ENVIRONMENTAL RADIOACTIVITY LEVELS
SEQUOYAH NUCLEAR PLANT
ANNUAL REPORT

1979

August 1980

CONTENTS

Introduction
Figure 1 - Tennessee Valley Region
Table 1 - Environmental Radioactivity Sampling Schedule
Table 2 - Atmospheric and Terrestrial Monitoring
Station Locations
Station Locations
Sample Application Capabilities for Environmental
Sample Analysis
Table 4 - Radioactivity in Air Filter
Table 5 - Maximum Permissible Concentrations for
Nonoccupational Exposure
Atmospheric Monitoring
Figure 2 - Atmospheric and Terrestrial Monitoring
Network
Figure 3 - Local Monitoring Stations
Figure 4 - Site Monitoring Stations
Table 6 - Radioactivity in Air Filter
Table 7 - Radioactivity in Rainwater
Table De Dalina de la companya del companya del companya de la com
Table 10 - Radioactivity in Atmospheric Moisture
Terrestrial Munitoring
Terrestrial Monitoring
Table 11 - Padinastinitu i- Mill
Table 11 - Radioactivity in Milk
Table 12 - Radioactivity in Vegetation
Table 13 - Radioactivity in Seil
Table 14 - Radioactivity in Well Water
Table 15 - Radioactivity in Public Water Supply
Table 16 - Environmental Gamma Radiation Levels
Table 17 - Radioactivity in Food Crops
Table 18 - Radioactivity in Poultry
Reservoir Monitoring
그는 그는 그는 그는 그를 가는 그 것이 없는 그를 가는 것이 하는 것이 하는 것이 없다.
Table 19 - Sampling Schedule - Reservoir Monitoring 37
Figure 5 - Reservoir Monitoring Network
Table 00 Delinerate for the work
T-11-01 Dilining A A A A A A A A A A A A A A A A A A A
Table 00 Daline to the control of th
T-11-00 D-11-11-11-11-0-11-1-1-1-1-1-1-1-1-1-1-1
Table 2/ - Radioactivity in Smallmouth Buffalo (Flesh)
Table 24 - Radioactivity in Smallmouth Buffalo (Whole) 43
Table 25 - Radioactivity in Plankton
Table 26 - Radioactivity in Sediment
Table 27 - Radioactivity in Clam Flesh
Table 28 - Radioactivity in Clam Shell
Quality Control
Conclusions

ENVIRONMENTAL RADIOACTIVITY LEVELS

SEQUOYAH NUCLEAR PLANT

1979

Introduction

The Sequoyah Nuclear Plant (SQN), being constructed by the Tennessee Valley Authority, is located on a site owned by TVA containing 525 acres of land in Hamilton County, Tennessee, bounded on the east by Chickamauga Reservoir. See figure 1. The site is 12 miles (19.3 kilometers) northeast of Chattanooga, Tennessee and 11 miles (17.7 kilometers) west-northwest of Cleveland, Tennessee. The plant will consist of two pressurized water reactors; each unit is rated at 3,423 MWt and 1,171 MWe. Fuel was loaded in unit 1 on March 1, 1980.

The preoperational environmental monitoring program has the objective of establishing a baseline of data on the distribution of natural and manmade radioacti ity in the environment near the plant site.

TVA has collected data in this preoperational environmental monitoring program since 1971. Since the operation of the plant has been delayed, the program was reduced as of November 1, 1973. All continuous collections (air and charcoal filters) were discontinued as were milk and monthly river water samples. Only quarterly samples of soil, vegetation, well water, public water, river water, plankton, Asiatic clams, sediment, and fish, and annual samples of food products were collected. The full sampling program was reinstated in February 1976. The program outlined herein describes the sampling program as conducted in 1979.

Field staffs in the Division of Occupational Health and Safety, the Division of Water Resources, and the Division of Natural Resources Services carried out the sampling program outlined in Tables 1 and 19. Sampling locations are shown in figures 2, 3, 4, and 5, and Table 2 describes the locations of the atmospheric and terrestrial monitoring stations. All the radiochemical and instrumental analyses were conducted in a central laboratory at Muscle Shoals, Alabama. Alpha and beta analyses were performed on Beckman Low Beta II and Beckman Wide Beta II low-background proportional counters. Two Nuclear Data Model 100 multichannel analyzer systems employing sodium iodide, NaI (T2) detectors and one Nuclear Data Model 4420 in conjunction with germanium, Ge(Li) detection systems, were used to analyze the samples for specific gamma-emitting radionuclides. Samples of water, vegetation, air particulates, food crops, and charcoal (specific analysis for ¹³¹I) are routinely counted with NaI (T2) detection systems.

If significant concentrations of radioisotopes are identified, or if there is a reasonable expectation of increased radioactivity levels (such as during periods of increased fallout), these samples are counted on the Ge(L) system. Identification of gamma-emitting radionuclides in all other types of samples is routinely performed by analysis on the Ge(Li) system. TVA fabricated beta-gamma coincidence counting systems are utilized for the determination of ^{131}I concentrations in milk.

Data were entered in computer storage for processing specific to the analysis conducted. A computer, employing an ALPHA-M least-squares code, was used to solve multimatrix problems associated with estimating the activities of the gamma-emitting nuclides analyzed by NaI(T ℓ). The data obtained by Ge(Li) detectors were resolved by the ND-4420 software.

The detection capabilities for environmental sample analyses given as the nominal lower limits of detection (LLD) are listed in Table 3. Samples processed by NaI(TL) gamma spectroscopy were analyzed for 13 specific gamma-emitting radionuclides and radionuclide combinations*. For these analyses, radionuclide combinations such as 103, 106 Ru and 95 Zr-Nb are analyzed as one radionuclide. All photopeaks found in Ge(Li) spectra were identified and quantified. Many of the isotopes identified by Ge(Li) spectral analysis are naturally occurring or naturally produced radioisotopes, such as 7Be, 40K, 212Bi, 214Bi, 212Pb, 214Pb, 226Ra, etc. LLD's for the analysis of the radionuclides listed below" are given in Table 3B. LLD's for additional radionuclides identified by Ge(Li) analysis were calculated for each analysis and nominal values are listed in the appropriate data tables. In the instance where an LLD has not been established, an LLD value of zero was assumed. A notation in a table of " values <LLD" for an isotope with no established LLD does not imply a value less</pre> than 0; rather it indicates that the isotope was not identified in that specific group of samples. For each sample type, only the radionuclides for which values greater than the LLD were reported are listed in the data tables.

 T^{VA} 's Radioanalytical Laboratory participates in the Environmental Radioactivity Laboratory Intercomparison Studies Program conducted by EPA-Las Vegas. This program provides periodic cross-check samples of the type and radionuclide composition normally analyzed in an environmental monitoring program. Routine sample handling and analysis procedures were employed in the evaluation of these samples. Gamma spectral analyses were performed on NaI detectors. The results received during calendar year 1979 are shown in Table 4. The $\pm 3\sigma$ limits are corrected for triplicate determinations.

^{*}The following radionuclides and radionuclide combinations are quantified by the ALPHA-M least-squares computer code: 141,144Ce; 51Cr; 101I; 103,106Ru; 134Cs; 137Cs; 95Zr-Nb; 58Co; 54Mn; 65Zn; 60Co; 40K; and 140Ba-La.

Table 1
ENVIRONMENTAL RADIOACTIVITY SAMPLING SCHEDULE

Station Location	Air Filter	Charcoal Filter			Atmospheric Moisture		Vegetation	Milk				Aquatic Life and Sediment
Chattanooga	W	W	М	М		Α					М	
Dayton	W	W	M	M	BW	A					M	
Sale Creek	W	W	M	M		A						
aisy	W	W	M	M		A					M	
Red Bank	W	W	M	М		Α						
Volunteer Ordinance												
Works (Harrison)	W	W	M	M		Α						
larrison Bay	W	W	M	M		A						
Georgetown	W	W	M	M		A						
amilton County Park	W	W	M	M		Α						
lork	W	W	М	M		Α						
lite N	W	W	M	M	BW	Α						
ite S	W	W	M	M	BW	A						
arm L							Q	M				
arm J*							Q	W				
arm M							Ó	M				
hickamauga Reservoir									M			Q/S
. I. Dupont											M	
leveland, TN											М	
. F. Industries											M	
n Site Well										M		
arm Ma										М		
arm S (control)							Q	М		М		
arm B (control)*							Q	М				
arm C (control)*							Ô	M				

^{*}Sampling began: Farm J, 5/30/79; Farm B, 6/7/79; and Farm C, 6/14/79.

16.0 miles NE (25.7 kilometers)

12.0 miles NNE (19.3 kilometers)

Table 2

ATMOSPHERIC AND TERRESTRIAL MONITORING STATION LOCATIONS

SEQUOYAH NUCLEAR PLANT

Sample Station	Approximate Distance and Direction from Plant
LM-1 SQ, Southwest	0.75 miles SW (1.2 kilometers)
LM-2 SQ, Northeast	0.75 miles N (1.2 kilometers)
PM-1 SQ, Northwoods, TN	10.5 miles WSW (16.9 kilometers
PM-2 SQ, County Park, TN	3.75 miles SW (6.0 kilometers)
PM-3 SQ, Daisy, TN	5.5 miles W (8.8 kilometers)
PM-4 SQ, Sale Creek, TN	10.5 miles N (16.9 kilometers)
PM-5 SQ, Georgetown, TN	9.0 miles ENE (14.5 kilometers)
PM-6 SQ, Work, TN	4.5 miles NNE (7.2 kilometers)
PM-7 SQ, Harrison Bay, TN	3.5 miles SE (5.6 kilometers)
PM-8 SQ, Harrison, TN	8.75 miles SSW (14.1 kilometers)
RM-1 SQ, Chattarooga, TN (Control)	16.75 miles SW (27.0 kilometers)
RM-2 SQ, Dayton, TN (Control)	17.75 miles NNE (28.6 kilometers)
Farm J	1.25 miles W (2.0 kilometers)
Farm L	2.75 miles NNE (4.4 kilometers)
Farm M	3.5 miles NNE (5.6 kilometers)
Farm Ma	0.75 miles W (1.2 kilometers)
Farm B (Control)	43.0 miles NE (69.2 kilometers)
	(ove allowerers)

Farm C (Control)

Farm S (Control)

Table 3
DETECTION CAPABILITIES FOR ENVIRONMENTAL SAMPLE ANALYSIS

A. Specific Analyses

NOMINAL LOWER LIMIT OF DETECTION (I.LD) *

	Air Particulates pC1/m³	Charcoal pCi/m3	Fallout mCi/km ²	Water pCi/l	Vegetation and grain pCi/g, dry	Soil and Sediment pCi/g, dry	Fish, clam flesh, plankton, pC1/g, dry	Clam shells pCi/g, dry	Foods, meat, poultry, pC1/kg, wet	Milk pCi/l	
Total a				0.4	0.01				1.5		
Gross a	0.005			2.0	0.05	0.35	0.1	0.7			
Gross B	0.01		0.05	2.4	0.20	0.70	0.1	0.7	25		
				330							
3H		0.01								0.5	
**Sr	0.005			10	0.25	1.5	0.5	5.0	40	10	
*°Sr	0.001			2	0.05	0.3	0.1	1.0	8	2	

^{*}All LLD values for isotopic separations are calculated by the method developed by Pasternack and Harley as described in HASL-300, Factors such as sample size, decay time, chemical yield, and counting efficiency may vary for a given sample; these variations may change the LLD value for the given sample. The assumption is made that all samples are analyzed within one week of the collection date. Conversion factors: I pCi = 3.7×10^{-2} Bq; I mCi = 3.7×10^{7} Bq.

