PATH1 Self-Teaching Curriculum: Example Problems for Pathways-to-Man Model

Manuscript Completed: January 1982
Date Published: October 1982

Prepared by
J. C. Helton*, N. C. Finley

Sandia Nationa! Laboratories
Albuquerque, NM 87185

- Arizona State University

Prepared for

Division of Wasie Management
Office of Nuclear Material Safety and Safeguards
U.S. Nuclear Regulatory Commission

Washington, D.C. 20555
NRC FIN A1158

ABSTRACT

The Pathways-to-Man Model was developed at Sandia National Laboratories to represent the environmental movement and human uptake of radionuclides. This model is implemented by the computer program PATHl. The purpose of this document is to present a sequence of examples to facilitate use of the model and the computer program which implements it. Each example consists of a brief description of the problem under consideration, a discussion of the data cards required to input the problem to PATHl, and the resultant program output. These examples are intended for use in conjunction with the technical report which describes the model and the computer program which implements it (NUREG/CR-1636, Vol 1; SAND78-1711). In addition, a sequence of appendices provides the following: a description of a surface hydrologic system used in constructing several of the examples, a discussion of mixed-cell models, and a discussion of selected mathematical topics related to the Pathways Model. A copy of the program PATHl is included with the report.

TABLE OF CONTENTS

ChapterPage1 Introduction 1-1
2 Example 1 2-1
3 Example 2 3-1
4 Example 3 4-1
5 Example 4 5-1
6 Example 5 $6-1$
Appendices
Reprint of Chapter 2 and Reference
List of (Hel80) A-1
B Examples of Mixed-Cell Models B-1
B-1 Introduction B-1
B-2 One Cell wit out Partitioning B-1
B-3 One Cell With Partitioning B-8
$B-4$ Two Cells with Partitioning B-18
B-5 Two Cells with Two Radionuclides and Partitioning B-28
C Special Topics C-1
C-1 Introduction $\mathrm{C}-1$
C-2 Existence and Uniqueness of Solutions C-1
C-3 Numerical Approximation of Solutions C-3
C-4 Asymptotic Behavior of Solutions C-4
C-5 Sensitivity Analysis C-6
$C-6$ Analysis of a Disposal Site C-6
ReferencesR-1

LIST OF FIGURES

Figure Page
2-1 Example 1 2-2
3-1 Example 2 3-2
4-1 Example 3 4-2
5-1 Example 4 5-2
6-1 Example 5 6-2B-1 Flows Associated With a SingleUniformly-Mixed Cell With noRadionuclide Partitioning Betweena Liquid and a Solid PhaseB-2
B-2 Solution to Differential EquationRepresenting Amount of Radionuclidein Single Uniformly-Mixed CellB-9
B-3 Flows Associated With a SingleUniformly-Mixed Cell With RadionuclidePartitioning Between a Liquid and aSolid PhaseB-10
B-4 Solution to Differential EquationRepresenting Amount of Radionuclidein Single Uniformly-Mixed Cell WithPartitioningB-17
B-5 Flows Associated With Two Uniformly-Mixed Cells With RadionuclidePartitioning Between a Liquid and aSolid PhaseB-19B-6 Solutions to System of DifferentialEquations Representing Amount ofRadionuclide in Two Uniformly-MixedCellsB-29

Table	Page	
$2-1$	Input Data for Example 1	$2-3$
$2-2$	Discussion of Input Data for Example 1	$2-5$
$3-1$	Input Data for Example 2	$3-3$
$3-2$	Discussion of Input Data for Example 2	$3-5$
$4-1$	Input Data for Example 3	$4-3$
$4-2$	Discussion of Input Data for Example	3

CHAPTER 1

Introduction

The purpose of this document is to present a sequence of examples to facilitate the use of the Pathways-to-Man Model (Cam78, Hel81b). Each example consists of a brief description of the problem under consideration, a discussion of the data cards required to input the problem to the computer program which implements the model, and the resultant program output.

As the Pathways-to-Man Model and the computer proscam which implements it are described extensively in a previously published report (Hel81b), such descriptions will not be repeated here. With respect to the freceding document, Chapter 2 provides a conceptual lescription of the model, Chapter 3 provides an overview of the computer program which inplements the model, and Chapter 4 provides a detailed description of data card structure and arrangement. For the discussions contained in the present report, it is assumed that the reader has access to this document.

Five examples are presented. Chapter 2 contains a relatively simple example which involves one zone and one radionuclide. This example is then expanded in Chapter 3 to include ingestion and inhalation calculations. Chapter 4 presents an example involving three zones and two radionuclides. This example also includes ingestion and inhalation calculations. The example in Chapter 5 uses two zones. However, in contrast to the preceding examples, only two subzones per zone are employed. A decay chain with five radionuclides is considered, but no ingestion or inhalation calculations are performed. Finally, Chapter 6 presents an example with five zones. This example differs from the preceding examples in that nonzero initial values are set for the radionuclide transport equations and the forcing functions for the transport equations are taken to be identically zero. No ingestion or inhalation calculations are performed.

The report ends with a sequence of appendices. Appendix A describes a hypothetical site which was used in a sensitivity analysis involving the Environmental Transport Model and is reprinted from an earlier report
(Hel80, Chapter 2). This site is used as the basis for four of the examples contained in this report. The Environmental Transport Model is the part of the Pathways Model which actually formulates and solves the radionuclide transport equations. Appendix B presents several simple examples of mixed-celi models. These examples are special cases of the type of mathematical model which underlies the Pathways Model and are included to help readers unfamiliar with this type of modeling develop a feeling for the processes involved. Appendix C presents a brief discussion of several mathematical topics associated with the Pathways Model and provides additional references. A microfiche listing of PATHI, the computer program which implements the Pathways Model, is provided at the end of the report.

CHAPTER 2

Example 1

This chapter presents a relatively simple example which illustrates the input data used by PATHl. Specifically, an example involving one zone and one radionuclide is considered. No ingestion or inhalation calculations are performed. This example is expanded in Chapter 3 to include such calculations. The zone considered is the same as that designated zone 1 in a sensitivity analysis of the Pathways Model (del80, Chapter 2). This zone corresponds to a stretch of river and the floodplain along the river. Specifically, the surface water subzone consists of a stretch of river and the suspended sediments within the river, the soil subzone consists of an area of floodplain on each side of the river, the sediment subzone consists of the stationary sediments beneath the river, and the groundwater subzone consists of a shallow aquifer beneath the soil subzone which discharges into the surface water subzone. For convenience, the chapter of Helton and Iman (Hel80) which describes this zone is reprinted as Appendix A of the present report. The radionuclide considered is Ra226. This radionuclide is assumed to enter the surface-water subzone at the rate of $1.0 \mathrm{mg} / \mathrm{yr}$.

The general nature of example 1 is indicated in Figure 2-1. Then, the input data to PATHl associated with this example are listed in Table $2-1$, and the location in the user manual (Hel8lb) of additional discussion of the card deck presented in Table 2-1 is indicated in Table $2-2$. Finally, the model output corresponding to the input in Table $2-1$ is listed on microfiche attached at the end of the report.

RADIONUCLIDE: Ra226
NO INGESTION OR INHALATION

Figure 2-1. Example 1.

Table 2-1
Input Data for Example 1

C THE DATA READ BY SUBROUTINE DATAI FOLLOWS. THIS DATA DESCRIBES ZONE 1 c Of A SITE INVOLVING THREE ZONES WHICH WAS USED IN A SENSITIVITY ANALc YSIS OF THE PATHWAYS MODEL. DEFINITION AND/OR DERIVATION OF THE PARAC METERS WHICH FOLLOW ARE CONTAINED IN CHAPTER 2 OF HELTON AND IMAN, C RISK METHODOLOGY FOR GEOLOGIC DISPOSAL OF RADIOACTIVE WASTE: SENSIC TIVITY ANALYSIS OF THE ENVIRONMENTAL TRANSPORT MODEL (DECEMBER, 1980). C THE DATA READ BY SUBROUTINE DATAZ FOLLOWS. THIS DATA DESCRIBES RAZ26. © CONCENTRATION RATIOS ARE FROM TABLE A-8, P. 1.109-31, AND TABLE C-5, C P. 1.109-56, OF U. S. NRC REGULATORY GUIDE 1.109 (MARCH, 1976). C THE DATA READ BY SUBROUTINE DATA3 FOLLOWS. THIS DATA CONTROLS THE C OPERATION OF THE DIFFERENTIAL EQUATION SOLVFR USED FOK THE RAOIONUC CLIDE TRANSPORT EQUATIONS. $\begin{array}{ll} 1.0 \mathrm{E}-10 & \\ 1.0 \mathrm{E}-20 & 1.0 \mathrm{E}-08 \end{array}$ 21 C THE DATA READ BY SUBROUTINE DATAM FOLLOWS. THIS DATA IS USED BY SUBC ROUTINE MANAGE TO CONTROL THE OPERATION OF THE PATHWAYS MODEL. $\begin{array}{rrrrr} 1 & & & \\ 1 & 0 & 7.5 \mathrm{E} 02 & 2 & \\ 1 & 1 & -1 & -1 & -1 \\ 1 & 1 & 0 & 0 & 0 \end{array}$ C THE DATA READ BY SUBROUTINE DATA4 FOLLOWS. This DATA IS USED BY SUBC ROUTINE INGEST TO PERFORM INGESTION CALCULATIONS. C No ingestion data is read in this example. 0 C THE DATA RFAD BY SUBROUTINE DATA5 FOLLOWS. THIS DATA IS USED BY SUB- a ROUTINE INHALE TO PERFORM INHALATION CALCULATIONS. C NO INHALATION DATA IS READ IN This EXAmple. 0 C THE DATA READ BY SUBROUTINE ALTER FOLLOWS. THIS DATA IS USED TO DEFINE C AND IMPLEMENT ALTERATIONS TO THE COEFFICIENTS IN THE RADIONUCLIDE C TRANSPORT EQUATIONS.	 CARD 1 CARD 2 CARD 3 CARD 4 CARD 5 CAARD 6 CARD 7 CARD 8 CARD 9 CARD 10 CARD 11 CARD 12 CARD 13 CARD 13 CARD 15 CARD 10 CARD 17 CARD 18 CARD 19 CARD 20 CARD 21 CARD 22 CARD 23 CARD 24 CARD 25 CARD 26 CARD 27 CARD 28 CARD 29 CARD 30 CARD 31 CARD 32 CARD 33 CARD 34 CARD 35 CARD 36 CARD 37 CARD 38 CARD 39 CARD 40 CARD 41 CARD 42 CARD 43 CARD 44 CARD 45 CARD 46 CARD 47 CARD 48 CAADD 49 CARD 50 CARD 51 CARD 52 CARD 53 CARD 54

Table 2-1 (Continued)

C THE DATA READ BY SUBROUTIN ADC FOLLOWS. THIS UATA IS USED TO DEFINE CARDC AND IMPLEMENT ADDITIONAL COEFFICIENTS IN THE RADIONUCLIDE TRANSPORTCARD
C EQUATIONS.CARDCARD
C THE DATA READ BY SUBROUTINE REDUCE FOLLOWS. TK'S DATA IS USED TO DE-CARDC FINE AND IMPLEMENT A REDUCTION IN THE NUMBER OF RADIONUCLIDE TRANSPORTCARDCARDC EQUATIONS.CARD0CARDC THE DATA READ BY SUBROUTINE INITIAI FOLLOWS. THIS DATA IS USED TO SET CARDC THE INITIAL VALUE CONDITIONS FOR THE RADIONUCLIDÉ TRANSPORT ECUIATIONS.CARD55
56
57
58
59
$6 C$
61
62
63
64
65

> Table $2-2$
> Discussion of Input Data for Example 1

Cards ${ }^{\text {a }}$	Discussion	Sections ${ }^{\text {b }}$
1-6	Comments for DATAl	4.2.1.1
7	Option for DATAl	4.2.1.2
8	Number of zones	4.2.2.1
9-10	Description of groundwater subzone	4.2.2.2
11-12	Description of soil subzone	4.2.2.3
13-15	Description of surface-water subzone	4.2.2.4
16-17	Description of sediment subzont	4.2 .2 .5
18-20	Comments for DATA2	4.3.1.1
21	Option for DATA2	4.3.1.2
22	Number of radionuclides	4.3.2.1
23	Description of decay chain	4.3.2.2
24	Description of decay pattern	4.3.2.3
25-26	Description of distribution coefficients	4.3.2.4
27	Description of concentration ratios	4.3.2.5
28-29	Description of radionuclide	4.3 .2 .6
	input rates	
30-32	Comments for DȦTA3	4.4.1.1
33	Option for DATA3	4.4.1.2
34	Minimum coefficient size	4.4.2.1
35	Parameters for GEARB	4.4.2.2
36-37	Comments for DATAM	4.5.1.1
38	Option for DATAM	4.5.1.2
39	Option for MANAGE	4.5 .2 .1
40	Solution of transport equations	4.5 .2 .2
41	Subroutine selection for SOL, CONC, INGEST, INHALE, and EXT	4.5.2.3
42	Subroutine options	4.5.2.4
43-45	Comments for DATA4	4.6 .1 .1
46	Option for DATA4	4.6.1.2
47-49	Comments for DATA5	$4.7 .1 \cdot 1$
50	Option for DATA5	4.7 .1 .2
51-53	Comments for ALTER	4.9 .1 .1
54	Option for ALTER	4.9 .1 .2
55-5\%	Comments for ADD	4.10 .1 .1
58	Option for ADD	4.10 .1 .2

[^0]Table 2-2 (Continued)

Cards $^{\text {a }}$	Discussion	Sections ${ }^{\text {b }}$
$59-61$	Comments for REDUCE	4.11 .1 .1
62	Option for REDUCE	4.11 .1 .2
$63-64$	Comments for INITIAL	4.12 .1 .1
65	Option for INITIAL	4.12 .1 .2

[^1]
CHAPTER 3

Example 2

This chapter illustrates the ingestion and inhalation calculations performed by PATHl. Specifically, the example presented in Chapter 2 is expanded by the inclusion of ingestion and inhalation calculations. Two ingestion patterns and two inhalation patterns are added.

The general nature of example 2 is indicated in Figure 3-1. Then, the input data to PATHl associated with this example are listed in Table 3-1, and the location in the user manual (Hel81b) of additional discussion of the card deck presented in Table 3-1 is indicated in Table 3-2. Finally, the model output corresponding to the input in Table $3-1$ is listed on microfiche attached at the end of the report.

RADIONUCLIDE: Ra226
INGESTION AND INHALATION

```
    Table 3-1
Input Data for Example 2
```


Table 3-1 (Continued)

C THE DATA READ BY SUBRDUTINE DATA5 FOLLOWS. THIS DATA IS USED BY SUB- CARD 57
C ROUTINE INHALE IN THE CALCULATION OF RADIONUCLIDE INHALATION. INHALA -
C TION RATE IS THE ADULT RATE FROM TABLE E-4, P. 1.109-39, OF U. S. NRC
C REGULATORY GUIDE 1.109 (OCTOBER, 1977). CONCENTRATION OF SUSPENDED
C MATERIAL IS SELECTED TO BE REPRESENTATIVE OF CONCENTRATIONS LISTED IN
C TABLE $1.4-5$, P. 66 , OF THE HANDBUOK OF ENVIRONMENTAL CONTROL, VOLUME
C 1 .
1
C TWO INHALATION PATTERNS ARE CONSIDERED. IN THE FIRST PATTERN, SUSPEND-
C ED MATERIAL IS DERIVED FROM THE SOIL SUBZONE, IN THE SECOND PATTERN,
C SUSPENDED MATERIAL IS DERIVED FROM THE SEDIMENT SUBZONE.
2
$\begin{array}{llll}2 & 3.50 E-09 & 8.00 E 03 & 1.00 E 00\end{array}$
4 3.50E-09 8.00E $03 \quad 3.85 \mathrm{E}-02$
C THE DATA READ BY SUBROUTINE ALTER FOLLOWS. THIS DATA IS USED TO DEFINE
C AND IMPLEMENT ALTERATIONS TO THE COEFFILIENTS IN THE RADIONUCLIDE
C TRANSPORT EQUATIONS.
0

C SUSPENDED MATERIAL IS DERIVED FROM THE SEDIMENT SUBZONE.
2
4 3.50E-09 8.00E03 3.85E-02
C THE DATA READ BY SUBROUTINE ALTER FOLLOWS. THIS DATA IS USED TO DEFINE
C AND IMPLEMENT ALTERATIONS TO THE COEFFILIENTS IN THE RADIONUCLIDE
C TRANSPORT EQUATIONS.
0
C THE DATA READ BY SUBROUTINE ADD FOLLOWS. THIS DATA IS USED TO DEFINE
C AND IMPLEMENT ADDITIONAL COEFFICIENTS IN THE RADIONUCLIDE TRANSPORT
C EQUATIONS.
C THE DATA READ BY SUBROUTINE REDUCE FOLLOWS. IHIS DATA IS USED TO DE-
C FINE AND IMPLEMENT A REDUCTION IN THE NUMBER OF RADIONUCLIDE TRANSPORT
C EQUATIONS.
0
C THE DATA READ BY SUBROUTINE INITIAL FOLLOWS. THIS DATA IS USED TO SET
C THE INITIAL VALUE CONDITIONS FOR THE RADIONUCLIDE TRANSPORT EQUATIONS.
1
CARD

CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
57 58 59 60 61 62 63 646565
67
68
69
70
CARD
CARD 72
CARD
CARD
CARD
CARD 75
CARD 76
CARD 77
CARD 78
CARD 73
$\begin{array}{ll}\text { CARD } & 72 \\ \text { CARD } & 80\end{array}$
CARD 80
CARD 81
CARD 82
CARD 83
CARD $\quad 84$
$\begin{array}{ll}\text { CARD } & 84 \\ \text { CARD } & 85\end{array}$

Table 3-2
Discussion of Input Data for Example $2^{\text {a }}$

Cards ${ }^{\text {b }}$	Discussion	Sections ${ }^{\text {c }}$
36-37	Comments for DATAM	4.5.1.1
38	Option for DATAM	4.5.1.2
39	Option for MANAGE	4.5.2.1
40	Solution of transport equations	4.5.2.2
41	Subroutine selection for SOL, CONC, INGEST, INHALE, and EXT	4.5.2.3
42	Subroutine options	4.5.2.4
43-46	Comments for DATA4	4.6.1.1
47	Option for DATA4	4.6.1.2
48	Comments for agricultural parameters	4.6.3.1
49	Option for agricultural parameters	4.6.3.2
50-51	Comments for ingestion patterns	$4.6 \cdot 3.5$
52	Number of ingestion patterns	4.6.3.6
53-56	Description of ingestion patterns	4.6 .3 .7
57-63	Comments for datas	4.7.1.1
64	Option for datas	4.7.1.2
65-67	Comments for inhalation patterns	4.7.3.1
68	Number of inhalation patterns	4.7.3.2
69-70	Description of inhalation patterns	4.7.3.3

[^2]
CHAPTER 4

Example 3

This chapter presents an example involving three zones and two radionuclides. Further, ingestion and inhalation calculations are performed for all zones. The first zone consists of a $40-\mathrm{km}$ stretch of river, the stationary sediments beneath the river, a $2-\mathrm{km}-$ wide strip of floodplain on each side of the river, and the portions of a shailow aquifer which lie beneath the preceding strips of floodplain. The second zone begins immediately below the first zone and consists of a lake 40 km in length, a layer of stationary sediments beneath the lake, a $2-\mathrm{km}$-wide strip of land on each side of the lake, and the portions of the shallow aquifer which lie beneath the preceding strips of land. The third zone begins immediately below the second zone and consists of a $40-\mathrm{km}$ stretch of river, the stationary sediments beneath the river, a $2-\mathrm{km}$-wide strip of floodplain on each side of the river, and the portions of the shallow aquifer which lie beneath the preceding strips of floodplain. The site used in this example was defined for a sensitivity analysis of the Pathways Model (Hel80). The derivation of the parameters which define this site is presented in Appendix A. The radionuclides are Cm245 and Pu241. They are assumed to enter the surface-water subzone of the first zone at the rates of $1.0 \mathrm{mg} / \mathrm{yr}$ for Cm 245 and 1.77×10^{-3} $\mathrm{mg} / \mathrm{yr}$ for Pu241. The rate for Pu241 was selected for equilibrium with the parent Cm 245 .

The general nature of example 3 is indicated in Figure $4-1$. Then, the input data to PATHl associated with this example are listed in Table $4-1$, and the location in the user manual (Hel81b) of additional discussion of the card deck presented in Tabıe 4-1 is indicated in Table 4-2. Finally, the model output corresponding to the input in Table 4-1 is listed on microfiche attached at the end of the report.

RADIONUCLITES: Cm245, Pu241
INGESTION ND INHALATION

Fiqure 4-1. Example 3.

$$
4-2
$$

Table 4-1
 Input Data for Example 3

Table 4-1 (Continued)

C THE DATA READ BY SUBROUTINE DATAM FOLLOIS. THIS DATA IS USED BY SUBC ROUTINE MANAGE TO CONTROL THE OPERATION OF THE PATHWAYS MODEL.

C THE TWO DIETARY PATTERNS FOR ZONE 3 FOLLOW.

2					
$3.70 \mathrm{EO2}$	6.90 E 00	4	0	$1.90 \mathrm{EO2}$	$1.10 \mathrm{EO2}$
3	$9.50 \mathrm{EO1}$				
$3.70 \mathrm{EO2}$	6.90 E 00	0	$1.90 \mathrm{EO2}$	$1.10 \mathrm{EO2}$	$9.50 \mathrm{EO1}$
3	4	$3.00 \mathrm{EO2}$			

C THE DATA READ BY SUBROUTINE DATA5 FOLLOWS. THIS DATA IS USED BY SUB-
C ROUTINE INHALE IN THE CALCULATION OF RADIONUCLIDE INHALATION. INHALA-
C TION RATE IS THE ADULT RATE FROM TABLE E-4, P. 1.109-39, OF U. S. NRC
C REGULATORY GUIDE 1.109 (OCTOBER, 1977). CONCENTRAIION OF SUSPENDED
C MATERIAL IS SELECTED TO BE REPRESENTATIVE OF CONCENTRATIONS LISTED IN
C TABLE $1.4-5, P, 66$, OF THE HANDBOOK OF ENVIRONMENTAL CONTROL, VOL C UME 1.

