Beigian Approach to Steam Generator Tube Plugging for Primary Water Stress Corrosion Cracking

Prepared by
Beigatom
Brussels, Beigium

REPORT SUMMARY

SUBJECT
Steam generator reliability
roples

AUDIENCE
Design engineers / A\&D staff

Belgian Approach to Steam Generator Tube Plugging for Primary Water Stress Corrosion Cracking

Belgian stэam generators operate with numerous through-wall cracks in the expansion transition region of the tubesheet without impairing plant reliability or safety. A crack-length-based plugging limit coupled with advanced eddy-current inspection techniques to determine actual crack lengths makes this possible.

BACKGRCUND

OBJECTIVES

For a number of years, three Belgian nuclear power plants have experienced primary water stress corrosion cracking (PWSCC) in thio expansion transition area on a very large number of tubes. One of the plants has partdepth rolled fubes, and others have full-depth expansion. The racks in these tubes are predominantly through-wall, and though they have posed neither a salety nor a reliability problem, a unique management approach has been needed to avoid the excessive plugging required with a depthbased plugging limit

1o document the Beigian experience with PWSCC in the tubesheet expanson zone; to present the safety philosophy and underlying principles of a crack-length plugging limit.

The authors, scientific and technical personnel representing the Belgian utilities, gathered historical information about the Belgian plants, including in-service leak rate data. They examined the outage leak measurement methods in use and made a statistical evaluation of the number and length of cracks, determined by rotating pancake eddy-current coil examination. They also analyzed the development of plugging limits and supporting bases. Two reports were prepared: EPRI report NP-6626-SD, a detailed compilation of the resuits, and NP.6626-M, a brief summary.

RESULTS Leakage experienced with expansion transition PWSCC in three plants-the Doel-2, Doel-3, and Tinange-2-and pulled-tube examinations from Doel-2 and -3 correlate with eddy-current indications associated with these cracks. Calculation procedures used in Belgium, different from NRC Fiegulatory Guide 1.121 (draft), determine critical crack sizes for axial and circumferential defects. A multifrequency eddy-current method using a rotating pancake
coil (RPC) allows 100% inspection of the affected zone without impairing the unif-outage schedule. Derived plugging limits, designed to account for eddy-current inaccuracy and crack growth during the next cycle, allow through-wall axial defects up to 11 to 14 mm long or circumferential defects up to 15 to 18 mm , depending on tube diameter.

EPRI PERSPECTIVE All steam generator tubes are expanded either partially or over the full thickness of the tubesheet. Many early expansions were performed by mechanical roliers; others have been accomplished by explosive and hydraulic methods. Mechanical roller expansion methods develop high residual stresses that can increase the chance of PWSCC in the roll transition, particulariy in certain types of stearn generators. Many of the expansion zone cracks are short (6 mm) and axial and have very low leak rates. The current NRC regulatory position allows through-wall cracks if they occur during operation and leak at less than 0.35 gpm (72 l/h). However, NRC requires that defects of greater than 40% of the wall thickness, if detected during an inspection, be repaired or plugged before restarting.

The Belgian approach to PWSCC in the roll transition zone is based on the rationale that short axial through-wall cracks are not a safely or operational problem, especially it they exist deep within the tubesheet. The Belgians have developed a length-based plugging limit, rather t an a depth-based limit, to guard against rupture under normal and accidental conditions and have developed an advanced eddy-current inspection method that allows sizing of cracks by length. This report documents this approach, one that may someday find application domestically.

PROJECT RPS404.14
E.PRI Project Manager: Allan R. Mcliree
Nuclear Power Division
Contractor: Betgatom

For further information on EPAI research programs, call EPRI Technical Information Specialists (415) 855-2411.

Belgian Approach to Steam Generator Tube Plugging for Primary Water Stress Corrosion Cracking

N: 6626-SD
Research Project S404-14
Final Report, March 1990
Prepared by
BELGATOM
rue de la Lor. 75
i3 21040 Brussels, Belgium
Princinal investigators
G. Frederick
TRACTEBEL.
P Hernalsteen
D. Dobbeni
LABORELEC

Prepared for

Electric Power Research institute

3412 Hillview Avenue
Palo Alto. California 94304
EPRI Project Manager
A. A. Mcilree

Steam Generator Reilability Program
Nuclear Power Division

Price: $\$ 10,000.00$

NOTICE

[^0]Encmudin,
Hincrarum

ABSTRACT

```
For a number of years, three Belgian nuelear power plants have
experienced primary जater क&ress corrosign cFacking (F#Sc世) In the
expansion transition area on a very large number of tubes. One of the
ptanta hat papt degth wolled tibea end the atheme have fatt denth
expansion. The report presents a revies of the leakage experience
```



```
Pouer plants and illustrates the type of craoking observed on pulled
tubats from Doel 2 and Doel 3
```

The Belgian units operate with numerous through wall cracks without tmpatrint the safety and theratiaktitty of the ofante Thte ise achieved by a safety approach based on the extensive use of advanced
 new plugging $1 i m i t s$ These 1 imito are derived from a realistic
 substantial experimental program.