Table 3

DETECTION CAPABILITIES FOR ENVIRONMENTAL SAMPLE ANALYSIS

B. Gauma Analyses

NOMINAL LOWER LIMIT OF DETECTION (LLD)

	Air Water particulates and milk pCi/m³ pCi/l		milk and grain i/l pCi/g, dry			Soil and sediment Fish pCi/g, dry pCi/g, dry			Clam flesh and plankton pCi/g, dry	pC1/g	shells	potato pCi/k		poultry pCi/kg, wet NaI Ge(Li)			
	Na I*	Ge(L1)**	NaI	Ge(Li)	NaI	Ge(Li)	NaI	Ge(L1)	Nal	Ge(Li)	NaI Ge(Li)	Nal	Ge(Li)	NaI	Ge(L1)	Nat	OE(LI)
1+1,14+Ce	0.03		38		0.55		0.35		0.35			0.35		38		90	
1**Ce	0.03	0.02	30	33	0.33	0.22	0.22	0.06		0.06	0.35		0.06		33		40
5 I Cr	0.07	0.03	60	44	1.10	0.47	0.60		0.60	0.10	0.56	0.60	0.10	60	44	200	90
1111	0.01	0.01	15	8	0.35	0.09	0.20		0.20	0.02	0.07	0.20	0.02	15	8	50	20
103,106Ru	0.04	0.01	40		0.65		0.45		0.45			0.45		40		150	
106Ru	0.04	0.03		40		0.51		0.11		0.11	0.74		0.11		40		90
134Cs	0.01	0.02	10	26	0.20	0.33	0.12	0.08	0.12	0.08	0.48	0.12	0.08	10	26	40	50
117Cs	0.01	0.01	10	5	0.20	0.06	0.12	0.02	0.12	0.02	0.08	0.12	0.02	10	5	40	15
95Zr-Nb	0.01	0.01	10		0.20		0.12		0.12			0.12		10		40	
95 ZT	0.01	0.01		10		0.11		0.03		0.03	0.15		0.03		10		20
95Nb		0.01		5		0.05		0.01		0.01	0.07		0.01		5		15
5 * Co	0.02	0.01	15	5	0.23	0.05	0.20		0.20	0.01	0.07	0.20	0.01	15	5	55	15
5 4 Min	0.02	0.01	10	5	0.20	0.05	0.15	0.01	0.15	0.01	0.08	0.15	0.01	10	5	40	15
6 5 Zn	0.02	0.01	15	9	0.25	0.11	0.23	0.02	0.23	0.02	0.17	0.23	0.02	15	9	70	20
6ºCo	0.01	0.01	10	5	0.17	0.06	0.11	0.01	0.11	0.01	0.08	0.11	0.01	1.0	5	30	15
* 0 K	0.10		150		2.50		0.90		0.90			0.90		130		400	
1 + 0 Ba-La	0.02		15		0.68		0.15		0.15			0.15		15		50	
: + o Ba		0.02		25		0.34		0.07		0.07	0.30		0.07		25		50
1+0La		0.01		7		0.08		0.02		0.02	0.10		0.02		1		15

*The NaI(T1) LLD values are calculated by the method developed by Pasternack and Harley as described in HASL-300 and Nucl. Instr. Methods 91, 533-40 (1971). These LLD values are expected to vary depending on the activities of the components in the samples. These figures do not represent the LLD values achievable on a given sample. Water is counted in a 3.5-L Marinelli beaker. Vegetation, fish, soil, and sediment are counted in a 1-pint container as dry weight. The average dry weight is 120 grams for vegetation and 400-500 grams for soil sediment and fish. Meat and poultry are counted in a 1-pint container as dry weight, then corrected to wet weight using an average moisture content of 70%. Average dry weight is 250 grams. Air particulates are counted in a well crystal. The counting system consists of a multichannel analyzer and either a 4" x 4" solid or 4" x 5" well NaI(T1) crystal. The counting time is 4000 seconds. All calculations are performed by the least-squares computer program AL-HA-M. The assumption is made that all samples are analyzed within one week of the collection date.

^{**}The Ge(Li) LLD values are calculated by the method developed by Pasternack and Harley as described in HASL-300. These LLD values are expected to vary depending on the activities of the components in the samples. These figures do not represent the LLD values achievable on given samples. Water is counted in either a 0.5-L or 3.5-L Marinelli beaker. Solid samples such as soil, sediment, and clam shells are counted in a 0.5-L Marinelli beaker as dry weight. The average dry weight is 400-500 grams. Air filters and very small volume samples are counted in petrie dishes centered on the detector endcap. The counting system consists of a ND-4420 multichannel analyzer and either a 25%, 14%, 16%, or 29% Ge(Li) detector. The counting time is normally 8 hours. All spectral analysis is performed using the software provided with the ND-4420. The assumption is made that all samples are analyzed within one week of the collection date.

Conversion factor: 1 pCi = 3.7 x 10⁻² Bq.

Table 4
Results Obtained in Interlaboratory Comparison Program

A. Air Filter (pCi/filter)

	Gross Al	pha	Gross Be	ta	Strontium	-90	Cesium-137				
Date	EPA value (±3\sigma)	TVA Avg.	EPA value (±3σ)	TVA Avg.	EPA value (±30)	TVA Avg.	EPA value '(±30)	TVA Avg.			
1/79	5 ± 9	4	18 ± 9	20	6 ± 2.7	6	6 ± 9	7			
3/79	14 ± 9	14	63 ± 9	64	21 ± 2.7	17	21 ± 9	18			
6/79	9 ± 9	9	30 ± 9	31	10 ± 2.7	9	10 ± 9	9			
10/79	10 ± 9	10	31 ± 9	33	10 ± 2.7	10	12 ± 9	11			

B. Water (pCi/1)

	Gross Al	pha	Gross Be	ta	Strontium	-89	Strontium	-90	Tritiu	im	Iodine-13	1*
Date	EPA value (±30)	TVA Avg.	EPA value (±3σ)	TVA Avg.	EPA value (±30)	TVA Avg.	EPA value (±3σ)	TVA Avg.	EPA value (±3σ)	TVA Avg.	EPA value (±3σ)	TVA Avg.
11/78	11 ± 9	12	26 ± 9	27								
12/78	6 ± 9	7	16 ± 9	17	14 ± 9	14	6 ± 2.7	6	2030±400	2100		
2/79							0 - 2.7		1280±570	1260		
3/79 4/79	10 ± 9	10	16 ± 9	18					2270±400	2270	40 ± 7	40
5/79 6/79	13 ± 9	15	22 ± 9	22	23 ± 9	24	30 ± 2.7	26	1540±580	1590		
7/79	9 ± 9	11	12 ± 9	13								
8/79 9/79	5 ± 9	8	40 ± 9	43	3 ± 9	4	23 ± 2.7	25	1480±580	1300	26 ± 9	26
10/79									1560±640	1400		

^{*}Specific analysis for 131 to test the procedures used for the analysis of 131 in milk.

Table 4 (Contd)

Results Obtained in Interlaboratory Comparison Program

C. Gamma-Emitting Radionuclides in Water (pCi/1)

51Cr		⁶⁰ Co		6 5 Zn		106 Ru		134Cs		137 _{Cs}		
Date	EPA value (±30)	TVA Avg.	EPA value (±30)	TVA Avg.	EPA value (±30)	TVA Avg.	EPA value (±3σ)	TVA Avg.	EPA value (±3σ)	TVA Avg.	EPA value (±3σ)	TVA Avg.
10/78	117 ± 10	150	23 ± 9	24	82 ± 9	78	46 ± 9	42	25 ± 9	29	125 ± 10	120
2/79	0 ± 9	0	9 ± 9	9	21 ± 9	25	0 ± 9	0	6 ± 9			12
6/79	0 ± 9	0	47 ± 9	48	0 ± 9	0	0 ± 9	0	71 ± 9	72	0 ± 9	
10/79	113 ± 10	108	6 ± 9	7	0 ± 9	0	0 ± 9	0	7 ± 9	9	11 ± 9	11

D. Tritium in Urine (pCi/1)

Date	EPA value (±30)	TVA avg.
12/78	2,150 ± 400	2330
3/79	3,300 ± 600	2350
6/79	1,610 ± 580	1590
9/79	13,200 ± 710	13350

Table 4 (Contd)

Results Obtained in Interlaboratory Comparison Program

E. Milk (pCi/1)

	⁶⁹ Sr			9 (Sr			1 3	1 I			1	37Cs			40Be		40K	
Date	EPA value (±30)	TVA Avg.		t30)		TVA Avg.		va ±30	lue)	TVA Avg.		va ±30	alue	TVA Avg.		value 30)	TVA Avg.	EPA value (±30)	TVA Avg.
1/79	33 = 9	33	19	± 2	2.7	21	105			110	49			48		± 9	2	1560±135	1520
4/79	38 ± 9	38	54	± 5	5.2	61	96	±	9	95	154	*	14	150		± 9	0	1560±135	1450
7/79	5 ± 9	5	11	± 2	2.7	13	17	±	9	21	12	±	9	11		± 9	0	1630±145	1570
10/79	25 ± 9	25	17	± :	3.5	22	637	±	55	636	49	±	9	45	0	± 9	0	1470±125	1490
						F.	rood	(p0	i/kį	g wet we	eight)								
3/79	48 ± 9	53	22	± ;	2.7	27	90	±	9	91	74	±	9	73	0	± 9	0	2700 ±235	2810
7/79	8 ± 9	12	3	±]	1.1	7	18	±	9	16	33	±	9	35	0	± 9	0	2650 ±225	3000
11/79	Results r	not rece	ived	at t	this	time													

Table 5

MAXIMUM PERMISSIBLE CONCENTRATIONS

FOR NONOCCUPATIONAL EXPOSURE

		MPC
	In Water pCi/1*	In Air pCi/m³*
Alpha	30	
Nonvolatile beta	3,000	100
Tritium	3,000,000	200,000
137 _{Cs}	20,000	500
103,106Ru	10,000	200
¹⁴⁴ Ce	10,000	200
⁹⁵ Zr- ⁹⁵ Nb	60,000	1,000
¹⁴⁰ Ba- ¹⁴⁰ La	20,000	1,000
1311	300 -	100
⁶⁵ Zn	100,000	2,000
5 4 Mn	100,000	1,000
⁶⁰ Co	30,000	300
⁸⁹ Sr	3,000	300
⁹⁰ Sr	300	30
⁵¹ Cr	2,000,000	80,000
¹³⁴ Cs	9,000	400
^{5 8} Co	90,000	2,000

^{*1} pCi = 3.7×10^{-2} Bq.

