ATTACHMENT 1

BWR SUPPRESSION POOL
TEMPERATURE EVALUATION

D.D. Jones, Senior Engineer Containment and Radiological Engineering

> General Electric Company San Jose, California December 17, 1982

BWR SUPPRESSION POOL TEMPERATURE EVALUATION

KEY POINTS

- O POOL TEMPERATURE EVALUATION PROCESS IS CONSERVATIVE
 - O LIMITING TRANSIENTS ANALYZED ARE VERY LOW PROBABILITY EVENTS
 - O INCORPORATION OF NEW OPERATOR GUIDELINES ELIMINATES SRV DISCHARGE TO HOT POOL CONCERN
 - O ANALYSIS ASSUMPTIONS ARE BOUNDING
 - O POOL TEMPERATURE LIMIT IS CONSERVATIVE
- O MODEL DEVELOPED/QUALIFIED AGAINST SUFFICIENT DATA
 - O PLANT DATA USED IN DEVELOPMENT
 - O MARK I POOLS GEOMETRICALLY AND DIMENSIONALLY SIMILAR
 - O BROAD DATA BASE USED TO QUALIFY
- O ALTERNATE DETERMINATION CONFIRMS CONSERVATISM OF PLANT SUBMITTALS
 - O PLANT SUBMITTAL TEMPERATURE BOUNDS ALTERNATE
 CALCULATION USING REALISTIC ASSUMPTIONS AND ACTUAL
 DATA BOUNDING AT PEAK-BULK

BWR SUPPRESSION POOL TEMPERATURE EVALUATION

- POOL TEMPERATURE EVALUATION PERSPECTIVE
- ANALYSIS DESCRIPTION/DEVELOPMENT/QUALIFICATION
- ALTERNAIL DETERMINATION OF PEAK POOL TEMPERATURE

Plant Submittals are
Conservative Calculations of
Pool Temperature During
SRV Discharge

SUPPRESSION POOL TEMPERATURE EVALUATION PERSPECTIVE

- SYSTEM OPERATIONS ASSUMPTIONS ARE BOUNDING
 - Impact on Temperature 20 60°F
- METHODOLOGY IS CONSERVATIVE 10 20°F
- ANALYSIS ASSUMPTIONS ARE BOUNDING
 - Impact on Temperature 15 30°F
- LIMITING TRANSIENTS ARE VERY LOW PROBABILITY EVENTS
 - Typically 10 20°F Higher Than Other Transients
- POCL TEMPERATURE LIMIT IS CONSERVATIVE
 - Conservative Definition of Local Temperature
 - Bounds Data
 - No Credit for Wetwell Pressurization
- # OF FAILURES REQUIRED IS GREATER THAN FSAR DESIGN BASIS

With A Conservative Methodology To

Demonstrate Compliance With Regulatory

Requirements

BWR SUPPRESSION POOL TEMPERATURE EVALUATION

ANALYSIS DESCRIPTION

Plant Submittal Transients

- Analytical Model Description
- TPOOL Development
- TPOOL Qualification
- TPOOL Application

PLANT SUBMITTAL TRANSIENTS

- NUREG-0783 REQUIRED TRANSIENT ANALYSIS
 - SORV/Power Operation
 - SRV/Isolation
 - SRV/SBA

- SRV/SBA TYPICALLY MOST LIMITING
 - Conservative Transient Sequence Analyzed
 - Worst Case RHR Availability
 - Highest Bulk Temperature
 - Maximum ∆T_{peak}-bulk
- OTHER TRANSIENTS HAVE SUBSTANTIALLY LOWER PEAK
 TEMPERATURES (180 190°F)

SRV/SBA TRANSIENT

- SRV/SBA TRANSIENT SEQUENCE SCENARIO
 - Bounding System Assumptions
 - New Operator Guidelines Not Considered
- KEY SYSTEM BEHAVIOR
 - Automatic SRV's
 - HPCI
 - Depressurization
 - RHR Operation
- BASED ON NEW OPERATOR GUIDELINES
 - SRV Discharge When Pool Cold
 - No SRV Discharge When Pool Hot

Incorporation of New Operator Guidelines
Eliminates SRV Discharge to Hot Pool
Concern

EFFECT OF OPERATOR GUIDELINES ON REACTOR PRESSURE and

SRV OPERATION

TRANSIENT PER OPERATOR GUIDELINES

- Initial SRV Discharge Same
- HPCI Maintains Level Resulting in Decreasing Pressure
- No Long Term SRV Discharge

EFFECT OF GUIDELINES ON POOL TEMPERATURE

POOL TEMPERATURE RESPONSE PER GUIDELINES

- No ADS To Hot Pool.
- Uniform Pool Heatup
- SRV Discharge to Cold Pool Only

Transient Per Operator Guidelines
Eliminates SRV Discharge to
Hot Pool Concern

- SYSTEM OPERATIONS ASSUMPTIONS ARE BOUNDING
 - Impact on Temperature 20 60°F
- METHODOLOGY IS CONSERVATIVE 10 20°F
- ANALYSIS ASSUMPTIONS ARE BOUNDING
 - Impact on Temperature 15 30°F
- LIMITING TRANSIENTS ARE VERY LOW PROBABILITY EVENTS
 - Typically 10 20°F Higher Than Other Transients
- POOL TEMPERATURE LIMIT IS CONSERVATIVE
 - Conservative Definition of Local Temperature
 - Bounds Data
 - No Credit for Wetwell Pressurization