1

CARD	60
CARD	61
CARD	62
CARD	63
CARD	64
CARD	65
CARD	66
CARD	67
CARD	68
CARD	69
CARD	70
CARD	71
CARD	12
CARD	73
CARD	74
CARD	75
CARD	76
CARD	77
CARD	78
CARD	79
CARD	80
CARD	81
CARD	82
CARD	83
CARD	84
CARD	85
CARD	86
CARD	87
CARD	88
CARD	89
CARD	90
CARD	91
CARD	92
CARD	93
CARD	94
CARD	95
CARD	96
CARD	97
CARD	98
CARD	99
CARD	100
CARD	101
CARD	102
CARD	103
CARD	104
CARD	105
CARD	106
CARD	107
CARD	108
CARD	109
CARD	110
CARD	111
CARD	112
CARD	113
CARD	114
CARD	115
CARD	116
CARD	117
CARD	118
CARD	119
CARD	120
CARD	121
CARD	122
CARD	123

Table 4-2
Discussion of Input Data for Example 3

Cards ${ }^{\text {a }}$	Discussion	Sections ${ }^{\text {b }}$
1-6	Comments for Datal	4.2.1.1
7	Option for DATAl	4.2.1.2
8	Number of zones	4.2.2.1
9-14	Description of groundwater subzones	4.2.2.2
15-20	Description of soil subzones	4.2.2.3
21-29	Description of surface-water subzones	4.2.2.4
30-35	Description of sediment subzones	4.2 .2 .5
36-39	Cominents for DATA2	4.3.1.1
40	Option for DATA2	4.3.1.2
41	Number of radionuclides	4.3.2.1
42-43	Description of decay chain	4.3.2.2
44-45	Description of decay pattern	$4 \cdot 3 \cdot 2 \cdot 3$
46-48	Description of distribution coefficients	4.3.2.4
49-50	Description of concentration ratios	4.3.2.5
51-53	Description of radionuclide input rates	4.3.2.6
54-56	Comments for DATA3	4.4.1.1
57	Option for DATA3	4.4.1.2
58	Minimum coefficient size	4.4.2.1
59	Parameters for GEARB	4.4.2.2
60-61	Comments for DATAM	4.5.1.1
62	Option for DATAM	4.5 .1 .2
63	Option for MANAGE	4.5.2.1
64	Solution of transport equations	4.5 .2 .2
65	Subroutine selection for SOL, CONC, INGEST, INHALE, and EXT	$4 \cdot 5 \cdot 2.3$
66	Subroutine options	4.5 .2 .4
67-70	Comments for DATA4	4.6 .1 .1
71	Option for DATA4	4.6 .1 .2
72	Comments for agricultural parameters	4.6.3.1
73	Option for agricultural parameters	4.6.3.2

adata card number in Table 4-1.
blocation of additional discussion in user manual (Helalb).

Cards ${ }^{\text {a }}$	Discussion	Sections ${ }^{\text {b }}$
74	Comments for ingestion patterns in zone 1	4.6.3.5
75	Number of ingestion patterns in zone 1	4.6.3.6
76-79	Description of ingestion patterns in zone 1	4.6.3.7
80-91	Commenis for, numbers of and descriptions of ingestion patterns in zones 2 and 3 . Similar to cards 74 through 79.	
92-98	Comments for Datas	4.7.1.1
99	Option for DATA5	4.7.1.2
100	Comments for inhalation patterns in zone 1	4.7.3.1
101	Number of inhalation patterns in zone 1	4.7.3.2
102	Description of inhalation patterns in zone 1	4.7.3.3
103-108	Comments for, numbers of and descriptions of inhalation patterns in zones 2 and 3.	
109-111	Comments for ALTER	4.9.1.1
112	Option for ALTER	4.9.1.2
113-115	Comments for ADD	4.10 .1 .1
116	Option for ADD	4.10.1.2
117-119	Comments for REDUCE	4.11.1.1
120	Option for REDUCE	4.11.1.2
121-122	Comments for INITIAL	4.12 .1 .1
123	Option for INITIAL	4.12.1.2

[^3]
Example 4

This chapter presents an example which involves two zones. Each zone corresponds to a stretch of river and the stationary sediments beneath that stretch. For each zone, subroutine REDUCE is used to eliminate the groundwater and soil subzones. The groundwater and soil subzones are assigned nominal water volumes and solid masses of 1.0 ; this prevents the possibility of division by zero. A decay chain involving Cm246, Pu242, U238, Pu238 and U234 is considered. Each radionuclide enters the surface-water subzone of the first zone at the rate of $1.0 \mathrm{mg} / \mathrm{yr}$ and also the sediment subzone of the first zone at the rate of $1.0 \mathrm{mg} / \mathrm{yr}$. No ingestion or inhalation calculations are performed. To reduce the amount of output, the print flags in subroutines COEF and MATPRT have been set to zero; this eliminates the printing of the coefficients for movement out of the individual compartments and the coefficient matrix for the radionuclide transport equations.

The general nature of example 4 is indicated in Figure 5-1. Then, the input data to PATH1 associated with this example are listed in Table 5-1, and the location in the user manual (Hel81b) of additional discussion of the card deck presented in Table 5-1 is indicated in Table 5-2. Finally, the model output corresponding to the input in Table $5-1$ is listed on microfiche attached at the end of the report.

RADIONUCLIDES: Cm246, Pu242, U238, Pu238, U234
NO INGESTION OR INHALATION

```
Figure 5-1. Example 4.
```

Table 5-1
Input Data for Example 4

	THE DATA READ BY SUBROUTINE DATA3 FOLLOWS. THIS DATA CONTROLS THE	CARD	61
	OPERATION OF THE DIFFERENTIAL EQUATION SOLVER USED FOR THE RADIDNU-	CARD	62
	CLIDE TRANSPORT EQUATIONS.	CARD	63
	1	CARD	64
	1.0E-10	CARD	65
	1.0E-20 1.0E-09 11	CARD	66
	THE DATA READ BY SUBROUTINE DATAM FOLLOWS. THIS DATA IS USED BY SUB-	CARD	67
C	ROUTINE MANAGE TO CONTROL THE OPERATION OF THE PATHWAYS MODEL.	CARD	68
	1	CARU	69
	1	CARD	70
	$1 \begin{array}{llll}1 & 0 & 1.0 & \end{array}$	CARD	71
	$1 \begin{array}{lllll}1 & 1 & -1 & -1 & -1\end{array}$	CAYD	72
	$1 \begin{array}{lllll}1 & 1 & 0 & 0 & \end{array}$	CAKD	13
	THE DATA READ BY SUBROUTINE DATA4 FOLLOWS. THIS DATA IS USED BY SUB-	CARD	74
C	ROUTINE INGEST TO PERFORM INGESTION CALCULATIONS.	CARD	75
C	NO INGESTION DATA IS READ IN THIS EXAMPLE.	CARD	76
	0	CARD	17
	THE DATA READ BY SUBROUTINE DATA5 FOLLOWS. THIS DATA IS USED BY SUB-	CARD	78
	ROUTINE INHALE TO PERFORM INHALATION CALCULATIONS.	CARD	79
C	NO INHALATION DATA IS READ IN THIS EXAMPLE.	CARD	80
	0	CARD	81
	THE DATA READ BY SUBROUTINE ALTER FOLLOWS. THIS DATA IS USED TO DEFINE	CARD	82
C	AND IMPLEMENT ALTERATIONS TO THE COEFFICIENTS IN THE RADIONUCLIDE	CARD	83
C	TRANSPORT EQUATIONS.	CARD	84
	0	CARD	85
C	THE DATA READ BY SUBROUTINE ADD FOLLOWS. THIS DATA IS USED TO DEFINE	CARD	86
C	AND IMPLEMENT ADDITIONAL COEFFICIENTS IN THE RADIONUCLIDE TRANSPORT	CARD	87
C	EQUATIONS.	CARD	88
	0	CARD	89
	THE DATA READ BY SUBROUTINE REDUCE FOLLOWS. THIS DATA IS USED TO DE-	CARD	90
	FINE AND IMPLEMENT A REDUCTION IN THE NUMBER OF RADIONUCLIDE TRANSPORT	CARD	91
C	EQUATIONS.	CARD	92
	2	CARD	93
	1	CARD	94
	0 0-1	CARD	95
	THE DATA READ BY SUBROUTINE INITIAL FOLLOWS. THIS DATA IS USED TO SET	CARD	96
6	THE INITIAL VALUE CONDITIONS FOR THE RADIONUCLIDE TRANSPORT EQUATIONS.	CARD	97
	1	CARD	98

Discussion of Input Data for Exainple 4

Cards ${ }^{\text {a }}$	Discussion	Sections ${ }^{\text {b }}$
1-4	Comments for DATAl	4.2.1.1
5	Option for DATAl	4.2.1.2
6	Number of zones	4.2.2.1
7-10	Description of groundwater subzone	4.2 .2 .2
11-14	Description of soil subzone	4.2.2.3
15-20	Description of surface-water subzone	4.2.2.4
21-24	Description of sediment subzone	$4 \cdot 2 \cdot 2.5$
25-31	Comments for Data2	4.3.1.1
32	Option for DATA2	4.3.1.2
33	Number of radionuclides	4.3.2.1
34-38	Description of decay chain	4.3.2.2
39-43	Description of decay pattern	4.3.2.3
44-49	Description of distribution coefficients	4.3.2.4
50-54	Description of concentration ratios	4.3.2.5
55-60	Description of radionuclide input rates	4.3.2.6
61-63	Comments for DATA3	4.4.1.1
64	Option for DATA3	4.4.1.2
65	Minimum coefficient size	4.4.2.1
66	Parameters for GEARB	4.4.2.2
67-68	Comments for DATAM	4.5.1.1
69	Option for DATAM	4.5.1.2
70	Option for MANAGE	4.5.2.1
71	Solution of transport equations	4.5.2.2
72	Subroutine selection for SOL, CONC, INGEST, INHALE, and EXT	4.5.2.3
73	Subroutine options	4.5.2.4
74-76	Cominents for data	4.6.1.1
77	Option for DATA4	4.6.1.2
78-80	Comments for DATA5	4.7.1.1
81	Option for DATA5	4.7.1.2
82-84	Comments for ALTER	4.9.1.1
85	Option for ALTER	4.9.1.2
86-88	Comments for ADD	4.10.1.1
89	Option for ADD	4.10.1.2

[^4]
Table 5-2 (Continued)

Cards $^{\text {a }}$	Discussion	Sections ${ }^{\text {b }}$
$90-92$	Comments Eor REDUCE	4.11 .1 .1
93	Option for REDUCE	4.11 .1 .2
94	Pattern for equations to be zeroed	4.11 .4 .1
95	Subzones to be considered	4.11 .4 .2
$96-97$	Comments for INITIAL	4.12 .1 .1
98	Option for INITIAL	4.12 .1 .2

[^5]
Example 5

This chapter illustrates several options which exist within PATH1. A site involving five subzones is considered. The first three zones involve stretches of river. The fourth zone is a bay or estuary; unlike the first thisee zones, it does noi have soil or groundwater subzones. The fifth zone is introduced to record the total amount of radionuclide which has discharged from the fourth zone. Specifically, the surface-water subzone of the fifth zone is used to keep track of the radionuclides which have discharged from the surfacewater subzone of the fourth zone, and the sediment subzone of the fifth zone is used to keep track of the radionuclides which have been trapped in the sediment subzone of the fourth zone. The radionuclides considered are Csl 37 and Sr90.

Subroutine REDUCE is used to eliminate the unused subzones in the fourth and fifth zones. Subroutine ALTER is used to alter the definition of flows for the soil subzone of the first zone and the destination of the flows for the sediment subzone of the fourth zone. In the latter case, the flows are changed "from the sediment subzone of the fourth zone to a sink" to "from the sediment subzone of the fourth zone to the sediment subzone of the fifth zone." Subroutine INITIAL is used to set the initial values of the radionuclide transport equations to one curie for each radionuclide in the soil subzone of the first zone and to zero everywhere else. Further, the rate of input to the system is taken to be zero. To reduce the amount of output, the print flags in subroutines COEF and MATPRT have been set to zero; this eliminates the printing of the coefficients for movement out of the individual compartments and the coefficient matrix for the radionuclide transport equations.

The general nature of example 5 is indicated in Figure 6-1. Then, the input data to PATH1 associated with this example are listed in Table 6-1, and the location in the user manual (Hel81b) of additional discussion of the card deck presented in Table 6-1 is indicated in Table 6-2. Finally, the model output corresponding to the input in Table 6-1 is listed on microfiche attached at the end of the report.

ZONE 2
(RIVER AND ASSOCIATED FLOODPLAIN)

ZONE 3
(RIVER AND ASSOCIATED FLOODPLAIN)

Figure 6-1. Example 5.

FROM ZONE 3

RADIONUCLIDES: Cs137, Sr90 NO INGESTION OR INHALATION

Figure 6-1. (Continued).

Table 6-1
Input Data for Example 5

						C THE DATA READ BY SUBROUTINE DATAI FOLLOWS. THIS DATA DESCRIBES A SITE CARD	
6 INYOLVING 5 ZONES. THE FIRST THREE ZONES ARE OBTAINED BY SCALING ZONE CARD							
C AND/OR DERIVATION OF THE PARAMETERS WHICH DEFINE THIS ZONE ARE CON-							
C TAINED IN CHAPTER 2 OF HELTON AND IMAN, RISK METHODOLOGY FOR GEOLOGIC CARD 5							
- UISPUSAL OF RAUIOACIIVE WASIE: SENSITIVITY ANAL TSIS UF THE ENVIRUNMEN- CARO 6							
C TAL TRANS	RT MODEL	(DECEMBER	1980).	SCALE F	TORS FOR THE FIRST	CARD	7
C THREE ZONES ARE $0.25,1.0$ AND 15.0, RESPECTIVELY. ZONE 4 CORRESPONDS CARD 8							
TO AN ESTUARY OR BAY. ZONE 5 IS USED TO CALCULATE THE QUANTITY OF UN- CARD 9							
DECAYED RADIONUCLIDES WHICH HAVE DISCHARED FROM THE SYSTEM. CARD 10							
CARD 11							
5.58 CARD 12							
3.5E11	2.4 E 12	0	0	$5.5 E 11$	0	CARD	13
$\begin{array}{llll}0 & 0 & 0 & \\ 0 & \text { CARD } \\ 14\end{array}$							
$\begin{array}{rrrr}0 & 0 & 0 & \text { CARD } \\ 16\end{array}$							
0	0	0	0			CARD	18
$1.0 E 00$ 1.OE00 $\begin{array}{lllllll} \\ 1.0 & 0 & 0 & 0 & 0 & \text { CARD }\end{array}$							
0	0	0	0			CARD	20
1.0500	1.0E00	0	0	0	0	CARD	21
$\begin{array}{rrrrrl}\text { 5.0E09 } & 2.8 E 10 & 2.4 E 10 & \text { CARD } & \\ \text { 22 }\end{array}$							22
		2.4510	0	1.0 E 10	2.8107	CARD	23
0 O CARD 24							
0	0					CARD	26
						CARD	27
$\begin{array}{rrrrrrl}\text { 1.0E00 } & 1.0 \mathrm{EO} & 0 & 0 & 0 & \text { CARD } \\ \text { CARD }\end{array}$							
$\begin{array}{crr}0 & 0 & \text { CARD } 32\end{array}$							
$5.5 E 09$	8.5E05	0	0	0	0	CARD	33
2.2 EOP							
2.2510 C.5E06 CARD 35							
2.2810	$3.5 E 06$	0	0	4.0E10	1.1E08	CARD	36
$\begin{array}{lllllll}2.7 E 08 & 2.3 E 08 & 1.9 E 13 & 3.0 E 09 & 0 & 0\end{array}$							
$3{ }^{3}$ CARD 38							
3.3E11	5.3E07	0	0	6.0 E 11	1.6E09	CARD	39
$1.3 \mathrm{E} 10 \begin{array}{lllrrr} \\ 1.4 \mathrm{E} 10 & 7.9 \mathrm{E} 13 & 2.0 \mathrm{E} 10 & 0 & 0\end{array}$							
4 CARD 41							
9.0 E 12	4.5E08	0	0	0	0	CARD	42
$\begin{array}{lllllll}1.5 E 11 & 4.0 E 11 & 2.4 E 14 & 9.8 E 09 & 0 & 0 & \\ \text { CARD }\end{array}$							43
$\begin{array}{ccccc}5 \\ 1.0 E 00 & 1.0 E 00\end{array}$							
62.2509							
8.7E09 2.3E10 0 CARD 49							
			0	8.7E08	2.3809	CARD	50
$1.3 E 11$							
0	- 0					CARD	53
3.8 E 09 9.8E09 CARD 54.							
1.0 O 000 llllll		0	0	C	0	CARD	56
0	0					CARD	57

Table 6-1 (Continued)

Table 6-1 (Cont inued)

Table 6-2

Discussion of Input Data for Example 5

Cards ${ }^{\text {a }}$	Discussion	Sections ${ }^{\text {b }}$
1-10	Comments for DATAl	4.2.1.1
11	Option for DATAl	4.2.1.2
12	Number of zones	4.2.2.1
13-22	Description of groundwater subzone	$4=2,2,2$
23-32	Description of soil subzone	4.2.2.3
33-47	Description of surface-water subzone	4.2.2.4
48-57	Description of sediment subzone	$4 \cdot 2 \cdot 2.5$
58-61	Comments for DATA2	4.3.1.1
62	Option for DATA2	4.3.1.2
63	Number of radionuclides	4.3.2.1
64-65	Description of decay chain	4.3.2.2
66-67	Description of decay pattern	4.3.2.3
68-78	Description of distribution coefficients	4.3.2.4
79-80	Description of concentration ratios	4.3.2.5
81-83	Description of radionuclide input rates	4.3.2.6
84-86	Comments for DATA3	4.4.1.1
87	Option for DATA3	4.4.1.2
88	Minimum coefficient size	4.4.2.1
89	Parameters for GEARB	4.4.2.2
90-91	Comments for DATAM	4.5.1.1
92	Option for DATAM	4.5.1.2
93	Option for MANAGE	4.5.2.1
94	Solution of transport equations	4.5.2.2
95	Subroutine selection for SOL, CONC, INGEST, INHALE and EXT	4.5.2.3
96	Subroutine options	4.5.2.4
97-99	Comments for DATA4	4.6.1.1
100	Option for DATA4	4.6.1.2
101-103	Comments for datas	4.7.1.1
104	Option for DATA5	4.7.1.2
105-107	Comments for ALTER	4.9.1.1
108	Option for ALTER	4.9.1.2
109	Number of alterations	4.9.3.1
110-113	Description of alterations	4.9.3.2

[^6]Table 6-2 (Continued)

Cardsa	Discussion	Sectionsb
$114-116$	Comments for ADD	4.10 .1 .1
117	Option for ADD	4.10 .1 .2
$118-120$	Comments for REDUCE	4.11 .1 .1
121	Option for REDUCE	4.11 .1 .2
122	pattern for equations to be zeroed	4.11 .4 .1
$123-127$	Subzones to be considered	4.11 .4 .2
$128-129$	Coments for INITIAL	4.12 .1 .1
130	Option for INITIAL	4.12 .1 .2
$131-140$	Description of initial values	4.12 .3

[^7]
APPENDIX A

This appendix is a reprint of Chapter 2 and the reference list of (Hel80).

CHAPTER 2

REFERENCE SITE

2.1 INTRODUCTION

This chapter describes a site which is later modified to produce the sites used for the sensitivity analyses described in Chapters 3 and 5 . Care is taken to describe the assumptions used to produce this site and the reasons for their adoption. From these assumptions, the input variables for the Environmental Transport Model are derived. In similar manner, the input variables for the Environmental Thaspot $\begin{aligned} \text { Fiodel for señitivity analyis A and sensitivity analysis } B \text { are derived }\end{aligned}$ in Chapters 3 and 5 , respectively. Derivation of all model inputs is documented to permit examination of the assumptions underlying the sensitivity analysis results presented in Chapters 4 and 6. In the following discussions, it is assumed that the reader is familiar with the Environmental Transport Model; descriptions of the model are contained in this projoct's interim report (Ca78, Chapter 4) and in the model's user manual (He8lb).

Section 2.2 contains a general description of the reference site. This site involves three zones and is defined to be consistent with the reference site described in the project's interim report (Ca78). The properties of the groundwater, soil, surface-water and sediment subzones are derived in sections $2.3,2.4,2.5$ and 2.6, respectively.

2.2 GENERAL DESCRIPTION

The hypothetical site described in this section is consistent with the reference site defined in Campbell et al (Ca/8). The site is located in a symmetrical, upland valley which is drained by the river L. The upper end of the valley is elliptical with major and minor axes of length 350 km and 180 km , respectively; a waste repository is located on the minor axis 43 km from the river. Below the repository, the valley is assumed to have a constant width of 180 km . The preceding assumption is a slight deviation from the reference site given in Campbell et al (Ca78), where the valley is described as parabolic. This modification is made to permit the same aquifer discharge rates into river L to be used both at the repository and downstream from the repository. Figures $2-1$ and $2-2$ provide general representations of the site. Further. Table $2-1$ contains a synopsis of important site characteristics.

Three zones are defined for this site, as shown in Figure $2-3$. The first zone consists of a $40-\mathrm{km}$ stretch of river, the stationary sediments beneath the r ver, a $2-\mathrm{km}$-wide strip of flood plain on each side of the river, and the portions of the upper sand and gravel aquifer which lie beneath the preceding strips of flood plain. This zone extends downstream from the point on river L opposite the repository. The second zone begins immediately below the first zone and consists of a lake 40 km in length, a layer of stationary sediments beneath the lake, a $2-\mathrm{km}$ -

Figure 2-1. Physiographic Setting for Reference Site. One sids of the symmetric basin is shown. The upper end of the valley is elliptic with th repository located on the minor axis; the sides of the valley are parallel below the repository.

HGRIZONTAL DISTANCE (THOUSANDS OF FEET)

Figure 2-2. Geologic Cross Section at Reference Site. This figure is an adaptation of Figure 1.2.2 in Campbell et al (Ca78).

Table 2-1
Properties of the Reference Site*

Property	English Units	Metric Units
Rainfall	$4.0 \times 10^{1} \mathrm{in} / \mathrm{yr}$	$1.0 \times 10^{\circ} \mathrm{m} / \mathrm{yr}$
Water loss due to evapo-transpiration	$1.6 \times 10^{1} \mathrm{in} / \mathrm{yr}$	$4.1 \times 10^{-1} \mathrm{~m} / \mathrm{yr}$
Recharge to groundwater system	$2.4 \times 10^{1} \mathrm{in} / \mathrm{yr}$	$6.1 \times 10^{1} \mathrm{~m} / \mathrm{yr}$
width of valley at and below repository	$6.0 \times 10^{5} \mathrm{ft}$	$1.8 \times 10^{5} \mathrm{~m}$
Area of valley above repository	$2.7 \times 10^{11} \mathrm{ft}^{2}$	$2.5 \times 10^{10} \mathrm{~m}^{2}$
Discharge of river L at repository	$1.5 \times 10^{9} \mathrm{ft}^{3} /$ day	$1.5 \times 10^{13} \mathrm{~L} / \mathrm{yr}$
Discharge of upper sand and gravel aquifer (both sides of river)	$1.6 \times 10^{3} \mathrm{ft}^{3} /$ day $/ \mathrm{ft}$	$5.4 \times 10^{7} \mathrm{~L} / \mathrm{yr} / \mathrm{m}$
Discharge of middle sandstone aquifer (both sides of river)	$1.5 \times 10^{3} \mathrm{ft}^{3} /$ day $/ \mathrm{ft}$	$5.1 \times 10^{7} \mathrm{~L} / \mathrm{yr} / \mathrm{m}$
Total discharge to river (both sides of river)	$3.1 \times 10^{3} \mathrm{ft}^{3} / \mathrm{day} / \mathrm{ft}$	$1.0 \times 10^{8} \mathrm{~L} / \mathrm{yr} / \mathrm{m}$

*These properties are obtained in Campbell et al (Ca78) where the aquifer discharge rates are given for one side of the river; the values in this table are for the discharges from both sides of the river and were obtained by doubling the discharge rates for one side of the river.

∇ REPOSITORY

Figure 2-3. Zone Selection. Three zones are selected. Zones 1 and 3 contain portions of river L, and zone 2 contains a lake on river L. Each zone consists of a water body 40 km long, a layer of stationary sediments, a $2-\mathrm{km}-$ wide strip of land on each side of the water body, and the portions of the upper sand and gravel aquifer which lie beneath the preceding strips of land.
wide strip of land on each side of the lake, ind the portions of the upper sand and gravel aquifer which lie beneath the preceding strips of land. Further, the lake is assumed to be elliptical with major and minor axes of length 40 km and 6.4 km , respectively, and to contain a water volume equal to 1 year's flow of the river L at the head of the lake. The preceding assumptions result in the lake having a perimater of 90 km and an area of $200 \mathrm{~km}^{2}$. The third zone begins immediately below the second zone and consists of a $40-\mathrm{km}$ stretch of river, the stationary sediments beneach the river, a $2-k m$-wide strip of flood plain on each side of the river, and the portions of the upper sand and gravel aquifer which lie beneath the preceding strips of flood plain. The zones are partitioned in a manner which resuiis in the previously described strips of land in each zone having the same area. In subsequent sections, additional assumptions about zone properties are made, subzones are definad, and input variàles for the Environmental franspori Mociel are dezived.