Atmospheric Monitoring

The atmospheric monitoring network is divided into three subgroups. Two local air monitors are located within the plant boundary. Eight perimeter air monitors are located at distances out to 10.5 miles (16.9 kilometers) from the plant in the towns of Sale Creek, Daisy, Red Bank (Northwoods), Harrison, and four other densely populated areas. The remote air monitors used as control or baseline stations, are located at distances out to 17.75 miles (28.6 kilometers) from the plant in the town of Dayton and the city of Chattanooga. See figures 2, 3, and 4.

At each monitor, air is continuously pulled through a Hollingsworth and Voss HV-70 particulate filter at a regulated flow of 3 ft³/min (0.085 m³/min). In series with, but downstream of, the particulate filter, is a charcoal filter seed to collect iodine. Each monitor has a collection tray and storage container to collect rainwater on a continuous basis, and a horizontal platform covered with gummed acetate to catch and hold heavy particle fallout. Moisture is collected from the atmosphere at each local monitor and at one remote monitor and analyzed for tritium. Thermoluminescent dosimeters are used to record gamma radiation levels at each remote and perimeter station and at 8 onsite stations.

Each of the local and perimeter air monitors is fitted with a GM tube that continuously scans the particulate filter. The disintegration rate of the atmospheric radioactivity is continuously recorded at each station. These stations will detect any significant airborne release from SQN.

Air filters are collected weekly and analyzed for gross beta activity. During this period ten samples were not obtained because of equipment malfunction and two samples were not analyzed because of the loss of sample flow data. Two samples were lost during the strontium analysis. No analyses are performed until three days after sample collection. The samples are composited monthly for analysis of specific gamma-emitting radionuclides and quarterly for ⁸⁹Sr, ⁹⁰Sr analysis. The results are presented in Table 6.

With reference to Table 5, which contains the maximum permissible concentrations (MPC) recommended by 10 CFR 20 for nonoccupational exposure, it is seen that the maximum beta concentration is 0.40 percent MPC.

Rainwater is collected and analyzed for gross beta activity, specific gamma-emitting isotopes, radiostrontium, and tritium. During this period two samples were not obtained because of insufficient rainfall. For the gross beta analysis, a maximum of 500 ml of the sample is boiled to dryness and counted. A gamma scan is performed on a 3.5-liter monthly sample. The strontium isotopes are separated chemically and counted in a

low background system. The results are shown in Table 7. The highest value reported for beta activity is 0.56 percent of the MPC for drinking water.

The gummed acetate that is used to collect heavy particle fallout is changed monthly. The sample is asked and counted for gross beta activity. The results are given in Table 8.

Charcoal filters are collected and analyzed for radioiodine. During this period three samples were lost, ten were not obtained because of equipment malfunction, and two were not analyzed because of the loss of sample flow data. The filter is counted in a single channel analyzer system. The data are shown in Table 9, where the highest value reported is 0.08 percent MPC for ¹³¹I.

An atmospheric moisture collection device containing molecular sieve is located at each local monitor and at one remote monitor. Samples are taken every other week, the moisture driven off the molecular sieve, collected in a cold trap, distilled, and counted for tritium content. The results are shown in Table 10, where the highest value reported is 0.004 percent MPC for ³H in air. In this reporting period, insufficient material for analysis was available in four samples, and five samples were not collected because of equipment malfunction.

Atmospheric Monitoring

The atmospheric monitoring network is divided into three subgroups. Two local air monitors are located within the plant boundary. Eight perimeter air monitors are located at distances out to 10.5 miles (16.9 kilometers) from the plant in the towns of Sale Creek, Daisy, Red Bank (Northwoods), Harrison, and four other densely populated areas. The remote air monitors used as control or baseline stations, are located at distances out to 17.75 miles (28.6 kilometers) from the plant in the town of Dayton and the city of Chattanooga. See figures 2, 3, and 4.

At each monitor, air is continuously pulled through a Hollingsworth and Voss HV-70 particulate filter at a regulated flow of 3 ft³/min (0.085 m³/min). In series with, but downstream of, the particulate filter, is a charcoal filter used to collect iodine. Each monitor has a collection tray and storage container to collect rainwater on a continuous basis, and a horizontal platform covered with gummed acetate to catch and hold heavy particle fallout. Moisture is collected from the atmosphere at each local monitor and at one remote monitor and analyzed for tritium. Thermoluminescent dosimeters are used to record gamma radiation levels at each remote and perimeter station and at 8 onsite stations.

Each of the local and perimeter air monitors is fitted with a GM tube that continuously scans the particulate filter. The disintegration rate of the atmospheric radioactivity is continuously recorded at each station. These stations will detect any significant airborne release from SQN.

Air filters are collected weekly and analyzed for gross beta activity. During this period ten samples were not obtained because of equipment malfunction and two samples were not analyzed because of the loss of sample flow data. Two samples were lost during the strontium analysis. No analyses are performed until three days after sample collection. The samples are composited monthly for analysis of specific gamma-emitting radionuclides and quarterly for \$9Sr, 90Sr analysis. The results are presented in Table 6.

With reference to Table 5, which contains the maximum permissible concentrations (MPC) recommended by 10 CFR 20 for nonoccupational exposure, it is seen that the maximum beta concentration is 0.40 percent MPC.

Rainwater is collected and analyzed for gross beta activity, specific gamma-emitting isotopes, radiostrontium, and tritium. During this period two samples were not obtained because of insufficient rainfall. For the gross beta analysis, a maximum of 500 ml of the sample is boiled to dryness and counted. A gamma scan is performed on a 3.5-liter monthly sample. The strontium isotopes are separated chemically and counted in a

ATMOSPHERIC AND TERRESTRIAL MONITORING NETWORK

LOCAL MONITORING STATIONS SEQUOYAH NUCLEAR PLANT

TARLE 6

RADIOACTIVITY IN AIR FILTER

PCI/M(3) - 0.037 80/P(3)

	NUMBER OF NONROUTINE REPORTED MEASUBEHENIS.															
DOCKET NO. RH-80-7-592 REPORTING PERIOD 1979	CONTROL LOCATIONS MEAN (F) RANGE	0.03(100/ 101)	0.04(1/ 24)	UES «LL	, 0	0.10(24/ 24)			0.02 0.02	Z VALUES CLLD	0		2 VALUES «LLO	2 VALUES «LLD	UES <lld< td=""><td>00.00 -00.0</td></lld<>	00.00 -00.0
REPORT	HEAN (F)	517 52)				107 10)		0.17	0	0	0	0.11	1/ 3)	1, 4)		0.00
	SI ANNUAL	.03		0.03(0.02(0.120		0.17(0.060	0.050	0.050	0.116	0.010	0.02(0.00
TENNESSEE	LOCATION WITH HIGHEST ANNUAL MEAN (F) DISTANCE AND GIRECTION RANGE ^E	0 1		DAISY, TN 5.5 MILES W	5.5 MILES W	10.5 MILES WSW		GEORGETOWN, TN	NORTHWGODS, TN 10.5 MILES WSW	10.5 MILES WSW	0.75 MILES N	GEORGETOWN. TN	NORTHWOODS. IN	LMI SOUTHWEST 0.75 MILES SW		SALE CREEK. TN 10.5 MILES N
I	OCATIONS	6.03(506/ 511)	077> S3	3/ 112)	0.05	110/ 112)		8/ 18)		0.09	0.05	16/ 18)	3/ 18)	1/ 18)	39 VALUES CLLD	10/ 39)
TY HAMILION	INDICATOR LOCATIONS MEAN (F)	6.03(112 VALUES <lld< td=""><td>0.031</td><td>0.020</td><td>0.10(</td><td></td><td>0.120</td><td>0.03(</td><td>0.04(</td><td>0.010</td><td>0.086</td><td>0.016</td><td>0.020</td><td>39 VALUES CLLD</td><td>0.00-0</td></lld<>	0.031	0.020	0.10(0.120	0.03(0.04(0.010	0.086	0.016	0.020	39 VALUES CLLD	0.00-0
LOCATION OF FACILITY HAVILION	LOWER LIMIT OF DETECTION	0.010	0.030	0.020	0.010	NOT ESTAB		NOT ESTAB	0.020	0.020	NOT ESTAB	0.000	NOT ESTAB	NOT ESTAB	900.0	0.001
LOCATIO	TYPE AND TOTAL NUMBER OF ANALYSIS	GROSS RETA	6АННА (NAI) 136 CE-141,144	BA-140+LA-140	1-131	BE-7 N	GAMMA (GELI)		81-214	PB-214	PB-212 N	BE-7	TL-208 N	AC-228 N	SR 89	SH 90 +6

Nominal Lower Limit of Detection (LLD) as described in Table 3. Mean and range based upon detectable measurements of Aetectable measurements of Specified locations is indicated in parenthesis (F). . . .

TABLE 7

RADIOACTIVITY IN RAINWATER

PCI/L - 0.037 BO/L

1 OCA	NAME OF FACILI	LITY SEGUCYAH	TENNESSEE		REPORTING PERIOD 1979	
TYPE AND TOTAL NUMBER OF ANALYSIS PERFORMED	LOWER LIMIT OF DETECTION (LLD) a	INDICATOR LOCATIONS MEAN (F) RANGE	DISTANCE AND DIREC	MEAN (F) MEAN (F)	NUMBER OF NONROUTINE REPORTED MEASUREMENTS.*
GROSS BETA	2.400	4.19(62/ 128) 2.49- 8.20	LM1 SOUTHWEST 0.75 MILES SW		02 2.63- 16.73	
GAMMA (NAI) 135 EA-140+LA-140 I-131 BE-7	0 15.000 15.000	19.76(5/113) 15.80- 23.80 38.88(5/113) 24.90- 50.10 44.78(44/113)	5.5 MILES W HARRISON. TN 8.75 MILES SSW	23.80- 23. 50.10(1/ 50.10- 50. 62.56(5/	11) 16.40(3/ 22) 10 15.50- 17.20 11) 36.38(10/ 22)	
GAMMA (GELI)		7.30- 108.90	8.75 MILES SSW	12.20- 108.	90 14.40- 60.30	
K-40	NOT ESTAB	106.74(2/ 17) 87.47- 126.00	8.75 MILES SSW	126.00- 126.		
81-214	NOT ESTAB	29.22(8/ 17) 13.95- 40.73	5.5 MILES W	40.73- 40.	73 10.72- 10.72	
PB-214	NOT ESTAB	22.08(6/ 17) 13.26- 35.13	0.75 MILES SW	35.13- 35.	2) 4 VALUES <lld< td=""><td></td></lld<>	
P8-212	NOT ESTAB	21.94(5/ 17) 9.41- 35.42	5.5 MILES W	35.42- 35.		
BE-7	NOT ESTAB	55.00(1/ 17) 55.00- 55.00	SALE CREEK. IN 10.5 MILES N		.00 49.01- 177.00 26 VALUES <lld< td=""><td></td></lld<>	
SR 89 156 SR 90	2.000	130 VALUES <lld 130="" <lld<="" analysis="" performed="" td="" values=""><td></td><td></td><td>26 VALUES «LLD</td><td></td></lld>			26 VALUES «LLD	
156 TRITIUM 147	330.000	ANALYSIS PERFORMED 398.16(11/ 122) 332.00- 511.00	HARRISON BAY. TN 3.5 MILES SE	511.00(1/ 511.00- 511.	12) 367.50(2/ 25) .00 364.00- 371.00	

a. Nominal Lower Limit of Detection (LLD) as described in Table 3.b. Mean and range based upon detectable measurements only. Fraction of detectable measurements of specified locations is indicated in parenthesis (F).