With A Conservative Methodology To

Demonstrate Compliance With Regulatory

Requirements

BWR SUPPRESSION POOL TEMPERATURE EVALUATION

ANALYSIS DESCRIPTION

- Plant Submittal Transients
 - Analytical Model Description
- TPOOL Development
- TPOOL Qualification
- TPOOL Application

ANALYTICAL MODEL DESCRIPTION

BULK POOL TEMPERATURE

- Calculate Pool Bulk Temperature Based on Energy Additions by SRVs/Breaks and Removal by RHR.

PEAK POOL TEMPERATURE

Use TPOOL To Calculate Peak Pool Temperature
 Following SRV Discharge With Or Without RHR
 Operation.

DESCRIPTION OF TPOOL

- LUMPED PARAMETER MODEL
 - Maximum 40 Half-Bays
 - 8 Elevations Per Half-Bay
- MODELS INCLUDED
 - RHR Discharge
 - Quencher End-Cap Discharge
 - Irreversible Losses Due To Structures,
 Turns and Wall Friction
- SOLUTION METHODOLOGY
 - Momentum Equation for Pool Velocity Transient
 - Energy Equation for Node Temperature Transient
 - Semi-Empirical Model for Recirculation Flow and Thermal Mixing Based on Plant Data

BWR SUPPRESSION PCOL TEMPERATURE EVALUATION

ANALYSIS DESCRIPTION

- Plant Submittal Transients
- Analytical Model Description
- TPOOL Development
- TPOOL Qualification
- TPOOL Application

TPOOL DEVELOPMENT and QUALIFICATION

- DATA PREVIOUSLY USED IN CODE DEVELOPMENT
 - Monticello Quencher Performance Tests November, 1978

- OTHER DATA USED FOR TPOOL QUALIFICATION
 - Monticello Quencher Performance Tests January, 1977
 - Fitzpatrick SRV Load Test
 - Caorso Quencher Performance

Actual Plant Data Used for TPOOL Qualification

TPOO! DEVELOPMENT

- MONTICELLO QUENCHER PERFORMANCE TESTS (Nov., '78)
 USED FOR CODE DEVELOPMENT
 - Two Tests
 - without RHR
 - with RHR
 - RHR With Elbows
 - SRV Open 11 Minutes
- DATA USED FOR SEMI-EMPIRICAL CONSTANTS.

Actual Plant Data Used for TPOOL Development

JUSTIFICATION FOR APPLICATION OF TPOOL

- EMPIRICAL CONSTANTS BASED ON CONDITIONS WHERE THE CODE WAS TO BE APPLIED
- GEOMETRICAL CONSIDERATION
 - All Mark I Pools Geometrically Similar
 - Dimensions are Similar
- KEY OPERATING PARAMETERS
 - Bulk Pool Movement (RHR Operation)
 - Quencher Discharge
 - Cycling
 - Extended Blowdown

TPOOL Development Basis Justified
Use For All Mark I Plant Submittals

TPOOL DEVELOPMENT DATA COMPARISON

Chosen Semi-Empirical Coefficients
Overpredict in Vicinity of Quencher

OTHER QUALIFICATION DATA

- MONTICELLO QUENCHER PERFORMANCE TESTS

 (Jan., '77)
 - Two Tests
 - . without RHR
 - . with RHR
 - No RHR Elbows
 - SRV Open 7 Minutes
- FITZPATRICK SRV LOAD TEST
 - No RHR
 - Cycling SRV
- CAORSO QUENCHER PERFORMANCE
 - No RHR
 - SRV Open 14 Minutes

Other Data From Actual
Plants Used For TPOOL Qualification

CODE QUALIFICATION CHALLENGE

KEY PARAMETER AFFECTING POOL TEMPERATURE	APPLICABLE TEST DATA	
POOL GEOMETRY	MARK I TORUS \{ Monticello '77 \} Fitzpatrick	
	MARK II ANNULUS - Caorso	
BULK POOL MOVEMENT	STAGNANT POOL {Fitzpatrick Caorso	
	MOVING POOL - Monticello '77	
QUENCHER DISCHARGE	INTERMITTENT - Fitzpatrick	
	EXTENDED - Monticello '77 Caorso	

Available Plant Data Challenge TPOOL Modeling

GUALIFICATION DATA COMPARISON

(Monticello'77)

Measure Temperature °F

TPOOL OVERPREDICTS IN VICINITY OF QUENCHER

TPOOL QUALIFICATION DATA COMPARISON (Fitzpatrick)

TPOOL QUALIFICATION DATA COMPARISON

Measured Temperature (°F)