The report details tha establishment of piugging limita for both axial
 Folled tubes. The LABORELEC eddy curfent rotating probe (RPC)

Section Page
1 EHMMARY 1-1
2 PLANT EXYERIENCE 2-1
2.1 Introduction $2-1$
2. 2. Leakage Experience 2-1
Case 1 - Tube R14C72 from Doe1 2 2-4
Case ? Tube R15C29 From Doel 3 ? -5
Case 3. Tube R23C23 from Doel 3 2-6
3 SAPETY PHILOSOPHY 3-1
a. Historical Raekground 7-1
3.2. Crack Size Masurement Principles 3-3
3. 3. Critical Sizes Caleuiation Ppinciples 3-5
3. pluggting eritorta Primetples $3-$?
3. 5 Influence of Crack Location on Plugging Requirements 3-8
3. 6. Consequences of Proposed Approach 3-9
4 CRITICAL SIZE CAL:ULATION 4-1
4 i intendanctines $4=1$
4. 2. Calculabion of Critical Size of Axial Cracks 4-1
4. 3. Caleulation of Critical Size of Circumferential 4-3
crack.
4 4. Qualification Bases 4-5
4. Sample Calculation of Critical Sizes $4=$?
Actual Mechanioal Properties 4-8
Calculations 4-9
Discussion of Results 4-1 n
4. 6 Entab) ishment of Tube Plugging Criteria 4-11
Critical Lengths 4-11
Applicable Margins $4-12$
Allowable lenathe 4-14
Plugging Criteria 4~16
Suction Page
5 CRACK SIZTNG METHODOLOGY $5-1$
5 I Tnfrodantion $5-1$
5．2．Study of the Accuravy and Reproducibility of ＊$=3$Fック Notchem
Program $5-3$
Detectabilaty and Dynamic Rance $5-4$
Accuracy and heproducibility $5-4$
5 3 St日ty af tht A－turget and Neptoducibiliky of 5－6
Actual eracks
Provram s－6
Deteetability and Dynamiv Range $5=7$
 $5-8$
5．4．Conclugi ons e－9
6 ECT TNSPECTION TRCHNTQUFS $6-1$
6．1．Introduction $6=1$
6．2 System Philosophy 6－1
63．Data Acquisitian $6-2$
Installation 6－3
Milnteñクटe $f=3$
Measurement $6-4$
6．4．Jata Analymis $6-5$
6．5．Evaluation of Defect Oecurence and Growth． $6=6$
and Analysif \}arlfldation
6．6．Field Experience $6-7$
6．＂Compltance जोth EfR1 Guldelines $6-a$
6．A．Coneluston $6-9$
SG INSPECTION FIELD DATA $7-1$
7 －FITPDEE 7－4
7．2．Leak Rate Evaluation Methods $7-1$
m ？Loak Rate Ru大luntionfPlant Htetory $7=3$
7.4 In－service Leak Rate Data $7-4$
7 5 Giftagn Ledk 0 ata and channel Head hadiation hevel 7－9
\％．6．Etatistics of Number of Cracked Tubes $7-12$
＝＝statintict of Crank faramotert $+-16$
7 月 CuFनelatom of RPC with fotabin Coil ECT Data $7-22$
7. 9. Corfelation of RPC BCT Data with Helium Leak Test 7-24 Results

APPENDTX A:

Section 1

SUMMARV

STATEMENT OF THY PD HEM

In some belgian plarts, oracks at roll transitions caused by primary water strase ofrposton eraoking (P WSCC) have been deteeted in large numbers of tubes, ranging up to aver 90 of of the tubes in one Doel. 2 steam genemitor, Doel 2 has part depth rolled tubes while Tihange 2 ताओ ीoel + have full depth rolled tubes Many of the pell kpanattion cracke are through-wall. However, these plants have been able to continue to operate for the following reasena

The leak rate associated with the PHSCC eracks has been vecy low. This is due to the fact that most of the cracks are short ixial eracks

For Doel 2 with part-depth rolled tubes, the roll transition region eracks do not present a safety problem since a postulated rupture of the tube deep in the tubesheet would not result in a large leak or allow the tube to whis and cause additional tube failures

For plants with full-depth rolled tubes, the presence of through wall P4SCG eracks has been justified to regulatory authorities. Tube plugging or Bleeving are not required as long an the eracks do not exceed an estabiluhed length threshold value

OAJECTIVF

The objective of this report is to document beigian plant experience
 axpansion zone, and to present the Belgian approach to ateam generator tube plugging. The report presents a review of the leakage experience
 Tibange 2 units and illustratea the type of eracking observed on pulled tubes from Doel 2 and 3, Tre ceport also provides eorresponiting Addy etureent indieatican asseciated with these oracks The ovarall safety phitosophy is detailed and the underlying principles of the

Belgian approach are illustrated. Deviations from the NRC Regulatory Guide 1.121 (draft) are identified and the rational presented. Both axial and circumferential cracks are addressed to show the consistency of the crack length approach.