RADIOACTIVITY IN HEAVY PARTICLE FALLOUT

MCI/KM(2) - 37000000.00 PC/KM(2)

	CILITY SEGUOYAH		PORTING PERIOD 1979	
TYPE AND LOWER LIMITOTAL NUMBER OF		LOCATION WITH HIGHEST ANNUAL MEAN	CONTROL	NUMBER OF NONROUTINE
OF ANALYSIS DETECTION PERCORNED (LLD) ² GROSS BETA 0.050	MEAN (F) RANGE 6 0.20(130/ 130)	DISTANCE AND DIRECTION RANGED SALE CREEK, IN 0.281 13/ 13/	MEAN (F) PANGE ^b 0.20(26/ 26)	REPORTED MEASUREMENIS_5
156	0.06- 0.54	10.5 MILES N 0.11- 0.49	0.07- 0.46	

a. Nominal Lower Limit of Detection (LLD) as described in Table 3.

2

b. Mean and range based up or detectable measurements only. Fraction of detectable measurements of specified locations is indicated in parenthesis (F).

TAPLE 9

RADIOACTIVITY IN CHARCOAL FILTERS

PCI/M(3) - 0.037 BQ/M(3)

LOCATION OF FACIL	ITY HAMILION		ORTING PERIOD 1979	
TYPE AND LOWER LIMITOTAL NUMBER OF OF ANALYSIS DETECTION PERFORMED (LLD) ^a TODINE IN AIR 0.010		LOCATION WITH HIGHEST ANNUAL MEAN NAME MEAN (F) DISTANCE AND DIRECTION RANGE COUNTY PARK, IN 0.02(15/ 52)	CONTROL LOCATIONS MEAN (F) RANGEB	NUMBER OF NONROUTINE REPORTED MEASUREMENTS

a. Nominal Lower Limit of 'etection (LLD) as described in Table 3.

b. Mean and range based upon detectable measurements only. Fraction of detectable measurements of specified locations is indicated in parenthesis (F).

TABLE 10

RADIOACTIVITY IN ATMOSPHERIC MOISTURE

PCI/M(3) - 0.037 8G/M(3)

LOCATION OF FACIL	ILITY_SEQUOYAH		ET NO. RH-80-7-502 FTING PERIOD 1979	
TYPE AND LOWER LIMIT TOTAL NUMBER OF OF ANALYSIS DETECTION PERFORMED (LLD) " TRITIUM NOT ESTAB	ALL INDICATOR LOCATIONS MEAN (F) RANGE 2.76(40/ 47) 0.00- 8.00	LOCATION WITH HIGHEST ANNUAL MEAN NAME MEAN (F) DISTANCE AND DIRECTION PANGED LM2 NORTHEAST 3.00 (200 24) 0.75 MILES N 0.00- 2.00	CONTHOL LOCATIONS MEAN (F) PANGED 2.00(21/ 22)	NUMBER OF NONROUTINE REPORTED MEASUREMENIS.

a. Nominal Lower Limit of Detection (LLD) as described in Table 3.

)

55.0

b. Mean and range based upon detectable measurements only. Fraction of detectable measurements of specified locations is indicated in parenthesis (F).

Terrestrial Monitoring

Milk

Milk was collected from two farms within a 5-mile radius of the plant (see figure 3), and from one control farm. In addition, sampling was initiated in May at a farm within 2 miles of the plant and in June at 2 additional control farms. Samples from the farm nearest the plant were collected weekly while all other samples were collected monthly. Raw milk is analyzed for ¹³¹I, gamma-emitting isotopes, and for radiostrontium. The results are shown in Table 11. Five samples were unavailable during this reporting period and insufficient sample was available for ¹³¹I analysis in nine samples and for strontium analysis in ten samples.

Vegetation

Vegetation samples were collected quarterly from the farms from which milk was collected and analyzed for gross beta activity, gamma-emitting radionuclides, and strontium-89,90 content. Approximately 1-2 kilograms of grass was broken or cut at ground level and returned for analysis. Efforts were made to sample vegetation that was representative of the pasturage where cattle graze. Table 12 gives the results obtained from the laboratory analyses.

Soil

Soil samples were collected annually near each monitoring station to provide an indication of any leng-term buildup of radioactivity in the environment. An auger or "cookie cutter" type sampler was used to obtain samples of the top two inches (5 cm) of soil. These samples were analyzed for gross beta activity, gamma-emitting radionuclides, and for strontium-89 and -90. The results are given in Table 13.

Ground Water

An automatic sequential type sampling device has been installed on a well down-gradient from Sequoyah Nuclear Plant. A composite sample from this well is analyzed for gross beta activity and gamma-emitting radionuclides monthly and composited quarterly for determination of tritium. A grab sample is also taken from a farm near the plant and a control well across the river from the plant. The results of the analysis of well water are shown in Table 14 and indicate the maximum beta concentration with reference to Table 5 is 0.17 percent MPC. A gross beta analysis was not performed on one sample during this period.

Public Water

Potable water supplies taken from the Tennessee River in the vicinity of Sequoyah Nuclear Plant are sampled and analyzed for gross beta, gamma-emitting radionuclides, 89,90Sr, and tritium. The first potable water supply downstream from the plant is equipped with an automatic sampler with composite samples analyzed monthly. Five additional water supplies are sampled monthly by the collection of grab samples. One of the grab samples was not taken during this period. The results, shown in Table 15, indicate that the maximum beta concentration is 6.23 percent MPC.

Environmental Gamma Radiation Levels

Thermoluminescent dosimeters (TLD's) were placed at eight stations around the plant near the site boundary (see figures 3 and 4) and at the perimeter and remote mentors to determine the gamma exposure rates at these locations. The TLD's were changed approximately every three months. The quarterly gamma radiation levels determined from these TLD's are given in Table 16. It should be noted that, even though the plant has not achieved criticality, the average radiation levels onsite are generally 2-5 mR/quarter higher than the levels offsite. This may be attributable to natural variations in environmental radiation levels, earth moving activities onsite, the mass of concrete employed in the construction of the plant, or other influences.

Poultry and Food Crops

Food crops and poultry raised in the vicinity of Sequoyah Nuclear Plant are sampled annually as they become available during the growing season. During this sampling period, samples of corn, green beans, turnip greens, tomatoes, and poultry were collected and analyzed for gross beta and specific gamma-emitting radionuclides. The results are given in Tables 17 and 18. No sample of corn was taken from a control location.

TABLE 11

RADIOACTIVITY IN MILK

PCI/L - 0.037 BQ/L

LOCATION	OF FACILITY SEQUOY	aH V TEN	NESSEE		NO. RH-80-7-502	
TYPE AND LOW TOTAL NUMBER OF ANALYSIS DE PERFORMED GAMMA (NAI)	VER LIMIT ALL OF INDICATOR I STECTION MEAN ILLD) 4 BAN	OCATIONS LOCATION MI		EAN (F)	CONTROL LOCATIONS MEAN (F) RANGE ^b	NUMBER OF NONROUTINE REPORTED MEASUREMENTS.
CS-137 78		14/ 51) JONES FARM 16.70 1.25 MILES		12/ 261	27 VALUES <lld< td=""><td></td></lld<>	
K-40 15		51/ 51) LOVELL FAR	M 1306.521	12/ 12)	1269.08(27/ 27) 1052.10- 1467.60	
IODINE IN MILK	0.500 45 VALUE	ES <lld< td=""><td></td><td></td><td>27 VALUES <lld< td=""><td></td></lld<></td></lld<>			27 VALUES <lld< td=""><td></td></lld<>	
GAMMA (GELI)						
CS-137	5.000 13.35t	1/ 3) JONES FARM 13.35 1.25 MILES		1/ 2)		
K-40 NOT	ESTAB 1400.676	3/ 3) JONES FARM 1620.00 1.25 MILES	1422.501	2/ 21		
81-214 NOT	ESTAB 33.101 29.67-	2/ 3) LOVELL FAR 36.53 2.75 MILES	M 36.531	1/ 1) 36.53		
P8-214 NOT	ESTAB 20.52(20.41-	2/ 3) LOVELL FAR 20.63 2.75 MILES		20.63		
10N 212-84	ESTAB 10.591	2/ 3) JONES FARM 11.20 1.25 MILES		2/ 2)		
SR 89 71	10.000 44 VALU				27 VALUES <lld< td=""><td></td></lld<>	
SR 90 71	2.000 12.56(44/ 44) JONES FARM 32.56 1.25 MILES		18/ 18) 32.56	4.45(27/ 27) 2.69- 8.32	

a. Nominal Lower Limit of Detection (LLD) as described in Table 3.

b. Mean and range based upon detectable measurements only. Fraction of detectable measurements of specified locations is indicated in parenthesis (F).

TABLE 12

RADIOACTIVITY IN VEGETATION

PCI/G - 0.037 BG/G (URY WEIGHT)

TYPE AND LONER LIMIT ALL TOTAL NUMBER OF INDICATOR LOCATIONS LOCATION WITH HIGHEST ANNUAL MEAN (F) NAME MEAN (F) NAME MEAN (F) NAME MEAN (F) MEAN (

TOTAL NUMBER		OF	INDICATOR		FOCULTON ATTH HIGH			MEAN (REPO
OF ANALYSIS	D	ETECTION	MEAN		NAME		BANGE B		b	MEASUR
PERFORMED	-		BAN	GE	DISTANCE AND DIRE		3/ 31	0.47(8/ 91	DEBAND
GHOSS ALPHA		0.050		11/ 11)	JONES FARM	0.79(1.59	0.05-	1.09	
50			0.12-	1.59	1.25 HILES W			42.041	9/ 9)	
CROSS BETA		0.200	40.621	11/ 11)		43.201				
50			17.30-	65.74	3.5 MILES NNE	32.38-	56.09	12.30-	62.76	
GAMMA (GELI)										
50								D 1741 D	ES <lld< td=""><td></td></lld<>	
CE-144		0.220	0.35(1/ 11)	MALONE FARM	0.351	1/ 4)	Y VALUE	2 ALLO	
			0.35-	0.35	3.5 MILES NNE	0.35-	0.35	0 107	1/ 9)	
CS-137		0.060	0.12(2/ 11)	MALONE FARM	0.181	1/ 41	0.100	0.10	
			0.07-	0.18	3.5 MILES NNE	0.18-	0.18		9/ 91	
K-40	NOT	ESTAB	22.96(11/ 11)	LOVELL FARM	23.761	4/ 41	24.81(36.11	
			14.36-	39.18	2.75 MILES NNE	17.00-	39.18	6.42-	8/ 9)	
BI-214		0.100	0.391	7/ 11)	JONES FARM	0.51(3/ 31	0.42(0.89	
			0.13-	0.92	1.25 MILES W	0.19-	0.92	0.12-		
PB-214	NOT	ESTAB	0.281	7/ : 1	JONES FARM	0.391	3/ 3)	0.28(8/ 9)	
			0.11-	0.67	1.25 MILES W	0.14-	0.67	0.12-	0.50	
PB-212	NOT	ESTAB	0.15(8/ 11)	JONES FARM	0.27(3/ 3)	0.160		
			0.05-	0.36	1.25 MILES W.	0.16-	0.36	0.02-	9/ 9)	
BE-7	NOT	ESTAB	6.75(11/ 11)	LOVELL FARM	8.71(4/ 4)	188.6		
			2.33-	11.78	2.75 MILES NNE	6.09-	11.78	1.98-	15.31	
TL-208	NOT	ESTAB	0.10(3/ 11)	JONES FARM	0.12(2/ 31	0.121	0.12	
			0.03-	0.21	1.25 MILES W	0.03-	0.21	0.12-		
AC-228	NO.	ESTAB	0.441	2/ 111	JONES FARM		1/ 3)	0.541	1/ 91	
			0.36-	0.52	1.25 MILES W	0.52-	0.52	0.54-	0.54	
SR 89		0.250	11 VALU	ES <lld< td=""><td></td><td></td><td></td><td>4 AVEOR</td><td>ES <lld< td=""><td></td></lld<></td></lld<>				4 AVEOR	ES <lld< td=""><td></td></lld<>	
20			ANALYSIS P							
SR 90		0.050		11/ 11)	JONES FARM		3/ 31	0.19(9/ 91	
20			0.14-	0.53	1.25 MILES W	0.30-	0.53	0.13-	0.27	

a. Nominal Lower Limit of Detection (LLD) as described in Table 3.

b. Mean and range based upon detectable measurements only. Fraction of detectable measurements of specified locations is indicated in parenthesis (F).