2.3 GROUNDWATER SUBZONES

For each zone, the groundwater subzone is taken to be the portion of the upper sand and gravel aquifer extending from the bottom of the soil sub one to the top of the upper shale layer, which is assumed to be impermeable. The layer comprieing the groundwater subzones is assumed to have an average thickness of 30 metres, a porosity of 30%, a saturation of 100% and a mean particle density of 2.8 $\mathrm{g} / \mathrm{cm}^{3}$. The porosity and density assumptions are consistent with representative values contained in Tables $2-2$ and $2-3$, respectively. Water is assumed to move directly from the groundwater subzones to the surface-water subzones; that is, there is no discharge from the groundwater subzones to soil or sediment subzones. This discharge is assumed to equal the discharge of the upper sand and gravel aquifer, which is $5.4 \times 10^{7} \mathrm{~L} / \mathrm{yr} / \mathrm{m}$, and to involve only dissolved materials; specifically, there is no movement of solid material out of the groundwater subzones. However, if it was assumed that the river was eroding the groundwater subzones, then one might wish so include such a movement. The inclusion of groundwater subzones is not felt to be important and is done primarily for illustration. These subzones could also be used as second soil or sediment layers or omitted entirely.

The groundwater subzone properties which are supplied as input to the Environmental Transport Model are now derived. As required in Section 2, 2, the zones are partitioned in a manner which results in the groundwater subzones having the same areas and volumes. In particular,

$$
\begin{align*}
A(I) & =2\left(2.0 \times 10^{3} \mathrm{~m}\right)\left(4.0 \times 10^{4} \mathrm{~m}\right) \text { for } I=1,2,3 \\
& =1.6 \times 10^{8} \mathrm{~m}^{2} \tag{2.1}
\end{align*}
$$

and

$$
\begin{align*}
V(I) & =(30 \mathrm{~m})\left(1.6 \times 10^{8} \mathrm{~m}^{2}\right) \quad \text { for } I=1,2,3 \\
& =4.8 \times 10^{9} \mathrm{~m}^{3} \tag{2.2}
\end{align*}
$$

where $A(I)$ and $V(I)$ denote the area and volume, respectively, of the groundwater subzone of zone I. The amounts of water and solid material in the subzones are given by Equations (2.3) and (2.4).

$$
\begin{align*}
Z(1,1, I) & =\left(4.8 \times 10^{9} \mathrm{~m}^{3}\right)(0.30)\left(1.0 \times 10^{\hat{2}} \mathrm{~L} / \mathrm{N}^{3}\right) \text { for } I=1,2,3 \\
& =1.4 \times 10^{12} \mathrm{~L} \tag{2.3}
\end{align*}
$$

and

$$
\begin{align*}
Z(2,1, I) & =\left(4.8 \times 10^{9} \mathrm{~m}^{3}\right)(0.70)\left(2.8 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right) \text { for } I=1,2,3 \\
& =9.4 \times 10^{12} \mathrm{~kg} \tag{2.4}
\end{align*}
$$

respectively. Further, water movement from groundwater subzones to surface-water subzones is given by

$$
\begin{align*}
Z(5,1, I) & =\left(5.4 \times 10^{7} \mathrm{~L} / \mathrm{yr} / \mathrm{m}\right)\left(4.0 \times 10^{4} \mathrm{~m}\right) \quad \text { for } \mathrm{I}=1,2,3 \\
& =2.2 \times 10^{12} \mathrm{~L} / \mathrm{yr} \tag{2.5}
\end{align*}
$$

All other inputs which can be supplied to the Environmental Transport Model for groundwater subzones are taken to be zero. The groundwater subzone properties obtained in this section are summarized in Table 2-4.

2.4 SOIL SUBZONES

For zones 1 and 3, the soil subzone is assumed to be a $2-k m-w i d e$ strip on each side of the river. These strips are assumed to have a depth of 0.5 metre, a porosity of 508 , a saturation of 50%, and a mean particle density of $2.8 \mathrm{~g} / \mathrm{cm}^{3}$. The porosity and density assumptions are consistent with representative values contained in Table $2-5$. Water flow through the soil to the groundwater below is 0.60 m / yr. Movement of water and solid material between these two soil subzones ard their associated surface-water subzones is assumed to be due to overbank flooding. Rates for such movements are both site specific and difficult to obtain. The following values are selected for use:

1. Annual water flow from i soll subzone to the corresponding surface-water subzone is the water volume required to fill the pore space of the soil subzone (see Equation (2.11)).
2. Annual solid flow from a soil subzone to the corresponding surface-water subzone is 10^{-3} of the mass of sulids contained in the soil subzone (see Equation (2.12)).

In subsequent sensitivity analyses, the two preceding rates will be varied over a range of values to determine their impact on predictions made by the Environmental Transport Model. To maintain equilibrium, it is assumed that movement from the surface-water subzones to the soil subzones is equal to movement from the soil subzones to the surface-water subzones.

For zone 2 , the soil subzone is assumed to be a $2-k m-w i d e$ strip on each side of the lake. Soil subzone properties for zone 2 are taken to be the same as the soil subzone properties for zones 1 and 3 with the exception that water and solid material movements between the subzone and the corresponding surface-water subzone are defined differently. For this zone, such movements are assumed to result from an irrigation rate of $0.30 \mathrm{~m} / \mathrm{yr}$. The water is withdrawn from the lake and contains

Table 2-4
Groundwater Subzone Properties for Reference Site

```
\begin{tabular}{lccc} 
Property & \(\frac{\text { Zone } 1}{1.4 \times 10^{12}}\) & \(\frac{\text { Zone }}{1.4 \times 10^{12}}\) & \(\frac{\text { Zone }}{1.4 \times 10^{12}}\) \\
\cline { 1 - 1 } & \(9.4 \times 10^{12}\) & \(9.4 \times 10^{12}\) & \(9.4 \times 10^{12}\) \\
\(Z(2,1, I)\) & 0 & 0 & 0 \\
\(Z(3,1, I)\) & 0 & 0 & 0 \\
\(Z(4,1,1)\) & \(2.2 \times 10^{12}\) & \(2.2 \times 10^{12}\) & \(2.2 \times 10^{12}\) \\
\(Z(5,1, I)\) & 0 & 0 & 0 \\
\(Z(6,1, I)\) & 0 & 0 & 0 \\
\(Z(7,1, I)\) & 0 & 0 & 0 \\
\(Z(8,1, I)\) & 0 & 0 & 0 \\
\(Z(9,1, I)\) & 0 & 0 & 0
\end{tabular}
Z(1, 1, I) = volume of water in subzone (in litres).
Z(2,1,I) = mass of solids in subzone (in kg).
Z(3,1,I) = rate of water outflow (in L/yr) from subzone to soil subzone.
Z(4,1,1) = rate of solid outflow (in kg/yr) from subzone to soil subzone.
Z(5,1,I) = rate of water outflow (in L/yr) from subzone to surface-water subzone.
Z(6,1,I) = rate of solid out flow (in kg/yr) from subzone to surface-water subzone.
Z(7,1,I) = rate of water outflow (in L/yr) from subzone to sediment subzone.
Z(8,1, I) = rate of solid outflow (in kg/yr) from subzone to sediment subzone.
Z (9,1, I) = rate of water outflow (in L/yr) from subzone to a sink.
Z(10,1,I) = rate of solid out flow (in kg/yr) from subzone to a sink.
```

Tabie 2-5
Porosity of Soils in Natural State ${ }^{\text {a }}$
Description
${ }^{a}$ From Soil Mechanics in Engineering Practice, 2nd ed, K. Terzaghi and R. B. Peck (New York: John Wiley and Sons, 1967), p 28, Table 6.3.
borosity is the percentage ratio of volume of voids to total volume. ${ }^{C}$ Void ratio is the ratio of volume of voids to moist solids.
the same concentration of suspended solids as the lake. This defines a movement of water and solid material from the lake (i.e., the surface-water subzone) to the soil subzone. To maintain equilibrium, it is assumed that movement from the soil subzone to the surface-water subzone is equal to movement from the sur face-water subzone to the soil subzone. Here, the tacit assumption is that runoff and erosional materials pass through the soil subzones without significant mixing with the materials that actually constitute the subzones. Such might be the case if runoff and erosional materials from the entire valley were primarily transported thro the soil subzones to the surface-water subzones in stream channels. If this assumption was felt to be unreasonable for a given situation, the parameter definitions would have to modified in some appropriate manner. Such modifications are considered in analysis B.

The soil subzone properties which are supplied as input to the Environmental Transport Model are now derived. As required in Section 2.2. , the zones are partitioned in a manner which results in the soil subzones having the same areas and volumes. In particular,

$$
\begin{align*}
A(I) & =2\left(2.0 \times 10^{3} \mathrm{~m}\right)\left(4.0 \times 10^{4} \mathrm{~m}\right) \text { for } I=1,2,3 \\
& =1.6 \times 10^{8} \mathrm{~m}^{2} \tag{2.6}
\end{align*}
$$

and

$$
\begin{align*}
V(I) & =(0.50 \mathrm{~m})\left(1.6 \times 10^{8} \mathrm{~m}^{2}\right) \text { for } I=1,2,3 \\
& =8.0 \times 10^{7} \mathrm{~m}^{3} \tag{2.7}
\end{align*}
$$

where $A(I)$ and $V(I)$ denote the area and volume, respectively, of the soil subzone of zone 1 . The amounts of water and solid material in the subzones are given by

$$
\begin{align*}
z(1,2,1) & =\left(8.0 \times 10^{7} \mathrm{~m}^{3}\right)(0.50)(0.50)\left(1.0 \times 10^{3} \mathrm{~L} / \mathrm{m}^{3}\right) \text { for } 1=1,2,3 \\
& =2.0 \times 10^{10} \mathrm{~L} \tag{2.8}
\end{align*}
$$

and

$$
\begin{align*}
Z(2,2,1) & =\left(8.0 \times 10^{7} \mathrm{~m}^{3}\right)(0.50)\left(2.8 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right) \quad \text { for } I=1,2,3 \\
& =1.1 \times 10^{11} \mathrm{~kg} \tag{2.9}
\end{align*}
$$

respectively. Further, water movement from the soil subzones to the groundwater subzones is given by

$$
\begin{align*}
2(3,2,1) & =(0.60 \mathrm{~m} / \mathrm{yr})\left(1.6 \times 10^{8} \mathrm{~m}^{2}\right)\left(1.0 \times 10^{3} \mathrm{~L} / \mathrm{m}^{3}\right) \text { for } \mathrm{I}=1,2,3 \\
& =9.8 \times 10^{10} \mathrm{~L} / \mathrm{yr} . \tag{2.10}
\end{align*}
$$

Water and solid movements from the soil subzone to the surface-water subzones are now determined. For zones 1 and 3, these rates are given by

$$
\begin{align*}
Z(5,2,1) & =(0.50)\left(8.0 \times 10^{7} \mathrm{~m}^{3}\right)\left(1.0 \times 10^{3} \mathrm{~L} / \mathrm{m}^{3}\right)(1.0 / \mathrm{yr}) \text { for } \mathrm{I}=1 \text { and } 3 \\
& =4.0 \times 10^{10} \mathrm{~L} / \mathrm{yr} \tag{2.11}
\end{align*}
$$

and

$$
\begin{align*}
z(6,2, I) & =\left(1.1 \times 10^{11} \mathrm{~kg}\right)\left(1.0 \times 10^{-3} / \mathrm{yr}\right) \text { for } I=1 \text { and } 3 \\
& =1.1 \times 10^{8} \mathrm{~kg} / \mathrm{yr} . \tag{2.12}
\end{align*}
$$

respectively, It follows from (2.34) that the suspended solid concentration in the lake is $4.0 \times 10^{-5} \mathrm{~kg} / \mathrm{L}$. Thus, the water and solid movements from the soil subzone to the surface-water subzone for zone 2 are given by

$$
\begin{align*}
3(5,2,2) & =\left(1.6 \times 10^{8} \mathrm{~m}^{2}\right)(0.30 \mathrm{~m} / \mathrm{yr})\left(1.0 \times 10^{3} \mathrm{~L} / \mathrm{m}^{3}\right) \\
& =4.8 \times 10^{10} \mathrm{~L} / \mathrm{yr} \tag{2.13}
\end{align*}
$$

and

$$
\begin{align*}
z(6,2,2) & =\left(4.8 \times 10^{10} \mathrm{~L} / \mathrm{yr}\right)\left(4.0 \times 10^{-5} \mathrm{~kg} / \mathrm{L}\right) \\
& =1.9 \times 10^{6} \mathrm{~kg} / \mathrm{yr} . \tag{2.14}
\end{align*}
$$

respectively.

All other inputs which can be supplied to the Environmental Transport Model for soil subzones are taken to be zero. The soil subzone properties obtained in this section are summarized in Table 2-6.

Table 2-6

Soil Subzone Properties for Reference Site

Property	Zone 1	zone 2	Zone 3
z(1,2,1)	2.0×10^{10}	2.0×10^{10}	2.0×10^{10}
Z (2 2, 1)	1.1×10^{11}	1.1×10^{11}	1.1×10^{11}
Z $(3,2,1)$	9.8×10^{10}	9.8×10^{10}	9.8×10^{10}
Z $4,2,1$)	0	0	0
$z(5,2,1)$	4.0×10^{10}	4.8×10^{10}	4.0×10^{10}
$\Xi(6,2,1)$	1.1×10^{8}	1.9×10^{6}	1.1×10^{8}
$z(7,2,1)$	0	0	0
$z(8,2,1)$	0	0	0

$Z(1,2, I)=$ volume of water in subzone (in litres).
$Z(2,2, I)=$ mass of solids in subzone (in kg$)$.
$Z(3,2, I)=$ rate of water out flow (in L / yr) from subzone to groundwater subzone.
$Z(4,2, I)=$ rate of solid out flow (in $\mathrm{kg} / \mathrm{yr}$) from subzone to groundwater subzone.
$Z(5,2, I)=$ rate of water outflow (in $\mathrm{L} / \mathrm{yr})$ from subzone to sur face-water subzone.
$Z(6,2,1)=$ rate of solid out flow (in $\mathrm{kg} / \mathrm{yr})$ from subzone to surface-water subzone.
$Z(7,2, I)=$ rate of water out flow from subzone (in $\mathrm{L} / \mathrm{yr})$ to a sink.
$Z(8,2, I)=$ rate of solid out flow (in $\mathrm{kg} / \mathrm{yr})$ from subzone to a sink.

2.5 SURFACE-WATER SUBZONES

The surface-water subzones for zones 1 and 3 are $40-k m-l o n g$ stretches of river I for each zone. For zone 2, the surface-water subzone is an elliptical lake with major and minor axes of length 40 km and 6.4 km , respectively. The river is assumed to have a velocity of $1.0 \mathrm{~m} / \mathrm{s}$ in zones 1 and 3 . This is shown to be a reasonable assumption in the next paragraph. Further, the lake in zone 2 is assumed to hold a water volume equal to 1 year's discharge of river L at the head of the lake. The amount of sediment carried in the river is derived from assumptions about erosion in the river's watershed. In particular, it is assumed that (1) the watershed is eroding at the rate of $5.0 \mathrm{~cm} / 1000$ years (see Tables $2-7,2-8$ and 2-9), (2) the material being eroded has a bulk density of $2.8 \mathrm{~g} / \mathrm{cm}^{3}$ (see Table 2-3) and (3) 338 of the eroded material is carried in solution (see Tables $2-10$ and 2-11). The figures referred to in the previous sentence indicate the selected values are consist it with values that have been observed. The study by Judson and Ritter (Ju64) also indicates that this selection is reasonable.

Relations describing the annual flow of river L are now derived. As indicated in Table $2-1$, the discharge of river L at the repository is $1.5 \times 10^{13} \mathrm{~L} / \mathrm{yr}$, and this discharge increases downstream at the constant rate of $1.0 \times 10^{8} \mathrm{~L} / \mathrm{yr} / \mathrm{m}$.

Table 2-7
Past and Present Rates of Denudation ${ }^{\text {a }}$

Table 2-9

Denudation Rates of Drainage Basins Within the United States*

	Mean		
Effective Precipitation (inches)	Sediment Yielu (tons $/ \min ^{2}$)	Mean Denudation $(f t / 1000 y r)$	Mean Denudation $(y r / f t)$

*From Schumb $(\operatorname{Sc} 63)$, p H2 (Table 1).

Table 2-10

Dissolved and Suspended Load in Selected Rivers $\frac{i n}{a}$ Different Climatic Regions of the United States ${ }^{\text {a }}$

Eiver and Location	Elevatian $\text { (} \mathrm{t} 1)$	$\begin{gathered} \text { Drasinage } \\ \text { Area } \\ \text { (a12) } \\ \hline \end{gathered}$	Average Discharge $(f+3 / s)$	$\begin{aligned} & \text { Discharge } \\ & \text { Dratnage } \\ & \text { Ares } \\ & (1+i) / \mathrm{s} / \mathrm{mid}) \end{aligned}$	Years of kecord in sample?	Average Suspended Lead	$\begin{gathered} \text { Average } \\ \text { otssolved } \\ \text { Load } \\ (10 \mathrm{~g} \text { tons/yeas) } \\ \hline \end{gathered}$	Total Avg. Susp. and Dis. Load	Total Avg. Load, Drain. Area $\left(\mathrm{t} / \mathrm{m} 1^{2}+\mathrm{yr}\right)$	Dissolived Load as 2 of Total Load (1)
Laxtle Gelotatio at Weodruft, Arizane	5124	8,160	63.3	6.0078	6	1.6	0.02	1.62	199	1.2
Canadian River neat narillo, Thess	2989	19,445	621	0.032	\&	6.41	0.124	6. 53	336	1.9
Colorado River neat San Sabe, Texas	1096	30,600	1669	0.047	5	3.02	0.208	3.23	105	6, 6
Sighorn ilver at Kase, Kyoming	7609	15,900	2391	0.150	1	1.60	0. 202	1.85	114	12
Green River at Green Eiver, ilak	4065	43, 600	6737	0.160	$26-20$	19	2.3	21.5	530	12
Cotorado fiver near Ctscon, litala	4090	24, 100	863?	0.331	$25-20$	15	4.4	19.4	80.	23
Towa Fivar al lowa CIt天, bexa	627	3,271	1913	0.364	3	1.164	0.485	1.67	519	29
Alswissippl kiver at siver Landing, La.		1,164,500	569,500 ${ }^{\circ}$	0.492	3	284	101.6	385.8	337	26
Sacrasente livet at Soscasento. Calif.	v	$27,000{ }^{4}$	25,000	0.926	3	2.83	2.29	5.14	190	64
Fijat River near Honterusa, Cestgia	236	2,900	35.8	1.22	1	0.400	C, 132	0.51	18)	25
funtata River near New Port, Peinas.	304	3.356	4329	1.29	\%	0.322	0.500	0.89	265	ba
Defanare Eiver at Trencion, Sew Jexsey	8	5,780	11.370	1.73	4-4	4.007	0.830	1.83	270	45

Suspended and Dissolved Loads Carried by North American Rivers*

Basin	Area, mi^{2}	Estimated total load, tons/mi $\mathrm{m}^{2} \cdot \mathrm{yr}$	Dissolved load, के	Suspended load, \%
North Atlantic	159,400	169	77	23
South Atlantic	123,900	270	35	65
East Gulf	142,100	261	45	55
West Gulf	315,700	108	33	67
Mississippi River	1,265,000	477	23	77
Laurentian	175,000	117	99	1
Colorado River	230,000	438	12	88
South Pacific	72.700	252	70	30
North Pacific	270,000	120	83	17
Great Basin	223,000	140	64	36
Hudson Bay	62,000	49	57	43

Thus, the annual discharge $D(x)$ at a point on the river x metres below the repository is

$$
\begin{equation*}
D(x)=1.5 \times 10^{13} \mathrm{~L} / \mathrm{yr}+(x \mathrm{~m})\left(1.0 \times 10^{8} \mathrm{~L} / \mathrm{yr} / \mathrm{m}\right) \tag{2.15}
\end{equation*}
$$

The preceding relation is used to determine water flows out of the surfacewater subzones. For comparison with values in Figure $2-4, D(x)$ must be expressed in $\mathrm{ft}^{3} / \mathrm{s}$ rather than L / yr. This yields

$$
\begin{align*}
D(x)= & {\left[1.5 \times 10^{13} \mathrm{~L} / \mathrm{yr}+(x \mathrm{~m})\left(1.0 \times 10^{8} \mathrm{~L} / \mathrm{yr} / \mathrm{m}\right)\right] } \\
& \cdot\left[\left(3.15 \times 10^{7} \mathrm{~s} / \mathrm{yr}\right)^{-1}\left(2.83 \times 10^{1} \mathrm{~L} / \mathrm{ft}^{3}\right)^{-1}\right] \\
= & 1.7 \times \times 0^{4} \mathrm{ft}^{3} / \mathrm{s}+(\times \mathrm{m})\left(1.1 \times 10^{-1} \mathrm{ft}^{3} / \mathrm{s} / \mathrm{m}\right) \tag{2,16}
\end{align*}
$$

Thus, the river discharge ranges from $1.7 \times 10^{4} \mathrm{ft}^{3} / \mathrm{s}$ at the upper end of zone 1 to $3.0 \times 10^{4} \mathrm{ft}^{3} / \mathrm{s}$ at the lower end of zone 3. Hence, as indicated in Figure 2-4, an assumed river velocity of $1.0 \mathrm{~m} / \mathrm{s}$ is reasonable for this discharge range.

The water volumes for the surface-water subzones of zones 1 and 3 are now determined. It is assumed that the water volume for these subzones is given by

$$
\begin{equation*}
V=L\left(A_{1}+A_{2}\right) / 2 \tag{2.17}
\end{equation*}
$$

where
$L=$ length of surface-water subzone (in metres)
$A_{1}=$ cross-sectional area at upper end of surface-water subzone $\left(\right.$ in $\left.m^{2}\right)$
$A_{2}=$ cross-sectional area at lower end of surface-water subzone $\left(\right.$ in $\left.m^{2}\right)$.

A-14

+ amazon r. AT Obidos, JuLY 16,1963 NEAR bankfull stage

Figure 2-4. Width, Depth, and Velocity in Relation to Mean Annual Discharge as Discharge Increases Downstream in Various River Systems. From Leopold et al (Le64), p 242 (Figure 7.21); Copyright (c) 1964.