TPOOL Overpredicts
Temperatures in Vicinity
of Quencher

TPOOL QUALIFICATION

OTHER PLANT DATA USED FOR TPOOL QUALIFICATION

PLANT DATA USED ENCOMPASSES RANGE OF APPLICATION

TPOOL Calculations are
Conservative Compared to Actual
Plant Data Near Quencher

BWR SUPPRESSION POOL TEMPERATURE EVALUATION

O ANALYSIS DESCRIPTION

- Plant Submittal Transients
- Analytical Model Description
- TPOOL Development
- TPOOL Qualification
- TPOOL Application

TPOOL APPLICATION - PLANT SUBMITTAL

- PLANT SUBMITTAL USES MAXIMUM TEMPERATURE
- WATER FEEDING THE CONDENSATION PROCESS IS LESS
 THAN PEAK TEMPERATURE

- BREAK FLOW ADDED TO SRV FLOW
- DISCHARGING SRVs NOT ALTERNATED

TPOOL IS APPLIED CONSERVATIVELY

TPOOL ANALYSIS AND APPLICATION

- TPOOL SEMI-EMPIRICAL CONSTANTS (DEVELOPMENT)
 BASED ON ACTUAL PLANT DATA
- TPOOL HAS BEEN QUALIFIED TO ADDITIONAL DATA
 - Additional data covers wide range of conditions
 - TPOOL calculations are higher than measured
- TPOOL IS APPLIED CONSERVATIVELY

Plant Submittals Using TPOOL Give Conservative Calculation of the Peak Pool Temperature

- O SYSTEM OPERATIONS ASSUMPTIONS ARE BOUNDING
 - Impact on Temperature 20 60°F
- o METHODOLOGY IS CONSERVATIVE 10 20°F
- O ANALYSIS ASSUMPTIONS ARE BOUNDING
 - Impact on Temperature 15 30°F
- O LIMITING TRANSIENTS ARE VERY LOW PROBABILITY EVENTS
 - Typically 10 20°F Higher Than Other Transients
- o POOL TEMPERATURE LIMIT IS CONSERVATIVE
 - Conservative Definition of Local Temperature
 - Bounds Data
 - No Credit for Wetwell Pressurization

With A Conservative Methodology To

Demonstrate Compliance With Regulatory

Requirements

BWR SUPPRESSION POOL TEMPERATURE EVALUATION

- ALTERNATE DETERMINATION OF PEAK POOL TEMPERATURE
 - Realistic Bulk Temperature
 - Experimental Bound of Peak to Bulk Temperature
 Difference

- PREVIOUSLY DESCRIBED CALCULATION DETERMINED THE
 PEAK TEMPERATURE ANALYTICALLY
- ALTERNATE APPROACH USING DATA DIRECTLY
 - Calculate bulk temperature using realistic calculation assumptions
 - Bound temperature difference between bulk and peak using data
 - i.e., plant peak temperature = bulk temperature + $\Delta T_{peak-bulk}$

Plant Submittal Peak Temperature Bounds Alternate
Determination Based on Data

Parameter	Assumption	
	Typical Plant Submittal	Realistic
Power	104% Rated	100% Rated
DECAY HEAT	May-Witt	ANS 5.1
Heat Sinks	No	Yes
Operating Plant		
Parameters		
- Pool Temp	95°F	75°F
- Pool Level	Low	Normal
- Service Water	89°F	70°F
Heat Exchanger		
Effectiveness	1.0	1.6

Realistic Bulk Temperature ~20°F Below That in Typical Plant Submittals

DETERMINATION OF MAXIMUM PEAK TO BULK DIFFERENCE

- PLANT SUBMITTAL USED TPOOL
- USE ACTUAL PLANT DATA TO DEFINE MAXIMUM △Tpeak-bulk
 - Monticello (Jan., '77)
 - Monticello (Nov., '78)
 - Caorso
- PLANT AT peak-bulk Are Bounding
 - Continuous Single SRV Discharge
 - High Pressure

Actual Plant Data Provide

Bounding AT =43 °F

peak-bulk

-COMPARISON OF PLANT SUBMITTAL TO ALTERNATE CALCULATIONS OF PEAK TEMPERATURE

Plant Submittal Peak Temperatures
Are Bounding Calculations

CONCLUSIONS

- NO SRV DISCHARGE TO HOT POOL EXPECTED WITH
 OPERATOR FOLLOWING THE GUIDELINES
- PLANT SUBMITTAL USES CONSERVATIVE METHODOLOGY TO
 CALCULATE PEAK POOL TEMPERATURES
 - Bounding Initial Conditions Assumptions
 - TPOOL Conservatively Qualified With Other Data
 - TPOOL Applied Conservatively
- ALTERNATE DETERMINATION ADDITIONALLY SHOWS THAT PLANT
 PEAK TEMPERATURES BOUND EXPERIMENTALLY BASED PEAK
 TEMPERATURES.

Plant Submittals Are
Conservative Calculations Of
Pool Temperature During SRV Discharge