RADIOACTIVITY IN SOIL

9C1/6 - 0.037 80/6 (DAY MEIGHT)

	NUMBER OF NONROUTINE REPORTED	DE BOUNE MENIS.													
DOCKET NO. RH-80-7-592 REPORTING PEHIOD 1979	CONTROL LOCATIONS MEAN (F)	29.44(2/ 2)	0.100 1/ 21	0.10	1.59	9.16	27.	0.71	27.0	1.00	0.65- 0.86	0.39	-96-	2 VALUES «LLD	0.49(1/ 2)
DOCKET NO REPORTING	AL MEAN MEAN (F) RANGE b	1) 89			2.24	19.13	1.23	1.13	1.17	1.66	1.23	.53	.61	9	1, 11 0
TENNESSEE	WITH HIGHEST ANNU NAME AND DIRECTION	GEORGETOWN: IN 56.891		50N, TN 2-246	GEORGETOWN. TN 10 134			ILES SW 1.13-	ES NWE 1		ST	0.75 MILES SW 0.53-			8.75 MILES SSW 1.66-
14	-1 a	56.89 9.0	S <1LD	0)	10/ 10) GFORGE	13	10) [14]	13 0.75	17	6	0.75 0) LM1	107 101 LM1 SOUTHWE			37 101 HARRIS 1.66 8.75 M
ON OF FACILITY SECULTON	INO	26.82-	10 VALUES SLLD	0.98(7.700	2.68-	0.76-	0.47-	0.910	0.991	0.75	1.650	10 VALUES <lld< td=""><td>ANALYSIS PERFORMED</td><td>0.35-</td></lld<>	ANALYSIS PERFORMED	0.35-
LOCATION OF FACILITY SEQUOYA	BER OFFECTION	12	0.060	0.020	0.250	0.0.0	0.100	0.00.0	NOT ESTAB	0.050	0.020	0.060	1.500	200	12 0.300
	TYPE AND TOTAL NUMBER OF ANALYSIS PERFORMED	SAMMA (SELT)	**I-30	CS-137	X-40	81-214	61-212	PB-214	P8-212	HA-226	TL-208	AC-228	SH 89	SH 90	

a.

Nominal Lower Limit of Detection (LLD) as described in Table 3. Mean and range based upon detectable measurements of specified locations is indicated in parenthesis (F).

TABLE 14

RADIOACTIVITY IN WELL WATER

PCI/L - 0.037 80/L

NAME OF FACT	LITY SEQUOYAH			NO. HH-80-7-502	
LOCATION OF FACILI	TY HAPILION	TENNESSEE	REPORT	ING PERIOD 1979	
TYPE AND LOWER LIMIT TOTAL NUMBER OF OF ANALYSIS DETECTION PERFORMED (LLD) ^a GROSS BETA 2.400 38	ALL INDICATOR LOCATIONS MEAN (E) RANGE 2.68(2/ 25) 2.49- 2.86	LOCATION WITH HIG NAME DISTANCE AND DIRE SGN WELL #6 ONSITE NNE	MEAN (E)	CONTROL LOCATIONS MEAN (E) RANGE 3.46(10/ 13) 2.41- 5.00	NUMBER OF NONROUTINE REPORTED MEASUREMENTS *
GAMMA (NAI)	24 VALUES 414.0 ANALYSIS PERFORMED			13 VALUES <lld< td=""><td></td></lld<>	
CAMMA (GELI)					
K-40 NOT ESTAR	178.70(1/ 2) 178.70- 178.70	HAYS FARM	178.70(1/ 1) 178.70- 178.70		
TRITIUM 330.000	8 VALUES <lld ANALYSIS PERFORMED</lld 			4 VALUES <lld< td=""><td></td></lld<>	

a. Nominal Lower Limit of Detection (LLD) as described in Table 3.

b. Mean and range based upon detectable measurements only. Fraction of detectable measurements of specified locations is indicated in parenthesis (F).

TABLE 15

RADIOACTIVITY IN PUBLIC WATER SUPPLY

PCI/L - 0.037 80/L

	NAME OF FAC	ILITY_SEQUOYAH		DOCKE	T NO PH-00-7-503	
LOCA	TION OF FACIL	ITY HAMILION	TENNESSEE	REPOR	T NORH-80-7-592 TING PERIOD_1979	
TYPE AND TOTAL NUMBER OF ANALYSIS PEBFORMED GROSS BETA	LOWER LIMIT OF DETECTION (LLD) 3 2.400	INDICATOR LOCATIONS MEAN (F) BANGE	DISTANCE AND DIRE	CIION RANGE	CONTROL LOCATIONS MEAN (F) RANGE ^b	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
GAMMA (NAI)	2.400	3.51(10/ 51) 2.42- 6.94	CF INDUSTRIES	4.00(11/ 13) 2.42- 6.84	3.85(7/ 26) 2.48- 5.95	
GAMMA (GELI)		46 VALUES «LLD ANALYSIS PERFORMED			24 VALUES <lld< td=""><td></td></lld<>	
	NOT ESTAB	70.68(1/ 5) 70.68- 70.68	CHICKAMAUGA DAM	70.68(1/ 2) 70.68- 70.68	2 VALUES <lld< td=""><td></td></lld<>	
	NOT ESTAB	9.59(3/ 5) 7.28- 10.96 2.07(1/ 5)	CF INCUSPIES	10.96(1/ 2) 10.96- 10.96	2 VALUES <llo< td=""><td></td></llo<>	
SR 89	10.000	2.07(1/ 5) 2.07- 2.07 16 VALUES <lld< td=""><td>DAISY, TN 5.5 MILES W</td><td>2.07(1/ 1)</td><td>6.54(2/ 2) 5.68- 7.40</td><td></td></lld<>	DAISY, TN 5.5 MILES W	2.07(1/ 1)	6.54(2/ 2) 5.68- 7.40	
SR 90 24	2.000	ANALYSIS PERFORMED 16 VALUES <lld< td=""><td></td><td></td><td>8 VALUES <lld< td=""><td></td></lld<></td></lld<>			8 VALUES <lld< td=""><td></td></lld<>	
TRITIUM 24	330.000	ANALYSIS PERFORMED 542.60(5/ 16) 365.00- 762.00	E.I. DUPONT TRM 470.5	762.00(1/ 4) 762.00- 762.00	8 VALUES <lld< td=""><td></td></lld<>	

a. Nominal Lower Limit of Detection (LLD) as described in Table 3.

b. Mean and range based upon detectable measurements only. Fraction of detectable measurements of specified locations is indicated in parenthesis (F).

Table 16
ENVIRONMENTAL GAMMA RADIATION LEVELS

		Environmental Gamma Radiation Levels			
Quarter	Location	µR/Hour	mR/Quarter		
November 1978 -	On-Site (8)*				
January 1979	Maximum	11.0	24.1		
January 1979	Minimum	9.7	21.2		
	Average**	10.3 + 0.9	22.6 + 2.0		
	Off-Site (10)				
	Maximum	10.8	23.6		
	Minimum	6.8	15.0		
	Average	8.5 ± 2.5	18.7 ± 5.4		
February-May 1979	On-Site (8)				
	Maximum	10.1	22.2		
	Minimum	7.6	16.6		
	Average	8.9 + 1.8	19.5 + 4.0		
	Off-Site (10)				
	Maximum	9.0	19.6		
	Minimum	6.8	14.8		
	Average	8.0 ± 1.3	17.4 ± 2.8		
June-July 1979	On-Site (7)				
	Maximum	8.6	18.8		
	Minimum	6.8	15.0		
	Average	7.9 ± 1.5	17.3 ± 3.2		
	Off-Site (10)				
	Maximum	7.8	17.0		
	Minimum	5.4	11.8		
	Average	6.4 ± 1.4	13.9 ± 3.0		
August-October 1979	On-Site (8)				
	Maximum	10.4	22.7		
	Minimum	5.2	11.3		
	Average	9.3 \(\frac{1}{2} \) 3.6	20.4 + 7.8		
	Off-Site (10)				
	Maximum	8.2	17.9		
	Minimum	5.8	12.6		
	Average	6.9 + 1.5	15.2 + 3.2		

^{*}Number of stations (normally three TLD's at each station) **All averages reported $\pm 2\sigma$

TABLE 17

RADIOACTIVITY IN FOOD CROPS

PCI/KG - 0.037 BQ/KG (WET WEIGHT)

NAME OF FACI	LITY_SEQUOYAH		DOCK	ET NO. RH-80-7-592	
LOCATION OF FACILI	TY_ HAMILTON	TENNESS	EE REPO	RTING - RTIOD_1979	
TYPE AND LOWER LIMIT TOTAL NUMBER OF OF ANALYSIS DETECTION PERFORMED - (LLD)	INDICATOR LOCATIONS MEAN (F) RANGE	LOCATION WITH H	IGHEST ANNUAL MEAN MEAN (F)	CONTROL LUCATIONS MEAN (F) RANGE ^b	NUMBER OF NONROUTINE REPORTED MEASUREMENTS 4
		RADIOACTIVI	TY IN CORN		
GROSS BETA 25.000 GAMMA (GELI)	4175.06(1/ 1) 4175.06- 4175.06	JONES FARM 1.25 MILES W			
K-40 NOT ESTAR	1685.00(1/ 1) 1685.00- 1685.00 5.41(1/ 1) 5.41- 5.41	JONES FARM 1.25 MILES W JONES FARM 1.25 MILES W	1685.00(1/ 1) 1685.00- 1685.00 5.41(1/ 1) 5.41- 5.4.		
		RADIOACTIVITY I	N GREEN REANS		
GROSS BETA 25.000 GAMMA (GELI)	6393.81(1/ 1) 6393.81- 6393.81	JONES FARM 1.25 MILES W	6393.81(1/ 1)	4536.39(1/ 1) 4536.39- 4536.39	
NOT ESTAB	2327.00(1/ 1) 2327.00- 2327.00 1 VALUES <lld< td=""><td>JONES FARM 1.25 MILES W</td><td>2327.00(1/ 1) 2327.00</td><td>2344.00(1/ 1) 2344.00- 2344.00 5.76(1/ 1) 5.76- 5.76</td><td></td></lld<>	JONES FARM 1.25 MILES W	2327.00(1/ 1) 2327.00	2344.00(1/ 1) 2344.00- 2344.00 5.76(1/ 1) 5.76- 5.76	

a. Nominal Lower Limit of Detection (LLD) as described in Table 3.b. Mean and range based upon detectable measurements only. Fraction of detectable measurements of specified locations is indicated in parenthesis (F).