Further, for a given point x on the river, the cross sectional area $A(x)$ at x is given by

$$
\begin{equation*}
A(x)=D(x) / v(x), \tag{2.18}
\end{equation*}
$$

where

$$
\begin{aligned}
& D(x)=\text { river discharge at } x\left(\text { in } \mathrm{m}^{3} / \mathrm{s}\right) \\
& v(x)=\text { river velocity at } x(\text { in } m / s)
\end{aligned}
$$

Selected cross-sectional areas and discharges are compiled in Table 2-12. From Equation (2.17) and values in Table $2-12$, it follows that

$$
\begin{align*}
z(1,3,1) & =\left(4.0 \times 10^{4} \mathrm{~m}\right)\left(4.8 \times 10^{2} \mathrm{~m}^{2}+6.0 \times 10^{2} \mathrm{~m}^{2}\right)\left(1.0 \times 10^{3} \mathrm{~L} / \mathrm{m}^{3}\right) / 2 \\
& =2.2 \times 10^{10} \mathrm{~L} \tag{2.19}
\end{align*}
$$

and

$$
\begin{align*}
z(1,3,3) & =\left(4.0 \times 10^{4} \mathrm{~m}\right)\left(7.3 \times 10^{2} \mathrm{~m}^{2}+8.6 \times 10^{2} \mathrm{~m}^{2}\right)\left(1.0 \times 10^{3} \mathrm{~L} / \mathrm{m}^{3}\right) / 2 \\
& =3.2 \times 10^{10} \mathrm{~L} . \tag{2.20}
\end{align*}
$$

Further, it is assumed that the lake which constitutes the surface-water subzone of zone 2 contains a volume equal to 1 year's flow of river I, at the head of the lake. Thus, from Table $2-12$, it follows that

$$
\begin{equation*}
\mathrm{Z}(1,3,2)=1.9 \times 10^{13} \mathrm{~L} \tag{2.21}
\end{equation*}
$$

The amount of suspended sediments in each surface-water subzone is now determined; however, several intermediate calculations will be necessary. If the valley containing th $-i, H^{2} \mathrm{~L}$ is eroding at the rate $\mathrm{E} \mathrm{cm} / 1000 \mathrm{yr}$, the material being eroded has a u lis lensity of $D \mathrm{~g} / \mathrm{cm}^{3}$ and a fraction F of the eroded material is carried in srisilin, then the annual suspended sediment yield, $Y \mathrm{~kg} / \mathrm{m}^{2}$, is given by

$$
\begin{align*}
Y & =(E \mathrm{~cm} / 1000 \mathrm{yr})\left(D \mathrm{~g} / \mathrm{cm}^{3}\right)(1.0-F) \\
& =(E)(D)(1.0-F)\left(1.0 \times 10^{-3} \mathrm{~g} / \mathrm{cm}^{2} / \mathrm{yr}\right) \\
& =(E)(D)(1.0-F)\left(1.0 \times 10^{-2} \mathrm{~kg} / \mathrm{m}^{2} / \mathrm{yr}\right) \tag{2.22}
\end{align*}
$$

Further, if the lake in zone 2 traps a fraction T of the suspenced sediments entering it, then the annual suspended sediment mass $S(I)$ moving downstream from zone I is given by

$$
\begin{align*}
S(1) & =\left[\left(1.8 \times 10^{5} \mathrm{~m}\right)\left(4.0 \times 10^{4} \mathrm{~m}\right)+2.5 \times 10^{10} \mathrm{~m}^{2}\right]\left[\mathrm{Y} \mathrm{~kg} / \mathrm{m}^{2} / \mathrm{yr}\right] \\
& =3.2 \times 10^{10} \mathrm{Y} \mathrm{~kg} / \mathrm{yr} \tag{2.23}
\end{align*}
$$

Table 2-12
Selected Discharges and Cross-Sectional Areas for River L*

Distance Below Repository (in Metres)

River Discharge
(in L / yr) (in L / yr)

River Discharge (in $\mathrm{m}^{3} / \mathrm{s}$)
River Discharge (in $\mathrm{ft}^{3} / \mathrm{s}$)

River Cross-Sectional Area (in m)
4.0×10^{4}
1.9×10^{13}
6.0×10^{2}
$1.7 \times 10^{4} \quad 2.1 \times 10^{4}$
6.0×10^{2}
4.8×10^{2}
-
4.8×10^{12}
8.0×10^{4}
1.2×10^{5}
2.3×10^{13}
2.7×10^{13}
2.6×10^{4}
8.6×10^{2}
7.3×10^{2}
3.1×10^{4}
7.3×10^{2}
8.6×10^{2}
*Values in this table are derived from Equations (2.15) and (2.18).

$$
\begin{align*}
s(2)= & {[1.0-T]\left[\left(1.8 \times 10^{5} \mathrm{~m}\right)\left(8.0 \times 10^{4} \mathrm{~m}\right)+2.5 \times 10^{10} \mathrm{~m}^{2}\right] } \\
& \cdot\left[\mathrm{Y} \mathrm{~kg} / \mathrm{m}^{2} / \mathrm{Yr}\right] \\
= & 3.9 \times 10^{10}(1.0-\mathrm{T}) \mathrm{Y} \mathrm{~kg} / \mathrm{yr} \tag{2.24}
\end{align*}
$$

and

$$
\begin{align*}
S(3) & =S(2)+\left(1.8 \times 10^{5} \mathrm{~m}\right)\left(4.0 \times 10^{4} \mathrm{~m}\right)\left(\mathrm{Ykg} / \mathrm{m}^{2} / \mathrm{yr}\right) \\
& =3.9 \times 10^{10}(1.0-\mathrm{T}) \times \mathrm{kg} / \mathrm{yr}+7.2 \times 10^{9} \mathrm{Y} \mathrm{~kg} / \mathrm{yr} \\
& =\left[3.9 \times 10^{10}(1.0-\mathrm{T})+7.2 \times 10^{9}\right] \mathrm{Y} \mathrm{~kg} / \mathrm{yr} \tag{2.25}
\end{align*}
$$

where $1.8 \times 10^{5} \mathrm{~m}$ and $2.5 \times 10^{10} \mathrm{~m}^{2}$ are the width of the valley below the repository and the area of the valley above the repository, respectively (as given in Table 2-1) and 40 km is the length of each zone. The preceding three equations are derived with the assumptions that (1) the surface-water subzones in zones 1 and 2 receive all suspended sediments produced in the valley above the lower end of each zone, (2) the surface-water subzone in zone 3 receives all suspended sediment flowing downstream from zone 2 plus all suspended sediment produced in the valley between the upper and lower ends of the zone, and (3) the surface-water subzones in zones 1 and 3 are in equilibrium in the sense that the amount of suspended sediment flowing out of each subzone is equal to the amount flowing in. No attempt is made to incorporate an increased sediment load in zone 3 which might result from increased scouring as the river attempts to increase its sediment load in compensation for sediments trapped in the lake.

It is assumed that the valley is eroding at an average rate of $5.0 \mathrm{~cm} / 1000 \mathrm{yr}$, that the eroded material has a bulk density of $2.8 \mathrm{~g} / \mathrm{cm}^{3}$ and that 33 g of the eroded material is carried in solation. Thus, from Equation (2.22), the suspended sediment yield is

$$
\begin{align*}
\mathrm{Y} & =(5.0)(2.8)(1.0-0.33)\left(1.0 \times 10^{-2} \mathrm{~kg} / \mathrm{m}^{2} / \mathrm{yr}\right) \\
& =9.4 \times 10^{-2} \mathrm{~kg} / \mathrm{m}^{2} / \mathrm{yr} . \tag{2.26}
\end{align*}
$$

The lake in zone 2 is assumed to have a trap efficiency of 75%. There is wide variation in observed trap efficiencies; additional info mation on lake sedimentation is given by Brune (Br53), Colby (Col63), Borland (Bor71) and Dendy (De74). With 75 z trap efficiency, it fo.lows from Equations (2.23), (2.24) and (2.25) that the amounts of sediment moving downstream from the surface-water subzones are given by

$$
\begin{align*}
z(10,3,1) & =s(1) \\
& =\left(3.2 \times 10^{10}\right)\left(9.4 \times 10^{-2}\right) \mathrm{kg} / \mathrm{yr} \\
& =3.0 \times 10^{9} \mathrm{~kg} / \mathrm{yr} . \tag{2.27}
\end{align*}
$$

$$
\begin{align*}
\mathrm{z}(10,3,2) & =\mathrm{S}(2) \\
& =\left(3.9 \times 10^{10}\right)(1.0-0.75)\left(9.4 \times 10^{-2}\right) \mathrm{kg} / \mathrm{yr} \\
& =9.2 \times 10^{8} \mathrm{~kg} / \mathrm{yr} \tag{2.28}
\end{align*}
$$

and

$$
\begin{align*}
\mathrm{Z}(10,3,3) & =\mathrm{S}(3) \\
& =\left[3.9 \times 10^{10}(1.0-0.75)+7.2 \times 10^{9}\right]\left[9.4 \times 10^{-2}\right] \mathrm{kg} / \mathrm{yr} \\
& =1.6 \times 10^{9} \mathrm{~kg} / \mathrm{yr} . \tag{2.29}
\end{align*}
$$

Further, as indicated in Table 2-12, the volumes of water moving downstream from the surface-water subzones are given by

$$
\begin{align*}
& z(9,3,1)=1.9 \times 10^{13} \mathrm{~L} / \mathrm{Yr} \tag{2.30}\\
& Z(9,3,2)=2.3 \times 10^{13} \mathrm{~L} / \mathrm{Yr} \tag{2.31}\\
& Z(9,3,3)=2.7 \times 10^{13} \mathrm{~L} / \mathrm{Yr} \tag{2.32}
\end{align*}
$$

The amount of suspended sediment in each surface-water subzone is now determined. The concentration $C(I)$ of suspended sediment in zone I is given by

$$
\begin{align*}
C(1) & =2(10,3,1,) / z(9,3,1) \\
& =\left(3.0 \times 10^{9} \mathrm{~kg} / \mathrm{yr}\right) /\left(1.9 \times 10^{13} \mathrm{~L} / \mathrm{yr}\right) \\
& =1.6 \times 10^{-4} \mathrm{~kg} / \mathrm{L}, \tag{2.33}\\
C(2) & =2(10,3,2) / 2(9,3,2) \\
& =\left(9.2 \times 10^{8} \mathrm{~kg} / \mathrm{yr}\right) /\left(2.3 \times 10^{13} \mathrm{~L} / \mathrm{yr}\right) \\
& =4.0 \times 10^{-5} \mathrm{~kg} / \mathrm{L} \tag{2.34}
\end{align*}
$$

and

$$
\begin{align*}
C(3) & =z(10,3,3) / Z(9,3,3) \\
& =\left(1.6 \times 10^{9} \mathrm{~kg} / \mathrm{yr}\right) /\left(2.7 \times 10^{13} \mathrm{~L} / \mathrm{yr}\right) \\
& =5.9 \times 10^{-5} \mathrm{~kg} / \mathrm{L} . \tag{2.35}
\end{align*}
$$

Thus, the mass of supended sediment in each surface-water subzone is given by

$$
\begin{align*}
z(2,3,1) & =c(1) z(1,3,1) \\
& =\left(1.6 \times 10^{-4} \mathrm{~kg} / \mathrm{L}\right)\left(2.2 \times 10^{10} \mathrm{~L}\right) \\
& =3.5 \times 10^{6} \mathrm{~kg} . \tag{2.36}
\end{align*}
$$

$$
\begin{align*}
z(2,3,2) & =c(2) z(1,3,2) \\
& =\left(4.0 \times 10^{-5} \mathrm{~kg} / \mathrm{L}\right)\left(1.9 \times 10^{13} \mathrm{~L}\right) \\
& =7.6 \times 10^{8} \mathrm{~kg} \tag{2.37}
\end{align*}
$$

and

$$
\begin{align*}
2(2,3,3) & =c(3) z(1,3,3) \\
& =\left(5.9 \times 10^{-5} \mathrm{~kg} / \mathrm{L}\right)\left(3.2 \times 10^{10} \mathrm{~L}\right) \\
& =1.9 \times 10^{6} \mathrm{~kg} . \tag{2.38}
\end{align*}
$$

For each zone, the soil and surface-water subzones are assumed to be in equilibrium in the sense that the rates of water and solid movement from the soil subzone to the surface-water aubzone are equal to the rates of water and solid movement from the surface-water subzone to the soil subzone. Values for these rates are derived in Equations (2.11) through (2.14) of Section 2.4. In particular,

$$
\begin{align*}
& Z(5,3, I)=Z(5,2, I)=4.0 \times 10^{10} \mathrm{~L} / \mathrm{yr} \quad \text { for } I=1 \text { and } 3 \tag{2.39}\\
& Z(5,3, Z)=Z(5,2,2)=4.8 \times 10^{10} \mathrm{~L} / \mathrm{yr} \tag{2.40}\\
& Z(6,3, I)=Z(6,2, I)=1.1 \times 10^{8} \mathrm{~kg} / \mathrm{yr} \quad \text { for } I=1 \text { and } 3 \tag{2.41}\\
& Z(6,3,2)=Z(6,2,2)=1.9 \times 10^{6} \mathrm{~kg} / \mathrm{yr} . \tag{2.42}
\end{align*}
$$

For zones 1 and 3, the surface- ater and sediment subzones are assumed to be in equilibrium in the sense that the rates of water and solid movement from the surface-water subzone to the sediment subzone are equal to the rates of water and solid movement from the sediment subzone to the surface-water subzone. Values for these rates are derived in Equations (2.71), (2.73), (2.74) and (2.76). In particular,

$$
\begin{align*}
& Z(7,3,1)=Z(5,4,1)=8.7 \times 10^{8} \mathrm{~L} / \mathrm{yr} \tag{2.43}\\
& Z(7,3,3)=Z(5,4,3)=1.3 \times 10^{9} \mathrm{~L} / \mathrm{yr} \tag{2.44}\\
& Z(8,3,1)=Z(6,4,1)=2.3 \times 10^{9} \mathrm{~kg} / \mathrm{yr} \tag{2.45}\\
& Z(8,3,3)=Z(6,4,3)=2.4 \times 10^{9} \mathrm{~kg} / \mathrm{yr} \tag{2.46}
\end{align*}
$$

The movements of water and solid material from the surface-water subzone of zone 2 to the sediment subzone are now determined. If T denotes the fraction of incoming sediments trapped by the lake and Y is defined as in (2.22), then the annual amount of solid material trapped in the lake is given by

$$
\begin{equation*}
\mathrm{S}=3.9 \times 10^{10} \mathrm{~T} \mathrm{Y} \mathrm{~kg} / \mathrm{yr} \tag{2.47}
\end{equation*}
$$

which is obtained by replacing the factor 1.0 - T in Equation (2.24) with T. As derived in (2.61), the amount of water associated with solids moving between the surface-water and sediment subzones is taken to be $3.8 \times 10^{-1} \mathrm{~L} / \mathrm{kg}$. Thus, the annual amount W of water trapped in lake sediments is given by

$$
\begin{align*}
\mathrm{W} & \left.=\left(3.9 \times 10^{10} \mathrm{~T} Y \mathrm{~kg} / \mathrm{yr}\right): \times 10^{-1} \mathrm{~L} / \mathrm{kg}\right) \\
& =1.5 \times 10^{10} \mathrm{~T} Y \mathrm{~L} / \mathrm{yr} . \tag{2.48}
\end{align*}
$$

Spect"ically, with $Y=9.4 \times 10^{-2} \mathrm{~kg} / \mathrm{m}^{2} / \mathrm{yr}$ as calculated in (2.26) and $\mathrm{T}=0.75$, the eding expressions for S and W become

$$
\begin{align*}
S & =\left(3.9 \times 10^{10}\right)(0.75)\left(9.4 \times 10^{-2}\right) \mathrm{kg} / \mathrm{yr} \\
& =2.7 \times 10^{9} \mathrm{~kg} / \mathrm{yr} \tag{2.49}
\end{align*}
$$

and

$$
\begin{align*}
\mathrm{w} & =\left(2.7 \times 10^{9} \mathrm{~kg} / \mathrm{yr}\right)\left(3.8 \times 10^{-1} \mathrm{~L} / \mathrm{kg}\right) \\
& =.0 \times 10^{9} \mathrm{~L} / \mathrm{yr}, \tag{2.50}
\end{align*}
$$

respectively.

The symbols $Z(5,4,2)$ and $Z(6,4,2)$ denote the rates of water and solid movement, respectively, from the sediment subzone of zone 2 to the surface-water subzone. Hence, by using the values for S and W given in (2.47) and (2.48), it follows that the corresponding movements $Z(7,3,2)$ and $Z(8,3,2)$ of water and solid material, respectively, from the surface-water subzone of zone 2 to the sediment subzone are given by

$$
\begin{equation*}
\mathrm{Z}(7,3,2)=\mathrm{Z}(5,4,2)+1.5 \times 10^{10} \mathrm{~T} \mathrm{Y} \mathrm{L/yr} \tag{2.51}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{z}(8,3,2)=\mathrm{z}(6,4,2)+3.9 \times 10^{10} \mathrm{~T} \mathrm{Y} \mathrm{~kg} / \mathrm{yr} \tag{2.52}
\end{equation*}
$$

In particular, with the values for S and W given in (2.49) and (2.50) and the values for $Z(5,4,2)$ and $Z(6,4,2)$ given in $(2,72)$ and $(2,75)$, ic follows that

$$
\begin{align*}
\mathrm{z}(7,3,2) & =2.0 \times 10^{9} \mathrm{~L} / \mathrm{yr}+1.0 \times 10^{9} \mathrm{~L} / \mathrm{yr} \\
& =3.0 \times 10^{9} \mathrm{~L} / \mathrm{yr} \tag{2.53}
\end{align*}
$$

and

$$
\begin{align*}
\mathrm{z}(8,3,2) & =5.2 \times 10^{9} \mathrm{~kg} / \mathrm{yr}+2.7 \times 10^{9} \mathrm{~kg} / \mathrm{yr} \\
& =7.9 \times 10^{9} \mathrm{~kg} / \mathrm{yr} . \tag{2.54}
\end{align*}
$$

All other inputs which can be supplied to the Environmental Transport Model for surface-water subzones are taken to be zero. Although annual water movement rates from surface-water to sediment are defined, these rates could have been taken to be zero with very little effect on model predictions. The surface-water subzone properties obtained in this section are summarized in Table 2-13.

Surface-Water Subzone Properties for Reference Site

Property	Zone 1	Zone 2	Zone 3
Z (1, 3, I)	2.2×10^{10}	1.9×10^{13}	3.2×10^{10}
$2(2,3,1)$	3.5×10^{6}	7.6×10^{8}	1.9×10^{6}
$2(3,3,1)$	0	0	0
Z ($4,3,1$)	0	0	0
$2(5,3,1)$	4.0×10^{10}	4.8×10^{10}	4.0×10^{10}
Z ($6,3,1$)	1.1×10^{8}	1.9×10^{6}	1.1×10^{8}
$2(7,3,1)$	8.7×10^{8}	3.0×10^{9}	1.3×10^{9}
$2(8,3,1)$	2.3×10^{9}	7.9×10^{9}	3.4×10^{9}
$2(9,3,1)$	1.9×10^{13}	2.3×10^{13}	2.7×10^{13}
z (10, 3, I)	3.0×10^{9}	9.2×10^{8}	1.6×10^{9}
z(11, 3, I)	0	0	0
$2(12,3,1)$	0	0	0
INTZ (I)	2	3	4

```
Z(2, 3,I) = volume of water in subzone (in litres).
z(2,3,1) = mass of solids in subzone (in kg).
Z(3,3,I) = rate of water outflow (in L/yr) from subzone to groundwater subzone.
Z(4,3,I) = rate of solid out flow (in kg/yr) from subzone to groundwater subzone.
Z(5,3,I) = rate of water outflow (in L/yr) from subzone to soil subzone.
Z(6,3,I) = rate of solid outflow (in kg/yr) from subzone to soil subzone.
Z(7,3,I) = rate of water outflow (in L/yr) from subzone to sediment subzone.
Z(B,3,I) = rate of solid outflow (in kg/yr) from subzone to sediment subzone.
Z(9,3,I) = rate of water out flow (in L/yr) from subzone to surface-water subzone
    in zone INTZ(I).
Z(10,3,I) = rate of solid outflow (in kg/yr) from subzone to surface-water subzone
    in zone INTZ(I).
Z(11,3,I) = rate of water outflow (in L/yr) from subzone to a sink.
Z(12,3,I) = rate of solid outflow (in kg/yr) from subzone to a sink.
INTZ(I) = number of zone into which the surface water of zone I discharges.
```


2.6 SEDIMENT SUBZONES

For zones 1 and 3 , the sediment subzones are assumed to have a depth of 2.0 metres, a porosity of 50 g and a mean particle density of $2.6 \mathrm{~g} / \mathrm{cm}^{3}$. The porosity and density assumptions are consistent with values indicated in Tables $2-2$ and $2-3$. The depth assumption of 2.0 metres is rather arbitrary. Table $2-14$ contains some examples of scour depth. Over long periods of time, the maximum scour depth essentially defines the depth of the sediment subzone. Further, it is assumed that 10 s of the sediment is resuspended each year. Again, the selection of this resuspension rate is arbitrary. The effects of sediment depth and resuspension rates are considered in the chapters on sensitivity analysis. Further, the sediment subzone in zone 2 is assumed to have a depth of 20 cm , a porosity of 50%, a mean particle density of $2.6 \mathrm{~g} / \mathrm{cm}^{3}$ and a 10 g annual resuspension rate.

Table 2-14
Selected Data on Amounts of Scour Observed in Various Rivers*

Maximum Depth of			
Scour Below			
Normal Bed	Particle Size in River	Flow	
$\begin{aligned} & \text { Elevation } \\ & (\mathrm{ft}) \end{aligned}$	Bed, or Material Encountered	$\begin{aligned} & \text { Depth } \\ & (\mathrm{ft}) \end{aligned}$	Location and Source of Data
10 to 1522	Silt, gravel	20	Pacolet River
	Sand, gravel	24 stage	Colorado River, U.S. Bureau of Reclamation, 1950
75	Sand, gravel, cobbles	50 stage	Black Canyon, Colorado River (freq. $=1 / 50 \mathrm{yrs}$)
126	Sand to gravel (cobbles)	35	Black Canyon
55	2- by 6-in. plank embedded in sand, gravel, in gorge $100-150 \mathrm{ft}$ wide		Black Canyon
32	Cobbles moved, boulders smoothed to bedrock	? 12 to 20	Canadian River at Eufaula Dam
40	Bank pilings in sand		Rio Grande
60	Hridge pier in silt, sand		Lane and Borland (1954)
12 to 15	Scoured to bedrock		Yellow River $w \approx 600 \mathrm{ft}$ annual flood
0	Fine sand	10 to 12	Colorado River, cable at Imperial Dam
20	Very fine sand	10	Colorado River, Yuma, Lane and Borland (1954)
$\begin{aligned} & 1.75 \text { to } \\ & 2 \times \text { regime } \\ & \text { depth } \end{aligned}$	Sand, silt	"Regime" depth	Lacey in Blench $(1957, \text { p. } 103)$
$0.5 \mathrm{Y}_{1}$	Width constricted to $1 / 2$ that upstream	$y_{1}=\underset{\text { upstream }}{\text { depth }}$	Bridge piers, Laursen (1960)

Sediment subzone properties are now derived. Figure $2-4$ indicates that a 2.5 -metre depth is reasonable for river L in zones 1 and 3 . With respect to Figure $2-4$, river L has a discharge rate of $1.7 \times 10^{4} \mathrm{ft}^{3} / \mathrm{s}$ at the top of zone 1 and a discharge rate of $3.1 \times 10^{4} \mathrm{ft}^{3} / \mathrm{s}$ at the bottom of zone 3 (See Table 2-12). Therefore, 2.5 metres is assumed to be the mean depth of river L in zones 1 and 3 . Further, it follows from the cross-sectional areas contained in Table 2-12 that the mean cross-sectional areas $C(1)$ and $C(3)$ of river L in zones 1 and 3 are given by

$$
\begin{equation*}
C(1)=\left[4.8 \times 10^{2} \mathrm{~m}^{2}+6.0 \times 10^{2} \mathrm{~m}^{2}\right] / 2=5.4 \times 10^{2} \mathrm{~m}^{2} \tag{2.55}
\end{equation*}
$$

and

$$
\begin{equation*}
C(3)=\left[7.3 \times 10^{2} \mathrm{~m}^{2}+8.6 \times 10^{2} \mathrm{~m}^{2}\right] / 2=8.0 \times 10^{2} \mathrm{~m}^{2} \tag{2.56}
\end{equation*}
$$

respectively. Thus, the average widths $W(1)$ and $W(3)$ of river L in zones 1 and 3 are given by

$$
\begin{equation*}
w(1)=\left(5.4 \times 10^{2} \mathrm{~m}^{2}\right) /(2.5 \mathrm{~m})=2.2 \times 10^{2} \mathrm{~m} \tag{2.57}
\end{equation*}
$$

and

$$
\begin{equation*}
w(3)=\left(8.0 \times 10^{2} \mathrm{~m}^{2}\right) /(2.5 \mathrm{~m})=3.2 \times 10^{2} \mathrm{~m}, \tag{2.58}
\end{equation*}
$$

respectively. The preceding widths match relatively well with those illustrated in Figure 2-4.

