Ms. Suzanne Snyder from the State Department Bureau of Statistics. 1-6-81.

Personal conversation with Dr. Walter Plosila from the Governor's Office of Policy and Planning. 1-6-81.
1. Three Mile Island Emergency Evacuation Plars (Drafts) (Lancaster, Dauphin, Cumberland, Lebanon and York Counties); Emergency Managment Agency, April 1979.
2. D.S. Bureau of the Censua; Characteristics of the Population, 1970 Census of Population, Pennsylvania, 1973.
3. Assessment of Evacuation Times: An Independent Study for Federal Emergency Management Agency; Wilbur Smith and Associates; June 1980.
4. O.s. Bureau of the Census; Preliminary 1980 Census of Population and Housing: 1980.
5. Greater Earrisburg Area Chamber of Comerce; Earrisburg Area Pennsylvania Magazine: 1980.
6. Lebanon Valley Chamber of Conmerce; Lebanon Valley Fact Book; 1980.
7. Lebanon Valley Chamber of Commerce; Statistical Data on Lebanon County; 1980.
8. J.S. Bureau of the Census; Journey to Work, 1970 Census of the Population; June, 1973.
9. Bmployment and Transient Data

Meeting with PEMA and PENNDOT representatives in Earrisburg, Pa. 11-26-80.
Personal conversation with Ms. Fran Cunningham, assistant to Mr. Douglas from the Greater Earrisburg Chamber of Commerce. 12-18-80.

Personal conversation with Mr. Barry Flick from the Pennsylvania Dutch Visitors Bureau. 12-18-80.

Personal conversation with Mr. Richard Blouse from the Lancaster Association of Commerce and Industry. 12-23-80.

Personal conversation with Mr. Mylin Eess from the State Department Bureau of Employment Security. 12-23-80.

Personal conversation with Mr. David Wauls from the Lebanon Valley Chamber of Comperce. 12-29-80.

Personal conversation with Mr. Matthew Douglas from the Grezter Harr Chamber of Commerce. 12-29-80.

Personal conversation with Ms. Nancy Hoch from the Greater Barrisburg Chamber of Commerce. 12-29-80.```


[^0]:    * Note: Only a portion of the political jursidiction and population lie within the EPZ .

[^1]:    continued

[^2]:    Note: Data obtained from the ס.S. Bureau of the Census, 1980 Preliminary Census Predictions.

    Reference tables to Figure 19 a for location of sectors.

[^3]:    * Notei These bus companies are eeseseated to evacuate all students from schools before asaisting in the evacuation of the general and resident population (see table 18).

[^4]:    *Note: These bus companies are eremented to evacuate all students from schools before assisting in the evacuation of the general pooulation (see table 17).

[^5]:    Based on an evacuation time estimate of the 360 degree- 10 mile EPZ.

    The range of evacuation times is a relative indicator of the state of readiness of emergency forces and the period of time over which a poss ible incident at TMI may develop.

    Estimated times reflect approximate roadway travel time.

[^6]:    * Based on an evacuation time estimate of the 360 degree -10 mile EPZ.

    The range of evacuation times is a relative indicator of the state of readiness of emergency forces and the period of time over which a possible incident at TMI may develop.

    Estimated times reflect approximate roadway travel time.

[^7]:    The following intersections require traffic control personnel ${ }^{+}$
    Chocolate Avenue and Ridge Road (24, 25)
    Chocolate Avenue and $743 \mathrm{~N}(25,26)$
    Chocolate Avenue and $7435(26,27)$
    Chocolate Avenue and Homestead Road (27, 28)
    W. Main Street and S. Lingel Avenue (28, 29)
    w. Main Street and Railroad Street $(29,30)$

    Route 743 and Fishburn Road $(35,36)$
    Route 322 and Homestead Road (37, 38)
    Route 322 and Lymer Avenue $(40,41)$
    West High Street and Market Street (75, 76, 83, 121)
    Colebrook Road and Route 230 (88, 89, 95, 96)