TABLE 17 (Contd)

PADIOACTIVITY IN FOOD CROPS

PCI/KG - 0.037 BQ/KG (WET WEIGHT)

LOCA	NAME OF FACILI	TY_ HAMILTON	TENNESSEE	DOCKET NO. RH-80-7-592 REPORTING PERIOD 1979	
TYPE AND TOTAL NUMBER OF ANALYSIS PERFORMED	DETECTION		LOCATION WITH HIGHEST ANNUAL NAME MEDISTANCE AND DIRECTION B.	AN (F) MEAN (F)	NUMBER OF NONROUTINE REPORTED MEASUREMENTS \$
			RADIOACTIVITY IN TOMATOES		
GROSS BETA GAMMA (GELI)	25.000	4606.08(1/ 1) 4606.08- 4606.68	JONES FARM 4606.08(1.25 MILES W 4606.08- 4		
K-40	NOT ESTAB	2821.00(1/ 1)	JONES FARM 2821.001 1.25 MILES W 2821.00- 2	821.00 2906.00- 2904.00	
F8-212	NOT ESTAB	5.63(1/ 1) 5.63- 5.63		1/ 1) 1 VALUES <lld 5.63</lld 	
			RADIOACTIVITY IN TURNIP GREE	NS	
GROSS BETA	25.000	3718.92(1/ 1) 3718.92- 3718.92	JONES FARM 3718.92(1.25 MILES W 3718.92- 3	1/ 1) 9413.37(1/ 1) 718.92 9413.37- 9413.37	
GAMMA (GELI)					
CS-137	5.000	15.69(1/ 1) 15.69- 15.69	JONES FARM 15.69(1.25 MILES W 15.69-	1/ 1) 1 VALUES «LLD 15.69	
K-40	NOT ESTAB	1701.00(1/ 1) 1701.00- 1701.00	JONES FARM 1701.00(1.25 MILES W 1701.00- 1		
E1-214	NOT ESTAB	18.18(1/ 1) 18.18- 18.18		1/ 1) 1 VALUES <lld< td=""><td></td></lld<>	
PB-214	NOT ESTAB	1 VALUES <lld< td=""><td></td><td>7.41(1/ 1)</td><td></td></lld<>		7.41(1/ 1)	
P8-212 ,	NOT ESTAB	18.02(1/ 1)	JONES FARM 18.02(1.25 MILES W 18.02-	1/ 1) 1 VALUES <lld< td=""><td></td></lld<>	
BE-7	NOT ESTAB	138.50(1/ 1) 138.50- 138.50	JONES FARM 138.501	1/ 1) 1 VALUES <llo 138.50</llo 	

a. Nominal Lower Limit of Detection (LLD) as described in Table 3.

b. Mean and range based upon detectable measurements only. Fraction of detectable measurements of specified locations is indicated in parenthesis (F).

TABLE 18

HADIOACTIVITY IN POULTRY

PCI/KG - 0.037 RQ/KG (WET WEIGHT)

L	NAME OF FACILI	ITY SEQUOYAH	TENNESSEE	and the same of th	NO. RH-80-7-502 ING PERIOD 1979	
TYPE AN TOTAL NUM OF ANALYS PERFORME GAMMA (GEL	BER OF IS DETECTION Q (LLD) 3	INDICATOR LOCATIONS MEAN (E) BANGE	NAME ME	MEAN EAN (F) FANGE	CONTROL LOCATIONS MEAN (F) RANGE ^b	NUMBER OF NONROUTINE REPORTED MEASUREMENIS
	2					
K-40	NOT ESTAB	7.30(1/ 1) 7.30- 7.30	JONES FARM 7.30(1.25 MILES W 7.30-	7.30	1 VALUES <lld< td=""><td></td></lld<>	
81-214	NOT ESTAB	0.05(1/ 1) 0.05- 0.05	JONES FARM 0.05(1.25 MILES # 0.05-	0.05	1 VALUES <lld< td=""><td></td></lld<>	
PB-214	NOT ESTAR	0.06(1/ 1) 0.06- 0.06	JONES FARM 0.060 1.25 MILES W 0.06-	1/ 1)	1 VALUES <lld< td=""><td></td></lld<>	
P8-212	NOT ESTAB	0.03(1/ 1) 0.03- 0.03	JONES FARM 0.03(1.25 MILES W 0.03-	1/ 1)	1 VALUES «LLD	
		0.03- 0.03	1.25 MILES W 0.03-	0.03		

a. Nominal Lower Limit of Detection (LLD) as described in Table 3.

b. Mean and range based upon detectable measurements only. Fraction of detectable measurements of specified locations is indicated in parenthesis (F).

Reservoir Monitoring

Samples are collected from the Tennessee River as detailed in Table 19. Samples collected for radiological analysis include water, plankton, and Asiatic clams from three of these cross sections, sediment from four cross sections, and fish from three contiguous reservoirs. The locations of these cross sections are shown on the accompanying map (figure 5) and conform to sediment ranges established and surveyed by the Data Services Branch, TVA.

Water

Water samples are collected automatically by sequential type sampling devices at three cross sections and composite samples analyzed monthly for gross alpha and beta activity and gamma-emitting radionuclides. Further composites are made quarterly for strontium and tritium analyses. Sampling locations are shown in Table 19. During this reporting period, three samples were not collected because of the malfunction of automatic sampling equipment. Results are displayed in Table 20 and indicate the maximum beta concentration with reference to Table 5 is 0.34 percent MPC.

Fish

Radiological monitoring for fish was accomplished by analyses of composite samples of adult fish taken semiannually from each of three contiguous reservoirs--Watts Bar, Chickamauga, and Nickajack. No permanent sampling stations have been established within each reservoir; this reflects the movement of fish species within reservoirs as determined by TVA data from the Browns Ferry Nuclear Plant preoperational monitoring program. Three species, white crappie, channel catfish, and smallmouth buffalo, are collected representing both commercial and game species. Sufficient fish are collected in each reservoir to yield 250 or 300 grams oven-dry weight for analytical purposes. All samples were analyzed for gamma, gross alpha, gross beta ⁸⁹Sr, and ⁹⁰Sr activity. The composite samples contained approximately the same quantity of flesh from each fish. For each composite a subsample of material was drawn for counting. Results are given in Tables 21, 22, 23, and 24.

Plankton

As indicated in Table 19, net plankton was collected for radiological analyses at three stations by vertical tows with a one-half meter, 100 micro-mesh net. For analytical accuracy, at least 50 grams (wet weight) of material is required; and collection of such amounts is usually practical only during the period April to September because of seasonal variability in plankton abundance. Samples were analyzed for gross beta activity. Sample quantities were not sufficient for the analysis of specific gamma-emitting radionuclides, ⁸⁹Sr and ⁹⁰Sr, and three samples yielded insufficient quantities for gross beta analyses. Sample results are given in Table 25.

Sediment

Sediment samples were collected from dredge hauls made for bottom fauna. Gamma, gross alpha, and gross beta activity and ⁸⁹Sr and ⁹⁰Sr content were determined in samples collected from points in four cross sections. Each sample was a composite obtained by combining equal volumes of sediment from each of three dredge hauls at a point in the cross section. Results are given in Table 26.

Asiatic Clams

Samples of Asiatic clams were collected with a Ponar dredge from three stations and analyzed for gamma, gross alpha, and gross beta activity. The 89 Sr and 96 Sr content was determined in the shells. Results are given in Tables 27 and 28.

Table 19
SAMPLING SCHEDULE - RESERVOIR MONITORING

		Biological S.			
Tennessee River * (Mile)	Zooplankton, Chlorophyll, Phytoplankton*	Benthic Fauna*	Sediment*	Fish**	Water Samples
472.8	***		2		
473.2					Automatic sampler***
480.8	2	1	2		
483.4	2	1	2		Automatic sampler***
483.6					Grab sample
496.5	2	1	2		
497.0					Automatic sampler***

^{*}Replicate samples.

^{**}Fish samples are taken from Watts Bar, Chickamauga, and Nickajack Reservoirs.

^{***}Composite sample analyzed monthly.

^{****}Samples taken during one sampling period only.

RESERVOIR MONITORING NETWORK SEQUOYAH NUCLEAR PLANT

TABLE 20

HADIOACTIVITY IN SURFACE WATER TOTAL

PCI/L - 0.037 80/L

LO		CILITY SEQUOYAH	TENNES	DOCKE REPOR	T NO. RH-80-7-502	
TYPE AND TOTAL NUMB OF ANALYSI PERFORMED GROSS ALPHA	DETECTION (LLD)2 2.000	INDICATOR LOCATIONS	NAME	HIGHEST ANNUAL MEAN MEAN (F) IRECTION RANGE	CONTROL LOCATIONS MEAN (F) RANGE ^b 3.60(1/ 10) 3.60- 3.60	NUMBER OF NONROUTINE REPORTED MEASUREMENIS.
GHOSS BETA	2.400	4.56(16/ 26) 2.46- 10.26	TRM 483.4	5.67(9/ 13) 2.47- 10.26	5.38(5/ 10) 2.60- 9.22	
RN-222	NOT ESTAR	14.96(13/ 24) 2.70- 24.20	TRM 473.2	17.31(7/ 13) 11.60- 24.20	18.65(4/ 9) 12.40- 31.80	
GAMMA TOELT	3					
K-40	NOT ESTAB	100.10(1/ 2)	TRM 483.4	100.10(1/ 2)	73.82(1/ 1) 73.82- 73.82	
BI-214	NOT ESTAB	23.65(2/ 2) 12.41 34.88	TRM 483.4	23.65(2/ 2) 12.41- 34.88	52.32(1/ 1) 52.32- 52.32	
P8-214	NOT ESTAB	23.63(1/ 2)	TRM 483.4	23.63(1/ 2) 23.63	24.89(1/ 1) 24.89	
PB-212	NOT ESTAB	15.04(2/ 2) 11.33- 18.75	TRM 483.4	15.04(2/ 2) 11.33- 18.75	12.44(1/ 1)	
SR 89	10.000	8 VALUES <lld analysis="" performed<="" td=""><td></td><td></td><td>4 VALUES <lld< td=""><td></td></lld<></td></lld>			4 VALUES <lld< td=""><td></td></lld<>	
SH 90	5.000	8 VALUES <lld analysis="" performed<="" td=""><td></td><td></td><td>4 VALUES <lld< td=""><td></td></lld<></td></lld>			4 VALUES <lld< td=""><td></td></lld<>	
THITIUM	330.000	475.331 3/ 8) 454.00- 509.00	TRM 473.2	481.50(2/ 4) 454.00- 509.00	534.00(1/ 4) 534.00- 534.00	

a. Nominal Lower Limit of Detection (LLD) as described in Table 3.b. Mean and range based upon detectable measurements only. Fraction of detectable measurements of specified locations is indicated in parenthesis (F).

