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INTRODUCTION

Probabilistic risk assessment (PRA) studies, as currently performed, employ evidence |

which consists of statistical data and expert judgments. As a special case of the latter,
it may be in the form of predictions given by a physical model, the model being a for-
malized encoding of a system, e.g., the behavior of fire in a room. Because judgment is
involved both in the construction and in the application of the model, as it is involved

the uncer-in the entire risk assessment procedure, of which the model is just a part,
tainties in the model's predictions must be quantified.

The existence of uncertainties in the predictions of physical models has, of course,
'long been acknowledged. The comparison, or " benchmarking", of an analytical or computer-
based model with experimental data is genera'lly viewed as a highly desirable step in model

development and documentation. Such exercises may lead to rough estimates of the model's

accuracy, perhaps in terms of maximum percent deviation from the experimentally observed
What has been lacking, until fairly recently, however, is a formal quantificationvalues.

of the modeling uncertainty, an expression of the model's output not in terms of a single
point (or set of points) but rather in terms of a probability distribution.

i Two characteristics relevant to the analysis of uncertainties in a physical model's
a) the degree of inherent randomness of the process being modeled, and

,

j predictior.a are:

b) the existence of uncertainties in the values of the model's input parameters'. If the ,

process is stochastic, i.e., if it varies randomly in time, the analysis must distinguish

fbstweentheuncertaintiesarisingfromthisinherentrandomnessandtheuncertainties
. arising due to imperfect knowledge. Since the stochastic distribution governing the

random variability can usually be parameterized, the analysis can focus on developing
probability distributions for the stochastic distribution's parameters.

The propagation of input parameter uncertainties through complex models is fairly

|
straightforward in concept and is widely used to estimate uncertainties in model output.1

The treatment of modeling uncertainties in the presence of input parameter uncertainties
id, on the other hand, not as easily dealt with. By modeling uncertainties, we mean

those uncertainties stemming from imperfections in the model's structure, due to its

approximate nature. Consider, for example, the computer code COMPERN [1], which can be

ucsd to predict the growth rate of a fire. The code requires as input numerous empirical
. . . . .. 4.. .,__s..-, sa -.,----*4eo ek. Five. Tf the values of these .i
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|''uncer'tcinty;thaformalaessesmsntof'thscoda'scccurecyund2rthsedcircumstinessisno't
l Icbvious, avan when exparimantal raeults are evsilcbla [2].

To illustrate the analytical approach that is applied to COMPBRN, we define T to beg
tha mean fire growth time. Then, Ref. 1-uses

.

T ~ 'T (1)C T G,DRM

where E is the error factor representing the analyst's co'nfidence in the prediction of

- the code (called the deterministic reference,model, or DRM) and T is e mean gu d .
C,DRM

|-timepredictedbyCOMPBRN. Both E and T a unm a a a ad ths amC, DRM
characterized by probability distributions. The distribution of T DRM '" "#"'"

C,
by propagating input parameter uncertainties through COMPBRN (actuall),.through a response
eurface representation of COMPBRN). The distribution of E is assessed subjectively on

the basis of comparisons of the code's predictions with: a) experimertal data for a

vartical cable' tray' fire scenario, and b) an expert's estimate for a hori e eal tray.

acanario. In both of these comparisons, parameter uncertaintie's are propagated through the

code and have an impact on the quantification of E . In applications of COMPBRN to
'

is ssessdscenarios for which growth data do not exist, the distribution of T -

g, DRM
! (bscause the input parameters are different) but the distribution for E is not modified
i T

L; unless the new scenarios cre greatly different,

j In Reference 3, a slightly different approach is used to estimate the. impact of

| modeling uncertainties on the output of the CUT code, which models the transient behavior

~f of a pressurized water reactor during a small LOCA. In that analysis, one intermediate

| result, the mass flow rate through a relief valve, can be computed using a number of

'.; different sub-models. Reference 3 uses one sub-model to estimate the flow rate, and

I accounts for the uncertainty arising from model-to-model variability by multiplying that-
|

| flow rate with an uncertainty factor. The distribution for the uncertainty factor is

casessed subjectively, using the different predictions of the various models to indicate

tha possible range of variation. The resulting modeling uncertainty is propagated through'

the CUT code.in the same manner that. parameter uncertainties are treated, i.e., using

Monte Carlo sampling off of a response surface. Thus, the primary difference between this

approach and what is done for COMPBRN is that in the latter the modeling uncertainty
analysis.is performed at the level of COMPBRN's final results, rather than at an inter-

.msdiate level, as is done.in Ref. 3.