If $A(I)$ denotes the surface area of the sediment subzone in zone I and $D(I)$ denotes its depth, then the water volume $V(I)$ and the solid mass $A(I)$ contained in the subzone are given by

$$
\begin{equation*}
V(I)=(0.50) A(I) D(I) \tag{2,59}
\end{equation*}
$$

and

$$
\begin{equation*}
M(I)=(0.50)\left(2.6 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right) A(I) D(I) \text {, } \tag{2.60}
\end{equation*}
$$

repectively. Thus, the ratio F of water volume to sediment mass is

$$
\begin{equation*}
R=V(I) / M(I)=3.8 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{kg}=3.8 \times 10^{-1} \mathrm{~L} / \mathrm{kg} . \tag{2.61}
\end{equation*}
$$

Further,

$$
\begin{align*}
& A(1)=\left(4.0 \times 10^{4} \mathrm{~m}\right)\left(2.2 \times 10^{2} \mathrm{~m}\right)=8.8 \times 10^{6} \mathrm{~m}^{2} \tag{2.62}\\
& A(2)=\pi\left(2.0 \times 10^{4} \mathrm{~m}\right)\left(3.2 \times 10^{3} \mathrm{~m}\right)=2.0 \times 10^{8} \mathrm{~m}^{2} \tag{2.63}
\end{align*}
$$

and

$$
\begin{equation*}
A(3)=\left(4.0 \times 10^{4} \mathrm{~m}\right)\left(3.2 \times 10^{2} \mathrm{~m}\right)=1.3 \times 10^{7} \mathrm{~m}^{2} \tag{2.64}
\end{equation*}
$$

where $A(2)$ is the area of an ellipse with major and minor axes of length 40 km and 6.4 km , respectively.

The solid mass in each sediment subzone is now determined. Then, the water vol umes are determined by using (2.61). In particular,

$$
\begin{align*}
z(2,4,1) & =(0.50)\left(2.6 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(8.8 \times 10^{6} \mathrm{~m}^{2}\right)(2.0 \mathrm{~m}) \\
& =2.3 \times 10^{10} \mathrm{~kg} \tag{2.05}\\
z(2,4,2) & =(0.50)\left(2.6 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(2.0 \times 10^{8} \mathrm{~m}^{2}\right)(0.20 \mathrm{~m}) \\
& =5.2 \times 10^{10} \mathrm{~kg} \tag{2.66}
\end{align*}
$$

and

$$
\begin{align*}
z(2,4,3) & =(0.50)\left(2.6 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(1.3 \times 10^{7} \mathrm{~m}^{2}\right)(2.0 \mathrm{~m}) \\
& =3.4 \times 10^{10} \mathrm{~kg} . \tag{2.67}
\end{align*}
$$

Further,

$$
\begin{equation*}
z(1,4,1)=\left(3.8 \times 10^{-1} \mathrm{~L} / \mathrm{kg}\right)\left(2.3 \times 10^{10} \mathrm{~kg}\right)=8.7 \times 10^{9} \mathrm{~L} \tag{2.68}
\end{equation*}
$$

$$
\begin{align*}
& z(1,4,2)=\left(3.8 \times 10^{-1} \mathrm{~L} / \mathrm{kg}\right)\left(5.2 \times 10^{10} \mathrm{~kg}\right)=2.0 \times 10^{10} \mathrm{~L} \tag{2.69}\\
& z(1,4,3)=\left(3.3 \times 10^{-1} \mathrm{~L} / \mathrm{kg}\right)\left(3.4 \times 10^{10} \mathrm{~kg}\right)=1.3 \times 10^{10} \mathrm{~L} \tag{2.70}
\end{align*}
$$

For each zone, it is assumed that 10% of the sediments are resuspended each year. Thus, the rates of water and solid movement from sediment subzones to surface-water subzones are given by

$$
\begin{align*}
& \mathrm{z}(5,4,1)=(0.10 / \mathrm{yr}) \mathrm{z}(1,4,1)=8.7 \times 10^{8} \mathrm{~L} / \mathrm{yr} \tag{2.71}\\
& \mathrm{z}(5,4,2)=(0.10 / \mathrm{yr}) \mathrm{z}(1,4,2)=2.0 \times 10^{9} \mathrm{~L} / \mathrm{yr} \tag{2.72}\\
& \mathrm{z}(5,4,3)=(0.10 / \mathrm{yr}) \mathrm{z}(1,4,3)=1.3 \times 10^{9} \mathrm{~L} / \mathrm{yr} \tag{2.73}\\
& \mathrm{Z}(6,4,1)=(0.10 / \mathrm{yr}) \mathrm{Z}(2,4,1)=2.3 \times 10^{9} \mathrm{~kg} / \mathrm{yr} \tag{2.74}\\
& \mathrm{Z}(6,4,2)=(0.10 / \mathrm{yr}) \mathrm{Z}(2,4,2)=5.2 \times 10^{9} \mathrm{~kg} / \mathrm{yr} \tag{2.75}\\
& \mathrm{Z}(6,4,3)=(0.10 / \mathrm{yr}) \mathrm{z}(2,4,3)=3.4 \times 10^{9} \mathrm{~kg} / \mathrm{yr} . \tag{2.76}
\end{align*}
$$

The sediment subzone in zone 2 is assumed to be 20 cm thick. However, the lake is assumed to trap 75 名 of the sediment entering it. Thus, there must be a movement from this sediment subzone to a sink, that is, to a deeper sediment layer which is not subject to resuspension. It is assumed that no compaction occurs in this lower layer and that the water-solid ratio remains as represented in (2.61). Specifically, by using (2.49) and (2.61), it follows that the movements of water ind solid material from the sediment subzone of zone 2 to a sink are given by

$$
\begin{align*}
z(7,4,2) & =\left(2.7 \times 10^{9} \mathrm{~kg} / \mathrm{yr}\right)\left(3.8 \times 10^{-1} \mathrm{~L} / \mathrm{kg}\right) \\
& =1.0 \times 10^{9} \mathrm{~L} / \mathrm{yr} \tag{2.77}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{z}(8,4,2)=2.7 \times 10^{9} \mathrm{~kg} / \mathrm{yr} \tag{2.78}
\end{equation*}
$$

respectively.

All other inputs which can be supplied to the Environmental Transport Model for sediment subzones are taken to be zero. As already noted in the preceding section, annual rates for water movement between sediment subzones and surface-water subzones (or sinks) will have littlo effect on model predictions in the present context and could have been taken to be zero. The sediment subzone properties obtained in this section are summarized in Table 2-15.

In zone 2, the surface-water subzone is a lake. In modeling radionuclide discharges from waste repositories, careful consideration must be given as to whether or not lakes in the repository vicinity should be considered. In particular, lakes are transient geologic features. For the time scales that must be represented in such modeling, a given lake may not exist for a sufficiently long period to justify its inclusion in the modeling effort. For this reason, the life expectancy of the lake in zone 2 is now examined.

Table ? -15
 Sediment Subzone Proper es for Reference Site

Property	$\frac{\text { Zone } 1}{8.7 \times 10^{9}}$	$\frac{\text { Zone }}{2.0 \times 10^{10}}$	Zone 3 $Z(1,4, I)$
$Z(2,4, I)$	2.3×10^{10}	5.2×10^{10}	3.4×10^{10}
$Z(3,4, I)$	0	0	0
$Z(4,4, I)$	0	0	0
$Z(5,4, I)$	8.7×10^{8}	2.0×10^{9}	1.3×10^{9}
$Z(6,4, I)$	2.3×10^{9}	5.2×10^{9}	3.4×10^{9}
$Z(7,4, I)$	0	1.0×10^{9}	0
$Z(8,4, I)$	0	2.7×10^{9}	0

```
Z(1,4,I) = volume of water in subzone (in litres).
Z(2,4,I) = mass of solids in subzone (in kg).
Z(3,4,I) = rate oF water outflow (in L/yr) from subzone to groundwater subzone.
Z(4,4,I) = rate of solid outflow (in kg/yr) from subzone to groundwater subzone.
Z(5,4,I) = rate of water out flow (in L/yr) from subzone to surface-water subzone.
z(6,4,I) = rate of solid outflow (in kg/yr) from subzone to surface-water subzone.
Z(7,4,I) = rate of water outflow (in L/yr) from subzone to a sink.
Z(8,4,I) = rate of solid outflow (in kg/yr) from subzone to a sink.
```

The lake is assumed to trap 75 of the sediments entering it. As derived in (2.78), this amounts to $2.7 \times 10^{9} \mathrm{~kg} / \mathrm{yr}$. With the assumption that the sediment has a density of $2.6 \mathrm{~g} / \mathrm{cm}^{3}$ and a constant porosity of 50 o (i.e., no compaction), it follows that the lake is being resuced by an annual volume V given by

$$
\begin{align*}
V & =\left(2.7 \times 10^{9} \mathrm{~kg} / \mathrm{yr}\right) /\left(2.6 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)(0.50) \\
& =2.1 \times 10^{6} \mathrm{~m}^{3} / \mathrm{yr} \tag{2.79}
\end{align*}
$$

The sediment sur face area is given in (2.63) as $2.0 \times 10^{8} \mathrm{~m}^{2}$. Thus, the annual rise R in sediment level is given by

$$
\begin{equation*}
\mathrm{R}=\left(2.1 \times 10^{6} \mathrm{~m}^{3} / \mathrm{yr}\right) /\left(2.0 \times 10^{8} \mathrm{~m}^{2}\right)=1.0 \times 10^{-2} \mathrm{~m} / \mathrm{yr} \tag{2.80}
\end{equation*}
$$

The lake is assumed to initially hold a volume of water equal to 1 year's discharge of river L at the head of the lake; as indicated in Table $2-12$, this volume is $1.9 \times 10^{10} \mathrm{~m}^{3}$. Thus, the average depth D of the lake is given by

$$
\begin{equation*}
D=\left(1.9 \times 10^{10} \mathrm{~m}^{3}\right) /\left(2.0 \times 10^{8} \mathrm{~m}^{2}\right)=9.5 \times 10^{1} \mathrm{~m} \tag{2.81}
\end{equation*}
$$

Thus, with the annual sediment rise obtained in (2.80), the time T required for the lake to completely fill in is given by

$$
\begin{equation*}
\mathrm{T}=\left(9.5 \times 10^{1} \mathrm{~m}\right) /\left(1.0 \times 10^{-2} \mathrm{~m} / \mathrm{yr}\right)=9.5 \times 10^{3} \mathrm{yr} \tag{2.82}
\end{equation*}
$$

Hence, with no major change in the valley's erosion rate, it seems reasonable to assume that the lake lasts for at least several thousand years. Further, it is assumed the volume remains at $1.9 \times 10^{10} \mathrm{~m}^{3}$ during this time. It can be shown that, although changing the volume of the lake affects the amount of radionuclides that it contains, it does not have a large effect on the radionuclide concentration.

Al 71 Allen, D. M., The Prediction Sum of Squares as a Criterion for Selecting Predictor Variables. Report No. 23, Department of Statistics, University of Kentucky, 1971.

Ap77 Appo, J. A., J. Lucas, A. K. Mathur, and L. Tsao, Theoretical and Experimental Evaluation of Waste Transport in Selected Rocks: 1977 Annual Report of LBL Contract No. 45901AK, Report No. LBL-7022, (Berkeley: Lawrence Berkeley Laboratory, 1977).

Bol73 Bolz, R., and G. Tuve, eds, CRC Handbook of Tables for Applied Engineering Science, 2nd ed (Cleveland: CRC Press, 1973).

Bor71 Borland, W. M., "Reservoir Sedimentation," Chapter 29 in River Mechanics (H. W. Shen, ed), Water Resources Publication, Fort Collins, CO; 1971, pp 29-1, 29-38.

Br53 Brune, G. M., "Trap Efficiency of Reservoirs," Trans. Amer. Geophys. Union 24. 1953, pp 407-418.

Bud74 Budyko, M. I., Climate and Life (New York: Academic Press, 1974).
Bus63 Busby, M. W., Yearly Variations in Runoff for the Conterminous United States, 1931-60, Geological Survey Water-Supply Paper 1669-S (Washington: United States Geological Survey, 1963).

Bus 66 Busby, M. W., Annual Runoff in the Conterminous United States, Hydrologic Investigations Atlas HA-2l2 (Washington: United States Geological Survey, 1966).

Ca78 Campbel1, J. E. , R. T. Dillon, M. S. Tierney, H. T. Davis, P. E. Mccrath, F. J. Pearson, 4. R. Shaw, J. C. Helton, and F. A. Donath, Risk Methodology for Geologic Disposal of Radioactive Waste: Interim Report, SAND78-0029 (Albuquerque: Sandia Laboratories, 1978).

Col63 Colby, B. R. "Fluvial Sediments - A Summary of Source, Transportation, Deposition and Measurement of Sediment Discharge," Geological Survey Bulletin 1181-A (Washington: United States Geological Survey, 1963).

Cor59 Corbel, J., "Vitesse de 1 'erosion," Zeits. fur Geomorphologie 3, 1959, pp 1-28.

Cu73 Cummins, A. B., and I. A. Given, eds, SME Mining Engineering Handbook (Littleton, CO: Society of Mining Engineers, 1973).

Da59 Dapples, E. C., Basic Geology for Science and Engineering (Huntington, NY: Robert E. Krieger Publishing Co, 1959).

De74 Dendy, F. E., "Sediment Trap Efficiency of Small Reservoirs," Trans. Amer. Soc. Civil Eng. 17. 1974, pp 898-901. 908.

De 76 Dendy, F. E., and G. C. Bolton, "Sediment Yield-Runoff-Drainage Area Relaionships in the United States," J. Soil Water Cons. 31, 1976, pp 264-266.

He8la Helton, J. C., J. B. Brown, and R. L. Iman, Risk Methodology for Geologic Disposal of Radioactive Waste: Asymptotic Properties of the Environmental Transport Model, Sand78-1908 (Albuquerque: Sandia Laboratories, 1981).

He81b Helton, J. C., and P. C. Kaestner, Risk Methodology for Geologic Disposal of Radioactive Waste: Model Description and User Manual for Pathways Model SAND78-1711 (Albuquerque: Sandia Laboratories, 1981).

Im78 Iman, R. L., J. C. Helton, and J. E. Campbell, Risk Methodology for Geologic Disposal of Radioactive Waste: Sensitivity Analysis Techniques, SAND78-0912 (Albuquerque: Sandia Laboratories, 1978).

Im79 Iman, R. L., and W. J. Conover, "The Use of the Rank Transform in Regression," Technometrics 21. 1979, pp 499-509.

Im80a Iman, R. L., W. J. Conover, and J. E. Campbell, Risk Methodology for Geologic Disposal of Radioactive Waste: Small Sample Sensitivity Analysis Techniques for Computer Modeling with an Application to Risk Assessment, SAND80-0020 (Albuquerque: Sandia Laboratories, 1980).

Im80b Iman, R. L., J. M. Davenport, E. L. Frost, and M. Shortencarrier, Stepwise Regression with PRESS and Rank Regression (Program User's Guide), SAND79-1472 (hibuquerque: Sandia National Laboratories, 1980).

Im 80 C Iman, R. L., J. C. Helton, and J. E. Campbell, "An Approach to Sensitivity Analysis of Computer Models, Part 1: Introduction, Input Variable Selection and Preliminary Variable Assessment," submitted.

Ja74 Jansen, J. M. L., and R. B. Painter, "Predicting Sediment Yield from Climate and Topography," J. Hydro1. 21. 1974, pp 371-380.

Ju64 Judson, S., and D. F. Ritter, "Rates of Regional Denudation in the United States," J. Geophys. Res. 69, 1964, pp 3395-3401.

La49 Langbein, W. B., et al, "Annual Runoff in the United States," Geological Survey Circular No. 52 (Washington: United States Geological Survey, 1949).

La58 Langbein, W. B., and S. A. Schumm, "Yield of Sediment in Relation to Mean Annual Precipitation," Trans. Amer. Geophy. Union 39, 1958, pp 1076-1084.

Le64 Leopold, L. B., M. G. Wolman, and J. P. Miller, Fluvial Processes in Geomorphology (San Francisco: W. H. Freeman and Co., 1964).

Mc79 McKay, M. D., W. J. Conover, and R. J. Beckman, "A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code," Technometrics 21. 1979. pp 239-245.

Me61 Menard, H. W., "Some Rates of Regional Erosion," J. Geol. 69, 1961, Pp $154-161$.
Mo68 Morisawa, M., Streams, Their Dynamics and Morphology (New York: McGraw-Hill Book Co., 1968).

Sc63 Schumm, S. A. . The Disparity between Past and Present Rates of Denudation and Orogeny, Geological Survey Professional Paper No. $454-H$ (Washington: United States Geological Survey, 1963).

To79 Towse, D., "Geoscience Parameter Data Base Handbook," UCRL-52557 (draft) (Livermore, CA: Lawrence Livermore Laboratory, 1979).

Wi73 Wilson, L., "Variations in Mean Annual Sediment Yield as a Function of Mean Annual Precipitation," Amer. J. Sci. 273, 1973, pp 335-349.

Wi77 Wilson, L., "Sediment Yield as a Function of Climate in United States Rivers," in International Association of Hydrological Sciences Publication No. 123: Erosion and Solid Matter Transport in Inland Waters Symposium, July 1977, pp 82-92.

APPENDIX B
Examples of Mixed-Cell Models

$\mathrm{B}-1$. Introduction

The purpose of this appendix is to present a sequence of examples which motivate and illustrate the mathematical model which underlies the Pathways Model. The intent is to give the reader a feeling for the use of mixed-cell (i.e., compartment) models to represent the movenent of radionuclides. The presentation is elementary and is intended for individuals who are not familiar with such models.

In Section $B-2$, the differential equation for a single radionuclide in a single uniformly-mixed cell is developed. Next, in Section B-3, this example is expanded to include radionuclide partitioning between liquid and solid phases in the cell. An example of additional complexity is considered in Section B-4. This example involves a single radionuclide which moves between two uniformly-mixed cells and is partitioned between the liquid and solid phase of each cell. Finally, in Section B $\cdot 5$, the preceding example is expanded to include a decay segment involving two radionuclides.
$\mathrm{B}-2$. One Cell Without partitioning
The differential equation for a single uniformlymixed cell without radionuclide partitioning between a liquid and a solid phase is presented in this section. The situation under consideration is indicated in Figure B-1. The cell is assumed to have a constant volume vw (units: L). Further, it is assumed that water enters and leaves the cell at a rate rw (units: L / yr) and that a radionuclide with decay constant λ (units: $y r^{-1}$) enters the cell at a rate r (units: atoms $/ y r$). It is desired to determine the amount $x(t)$ (units: atoms) of the radionuclide present in the cell at time t (units: yrs). The basic assumption used in deriving $x(t)$ is that the cell is uniformly-mixed; mathematically, this means that the radionuclide concentration $c(t)$ (units: atoms/L) at any time t is given by

$$
\begin{equation*}
c(t)=x(t) / v w . \tag{B-1}
\end{equation*}
$$


```
    r: rate at which radionuclide enters cell
    (units: atoms/yr)
    rw: rate at which water enters and leaves cell
        (units: L/yr)
        \lambda: decay constant for radionuclide (units: yr-1)
    Vw: volume of water in cell (units: L)
x(t): amount of radionuclide in cell at time t
        (units: atoms)
```

Figure B-1. Flows Associated With a Single UniformlyMixed Cell with no Radionuclide Partitioning Between a Liquid and a Solid Phase.

A differential equation representing the rate of change of $x(t)$ is now derived. Then, $x(t)$ can be obtained by solving this equation. The derivative $d x(t) / d t$ (units: atoms/yr) is defined by the limit

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{x(t+\Delta t)-x(t)}{\Delta t} \tag{B-2}
\end{equation*}
$$

and represents the rate at which $x(t)$ is changing. In turn, this rate is equal to the difference between the rate r_{1} (units: atoms/yr) at which the radionuclide is entering the cell and the rate r_{2} (units: atoms/yr) at which the radionuclide is leaving the cell. The rate r_{1} is given by r. The rate r_{2} is the sum of two components: a rate due to physical flow out of the ceil and a rate due to radioactive decay. The rate due to physical flow is equal to the product of the radionuclide concentration $x(t) / v w$ in the cell and the rate of water flow rw out of the cell; the rate due to decay is equal to the product of the decay constant λ and the amount $x(t)$ of radionuclide present. Thus,

$$
\begin{equation*}
r_{1}=r \text { and } r_{2}=[(r w / v w)+\lambda] x(t), \tag{B-3}
\end{equation*}
$$

and hence, the desired equation is given by

$$
\begin{align*}
d x(t) / d t & =r_{1}-r_{2} \\
& =r-[(r w / v w)+\lambda] x(t) \tag{B-4}
\end{align*}
$$

Also associated with the preceding equation is an initial value condition $x(0)=x_{0}$, which represents the amount of radionuclide present at time $t=0$.

Thus, determination of $x(t)$ reduces to the solution of an initial value problem of the form

$$
\begin{equation*}
\mathrm{d} x(t) / \mathrm{dt}=r-\mathrm{ax}(t), \mathrm{x}(0)=\mathrm{x}_{0}, \tag{B-5}
\end{equation*}
$$

where

$$
\begin{equation*}
a=(r w / v w)+\lambda . \tag{B-6}
\end{equation*}
$$

Such problems are relatively easy to solve and applicable solution techniques include separation of variables, introduction of integration factors, and application of Laplace transforms. The preceding techniques are discussed in introductory texts on differential equations (e.g., Si72, Bra78, Ros74) and lead to the foilowing unique solution for the initial value problem in $(B-5)$:

$$
\begin{equation*}
x(t)=e^{-a t} x_{0}+(r / a)\left(1-e^{-a t}\right) \tag{B-7}
\end{equation*}
$$

If the initial value condition is $x(0)=0$, then the preceding solution becomes

$$
\begin{equation*}
x(t)=(r / a)\left(1-e^{-a t}\right) \tag{B-8}
\end{equation*}
$$

Further, regardless of the initial value condition, the steady state or asymptotic solution $s x$ to which any solution of ($\mathrm{B}-5$) converges is given by

$$
\begin{align*}
s x & =\lim _{t \rightarrow \infty} x(t) \\
& =\lim _{t \rightarrow \infty}\left[e^{-a t} x_{0}+(r / a)\left(1-e^{-a t}\right)\right] \\
& =x_{0} \lim _{t \rightarrow \infty} e^{-a t}+(r / a)\left(1-\lim _{t \rightarrow \infty} e^{-a t}\right) \\
& =x_{0}(0)+(r / a)(1-0) \\
& =r / a \tag{B-9}
\end{align*}
$$

since $a>0$.