TABLE 21

RADIOACTIVITY IN CHANNEL CATFISH (FLESH)

PCI/G - 0.037 BQ/G (DRY WEIGHT)

LOC			ITY HAMIL TO		TENNESSE	E	REPOR	TING PERIO	0_1979	
TYPE AND TOTAL NUMBE OF ANALYSIS PERFORMED GHOSS ALPHA	R	OF DETECTION (LLD) a 0.100		LOCATIONS (F) GEB ES <lld< th=""><th>LOCATION WITH HI NAME DISTANCE AND DIR</th><th>H</th><th>EAN (F)</th><th>HANGE</th><th></th><th>NUMBER OF NONROUTINE REPORTED MEASUREMENIS</th></lld<>	LOCATION WITH HI NAME DISTANCE AND DIR	H	EAN (F)	HANGE		NUMBER OF NONROUTINE REPORTED MEASUREMENIS
GROSS RETA		0.100		4/ 4)	CHICKAMAUGA RES		5/ 5:	28.68(
	6		15.72-	33.44	TRM 471-530	27.15-	33.44	26.46-	30.90	
GAMMA (GELI)										
	6	0.020	0.001		CHICKANALICA DEC	0.127	2/ 2)	0.1.4	24 21	
CS-137		0.020	0.091	0.16	CHICKAMAUGA RES	0.13(0.16	0.161	0.20	
K-40	NOT	ESTAB	15.33(4/ 41	CHICKAHAUGA RES		2/ 21	15.961	2/ 2)	
N-40	NUI	COIMD	9.68-	22.01	TRM 471-530	16.00-	22.01	12.87-	19.04	
81-214		0.020	0.251	4/ 4)	CHICKAMAUGA RES		2/ 3)	0.35(2/ 21	
01-614		0.000	0.06-	0.53	TRM 471-530	0.06-	0.53	0.32-	0.38	
PB-214	NOT	ESTAB	0.17(4/ 4)	CHICKAMAUGA RES		2/ 21	0.164	1/ 21	
10 614	140	63,40	0.07-	0.31	TRM 471-530	0.07-	0.31	0.16-	0.16	
P8-212	NOT	ESTAB	0.031	1/ 4)	CHICKAHAUGA RES		1/ 2)	0.121	1/ 2)	
		23170	0.03-	0.03	TRM 471-530	0.03-	0.03	0.12-	0.12	
SR 89		0.500		S KLLD					ES <llo< td=""><td></td></llo<>	
	6		ANALYSIS PE							
SR 90		0.100		S <lld< td=""><td></td><td></td><td></td><td>2 VALU</td><td>ES <lld< td=""><td></td></lld<></td></lld<>				2 VALU	ES <lld< td=""><td></td></lld<>	
The state of the s	6		ANALYSIS PE							

a. Nominal Lower Limit of Detection (LLD) as described in Table 3.

b. Mean and range based upon detectable measurements only. Fraction of detectable measurements of specified locations is indicated in parenthesis (F).

TABLE 22

RADIOACTIVITY IN WHITE CRAPPIE (FLESH)

PCI/G - 0.037 BO/G (DRY WEIGHT)

LOCATION OF FACILITY HAMILION					TENNESSEE		DOCKET REPORT	NO. RH-8	0-7-502	
TYPE AND LOWER LIMIT ALL TOTAL NUMBER OF INDICATOR LOCATIONS OF ANALYSIS DETECTION MEAN (F) PERFORMED (LLD) a RANGE b GROSS ALPHA 0.100 4 VALUES <llo analysis="" performed<="" th=""><th>NAME</th><th>м</th><th>EAN (F)</th><th>CONTRI LOCATION MEAN (I RANGE 2 VALUE</th><th>ONS F)</th><th>NUMBER OF NONROUTINE REPORTED MEASUREMENTS ></th></llo>					NAME	м	EAN (F)	CONTRI LOCATION MEAN (I RANGE 2 VALUE	ONS F)	NUMBER OF NONROUTINE REPORTED MEASUREMENTS >
GROSS BETA		0.100		4/ 4)	CHICKAMAUGA RES	39.651	2/ 2)	34.67(2/ 2)	
GAMMA (GELI)			24.10-	45.91	TRM 471-530	33.38-	45.91	34.39-	34.94	
6										
CS-137		0.020	0.12(0.15	CHICKAMAUGA RES	0.150	0.15	0.251	2/ 21	
K-40	NOT	ESTAB	17.591	20.89	CHICKAMAUGA RES	19.651	2/ 2)	20.381	2/ 2)	
61-514		0.020	0.29(2/ 4)	CHICKAMAUGA RES	0.30(0.30	0.39(2/ 21	
PB-214	NOT	ESTAB	0.10(3/ 4) 0.16	NICKAJACK RES	0.130	0.13	0.291	2/ 2)	
P8-212	NOT	ESTAB	0.05(2/ 4)	NICKAJACK RES	0.061	1/ 2)	0.17(1/ 2)	
SR 89 6		0.500	4 VALUE			0.00-	V. VO	0.691	1/ 2)	
SH 90		0.100	4 VALUE					2 VALUE	0.69 S <lld< td=""><td></td></lld<>	

a. Nominal Lower Limit of Detection (LLD) as described in Table 3.

ANALYSIS PERFORMED

b. Mean and range based upon detectable measurements only. Fraction of detectable measurements of specified locations is indicated in parenthesis (F).

TABLE 23

RADIOACTIVITY IN SMALLMOUTH BUFFALO (FLESH)

PCI/G - 0.037 BQ/G (DRY WEIGHT)

LO			LITY_SEQUOY		TENNESSEE			THE PERIO		
OF ANALYSI PERFORMED	GROSS ALPHA 0.100 A VALUES <l analysis="" perfor<="" th=""><th></th><th>M</th><th>EAN (F)</th><th>MEAN (</th><th>OL ONS F1 ES <lld< th=""><th>NUMBER OF NONROUTINE REPORTED MEASUREMENTS:</th></lld<></th></l>					M	EAN (F)	MEAN (OL ONS F1 ES <lld< th=""><th>NUMBER OF NONROUTINE REPORTED MEASUREMENTS:</th></lld<>	NUMBER OF NONROUTINE REPORTED MEASUREMENTS:
GROSS BETA		0.100	24.804	4/ 4)	CHICKAMAUGA RES			27.911		
	6		12.86-	34.06	TRM 471-530	27.90-	34.06	26.10-	29.72	
GAMMA (GELI										
	6	0.030	0.037	1/ 41	NICKAJACK RES	0.03(1/ 2)	0.12(2/ 21	
CS-137		0.020	0.03(0.03	TRM 425-471	0.03-	0.63	0.11-	0.13	
K-40	NOT	ESTAB	12.571	4/ 4)	CHICKAMAUGA RES	15.80(2/ 2)	14.021	2/ 2)	
K-40	NUI	COTAD	8.64-	16.37	TRM 471-530	15.23-	16.37	12.19-	15.84	
81-514		0.020	0.291	3/ 41	NICKAJACK RES	0.381	1/ 2)	0.19(2/ 2)	
			0.23-	0.38	TRM 425-471	0.38-	0.38	0.12-	0.26	
PB-214	NOT	ESTAB	0.13(3/ 41	NICKAJACK RES	0.171	1/ 2)	0.176	1/ 2)	
			0.07-	0.17	TRM 425-471	0.17-	0.17	0.17-	0.17	
PB-212	NOT	ESTAR	0.11(3/ 4)	NICKAJACK RES	0.231	1/ 2)	0.071	1/ 2)	
			0.02-	0.23	TRM 425-471	0.23-	0.23	0.07-	0.07	
TL-208		0.020	0.07(1/ 4)	NICKAJACK RES	0.07(1/ 2)	2 VALUE	ES <llo< td=""><td></td></llo<>	
			0.07-	0.07	TRM 425-471	0.07-	0.07			
SR 89		0.500	4 VALUE	ES <lld< td=""><td></td><td></td><td></td><td>S VALUE</td><td>ES <lld< td=""><td></td></lld<></td></lld<>				S VALUE	ES <lld< td=""><td></td></lld<>	
	6		ANALYSIS PE	ERFORMED						
SR 90		0.100		ES «LLD				S AVER	ES <lld< td=""><td></td></lld<>	
	1.00		A THE REST OF THE PARTY OF THE	C 275 At us. 275 1 4 277 Att.						

a. Nominal Lower Limit of Detection (LLD) as described in Table 3.

ANALYSIS PERFORMED

b. Mean and range based upon detectable measurements only. Fraction of detectable measurements of specified locations is indicated in parenthesis (F).

RADIOACTIVITY IN SMALLHOUTH BUFFALO (WHOLE)

PCI/G - 0.037 80/G (DRY WEIGHT)

	NAME OF FAC	ILITY_SEQUOY	АН			DOCKE	T NORH-80-7-502	
LOCAT	TION OF FACIL	ITY HAMILTO	Ν	TENNESSEE		REPOR	TING PERIOD 1979	
TYPE AND TOTAL NUMBER OF ANALYSIS PERFORMED	DETECTION (LLD)	INDICATOR MEAN	(F)	LOCATION WITH HIGH NAME DISTANCE AND DIREC	ME	CONTROL LOCATIONS MEAN (F) RANGE ^b	NUMBER OF NONROUTINE REPORTED MEASUREMENTS	
GROSS ALPHA	0.100	0.13(2/ 4)	CHICKAMAUGA RES	0.14(1/ 2)	2 VALUES KLLD	DEG SAUCE DEGIS
GROSS BETA 6	0.100	0.11- 20.10(17.94-	0.14 4/ 4) 22.83	TRM 471-530 CHICKAMAUGA RES TRM 471-530	0.14- 21.52(20.21-	0.14 2/ 2) 22.83	19.04(2/ 2)	
GAMMA (GELI)						22.03	14.00 23.42	
6								
CS-137	0.020	0.051	0.06	CHICKAMAUGA RES	0.066	0.06	0.04(1/ 2)	
K-40	NOT ESTAB	8.51(4/ 4)	CHICXAMAUGA RES	8.931	2/ 21	0.04- 0.04 8.30(2/ 2)	
81-214	0.020	0.191	4/ 4)	NICKAJACK RES	0.201	2/ 2)	6.23- 10.37 0.16(2/ 2)	
P8-214	NOT ESTAB	0.120	4/ 4)	TRM 425-471 NICKAJACK RES	0.15-	2/ 2)	0.05- 0.28	
P8-212	NOT ESTAB	0.05-	2/ 4)	TRM 425-471 NICKAJACK RES	0.07(0.17	0.08- 0.15	
1L-508	0.020	0.04-	0.07	TRM 425-471 NICKAJACK RES	0.07-	0.07	0.02- 0.02 2 VALUES <lld< td=""><td></td></lld<>	
SR 89	0.500	0.02-	0.03	TRM 425-471 CHICKAMAUGA RES	0.02-	0.03	2 VALUES <lld< td=""><td></td></lld<>	
50 gn 6	0.100	0.85-	1.50	TRM 471-530	0.85-	1.50	E VALUES CLLU	

0.181

0.11-

0.40

0.100

SR 90

0.261

0.11-

2/ 21

0.40

0.241

0.33

0.14-

NICKAJACK RES

TRM 425-471

a. Nominal Lower Limit of Detection (LLD) as described in Table 3.

b. Mean and range based upon detectable measurements only. Fraction of detectable measurements of specified locations is indicated in parenthesis (F).