A CONCEPTUAh FRAMEWORK

'| 'In the preceding. examples, evidence in the form of sensitivity analyses results,
' citernate model predictions, experimental data, and expert judgment are loosely employed

to quantify the modeling' uncertainty factor' distributions. A natural tool'to formalize
~

: the use of this evidence is Bayes' Theorem [4). Before we outiline a conceptual approach
for using Bayes' Theorem in'this context, however, we first discuss some of the issues
which may affect the analysis.

One'of the. key issues involves the form of the modeling uncertainty approach to be
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I
'*WhiAeicdditional modeling uncertainty parameters could be introduced, this would complicate,
tha analysis a great deal.

In general, the formal analysis of modeling uncertainties appears to be a complex

problem, as will be illustrated by an example in the following section. A practical issue,

therefore, is the allocation of limited resources to the detailed quantification of

modeling uncertainties versus allocation towards reducing these uncertainties.

Another important issue is the availability and quantity of data to benchmark the

model. Without relevant information, a detailed uncertainty analysis could be wasteful.

On the other hand, such an analysis could be useful in guiding the conduct of experiments,

since the analysis would indicate exactly what data are needed for unambiguous benchmarking.
The data would include, for example, measurements of the physical parameters required as

input for the model; any differences between model predictions and experimental outcomes

could then be directly attributed to modeling uncertainties. It is because such complete

data are generally not available that the treatment of modeling uncertainties is so com-
i

plicated.

To outline a conceptual approach for handling modeling uncertainties in the presence- |
of parameter uncertainties, consider the following situation arising in the course of a

. fire risk analysis. Suppose we wish to use COMPBRN to develop the distribution p(tg) for
the mean growth time T for a'very specific fire scenario, e.g., the spread of fire from

; g
! one horizontal cable tray to one immediately above. Further suppose that the evidence for
I

this distribution is:

1. A distribution p(TG, DRM) r the predicted mean growth time specific to the

scenario being modeled. This distribution is obtained by propagating the

input parameter uncertainties through our COMPBRN model for the two traym.
*

2. An actual mean growth time TC , estimated from growth time data for an
experiment similar in configuration to the scenario being modeled.

*
3. A distribution p (TG, DRM) f r the predicted mean growth time of the

experiment. This distribution, similar to p (TG, DRM ' "#'8"" "

uncertainties in the COMPBRN input parameters relevant to the experiment.

The framework for our approach is provided by Equation (1). We note that while our

scenario and the experiment are similar, they are not identical (else we would probably

be using COMPBRN to develop the. distribution of tg). In general, therefore, the uncertainty
*

factor for the scenario. E , and that for the experiment, E , will differ by an bnknown-

amount. To model the scenario-to-scenario variability in E , we assume that E is a random

variable governed by a two-parameter stochastic (frequency) distribution f(E]p,o) . Our

approach, then, is to use the available evidence to assess the joint distribution of p and

o, and then to use this intermediate result in developing a probability distribution for E.

It can be seen that this approach is similar to the first stage of the two-stage Bayesian

methodology developed in Reference 5 to treat plant-to-plant variability in equipment

failure rates.
* *

If there are no uncertainties in T *** 8 ^ * " "# 'G, DRM G, DRM
the joint posterior distribution for y and a follows directly from Bayes Theorem:

y (p .a | Ef) = ~ f(E ,j p .o) n,(p .c) (2)
*

kn

. .
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k = [[ f(E |p,o) n ,(p c) dp do
*

E =, , , ,

T G, DRM

* *

1(N '# T) is c nditionTo account for.the uncertainty in T DRM' "" " " " " #
C,

on E . and hence, on T This conditioning can be removed simply by taking the
G , ,DR:1

expectation of ny(p.o | E ):
* * ** [wy(p,0|E) p(E ) dE (3)l(p , | p(E ))u =

* *
where p(E ) is determined directly' using p(T s use of acutain, or Muzzy"4

C, DRM .
data, is developed more thoroughly (in a different context) in Reference 6.i

'
To complete the analysis, we follow Reference 5 and find the average frequency dis-

tribution for E , which we equate with p(E ):

i

[[ f(E |p,o)| p(E ) w (p .o |p(E)) dp do (4)=

|
, .

| This analysis for E incorporates both statistical data obtained from an experiment

; and an uncertain prediction (caused by input parameter uncertainties) from a simulation o

| that experiment. The extension of this approach to many experiments is straightforward

in principle, but may be difficult to actually perform. In fact, difficulties may easily

arise even for the simple one experiment case presented. If, for example, certain com-

binations of input parameter values dead to a COMPBRN prediction that fire damage is
impossible, although damage was actually observed in the experiment, the scaling factor

approach used loses applicability. Work on the actual implementation of the formal approa

and on generalizations of the approach is continuing.
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