An example is now presented. This example is adapted from the description of a site used in a sensitivity analysis of the Environmental Transport Model (Hel80). Specifically, the surface-water subzone of Zone 1 with the radionuclide Cm 245 is considered. For this example,

$$
\begin{aligned}
r & =1.0 \mathrm{mg} / \mathrm{yr}=2.5 \times 10^{18} \text { atoms } / \mathrm{yr} \\
\mathrm{rw} & =1.9 \times 10^{13} \mathrm{~L} / \mathrm{yr} \\
\lambda & =8.4 \times 10^{-5} \mathrm{yr}^{-1} \\
v w & =2.2 \times 10^{10} \mathrm{~L}
\end{aligned}
$$

and so
$a=(r w / v w)+\lambda$

$$
\begin{align*}
& =\left[\left(1.9 \times 10^{13} \mathrm{~L} / \mathrm{yr}\right) /\left(2.2 \times 10^{10} \mathrm{~L}\right)\right]+8.4 \times 10^{-5} \mathrm{yr}^{-1} \\
& =8.6 \times 10^{2} \mathrm{yr}^{-1} . \tag{B-10}
\end{align*}
$$

Thus, the resultant differential equation is given by

$$
\begin{aligned}
d x(t) / d t & =r-a x(t) \\
& =2.5 \times 10^{18}-\left(8.6 \times 10^{2}\right) \times(t) .(B-11)
\end{aligned}
$$

As indicated in $(B-8)$, the solution to ($B-11$) with the initial value condition $x(0)=0$ is given by
$x(t)=\left[\left(2.5 \times 10^{18}\right) /\left(8.6 \times 10^{2}\right)\right]\left[1-\exp -\left(8.6 \times 10^{2}\right) t\right]$
$=2.9 \times 1015[1-\exp (-860 t)]$ atoms.

Further, as indicated in ($B-9$), the asymptotic solution sx to ($\mathrm{B}-11$) is given by

$$
\begin{equation*}
s x=\left(2.5 \times 10^{18}\right) /\left(8.6 \times 10^{2}\right)=2.9 \times 10^{15} \text { atoms. } \tag{B-13}
\end{equation*}
$$

Since $\exp (-860 t)$ approaches zero very rapidly as t increases, the asymptotic solution is approached very rapidly.

In the preceding, $x(t)$ is used to represent the amount of radionuclide present at time t in the cell. As indicated in ($B-1$), the concentration at time t is given by the quotient $x(t) / v w$. Also, $x(t)$ is expressed in atoms; this simplifies the treatment of decay chains. However, the units can be changed to grams or curies by use of appropriate conversion factors. Specifically, the factor

$$
\begin{equation*}
c_{\mathrm{ag}}=\mathrm{a}_{\mathrm{wt}} / 6.024 \times 10^{23} \tag{B-14}
\end{equation*}
$$

can be used to convert from atoms to grams, where (units: $\mathrm{gm} / \mathrm{gm}$-mole) denotes the atomic weight $8 \frac{f}{3}$ radionuclide under consideration and 6.024×10^{23} Avogadro's number (units: molecules/gm-mole) and the factor

$$
\begin{align*}
c_{a c} & =\frac{\ln (2.0) /(\mathrm{h} 1)\left(3.16 \times 10^{7}\right)}{3.70 \times 10^{10}} \\
& =\lambda /\left(3.16 \times 10^{7}\right)\left(3.70 \times 10^{10}\right) \\
& =\lambda /\left(1.17 \times 10^{18}\right) \tag{B-15}
\end{align*}
$$

can be used to convert from atoms to curies, where $\ln (2.0)$ denotes the natural logarithm of 2.0 , hl denotes the half-life (units: yrs) of the radionuclide under consideration, λ is the decay constant (units: yr^{-1}) for the radionulcide under consideration and is equal to $\ln (2.0) / \mathrm{hl}, 3.16 \times 10^{7}$ is the number of seconds per year and 3.70×10^{10} is the number of decays per second per curie.

For Cm 245 , the conversion factors c_{ag} and c_{ac} are given by

$$
\begin{equation*}
c_{\mathrm{ag}}=245 / 6.024 \times 10^{23}=4.1 \times 10^{-22} \mathrm{gm} / \text { atom } \tag{B-16}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{c}_{\mathrm{ac}}=8.4 \times 10^{-5} / 1.17 \times 10^{18}=7.2 \times 10^{-23} \mathrm{ci} / \mathrm{atom} \tag{B-17}
\end{equation*}
$$

Use of these conversion factors in conjunction with the solutions given in ($B-12$) and ($B-13$) yields
$x(t)=\left\{2.9 \times 10^{15}[1-\exp (-860 t)]\right.$ atoms $\}$
$\cdot\left\{4.1 \times 10^{-22} \mathrm{gm} /\right.$ atom $\}$

$$
\begin{equation*}
=1.2 \times 10^{-6}[1-\exp (-860 t)] \mathrm{gm} \tag{B-18}
\end{equation*}
$$

$x(t)=\left\{2.9 \times 10^{15}[1-\exp (-860 t)]\right.$ atoms $\}$ $\cdot\left\{7.2 \times 10^{-23} \mathrm{ci} /\right.$ atom $\}$
$=2.1 \times 10^{-7}(1-\exp (-860 t)] \mathrm{ci}$
$s x=\left(2.9 \times 10^{15}\right.$ atoms $)\left(4.1 \times 10^{-22} \mathrm{gm} /\right.$ atoms $)$
$=1.2 \times 10^{-6} \mathrm{gm}$
and

$$
\begin{align*}
s \times & =\left(2.9 \times 10^{15} \text { atoms }\right)\left(7.2 \times 10^{-23} \mathrm{ci} / \text { atom }\right) \\
& =2.1 \times 10^{-7} \mathrm{ci} . \tag{B-21}
\end{align*}
$$

Further, as already discussed, the preceding values can be converted to concentrations through division by $v w=2.2 \times 10^{10} \mathrm{~L}$.

The function appearing in $(B-18)$ is graphed in Figure $B-2$. This is the solution to the differential equation appearing in ($B-11$) with initial value $x(0)=0$ and units expressed in grams. As can be seen in this figure, $x(t)$ increases monotonically from the initial value to the asymptotic solution given in ($B-20$). This pattern of behavior will always be exhibited by solutions to initial value problems of the form indicated in ($B-5$) when $r>0, a>0$ and $r / a \geq x_{0}$. If $r>0$, $a>0$ and $r / a \leq x_{0}$, then $x(t)$ would decrease monotonically to the asymptotic solution r / a. The rate at which the asymptotic solution is approached depends only on the size of a; the larger a is, the more rapidly the asymptotic solution is approached. For the equation in ($\mathrm{B}-11$), a is "large" and so the asymptotic solution is approached "rapidly".

B-3. One Cell With Partitioning

The differential equation for a single uniformlymixed cell with radionuclide partitioning between a liquid and a solid phase is presented in this section. The situation under consideration is indicated in Figure $\mathrm{B}-3$. The cell is assumed to have a constant volume vw (units: L) and to contain a constant mass ms of solid material (units: kg). Further, it is assumed that water enters and leaves the cell at a rate rw (units: L / yr), that solid material enters and leaves the cell at a rate rs (units: $\mathrm{kg} / \mathrm{yr}$), and that a radionuclide with decay constant λ (units: y^{-1}) enters the cell at a rate r (units: atoms/yr). The partitioning of the radionuclide between the liquid and solid phases of the system is assumed to be described by the ratio
$k d=\frac{\text { conc. of radionuclide sorbed to solids }}{\text { conc. of radionuclide dissolved in water }}=\frac{\mathrm{as} / \mathrm{ms}}{\mathrm{aw} / \mathrm{vw}}$,
($\mathrm{B}-22$)
where as (units: atoms) is the amount of radionuclide in the system sorbed to solids and aw (units: atoms) is the amount of radionuclide in the system dissolved in water. The ratio in $(B-22)$ is known as a kd-value

Figure $B-2$. Solution to Differential Equation Representing Amount of Radionuclide in Single UniformlyMixed Cell. This figure presents the graph of the function given in ($\mathrm{B}-18$), which is the solution to the differential equation in ($B-11$) with initial value $x(0)=0$ and units expressed in grams.


```
        r: rate at which radionuclide enters cell
        (units: atoms/yr)
        rw: rate at which water enters and leaves cell
        (units: L/yr)
    rs: rate at which solid material enters and leaves cell
        (units: kg/yr)
        \lambda: decay constant for radionuclide (units: yr
        VW: volune of water in cell (units: L)
    ms: mass of solids in cell (units: kg)
x(t): amount of radionuclide in cell at time t
        (units: atoms)
```

Figure B-3. Flows Associated With a Single UniformlyMixed Cell With Radionuclide Partitioning Between a Liquid and a Solid Phase.
or a distribution coefficient; background on its use and derivation can be obtained in Appo et al. (Ap77), Baker et al. (Ba66) and Borg et al. (Bor75).

It is desired to determine the amount $x(t)$ (units: atoms) of the radionuclide present in the cell at time t (units: $y r$). Three basic assumptions underlie the derivation of $x(t)$. First, it is assumed that the radionuclide is uniformly distributed through the cell and is partitioned between the liquid and solid phases on the basis of its distribution coefficient. A derivation for this partitioning is presented in the next paragraph. Second, it is assumed that the flow of water and solid material out of the cell is the only mechanism involved in the physical transport of the radionuclide. Third, it is assced that all radionuclides associated with a phase, liquid or solid, remain with that phase in movements out of the cell. In essence, the cell is treated as a uniformly mixed "vessel" in which the radionuclides are partitioned between the liquid and solid phases on the basis of the distribution coefficient and sucr that radionuclides can be carried out of this "vessel" aw out of the system only by movements of water or solid material.

A derivation for the partitioning of a radionuclide between the liquid and solid phases of a system is now presented. The following notation is used in the derivation:

```
    x = amount of radionuclide in system (in atoms),
xs = amount of radionuclide in system sorbed to solids
    (in atoms),
xw = amount of radionuclide in system dissolved in
    water (in atoms),
ms = mass of solid in system (in kilograms), and
vw = volume of water in system (in liters).
```

Assume $x, m s, ~ v w ~ a n d ~ k d ~ a r e ~ k n o w n ~ f o r ~ t h e ~ s y s t e m ~ u n d e r ~$ consideration. Now, $x s$ and $x w$ are determined. Since

$$
\begin{equation*}
\mathrm{kd}=(\mathrm{xs} / \mathrm{ms})(\mathrm{xw} / \mathrm{vw})^{-1} \text { and } \mathrm{x}=\mathrm{xs}+\mathrm{xw} \text {, } \tag{B-23}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
(k d)(m s)=(x s)(v w)(x w)^{-1} \text { and } x w=x-x s \text {. } \tag{B-24}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
(k d)(m s)=(x s)(v w)(x-x s)^{-1} \tag{B-25}
\end{equation*}
$$

Further, multiplication by ($x-x$) gives

$$
\begin{equation*}
(k d)(\mathrm{ms})(x)-(k d)(\mathrm{ms})(x s)=(x s)(v w) \tag{B-26}
\end{equation*}
$$

or

$$
\begin{equation*}
(k d)(\mathrm{ms})(x)=[(k d)(\mathrm{ms})+\mathrm{vw}] \mathrm{xs}, \tag{B-27}
\end{equation*}
$$

and hence

$$
\begin{equation*}
x s=\left[\frac{(k d)(m s)}{(k d)(\mathrm{ms})+v w}\right] x \tag{B-28}
\end{equation*}
$$

Further, since $x w=x-x s$,

$$
\begin{equation*}
x w=\left[1-\frac{(k d)(m s)}{(k d)(m s)+v w}\right] x \text {. } \tag{B-29}
\end{equation*}
$$

The relations in ($B-28$) and ($B-29$) represent the desired partitioning.

A differential equation representing the rate of change of $x(t)$ is now derived. Then, $x(t)$ can be obtained by solving this equation. The following derivation is similar to that presented in Section B-2 for a uniformly-mixed cell without partitioning. As there, $d x(t) / d t$ is equal to the difference between the rate r_{1} at which the radionuclide is entering the cell and the rate r_{2} at which the radionuclide is leaving the cell.

The rate r_{1} is given by r. The rate r_{2} is the sum of three components: a rate due to physical flow out of the cell with solid material, a rate due to physical flow out of the cell with water, and a rate due to radioactive decay. The two rates due to physical flow are equal to the products of the concentrations $x s(t) / \mathrm{ms}$ and $x w(t) / v w$ with the flow rates rs and r'w, where $x s(t)$ represents the amount of radionuclide in the cell sorbed to solid material and $\mathrm{xw}(\mathrm{t})$ represents the amount of radionuclide in the cell dissolved in water. The functions $\mathrm{xs}(\mathrm{t})$ and $\mathrm{xw}(\mathrm{t})$ can be obtained from ($\mathrm{B}-28$) and ($\mathrm{B}-29$). The rate due to decay is equal to the product of the decay constant λ and the amount $x(t)$ of radionuclide present. Thus,

$$
\begin{equation*}
r_{1}=r \tag{B-30}
\end{equation*}
$$

and
$r_{2}=[x s(t) / m s][r s]+[x w(t) / v w][r w]+\lambda x(t)$

$$
\begin{aligned}
= & {\left[\frac{(k d)(m s)}{(k d)(i n s)+v w}\right][x(t)]\left[\frac{r s}{m s}\right] } \\
& +\left[1-\frac{(k d)(m s)}{(k d)(m s)+v w}\right][x(t)]\left[\frac{r w}{v w}\right]+\lambda x(t)
\end{aligned}
$$

[From ($\mathrm{B}-28$) and ($\mathrm{B}-29$)]

$$
\begin{equation*}
=\left[\frac{s(r s)}{m s}+\frac{(1-s)(r w)}{v w}+\lambda\right] x(t), \tag{B-31}
\end{equation*}
$$

where

$$
s=\frac{(k d)(\mathrm{ms})}{(k d)(\mathrm{ms})+v w} .
$$

Hence, the desired equation is given by
$d x(t) / d t=r_{1}-r_{2}$

$$
=r-\left[\frac{s(r s)}{m s}+\frac{(1-s)(r w)}{v w}+\lambda\right] x(t) \cdot(B-33)
$$

Also associated with the preceding equation is an initial value condition $x(0)=x_{0}$.

Thus, as in Section $B-2$, determination of $x(t)$ reduces to the solution of an initial value problem of the form

$$
\begin{equation*}
d x(t) / d t=r-a x(t), x(0)=x_{0} \tag{B-34}
\end{equation*}
$$

where

$$
\begin{equation*}
a=\frac{s(r s)}{m s}+\frac{(1-s)(r w)}{v w}+\lambda \tag{B-35}
\end{equation*}
$$

with s defined as in $(B-32)$. Various forms of the solution to the preceding initial value problem are given in $(B-7),(B-8)$ and $(B-9)$.

An example is now presented. This example is adapted from the description of a site used in a sensitivity analysis of the Environmental Transport Model (Hel80). Specificaily, the soil subzone of zone 1 with the radionuclide Cm 245 is considered. For this example,

$$
\begin{aligned}
\mathrm{r} & =1.0 \mathrm{mg} / \mathrm{yr}=2.5 \times 10^{18} \text { atoms } / \mathrm{yr} \\
\mathrm{rs} & =1.1 \times 10^{8} \mathrm{~kg} / \mathrm{yr} \\
\mathrm{rw} & =1.4 \times 10^{11} \mathrm{~L} / \mathrm{yr} \\
\lambda & =8.4 \times 10^{-5} \mathrm{yr}^{-1} \\
\mathrm{~ms} & =1.1 \times 10^{11} \mathrm{~kg} \\
\mathrm{vw} & =2.0 \times 10^{10} \mathrm{~L} \\
\mathrm{kd} & =1.0 \times 10^{3} \mathrm{~L} / \mathrm{kg}
\end{aligned}
$$

Thus,

$$
\begin{equation*}
s=\frac{\left(1.0 \times 10^{3}\right)\left(1.1 \times 10^{11}\right)}{\left(1.0 \times 10^{3}\right)\left(1.1 \times 10^{11}\right)+2.0 \times 10^{10}}=1.0 \times 10^{0} \tag{B-36}
\end{equation*}
$$

and

$$
\begin{align*}
a & =\frac{(1.0)\left(1.1 \times 10^{8}\right)}{1.1 \times 10^{11}}+\frac{(1.0-1.0)\left(1.4 \times 10^{11}\right)}{2.0 \times 10^{10}}+8.4 \times 10^{-5} \\
& =1.0 \times 10^{-3} \mathrm{yr}^{-1} . \tag{B-37}
\end{align*}
$$

Hence, the resultant differential equation is given by
$d x(t) / d t=r-a x(t)$

$$
\begin{equation*}
=2.5 \times 10^{18}-\left(1.0 \times 10^{-3}\right) \times(t) . \tag{B-38}
\end{equation*}
$$

As indicated in $(B-8)$, the solution to $(B-38)$ with the initial value condition $x(0)=0$ is given by

$$
\begin{align*}
& x(t)=\left[\left(2.5 \times 10^{18}\right) /\left(1.0 \times 10^{-3}\right)\right]\left[1-\exp -\left(1.0 \times 10^{-3}\right) t\right] \\
&=2.5 \times 10^{21}[1-\exp (-0.001 t)] \text { atoms. } \tag{B-39}\\
&(B-39)
\end{align*}
$$

Further, as indicated in $(B-9)$, the asymptotic solution sx to ($\mathrm{B}-38$) is given by

$$
\begin{equation*}
s x=\left(2.5 \times 10^{18}\right) /\left(1.0 \times 10^{-3}\right)=2.5 \times 10^{21} \text { atoms } \tag{B-40}
\end{equation*}
$$

Due to the smaller size of a, the asymptotic solution for ($B-38$) is not approached as rapidly as the asymptotic solution for $(B-11)$. The conversion factors $c_{a g}$ and $c_{a c}$ for $\mathrm{Cm}_{\mathrm{ac}} 45$ to convert from atoms to grams
and from atoms to curies are given in ($B-16$) and ($B-17$), respectively. When $\mathrm{c} a \mathrm{~g}$ is used, the expressions in ($B-39$) and ($B-40$) become

$$
\begin{align*}
x(t) & =\left\{2.5 \times 10^{21}[1-\exp (-0.001 t)]\right\}\left\{4.1 \times 10^{-22} \mathrm{gm} / \text { atom }\right\} \\
& =1.0-\exp (-0.001 t) \mathrm{gm} \tag{B-41}
\end{align*}
$$

and

$$
\begin{equation*}
s x=1.0 \mathrm{gm} . \tag{B-42}
\end{equation*}
$$

The function appearing in ($B-41$) is graphed in Figure $B-4$.

The relations appearing in ($B-28$) and ($B-29$) can be used to express $x(t)$ as the sum $x s(t)+x w(t)$, where $x s(t)$ is the amount of radionuclide in the compartinent at time t sorbed to solids and $x w(t)$ is the amount of cadionuclide in the compartment at tine t dissolved in water. Specifically,

$$
\begin{equation*}
x s(t)=(s) x(t) \tag{B-43}
\end{equation*}
$$

and

$$
x w(t)=(1.0-s) x(t),
$$

where s is defined in ($B-32$). In the example of this section with only two significant digits retained, s is calculated in $(B-36)$ to be 1.0 , and so $x s(t)=x(t)$ and $x w(t)=0$. However, if calculations are performed with four significant digits, then

$$
\begin{align*}
s & =\frac{\left(1.000 \times 10^{3}\right)\left(1.100 \times 10^{11}\right)}{\left(1.000 \times 10^{3}\right)\left(1.100 \times 10^{11}\right)+2.000 \times 10^{10}} \\
& =9.998 \times 10^{-1} . \tag{B-45}
\end{align*}
$$

Figure $B-4$. Solution to Differential Equation Representing Amount of Radionuclide in Single UniformlyMixed Cell With Partitioning. This figure represents the graph of the function given in ($B-41$), which is the solution to the differential equation in ($B-33$) with initial value $x(0)=0$ and units expressed in grains.

Clearly, most of the radionuclide will be associated with solid inaterial in the system.

The example of the preceding paragraph indicates that the solid and liquid components of a compartment may be of unequal importance in influencing radionuclide movement. The cause of this is best seen by examining the definition of a in ($B-35$) and the definition of s in ($B-32$). The coefficient a is the sum of three terms:

$$
\begin{equation*}
\frac{s(r s)}{\ln s}, \frac{(1-s)(r w)}{v w}, \lambda . \tag{B-46}
\end{equation*}
$$

If any one of these terins is much larger than the other two, then its value will dominate the behavior of the solution to $(B-34)$. Further, the behavior of the first two terms is influenced by the relationship between vw and the product ($k d$)(ms) in the definition of s. If ($k d$) (ms) is much larger than $v w$, then s is close to 1 and so the second term in ($B-46$) may be of reduced importance; if ($k d)(m s)$ is much smaller than vw , then s is close to 0 and so the first term in ($B-46$) may be of reduced importance. However, the relative size of the ratios rs/ins and rw/vw is also important. Therefore, as s is used as an intermediate quantity in the calculation of the rate constants in $(B-46)$, care must be taken in its determination to avoid the introduction of errors by inappropriate rounding.

B-4. Two Cells with Partitioning

The system of differential equations for two uniformly-mixed cells with radionuclide partitioning between liquid and solid phases is presented in this section. The situation under consideration is indicated in Figure $B-5$. A single radionuclide is considered and the partitioning of this radionuclide between the liquid and solid phases of each cell is described with a distribution coefficient. It is desired to determine the amounts $x_{1}(t)$ and $x_{2}(t)$ (units: atoms) of the radionuclide present in each cell at time t (units: yr). Three basic assumptions underlie the derivation of a system of differential equations defining $x_{1}(t)$ and $x_{2}(t)$. First, it is assumed that the radionuclide is uniformly distributed through each cell and is partitioned between the liquid and solid phases on the basis

Figure B-5. Flows Associated With Two Uniformly-Mixed Cells with Radionuclide Partitioning Between a Liquid and a Solid phase. Symbols are defined in Table B-1. With the assumption that ms_{i} and $\mathrm{v} \mathrm{w}_{\mathrm{i}}$ are constants, the following equalities must hold:

$$
\begin{aligned}
& r s_{1}+r s_{21}=r s_{10}+r s_{12}, r s_{2}+r s_{12}=r s_{20}+r s_{21}, \\
& r w_{1}+r w_{21}=r w_{10}+r w_{12}, r w_{2}+r w_{12}=r w_{20}+r w_{21} .
\end{aligned}
$$

Table B-1

Symbols Appearing in Figure $B-5$

```
    ri}= rate at which radionuclide enters cell i
        (units: atoms/yr)
    rsi}=rate at which solid material enters cell i from
        outside the system (units: kg/yr)
    rw
        the system (units: L/yr)
rsij = rate at which solid material flows from cell i
    to cell j, where j = 0 is used to designate a
    movement out of the system (units: kg/yr)
rwij}= rate at which water flows from cell i to cell j,
        where j = 0 is used to designate a movement out
        of the system (units: L/yr)
    \lambda = ~ d e c a y ~ c o n s t a n t ~ f o r ~ r a d i o n u c l i d e ~ ( u n i t s : ~ y r - 1 ) , ~
    kdi
        cell i (units: L/l.g)
    msi}=m\mathrm{ mass of solids in cell i (units: kg)
    vwi}=\mathrm{ volume of water in cell i (units: L)
xi}(t)=\mathrm{ amount of radionuclide in cell i (units: atoms)
```

of its distribution coefficient for that dell. A derivation for this partitioning is presented in the previous section. Second, it is assumed that the flow of water and solid material between cells or out of the system is the only mechanism involved in the physical transport of radionuclides. Third, it is assumed that all radionuclides associated with a phase, liquid or solid, remain with that phase in movements between cells or out of the system. In essence, each cell is treated as a uniformly mixed "vessel" in which the radionuclides are partitioned between the liquid and solid phase on the basis of distribution coefficients and such that radionuclides can be carried between these "vessels" or out of a "vessel" and out of the system only by movements of water or solid material.