RADIOACTIVITY IN PLANKTON

PCI/G - 0.037 BQ/G (DRY WEIGHT)

LOCATION OF FACIL	ILITY SEQUOYAH	THE PARTY OF THE P	T NO _ RH-80-7-502 TING PERIOD_1979	
TYPE AND LOWER LIMIT	INDICATOR LOCATIONS		CONTROL	NUMBER OF NONROUTINE
OF ANALYSIS DETECTION PERFORMED (LLD) ³ GROSS BETA 0.100	RANGED 7/ 7)	DISTANCE AND DIRECTION RANGED TRM 483.4 32.12(3/ 3)	MEAN (F) RANGED 50.03(2/ 2)	MEASUREMENTS !
9	9.40- 69.77	14.55- 58.55	49.96- 50.09	

a. Nominal Lower Limit of Detection (LLD) as described in Table 3.

b. Mean and range based upon detectable measurements only. Fraction of detectable measurements of specified locations is indicated in parenthesis (F).

TABLE 26

RADIOACTIVITY IN SECTMENT

PC1/G - 0.037 8Q/G (DRY WEIGHT)

	NAME OF	FACILITY SEQUOYAH		DOCKET	DOCKET NO. RH-80-7-502								
FOCA	TION OF FA	CILITY HAPILTON	TENNESSEE	REPORTI	REPORTING PERIOD 1979								
TYPE AND TOTAL NUMBER OF ANALYSIS PERFORMED	DETECTI	INDICATOR LOCATIONS ON MEAN (F)	LOCATION WITH HIGHEST ANNU NAME DISTANCE AND DIRECTION	MEAN IES	CONTROL LOCATIONS MEAN (F) RANGE	NUMBER OF NONROUTINE REPORTED MEASUREMENTS *							
GROSS ALPHA	0.350	11.92(12/ 12)	TRM 460-82 14.820	4/ 41	11.15(4/ 4)	DEDENDEDIS							
16			13.36-		8.60- 13.95								
GROSS BETA	0.700			4/ 4)	44.88(4/ 4)								
16		31.30- 63.82	54.74-		36.08- 55.28								
GAMMA (GEL 1)													
16													
CE-144	0.060	0.15(1/ 12)	TRM 472.80 0.150	1/ 4)	0.40(1, 4)								
		0.15- 0.15	0.15-		0.40- 0.40								
CO-60	0.010	0.22(9/ 12)			0.16(4/ 4)								
		0.07- 0.33	0.20-		0.13- 0.21								
CS-137	0.020	2.65(12/ 12)	TRM 472.80 4.161	4/ 41	1.65(4/ 4)								
		0.18- 6.37	1.08-		1.17- 2.31								
K-40	NOT ESTAB	16.05(12/ 12)	TRM 480.82 18.130		13.94(4/ 4)								
		10.40- 21.39	16.58-		11.22- 15.91								
BI-214	0.020				0.97(4/ 4)								
		0.66- 1.71	1.28-		0.77- 1.20								
81-212	0.100		TRM 480.32 1.09(0.80(4/ 4)								
		0.54- 1.29	0.93-		0.51- 1.14								
PB-214	NOT ESTAB	1.38(12/ 12)	TRM 490.82 1.571		0.99(4/ 4)								
		0.66- 1.83	1.32-		0.77- 1.21								
P8-212	NOT ESTAB	1.67(12/ 12)			1.17(4/ 4)								
		0.81- 2.21	1.66-		0.95- 1.55								
HA-556	NOT ESTAB	1.32(11/ 12)	TRM 480.82 1.48(0.97(4/ 4)								
		0.66- 1.71	1.28-		0.77- 1.20								
HA-223	NOT ESTAB	0.40(3/ 12)	TRM 483.4 0.58(4 VALUES <lld< td=""><td></td></lld<>								
		0.23- 0.58	0.58-	0.58									
BE-7	NOT ESTAB	12 VALUES KLLD			0.94(1/ 4)								
					0.94- 0.94								
TL-208	0.020		TRM 480.82 0.60(4/ 41	0.41(4/ 4)								
		0.27- 0.75	0.51-	0.70	0.33- 0.50								
AC-558	0.060		TRM 480.82 1.86(4/ 4)	1.26(4/ 4)								
		0.82- 2.32	1.58-		1.00- 1.70								
PA-228	NOT ESTAB		TRM 483.4 0.07(1/ 4)	4 VALUES <lld< td=""><td></td></lld<>								
		0.07- 0.07	0.07-	0.07									
SR 89	1.500				4 VALUES <lld< td=""><td></td></lld<>								
16		ANALYSIS PERFORMED											
SH 90	0.300				4 VALUES <llo< td=""><td></td></llo<>								
16		0.37- 0.52	0.37-	0.52									

a. Nominal Lower Limit of Detection (LLD) as described in Table 3.

b. Mean and range based upon detectable measurements only. Fraction of detectable measurements of specified locations is indicated in parenthesis (F).

PADIDACTIVITY IN CLAM FLESH

46

PCI/G - 0.037 80/G (DRY #EIGHT)

79	NUMBER OF NONROUTINE REPORTED MEASUREMENTS **	(* //	11.75	37 4)	2.14	2.35	1.25	0,50	ררם
REPORTING PERIOD 1979	CONTROL LOCATIONS MEAN (F)	7	3.79- 11	10.94(3/		1.23(4/	10	2	4 VALUES <lld< th=""></lld<>
REPORT	AL MEAN MEAN (F)	4/ 4)	11.93	6, 43	3/ 4	1.51	0.58	1/ 4)	1/ +1
355	HIGHEST ANNUA	0.841	0.15-	7.761	0.910	1.04(0.451	0.14(1.020
TENNESSEE	LOCATION FILH HIGHEST ANNUAL MEAN (F DISTANCE AND DIRECTION MANGED	TRM 480.82	TSH 480.82	TRM 483.4	TRM 483.4	TRM 483.4	TRM 483.4	TRM 480.82	TRM 480.82
		8/ 8)	11.93	5/ 8)	1.38	1.53	6/ 81	17 8)	17 81
Y HAPILTON	INDICATOR LOCATIONS MEAN (F)	0.73(6.63(7.33(0.83(0.58	0.43(0.140	1.02(
LOCATION OF FACILITY HAPILION	LOKER LIMIT OF DETECTION	0.100	0.100	NOT ESTAB	NOT ESTAB				
LOCAT	TYPE AND TOTAL NUMBER OF ANALYSIS	GRUSS ALPHA	GHOSS BETA 12 GAMMA (GELT)	15 N-40	BI-214	PB-214	PB-212	11-208 h	AC-228

a.

Nominal Lower Limit of Detection (LLD) as described in Table 3. Mean and range based upon detectable measurements of specified locations is indicated in parenthesis (F).

RADIOACTIVITY IN CLAM SHELL

PCI/G - 0.037 80/G (CRY WEIGHT)

THE REAL PROPERTY AND ADDRESS OF THE PARTY ADDRESS	NUMBER OF NONROUTINE REPORTED MFASUREMENTS *																								
1979	S	3/ 41	(4 /4	8.41	17 41	2/ 41	0.03	3/ 41	0.48	4/ 4)	0.18	14 /4	0.18	4/ 41	0.27	2/ 41	0.12	3/ 4)	0.05	3/ 4)	0.27	<pre></pre>		(+ /+	5.09
DOCKET NO. RH-80-7-502 REPORTING PERIOD 1979	CONTROL LOCATIONS MEAN (F)	1.30(7.50(5.76-	0.021	0.03(0.03-	0.42(0.30-	0.150	0.11-	0.14:	0.11-	0.130	-50.0	0.120	0.11-	0.041	0.02-	0.201	0.14-	4 VALUES		1.67(1.19-
DOCKET REPORTI	AL PEAN MEAN (F) HANGED	3/ 41	4 /4	4.07		3/ 4)	0.05	(4 /4	0.72	(7 /4	0.30	14 /4	0.25	(4 /4	0.19	2/ 41	0.19	3/ 4)	0.08	(5 /5	0.29			(7 /7	2.12
	HEST ANNUAL	. 85 t	8.14(7.17-		0.046	0.03-	0.54(0.36-	0.18(-90.0	0.17(-90.0	0.13(-90.0	0.17(0.15-	0.060	-50.0	0.200	-01.0			1.946	1.65-
TENNESSEE	LOCATION WITH HIGHEST ANNUAL MEAN (F) DISTANCE AND DIRECTION HANGED		TRM 480.82			TAM 480.82		TRM 480.82		TAM 480.82		TRM 480.82		TRM \$80.82		TRM 080.82		TRM 480.82		TRM 480.82				TRM 480.82	
A Z	LOCATIONS (F) (F)	3/ 81	8/ 81	4.07	B VALUES «LLD	3/ 8)	0.05	57 81	0.72	8/8)	0.33	8/ 8)	0.25	8/ 8)	0.19	4/ 81	0.19	(8 /9	0.08	(8 /9	0.29	8 VALUES «LLD	RESHMED	8/ 81	2.19
TY SEGUOY	INDICATOR LOCATIONS MEAN (F) RANGE b	1.850	7.150	-56-+	B VALU	0.046	0.03-	0.510	0.36-	0.176	-90.0	0.146	-90.0	0.100	-+0.0	0.15(0.10-	0.06(0.03-	0.17(-80.0	8 VALUE	ANALYSIS PERFORMED	1.88(1.48-
LOCATION OF FACILITY HAMILTON	DETECTION	0.700	0.700		0.010	0.020		0.250		0.050		0.050		NOT ESTAB		0.050		0.020		0.000		2.000		1.000	
LOCAT	TYPE AND TOTAL NUMBER OF ANALYSIS PERFORMED	GHOSS ALPHA	GROSS BETA	GAMMA (GELI)	09-33	CS-137		K-40		BI-214		PB-214		PB-212 N		RA-226		TL-208		AC-228		SR 89	12	SH 90	15

Nominal Lower Limit of Detection (LLD) as described in Table 3. Mean and range based upon detectable measurements only. Fraction of detectable measurements of specified locations is indicated in parenthesis (F).

Quality Control

A quality control program has been established with the Temmessee Department of Public Health Radiological Laboratory and the Eastern Environmental Radiation Facility, Environmental Protection Agency, Montgomery, Alabama. Samples of air, water, milk, fish, and soil collected around nuclear plants are forwarded to these laboratories for analysis, and results are exchanged for comparison.

Conclusions

Since Sequoyah Nuclear Plant has not achieved criticality, there has been no contribution of radioactivity from the plant to the environment. The levels of radioactivity being reported in this document are due to natural background radiation, nuclear weapons testing, or other nuclear operations in the area.