Differential equations representing the rate of change of $x_{i}(t), i=1,2$, are now derived. Then, $x_{1}(t)$ and $x_{2}(t)$ can be obtained by solving the resultant vector differential equation. The derivation of the differential equation for each $x_{i}(t)$ is similar to that demonstrated in the preceding section for a single uniformly-mixed cell with partitioning. As there, $d x_{i}(t) / d t$ is equal to the difference between the rate $r_{i l}$ at which the radionuclide is entering the ith cell and the rate $r_{i 2}$ at which the radionuclide is leaving the ith cell. In the following, it is convenient to use $x s_{i}(t)$ and $x w_{i}(t)$ (units: atoms), $i=1,2$, to represent the amount of radionuclide in the solid and liquid phases, respectively, of celli.

The rate ${ }_{11}$ is the sum of three components: the rate at which the radionuclide enters cell 1 from outside the system, the rate at which the radionuclide is carried from cell 2 to cell 1 by the movement of solid material, and the rate at which the radionuclide is carcied from cell 2 to cell 1 by the movement of water. Thus,

$$
\begin{aligned}
r_{11} & =r_{1}+\left[\frac{x s_{2}(t)}{m s_{2}}\right]\left[r s_{21}\right]+\left[\frac{x w_{2}(t)}{v w_{2}}\right]\left[r w_{21}\right] \\
& =r_{1}+\left[s_{2}\right]\left[x_{2}(t)\right]\left[r s_{21} / m s_{2}\right]+\left[1-s_{2}\right]\left[x_{2}(t)\right]\left[r w_{21} / v w_{2}\right]
\end{aligned}
$$

[From ($\mathrm{B}-28$) and $\mathrm{B}-29)$]

$$
B-21
$$

$$
=r_{1}+\left[\frac{\left(s_{2}\right)\left(r s_{21}\right)}{\mathrm{rs}_{2}}+\frac{\left(1-s_{2}\right)\left(r w_{21}\right)}{v w_{2}}\right] x_{2}(t), \quad(B-47)
$$

where

$$
s_{2}=\frac{\left(k d_{2}\right)\left(\mathrm{ms}_{2}\right)}{\left(k d_{2}\right)\left(\mathrm{ms}_{2}\right)+v w_{2}}
$$

The rate r_{12} is also the sum of three components: the rate at which the radionuclide is carried out of cell 1 by the movement of solid material, the rate at which the radionuclide is carried out of cell 1 by the movement of water, and the rate at which the radionuclide is lost due to radioactive decay. Thus,

$$
\begin{aligned}
r_{12}= & {\left[\frac{x s_{1}(t)}{m s_{1}}\right]\left[r s_{10}+r s_{12}\right]+\left[\frac{x w_{1}(t)}{v w_{1}}\right]\left[r w_{10}+r w_{12}\right]+\lambda\left[x_{1}(t)\right] } \\
= & {\left[s_{1}\right]\left[x_{1}(t)\right]\left[\frac{r s_{10}+r s_{12}}{m s_{1}}\right]+\left[1-s_{1}\right]\left[x_{1}(t)\right]\left[\frac{r w_{10}+r w_{12}}{v w_{1}}\right] } \\
& +\lambda\left[x_{1}(t)\right] \\
& \quad\left[F r m_{1}(B-28) \text { and }(B-29)\right] \\
= & {\left[\frac{\left(s_{1}\right)\left(r s_{10}+r s_{12}\right)}{m s_{1}}+\frac{\left(1-s_{1}\right)\left(r w_{10}+r w_{12}\right)}{v w_{1}}+\lambda\right] x_{1}(t), }
\end{aligned}
$$

where

$$
\begin{equation*}
s_{1}=\frac{\left(k d_{1}\right)\left(m s_{1}\right)}{\left(k d_{1}\right)\left(m s_{1}\right)+v w_{1}} . \tag{B-50}
\end{equation*}
$$

The rates r_{21} and r_{22} are derived similarly to r_{11} and r_{12} and are given by
$r_{21}=r_{2}+\left[\frac{\left(s_{1}\right)\left(r s_{12}\right)}{m s_{1}}+\frac{\left(1-s_{1}\right)\left(r w_{12}\right)}{v w_{1}}\right] x_{1}(t)$
and
$r_{22}=\left[\frac{\left(s_{2}\right)\left(r s_{20}+r s_{21}\right)}{m s_{2}}+\frac{\left(1-s_{2}\right)\left(r w_{20}+r w_{21}\right)}{v w_{2}}+\lambda\right] x_{2}(t)$.

The desired equations can now be stated. Specifically,

$$
\begin{aligned}
& d x_{1}(t) / d t=r_{11}-r_{12}=r_{1}+a_{12} x_{2}(t)-a_{11} x_{1}(t) \\
& d x_{2}(t) / d t=r_{21}-r_{22}=r_{2}+a_{21} x_{1}(t)-a_{22} x_{2}(t)
\end{aligned}
$$

where
$a_{11}=\frac{\left(s_{1}\right)\left(r s_{10}+r s_{12}\right)}{m s_{1}}+\frac{\left(1-s_{1}\right)\left(r w_{10}+r w_{12}\right)}{v w_{1}}+\lambda$
$a_{12}=\frac{\left(s_{2}\right)\left(r s_{21}\right)}{m s_{2}}+\frac{\left(1-s_{2}\right)\left(r w_{21}\right)}{v w_{2}}$
$a_{21}=\frac{\left(s_{1}\right)\left(r s_{12}\right)}{m_{1}}+\frac{\left(1-s_{1}\right)\left(r w_{12}\right)}{v w_{1}}$
$a_{22}=\frac{\left(s_{2}\right)\left(r s_{20}+r s_{21}\right)}{m s_{2}}+\frac{\left(1-s_{2}\right)\left(r w_{20}+r w_{21}\right)}{v w_{2}}+\lambda$.
($B-57$)
The representation used for the system in ($B-53$) was selected to facilitate its reformulation as the following vector differential equation:

$$
\begin{equation*}
\frac{d}{d t} x(t)=R+A x(t), \tag{B-58}
\end{equation*}
$$

where,
$x(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right], R=\left[\begin{array}{l}r_{1} \\ r_{2}\end{array}\right]$, and $A=\left[\begin{array}{rl}-a_{11} & a_{12} \\ a_{21} & -a_{22}\end{array}\right]$.

Usually, such systems are easier to deal with when reformulated in this manner. Various methods exist to solve systems of the form appearing in ($\mathrm{B}-53$) and ($\mathrm{B}-58$). For example, differential operators, Laplace transforms or eigen-value techniques can be used when the system is relatively simple. Discussions of such techniques can be found in Boyce and Diprima (Boy69) and other introductory texts on differential equations. However, in most situations it is necessary to use sone type of numerical scheme to determine an approximate solution. Elementary discussions of such procedures can be found in Conti and de Boor (Co80) and other introductory texts on numerical analysis. Also, if A^{-1} exists, then there exists a unique vector $s x$ to which every solution of ($\mathrm{B}-58$) converges; the asymptotic solution $s x$ is given by

$$
\begin{equation*}
s x=-A^{-1} R . \tag{B-60}
\end{equation*}
$$

Treatments of matrix algebra are provided in Noble and Daniel (No77), Rice (Ri8l) and numerous other texts.

An example is now presented. This example is adapted from the description of a site used in a sensitivity analysis of the Environmental Transport Model (Hel80). Specifically, the soil and surface-water
subzones of zone 1 with the radionuclide Cm 245 are considered and assumed to correspond to cells 1 and 2, respectively. The values for the parameters indicated in Figure $\mathrm{B}-5$ are given in Table $\mathrm{B}-2$.

The vector differential equation appearing in $(B-57)$ is now derived for the example. First, from ($B-50$) and ($B-48$),
$s_{1}=\frac{\left(1.0 \times 10^{3}\right)\left(1.1 \times 10^{11}\right)}{\left(1.0 \times 10^{3}\right)\left(1.1 \times 10^{11}\right)+2.0 \times 10^{10}}=0.9998$
and
$s_{2}=\frac{\left(1.0 \times 10^{3}\right)\left(3.5 \times 10^{6}\right)}{\left(1.0 \times 10^{3}\right)\left(3.5 \times 10^{6}\right)+2.2 \times 10^{10}}=0.1373$.
($B-62$)
Now, from ($B-54$) through ($B-57$),

$$
a_{11}=\frac{(0.9998)\left(0+1.1 \times 10^{8}\right)}{1.1 \times 10^{11}}
$$

$$
+\frac{(1-0.9998)\left(9.3 \times 10^{10}+4.0 \times 10^{10}\right)}{2.0 \times 10^{10}}+8.4 \times 10^{-5}
$$

$$
=1.0 \times 10^{-3}+1.4 \times 10^{-3}+8.4 \times 10^{-5}
$$

$$
\begin{equation*}
=2.5 \times 10^{-3} \mathrm{yr}^{-1}, \tag{B-63}
\end{equation*}
$$

$a_{12}=\frac{(0.1373)\left(1.1 \times 10^{8}\right)}{3.5 \times 10^{6}}+\frac{(1-0.1373)\left(4.0 \times 10^{10}\right)}{2.2 \times 10^{10}}$

$$
=4.3 \times 10^{0}+1.6 \times 10^{0}
$$

$$
\begin{equation*}
=5.9 \mathrm{yr}^{-1}, \tag{B-64}
\end{equation*}
$$

Table B-2
Paraineter Values for an Example of a Two Cell System

	$\begin{aligned} & \text { Cell } 1 \\ & \text { (Soil) } \end{aligned}$	```Cell 2 (Surface Water)```
$r_{\text {i }}$	0	2.5×10^{18} atoms/yr
$r s_{i}$	0	$3.0 \times 10^{9} \mathrm{~kg} / \mathrm{yr}$
$r w_{i}$	$9.8 \times 10^{10} \mathrm{~L} / \mathrm{yr}$	$1.9 \times 10^{13} \mathrm{~L} / \mathrm{yr}$
$r s_{i 0}$	0	$3.0 \times 10^{9} \mathrm{~kg} / \mathrm{yr}$
$r s_{i j}, j \neq 0$	$1.1 \times 10^{8} \mathrm{~kg} / \mathrm{yr}$	$1.1 \times 10^{8} \mathrm{~kg} / \mathrm{yr}$
$r w_{i 0}$	$9.8 \times 10^{10} \mathrm{~L} / \mathrm{yr}$	$1.9 \times 10^{13} \mathrm{~L} / \mathrm{yr}$
$r w_{i j}, j \neq 0$	$4.0 \times 10^{10} \mathrm{~L} / \mathrm{yr}$	$4.0 \times 10^{10} \mathrm{~L} / \mathrm{yr}$
ms_{i}	$1.1 \times 10^{11} \mathrm{~kg}$	$3.5 \times 10^{6} \mathrm{~kg}$
$v w_{i}$	$2.0 \times 10^{10} \mathrm{~L}$	$2.2 \times 10^{10} \mathrm{~L}$
kd_{i}	$1.0 \times 10^{3} \mathrm{~L} / \mathrm{kg}$	$1.0 \times 10^{3} \mathrm{~L} / \mathrm{kg}$

$$
\begin{align*}
a_{21} & =\frac{(0.9998)\left(1.1 \times 10^{8}\right)}{1.1 \times 10^{11}}+\frac{(1-0.9998)\left(4.0 \times 10^{10}\right)}{2.0 \times 10^{10}} \\
& =1.0 \times 10^{-3}+4.0 \times 10^{-4} \\
& =1.4 \times 10^{-3} \mathrm{yr}^{-1} \tag{B-65}
\end{align*}
$$

and

$$
\begin{align*}
a_{22}= & \frac{(0.1373)\left(3.0 \times 10^{9}+1.1 \times 10^{8}\right)}{3.5 \times 10^{6}} \\
& +\frac{(1-0.1373)\left(1.9 \times 10^{13}+4.0 \times 10^{10}\right)}{2.2 \times 10^{10}} \\
& +8.4 \times 10^{-5} \\
= & 1.2 \times 10^{2}+7.5 \times 10^{2}+8.4 \times 10^{-5} \\
= & 8.7 \times 10^{2} \mathrm{yr}^{-1} . \tag{B-66}
\end{align*}
$$

Thus, the desired equation is
$\frac{d}{d t}\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]=\left[\begin{array}{lll}0 & & 18 \\ 2.5 & \times 10^{18}\end{array}\right]+\left[\begin{array}{ll}-2.5 \times 10^{-3} & 5.9 \times 10^{0} \\ 1.4 \times 10^{-3} & -8.7 \times 10^{2}\end{array}\right]\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$.

The preceding equation can be solved numerically to obtain $x_{1}(t)$ and $x_{2}(t)$. Further, the asymptotic solulion $\left[s x_{1} s x_{2}\right]^{\mathrm{T}}$ can be obtained from the product
$\left[\begin{array}{l}s x_{1} \\ s x_{2}\end{array}\right]=-\left[\begin{array}{lllll}-2.5 \times 10^{-3} & 5.9 & \times & 10^{0} \\ 1.4 \times 10^{-3} & -8.7 & \times & 10^{2}\end{array}\right]^{-1}\left[\begin{array}{lll}0 & & \\ 2.5 \times 10^{18}\end{array}\right]$.
B-27

The results of such calculations are shown in Figure $\mathrm{B}-6$; units are converted to grams as discussed in Section B-2.

B-5. Two Cells With Two Radionuclides and Partitioning
The system of differential equations for two uniformly-mixed cells with two radionuclides and radionuclide partitioning between liquid and solid phases is presented in this section. Physically, the situation under consideration is the same as that indicated in Figure $B-5$ with the exception that there are now two radionuclides. This necessitates the introduction of the following additional variables:

```
    rij}= rate at which radionuclide j enters cell i from
        outside the system (units: atoms/yr)
    \lambdaj = decay constant for radionuclide j (units: yr-1}\mathrm{ )
    kd
xij(t) = amount of radionuclide j in cell i
```

All other notation is the same as indicated in Figure $B-5$. It is assumed that the first radionuclide decays to the second.

Differential equations representing the rate of change of $x_{i j}(t), i, j=1,2$, are now obtained. The two equations representing the change of the first radionuclide are the same as the two equations derived in the preceding section. Thus, from ($B-53$) through ($\mathrm{B}-57$),

```
dx}\mp@subsup{x}{11}{}(t)/dt=\mp@subsup{r}{11}{}-\mp@subsup{a}{11}{}\mp@subsup{x}{11}{}(t)+\mp@subsup{a}{13}{}\mp@subsup{x}{21}{}(t
dx}\mp@subsup{x}{21}{}(t)/dt=\mp@subsup{r}{21}{}+\mp@subsup{a}{31}{}\mp@subsup{x}{11}{}(t)-\mp@subsup{a}{33}{}\mp@subsup{x}{21}{}(t)
```


Figure $B-6$. Solutions to System of Differential Equations Representing Amount of Radionuclide in Two Uniformly-Mixed Cells. This figure represents the solution to the equation in ($B-66$) with initial value $x(0)=0$ and units expressed in grams.

Figure $\mathrm{B}-6$ (Continued)
where

$$
\begin{aligned}
& a_{11}=\frac{\left(s_{11}\right)\left(r s_{10}+r s_{12}\right)}{m s_{1}}+\frac{\left(1-s_{11}\right)\left(r w_{10}+r w_{12}\right)}{v w_{1}}+\lambda_{1}, \\
& a_{13}=\frac{(B-70)}{m s_{21}}\left(r s_{21}\right) \\
& (B-71) \\
& a_{31}=\frac{\left(s_{11}\right)\left(r s_{12}\right)}{m s_{1}}+\frac{\left(1-s_{21}\right)\left(r w_{21}\right)}{v w_{2}}, \\
& (B-72) \\
& a_{33}=\frac{\left(s_{21}\right)\left(r s_{20}+r s_{21}\right)}{m s_{2}}+\frac{\left(r w_{12}\right)}{v w_{1}}, \\
& \text { with }
\end{aligned}
$$

$$
\begin{equation*}
s_{i l}=\frac{\left(k d_{i 1}\right)\left(m s_{i}\right)}{\left(k d_{i 1}\right)\left(m s_{i}\right)+v w_{i}} \tag{B-74}
\end{equation*}
$$

for $i=1,2$. The preceding choice of subscripts for the $a_{i j}$ is motivated by their use in a later matrix formulation of the problem.

The two equations representing the change of the second radionuclide are now given. These equations are very similar to the equations for the first radionuclide. The only difference is that is is necessary to include the increase in the second radionuclide due to the decay of the first radionuclide. Specifically,
$d x_{12} / d t=r_{12}+a_{21} x_{11}(t)-a_{22} x_{12}(t)+a_{24} x_{22}(t)$
$d x_{22} / d t=r_{21}+a_{42} x_{12}(t)+a_{43} x_{21}(t)-a_{44} x_{22}(t)$,
where

$$
\begin{equation*}
a_{21}=a_{43}=\lambda_{1}, \tag{B-76}
\end{equation*}
$$

$$
\begin{aligned}
& a_{22}=\frac{\left(s_{12}\right)\left(r s_{10}+r s_{12}\right)}{m s_{1}}+\frac{\left(1-s_{12}\right)\left(r w_{10}+r w_{12}\right)}{v w_{1}}+\lambda_{2,}, \\
& a_{24}=\frac{(\mathrm{s}-77)}{\left.m s_{22}\right)\left(r s_{21}\right)}+\frac{\left(1-s_{22}\right)\left(r w_{21}\right)}{v w_{2}}, \\
& a_{42}=\frac{(\mathrm{s}-78)}{\left.a_{12}\right)\left(r s_{12}\right)}{ }^{m s_{1}}+\frac{\left(1-s_{12}\right)\left(r w_{12}\right)}{v w_{1}} \\
& a_{44}=\frac{\left(s_{22}\right)\left(r s_{20}+r s_{21}\right)}{m s_{2}}+\frac{\left(1-s_{22}\right)\left(r w_{20}+r w_{21}\right)}{v w_{2}}+\lambda_{2}, \\
& (B-80)
\end{aligned}
$$

with

$$
\begin{equation*}
s_{i 2}=\frac{\left(k d_{i 2}\right)\left(\mathrm{ms}_{i}\right)}{\left(k d_{i 2}\right)\left(m s_{i}\right)+v w_{i}} \tag{B-81}
\end{equation*}
$$

for $i=1,2$.
The system of four equations indicated in ($B-6=$) and ($B-75$) can be formulated as a single vector differential equation. This yields
$\frac{d}{d t}\left[\begin{array}{l}x_{11}(t) \\ x_{12}(t) \\ x_{21}(t) \\ x_{22}(t)\end{array}\right]=\left[\begin{array}{l}r_{11} \\ r_{12} \\ r_{21} \\ r_{22}\end{array}\right]+\left[\begin{array}{clll}-a_{11} & 0 & a_{13} & 0 \\ a_{21} & -a_{22} & 0 & a_{24} \\ a_{31} & 0 & -a_{33} & 0 \\ 0 & a_{42} & a_{43} & -a_{44}\end{array}\right]\left[\begin{array}{l}x_{11}(t) \\ x_{12}(t) \\ x_{21}(t) \\ x_{22}(t)\end{array}\right]$.

More compactly, the preceding equation can be represented as

$$
\frac{d}{d t} x(t)=R+A x(t)
$$

The system used in the example of the preceding section is used again. This system is assumed to be receiving an inflow of Cm 245 and Pu241 into the surfacewater component. Specifically,

$$
\begin{aligned}
& r_{11}=r_{12}=0, r_{21}=2.5 \times 10^{18} \text { atoms } / \mathrm{yr} \\
& r_{22}=4.4 \times 10^{15} \text { atoms/yr. }
\end{aligned}
$$

Further,
$\lambda_{1}=8.4 \times 10^{-5} \mathrm{yr}^{-1}, \lambda_{2}=4.7 \times 10^{-2}, \mathrm{kd}_{\mathrm{ij}}=1.0 \times 10^{3}$.

Now, from the equalities in ($B-70$) through ($B-74$) and ($B-76$) through $(B-81)$, it follows that

$$
\begin{aligned}
& a_{11}=2.5 \times 10^{-3} \mathrm{yr}^{-1} \\
& a_{13}=5.9 \times 10^{0} \mathrm{yr}^{-1} \\
& a_{31}=1.4 \times 10^{-3} \mathrm{yr}^{-1} \\
& a_{33}=8.7 \times 10^{2} \mathrm{yr}^{-1} \\
& a_{21}=a_{43}=8.4 \times 10^{-5} \mathrm{yr}^{-1} \\
& a_{22}=4.9 \times 10^{-2} \mathrm{yr}^{-1} \\
& a_{24}=5.9 \times 10^{0} \mathrm{yr}^{-1} \\
& a_{42}=1.4 \times 10^{-3} \mathrm{yr}^{-1} \\
& a_{44}=8.7 \times 10^{2} \mathrm{yr}^{-1}
\end{aligned}
$$

Thus, for this example, the R and A in ($B-83$) become

$$
R=\left[\begin{array}{l}
0 \\
0 \\
2.5 \times 10^{18} \\
4.4 \times 10^{15}
\end{array}\right], A=\left[\begin{array}{lll}
-2.5 \times 10^{-3} & 0 & 5.9 \times 10^{0} \\
8.4 \times 10^{-5} & -4.9 \times 10^{-2} & 0 \\
1.4 \times 10^{-3} & 0 & -8.7 \times 10^{2} \\
0 & 1.4 \times 10^{-3} & 8.4 \times 10^{-5}
\end{array}-\frac{-8.7 \times 10^{2}}{0} 1 .\right.
$$

The solution and asymptotic solution of the resultant system are very similar to the solutions represented in Figure $\mathrm{B}-6$. In particular, the solutions for x_{11} and x_{12} are identical to the solutions graphed for x_{1} and x_{2} in Figure $B-6$. The solutions for x_{21} and x_{22} are sinilar to the solutions for x_{1} and x_{2} in Figure $B-6$ but are smaller by a factor of approximately 10^{-3}.

APPENDIX C

Special Topics

$\mathrm{C}-1$. Introduction

The purpose of this appendix is to present background on various topics which have arisen in the study of the Pathways Model. The following areas are considered: existence and uniqueness of solutions to the radionuclide transport equations which underlie the Pathways Model, numerical approximation of solutions to the transport equations, asymptotic behavior of solutions to the transport equations, sensitivity analysis of the Pathways Model, and use of the Pathways Model in the analysi, of a disposal site. The preceding topics are treated in Sections $\mathrm{C}-2, \mathrm{C}-3, \mathrm{C}-4, \mathrm{C}-5$ and $\mathrm{C}-6$, respectively. In these sections, there is no attempt at a complete treatment. Rather, the intent is to make the reader aware of the topic and to provide references where additional information can be obtained.
$\mathrm{C}-2$. Existence and Uniqueness of Solutions
The radionuclide transport equations which underlie the Pathways Model are of the form
$d q_{i} / d t=h_{i}+\sum_{\substack{j=1 \\ j \neq i}}^{n} k_{i j} q_{j}-\left(k_{0 i}+\sum_{\substack{j=1 \\ j \neq i}}^{n} k_{j i}\right) q_{i}$
for $i=1, \ldots, n$. If a system involving M zones and N radionuclides is under consideration, then $n=4 M N$. Further, if $1 \leq I \leq M, 1 \leq J \leq N, 1 \leq K \leq 4$, and

$$
\begin{equation*}
i=4 N(I-1)+4(J-1)+K, \tag{C-2}
\end{equation*}
$$

then the function q_{i} represents the amount of cadionuclide J in subzone K of zone I. The systen of linear equations indicated in ($C-1$) can be reformulated in vector notation as

$$
\begin{equation*}
d q / d t=h+k q, \tag{C-3}
\end{equation*}
$$

where q and h are column vectors of the q_{i} and h_{i}, respectively, and K is the inatrix defined by

Nomally, the matrix K appearing in (C-4) will be "banded" in the sense that all elements sufficiently far from the diagonal will be zero. The nature of this banded structure can be seen in the coefficient matrix associated with example 3 presented in Chapter 4.

Two fundanental questions can be posed with respect to the system appearing in ($\mathrm{C}-1$) and $(\mathrm{C}-3)$: First, does the system have a solution? Second, if the system has a solution, is this solution unique? The answers to the preceding questions are contained in the following theorem:

Theorem. There exists a unique solution to the initial value problem

$$
\begin{equation*}
\mathrm{dq} / \mathrm{dt}=\mathrm{h}+\mathrm{Kq}, \mathrm{q}(0)=\mathrm{q}_{0} . \tag{C-5}
\end{equation*}
$$

Further, this solution can be expressed as

$$
\begin{equation*}
q(t)=e^{K t} q_{0}+\int_{0}^{t} e^{K(t-s)} h d s . \tag{c-6}
\end{equation*}
$$

$$
C-2
$$

Although the theorem is stated for h and K constantvalued, existence and uniqueness for solutions of the initial value problem in ($\mathrm{C}-5$) can also be established when h and K are suitably restricted functions of t. However, the representation for the solution in this case will be more complicated than that given in ($C-6$). An investigation into some of the effects on the Pathways Model of making K a function of time is given in Brown and Helton (Bro81).

Systems of linear equations have been widely used and studied. Additional information can be found in numerous references. Included in these are the following: Atkins (At69), Funderlic and Heath (Fu71), Jacquez (Ja72), Rescigno and Segre (Re66), Rescigno and Beck (Re72), Sheppard (She62), and Shipley and Clark (Shi72). References with a more mathematical orientation include Casti (Cas77), Hirsch and Sinale (Hir74), and Michel and Miller (Mi77).

C-3. Numerical App:oximation of Solutions

An initial value problem for a vector differential equation can be expressed in the form

$$
\begin{equation*}
\mathrm{dq} / \mathrm{dt}=\mathrm{f}[t, \mathrm{q}(\mathrm{t})], \mathrm{q}(\mathrm{a})=\mathrm{q}_{0} . \tag{c-7}
\end{equation*}
$$

The existence and uniqueness of solutions for such problems can be established in considerable generality with suitable restrictions on f. Such a ult is given in the preceding section for lineas quations. There, the function f is defined by

$$
\begin{equation*}
f[t, q(t)]=h+K q(t) . \tag{C-8}
\end{equation*}
$$

Sometimes it is also possible to give a closed-form representation for the solution. Such a representation is given in $(C-6)$. However, such constructions generally do not provide a suitable way to obtain solutions to the original initial value problems.

In all but a few special cases, it is necessary to approximate numerically solutions to problems of the form indicated in $(c-7)$. Basically, the idea is to go through a sequence of calculations that will yield a
step-function which approximates the solution of ($\mathrm{C}-7$) within some specified degree of accuracy. The description of numerical methods for the solution of initialvalue probleins for ordinary differential equations rapidly becomes very complicated. No atterpt will be made to provide such a description here. Rather, the reader will be directed to various references where discussions of such methods can be found. There exist many introductory texts on numerical analysis which contain discussions of techniques for the solution of ordinary differential equations. Included in such texts are Conte and de Boor (Co80), Burden, Faires and Reynolds (Bu78), Dahlquist and Bjorck (Da74) and Isaacson and Keller (Is66). The preceding texts provide introductions to the solution of ordinary differential equations and also additional references. On a more advanced level, discussions and additional references can be obtained in Hencici (Hen62). Gear (Ge71), Stetter (St73), Lapidus and Seinfeld (La71), and Shampine and Gordon (Sha75).

The program PATHl uses a package of solution techniques developed for application to initial value problems which involve systems of stiff, banded differential equations. Documentation is available in several technical reports by Hindmarsh (Hin72, Hin74, Hin75). Stiff systems arise when the real parts of the eigenvalues of the Jacobian matrix for the system are negative and greatly different in size. For constant coefficient, linear systems, the Jacobian is the same as the coefficient matrix. The system of equations which arises in the Pathways Model is usually stiff. Background on stiff systems can be obtained from Enright, Hull and Lindberg (En75), Curtis (Cu78) and Robertson (Rob78).

C-4. Asymptotic Behavior of Solutions

For the system in ($\mathrm{C}-1$) and the equivalent matrix formulation in ($\mathrm{C}-3$), the expression "asymptotic behavior" is used in reference to the performance of $q(t)$ as $t \rightarrow \infty$. For such systems, it is possible to obtain various characterizations of asymptotic behavior. The paper by Thron (Th72) provides a good discussion of such behavior. The result which is most useful in characterizing asymptotic behavior for the present study will be stated. However, several definitions are needed first. A compartment system is said to be open if material can move out of the system. Conversely, a
system is said to be closed if it is not open; that is, a system is closed if material cannot move out of it. Finally, a system is said to be completely open if it is open and contains no closed subsystem.

Various physical systems are represented in Figures $2-1,4-1,5-1$ and $6-1$. When the Pathways Model is used to represent the movement of a decay chain through one of these physical systems, the resulting compartment system may or may not be completely open. If every member of the chain decays, then the resultant compartment system will be completely open in every case. This is because decay will generate a movenent out of every compartment. Further, even if there are nondecaying members in the chain, the resultint compartment system will be completely open for the physical systems indicated in Figures $2-1,4-1$ and $5-1$. This is because there is a physical flow out of every compartment. However, if the decay chain contains a nondecaying member, then the resultant compartment system will not be completely open for the physical system indicated in Figure 6-1. This results because there are no flows out of the compartinents associated with a nondecaying chain member in zone 5.

The desired result on asymptotic behavior is now stated; a proof can be obtained in Thron (Th72).

Theorem. For any completely open compartment system satisfying $(\mathrm{C}-3), \mathrm{K}^{-1}$ exists and a unique constantvalued solution is given by $q=-\mathrm{K}^{-1} \mathrm{~h}$. Further, (i) if q is any solution to $(C-3)$, then $\lim _{t \rightarrow \infty} q(t)=-K^{-1} h$ and (ii) if $h_{i} \geq 0$ for $i=1, \ldots, n$ and $p(0)=0$, then each component of $q(t)$ increases monotonically to the corresponding component of $-K^{-1} \mathrm{~h}$.

As indicated in the preceding theorem, the asymptotic solution to ($\mathrm{C}-3$) can be obtained by computing a inatrix inverse and performing a matrix miliplication. Proper choice of computational procedures for the performance of the indicated matrix operations can significantly reduce the amount of work required. For example, normal procedure is to determine the product $\mathrm{K}^{-1} \mathrm{~h}$ without fully determining K^{-1}. Such considerations are discussed in Rice (Ri81) and other texts on numerical linear algebra. LINPACK (DO79) is a collection of high-quality numerical software which can be used for matrix computations. This package has been used to
perforin calculations of the type indicated in this section for the Pathways Model.

Additional discussion of the asymptotic behavior of the Pathways Model can be found in Helton, Brown and Iman (Hel8la).

C-5. Sensitivity Analysis
Due to the large number of variables which can be supplied to the Pathways Model as input and the great amount oz uncertainty which often exists with respect to the proper selection of their values, it is important to be able to determine the effects of variables and their assumed ranges and distritutions on the predictions made by the model. For such determinations, an approach to sensitivity analysis based on regression analysis has been found to be successful.

The overall approach is described in Iman, Helton and Campbell (Im78). Basically, the idea is (a) to start with a set of input variables with selected ranges and distributions, (b) to select model inputs from these variables according to their ranges and distributions, (c) to generate model output with the selected inputs, and (d) to assess the relationship between model input and output by stepwise regression. Special techniques found to be useful include (a) Latin hypercube sampling to select values of input variables (Mc79, Im80b), (b) the rank transform to reduce the effects of nonlinearity in the relationships between model input and output (Im79, Im80a), and (c) the PRESS (predicted error sum of squares) criterion to indicate overfit during regression analysis (Al71).

Application of the preceding techniques to the Pathways Model can be found in Helton and Iman (Hel80) and Helton, Brown and Iman (Hel8la).

C-6. Analysis of a Disposal Site
This section briefly indicates certain considerations which may arise in the use of the Pathways Model in the analysis of a disposal site. The possible nature of such an analysis is indicated in two papers by Cranwell and Helton (cr81c, cr81d). The performance of an analysis of a hypothetical waste repository constitutes
one part of the risk methodology project from which the Pathways Model is derived. Background on this hypothetical site and its analysis can be obtained from Campbell et al. (Cam78) and Cranwell et al. (Cr8la, Cr8lb). As review of the cited documents will indicate, the performance of such an analysis is a very involved process. First, it is necessary to consider a number of different potential occurrences (i.e., scenarios) at the repository. Second, much of the data needed to represent these occurrences is imprecisely known and often is described with ranges and distributions rather than specific values. Third, the analysis requires several different models and resultant data transfers between these models.

What all this leads to is that it is unlikely that the Pathways Model will be suitable for use in a repository analysis exactly as it is programmed and presented. What is much more likely is that various modifications will be necessary for its proper incorporation into an overall site analysis. This is precisely what was done for the disposal site analysis reported in Cranwell et al. (Cr8la).

Certain aspects of this analysis which involved the Pathways Model are now indicated. The Pathways Model operated between a model which predicted radionuclide discharge to the surface environment and a model which predicted human exposure to these radionuclides and resultant health effects. Thus, it was necessary to modify the Pathways Model to receive input generated by the preceding groundwater transport model and to generate input for the following dosimetry and health effects model. Implementing these transfers was complicated by the fact that the nature of the surface discharges and the resultant pathways calculations were dependent on the particular scenario under consideration. Further, the groundwater transport model was generating discharge rates to the surface environment which were step-functions. To handle such input rates to the surface environment, it was necessary to modify the manner in which the Pathways Model solved its underlying radionuclide transport equations. In particular, it was found to be more efficient to calculate a sequence of asymptotic solutions as indicated in Section C-4 than to use a differential equation solver to generate a time-dependent solution. Next, as many of the inputs to the Pathways Model were being varied, it was necessary to add a procedure for altering these values.

Also, to reduce the amount of information passed from the Pathways Model to the dosimetry and health effects model, the part of the Pathways Model which performs ingestion and inhalation calculations was moved to this latter model. Finally, once the preceding modifications had been implemented, all unused parts of PATHl were deleted to reduce the amount of computer storage required to run the program. The result of all this modifying and paring was a computer program for the specific analysis being performed.

Although another analysis may not require the alterations indicated in the preceding paragraph, it is anticipated that the use of the Pathways Model in conjunction with other models to represent some complex system will normally require a certain amount of modification and adaptation.

References

Al71 Allen, D. M., The Prediction Sum of Squares as a Criterion for Selecting Predictor Variables, Report No. 23 (Lexington, KY: Department of Statistics, University of Kentucky, 1971).

Ap77 Appo, J. A., J. Lucas, A. K. Mathur and L. Tsao, Theoretical and Experimental Evaluation of Waste Transport in Selected Rocks: 1977 Annual Report of LBL Contract No. 45901AK, LBL-7022, (Berkeley, CA: Lawrence Berkeley Laboratory, 1977).

At69 Atkins, G. L., Multicompartment Models for Biological Systems (London: Methuen, 1969).

Ba66 Baker, J. H., W. A. Beetem and J. S. Wahlberg, "Adsorption Equilibria Between Earth Materials and Radionuclides," Environment of the Cape Thompson Region, Alaska, eds N. J. Wilimovsky and J. N. Wolfe (Washington: United States Atomic Energy Commission, 1966).

Bor76 Borg, I. Y., R. Stone, H. B. Levy and L. D. Ramspott, Information Pertinent to the Migration of Radionuclides in Groundwater at the Nevada Test Site, Part 1: Review and Analysis of Existing Information, UCRL-52078 (Livermore, CA: Lawrence Livermore Laboratory, 1976).

Boy69 Boyce, W. E. and R. C. DiPrima, Elementary Differential Equations (New York: Wiley, 1969).

Bra78 Braun, M., Differential Equations and Their Applications (New York: Springer-Verlag, 1978).

Bro8l Brown, J. B. and J. C. Helton, Risk Methodology for Geologic Disposal of Radioactive Waste: Effects of Variable Hydrologic Patterns on the Environmental Transport Model, NUREG/CR-1636 (Vol. 4), SAND79-1909 (Albuquerque, NM: Sandia National Laboratories, 1981)

Bu78 Burden, R. L., J. D. Faires and A. C. Reynolds, Numerical Analysis (Boston: Prindle, Weber and Schmidt, 1978).

Cam78 Campbell, J. E., R. T. Dillon, M. S. Tierney, H. T. Davis, P. E. McGrath, F. J. Pearson, H. R. Shaw, J. C. Helton and F. A. Donath, Risk Methodology for Geologic Disposal of Radioactive Waste: Interim Report, NUREG/CR-0458, SAND78-0029 (Albuquerque, $N M$: Sandia Laboratories, 1978).

Cas77 Casti, J. L., Dynamical Systems and Their Applications (New York: Academic Press, 1977).

Co80 Conte, S. D. and C. de Boor, Elementary Numerical Analysis (New York: McGraw-Hill, 1980).

Cr8la Cranwell, R. M. et al., Risk Methodology for Geologic Disposal of Radioactive Waste: Final Report, NUREG/CR-2452, SAND81-2573 (Albuquerque, NM: Sandia National Laboratories, 1981). To be pubilsned vecember 1982.

Cr8lb Cranwell, R. M. et al., Risk Methodology for Geologic Disposal of Radioactive Waste: Scenario Development, NUREG/CR-1667, SAND80-1429, (Albuquerque, NM: Sandia National Laboratories, 1982). To be published December 1982.
Cr81c Cranwell, R. M. and J. C. Helton, "Uncertainty Analysis Associated with Radioactive Waste Disposal: A Discussion Paper," Proceedings of the 1980 DOE Statistical Symposium, 1981, pp. 186-196.

Cr81d Cranwell, R. M. and J. C. Helton, "Uncertainty Analysis for Geologic Disposal of Radioactive Waste," Uncertainties Associated with the Regulation of the Geologic Disposal of High-Level Radioactive Waste, SAND82-0596 (Albuquerque, NM: Sandia National Laboratories, 1982).

Cu78 Curtis, A. R., "Solution of Large, Stiff Initial Value Problems -- The State-of-the-Art," Numerical Software -- Needs and Availability, ed D. Jacobs, 1978, pp. 257-278.

Da74 Dahlquist, G. and A. Bjorck, Numerical Methods (Englewood Cliffs, NJ: Prentice Hall, 1974).

Do79 Dongarra, J. J., J. R. Bunch, C. B. Moler and G. W. Stewart, LINPACK User's Guide (Philadelphia: Society for Industrial and Applied Mathematics, 1979).

En75 Enright, W. H., T. E. Hull and B. Lindberg, "Comparing Nunerical Methods for Stiff Ordinary Differential Equations," BIT 15, 1975, Pp. 10-48.

Fu71 Funderlic, F. E. and H. T. Heath, Linear Compartment Analysis of Ecosystems, ORN $\overline{\mathrm{L}-\text { IBP- }} 71-4$ (Oak Ridge, TN: Oak Ridge National Laboratory, 1971).

Ge71 Gear, C. W., Numerical Initial Values in ordinary Differential Equations (Englewood Cliffs, NJ: prentice-Hall, 1971).

Hel80 Helton, J. C. and R. L. Iman, Risk Methodology for Geologic Disposal of Radioactive Waste: Sensitivity Analysis of the Environmental Transport Model, NUREG/CR-1636 (Vol. 2), SAND79-1393 (Albuquerque, NM: Sandia National Laboratories, 1980).

Hel81a Helton, J. C., J. B. Brown and R. L. Iman, Risk Methodology for Geologic Disposal of Radioactive Waste: Asymptotic Properties of the Environmental Transport Model, NUREG/CR-1636 (Vol. 3), SAND79-1908 (Albuquerque, $N M:$ Sandia National Laboratories, 1981).

Hel81b Helton, J. C. and P. C. Kaestner, Risk Methodology for Geologic Disposal of Radioactive Waste: Model Description and User Manual for Pathways Model, NUREG/CR-1636 (VO1. i), SAND78-1711 (Albuquerque, NM: Sandia National Laboratories, 1981).

Hen62 Henrici, P. K., Discrete Variable Methods for Ordinary Differential Equations (New York: Wiley, 1962).

Hin72 Hindmarsh, A. C., Linear Multistep Methods for Ordinary Differential Equations: Method Formulations, Stability, and the Methods of Nordsieck and Gear, UCRL-51186 (Livermore, CA: Lawrence Livermore Laboratory, 1972).

Hin74 Hindmarsh, A. C., GEAR... Ordinary Differential Equation System Solver, UCID-30001, Rev. 3 (Livermore, CA: Lawrence Livermore Laboratory, 1974).

Hin75 Hindmarsh, A. C., GEARB... Solution of Ordinary Differential Equations Having Banded Jacobian, UCID30059, Rev. 1 (Livermore, CA: Lawrence Livermore Laboratory, 1975).

Hin74 Hirsch, M. W. and S. Smale, Differential Equations, Dynamical Systems, and Linear Algebra (New York: Academic Press, 1974).

Im78 Iman, R. L., J. C. Helton and J. E. Campbell, Risk Methodology for Geologic Disposal of Radioactive Waste: Sensitivity Analysis Techniques, NUREG/CR-0394, SAND78-0912 (Albuquerque, NM: Sandia National Laboratories, 1978).

Im79 Iman, R. L. and W. J. Conover, "The Use of the Rank Transform in Regression," Technometrics 21, 1979, pp. 499-509.

Im80a Iman, R. L., J. M. Davenport, E. L. Frost and M. Shortencarrier, Stepwise Regression with PRESS and Rank Regression (Program User's Guide), SAND791472, (Albuquerque, NM: Sandia National Laboratories, 1980).

Im80b Iman, R. L., J. M. Davenport and D. K. Ziegler, $\frac{\text { Latin Hypercube Sampling (Program User's Guide) }}{\text { SAND79-1473 (Albuquerque, NM: }}$ Sandia National SAND79-1473 (Albuquerque, NM: Sandia National Laboratories, 1980).

Is66 Isaacson, E. and H. B. Keller, Analysis of Numerical Methods (New York: Wiley, 1966).

Ja72 Jacquez, J. A., Compartmental Analysis in Biology and Medicine (New York: American Elsevier, 1972).

La7l Lapidus, L. and J. H. Seinfeld, Numerical Solution of Ordinary Differential Equations (New York: Academic Press, 1971).

Mc79 Mckay, M. D., W. J. Conover and R. J. Beckman, "A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code," Technometrics 21, 1979, pp. 239-245.

Mi77 Michel, A. N. and R. K. Miller, Qualitative Analysis of Large Scale Dynamical Systems (New York: Academic Press, 1977).

No77 Noble, B. and J. W. Daniel, Applied Linear Algebra (Englewood Cliffs, NJ: Prentice-Hall, 1977).

Re66 Rescigno, A. and G. Segre, Drug and Tracer Kinetics (Boston: Ginn Blasisdell, 1966).

Re72 Rescigno, A. and J. S. Beick, "Compartments," Foundations of Mathematical Biology, ed R. Rosen (New York: Academic Press, 1972), pp. 255-322.

Ri81 Rice, J. R., Matrix Computations and Mathematical Software (New York: McGraw-Hill, 1981).

Rob78 Robertson, H. H., "Some Factors Affecting the Ffficiency of Stiff Integration Routines," Numerical Software -- Needs and Availability, ed D. Jacobs (New York: Academic Press, 1973), pp. 279-301.

Ros 74 Ross, S. L., Differential Equations (New York: Wiley, 1974).

Sha 75 Shampine, L. F. and M. K. Gordon, Computer Solution of Ordinary Differential Equations -- The Initial Value Problem (San Francisco: Freeman, 1975).

She62 Sheppard, C. W., Basic Principles of the Tracer Method (New York: Wiley, 1962).

Shi 72 Shipley, R. A. and R. E. Clark, Tracer Methods for In Vivo Kinetics (New York: Academic Press, 1972).

Si72 Simmons, G. F., Differential Equations With Applications and Historical Notes (New York: McGrawHill, 1972).

St 73 Stetter, H. J., Analysis of Discretization Methods for Ordinary Differential Equations (Berlin: Springer-Verlag, 1973).

Th72 Thron, C. D., "Structure and Kinetic Behavior of Linear Multicompartment Systems," Bull. Math. Biophys. 34, 1972, pp. 277-291.

PATH1 Self-Teaching Curriculum: Example Problems for Pathways-to-Man Model

Prepared by J. C. Helton, N. C. Finley

Sandia National Laboratories

Prepared for
U.S. Nuclear Regulatory

Commission

Availability of Reference Materials Cited in NRC Publications

Most documents citec in NRC publications will be available from one of the following sources:

1. The NRC Public Document Room, 1717 H Street, N.W. Washington, DC 20555
2. The NRC/GPO Sales Program, U.S. Nuclear Regulatory Commission, Washington, DC 20555
3. The National Technical Information Service, Springfield, VA 22161

Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC Office of Inspection and Enforcement bulletins, circulars, information notices, inspection and investigation notices; Licensee Event Reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the NRC/GPO Sales Program: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, and NRC booklets and brochures. Also available are Regulatory Guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service include NUREG series reports and technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special tecinical libraries include all open literature items, such as books, journal and periodical articles, and transactions. Federal Register notices, federal and state legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies cf NRC draft reports are available free upon written request to the Division of Technical Information and Document Control, U.S. Nuclear Regulatory Cornmission, Washington, DC 20555.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, 7920 Norfolk Avenue, Bethesda, Maryland, and are available there for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018.

[^0]: ${ }^{a}$ Data card number in Table 2-1.
 ${ }^{b}$ Location of additional discussion in user manual (Hel81b).

[^1]: $a_{\text {Data }}$ Card number in Table 2-1.
 bLocation of additional discussion in user manual (Hel81b).

[^2]: a Only cards 36 through 70 are discussed. Cards 1 through 35 and cards 71 through 85 are the same as cards 1 through 35 and cards 51 through 65 , respectively, discussed in Table 2-2.
 bata card number in Table 3-1.
 ${ }^{\mathrm{C}}$ Location of additional discussion in user manual (Hel81b).

[^3]: adata card number in Table 4-1.
 bLocation of additional discussion in user manual (Hel81b).

[^4]: a Data card number in Table 5-1.
 bLocation of additional discussion in user manual (Hel81b).

[^5]: a Data card number in Table 5-1.
 ${ }^{b}$ Location of additional discussion in user manual (Hel81b).

[^6]: a Data card number in Table 6-1.
 bLocation of additional discussion in user manual (Fel81b).

[^7]: adata card number in Table 6-1.
 ${ }^{b}$ Location of additional discussion in user manual (Hel81b).