The calculational procedures used to determine critical crack sizes are outilned both for axial and circumferential cracks and illustrated by sample calculations. The corresponding calculation bases are explained and finally the actual plugging limits are derived from the critical sizes. This safety approach requires the length of the cracks in the steam generators to be determined. Therefore, the f.ABORELEC multifrequency eddy current method, using a rotating pancake coil (RPC) for the PHSCC siaing, is described
The qualification results for longitudinal SCC are presented and fully disousaed in terma of accuracy and reproducifility. Artifidial defects (EDM notches) have been used for the study of the reproducibility of the position and the length measurements, while actual sCC cracks obtalned from pulled tubes of Doel 2 and Doel 3 and surrogate material (sensitiaed A120y 600) have been used to demonstrate the length measurement accuracy. The report further shows how the present LABORELEC technology allows 100 \& RPC inspection of the tube roll tranaitions (or any piedefined length within the tubesheet area) without impairing the unit outage schedule. This can only be achioved by using the most recent hardware and software developments such as applied to the Tihange 2 and Doel 3 inspections (100 \% tubes inspected in $2 \frac{1}{3}$ days per SG

Finally the oumpatibility of the RPC inspection method with present NRC requirements and EPRI NDE Guidelines is demonstrated and discussed
The safe and reliable operation of the Belgian steam generators, deapite the existence of thousands of through-wall eracks, is demonstrated through
historical background
in-sarvice leak rate data
outage leak data (helium test and secondary side pressure test)

RPC statistical data (distribution of erack lengths, number of cracks per transverse section,

| 1.25 |||14.4.1.6

Section 2

PLANT EXPERIENCE

2.1. INTRODUCTION

For a number of years, three belgian nuclear power plants have experienced primary water stress corrosion vracking (phscc) inthe expansion transition area. Some cracks have resulted in leakage during operation. The characteristics of the roll transition area for these plants are given in Figure $2-1$. The corresponding piant and tube data are shown in Table 2-1, together with the type of corrective action taken. Eddy current inspection techniques have been developed to detect and characterize the defects. Tubes have been pulled in order to determine the type of cis cing. Correlation between observed cracking on pulled tubes fo xh Doel 2 and 3 and eddy current. indications is presented

2. 2. LEAKAGE EXPERIE'CE

In Belgium, the first occurrence of PWSCC and associated leakage goes back to 1977 at the Doel 2 power plant (1st criticality December 1975). The defects were located in the upper roll transition of the expansion zone made by two step rolling. Since that time, the corrosion has progressed quiokly and to dete, it has reached up to 90 percent of the tubas in one steam generator festimated figure on basis of "bobbin coll" ECT). Several shutdowns for excessive leak rates have occurred since the plant start up but none of them was related to roll transition cracking

In 1983, PHSCC was discovered in two other units (Doel 3, 1st criticality August 1982 and Tihange 2, 1st criticality Ootober 1982) during their first cycle of operation. In these cases, the cracking was located in the full depth rolled region and in the transition
between norinal and kiss roll expansion areas The rapid erack initiation and propagation was attributed to tubes being rolled into over-sized holes and cannot be considered as representative of the entire tube bundle.

Section 7 gives a full history of the roll fransition leaks for the three units tt should be noted that in a few cases only the leak rates reached the limits imposed by the technical specifications ($0.35 \mathrm{gpm}-791 / \mathrm{hr}$) and forced the plant to shutdown (in feimuary 1985 at Tihange 2 and in May 1987 at Doel 3)

Tables 2-2 and $2-3$ give the list of tubes that were pulled fron the Doel 2 and 3 SG's The reasona for extraction are provided for information in the tables but only the data related to the PWSCC craoks are analysed here

Various types of cracking were observed both by eddy ourrent inepection and by metallographic examination of the pulled tubes, and can be categorized in four families ;

```
a - axial eracks - hot leg
b - circumferential cracks - hot leg
c - axial cracks observed after shot peening - hot leg
d - axial cracks - cold leg
```

a. Axial Cracks - Hot leg (Fig. 2-2)

Axial PHSCC in the roll transition was observed at Doel 2 on the first tubes pulled in 1980 (see case 1 below). As the number of cracked tubes increased, the problem has been monitored by periodic bobbin Dail EC inspection. The last tubes were pulled in 1987 for the purpose of examining nickel caatings which were deposited in 1985 and 1986.

Metallographis examination performed on these tubes confirmed that primary water etrese corpesion aracke were not longer than 14 min after 10 years of operation. It should be noted that higher values have been observed in the kiss rolled Doel $3 . \mathrm{SG}^{+} \mathrm{s}$ (up to $22 \mathrm{~mm}-0.866 \mathrm{in}$). If this obeervation is confirmed in the future the lower yalue could be attributed to the single step of the roll transition area so that once the orack reaches the straight, undeformed portion of the tube, stpesseg could he low anough to prevent further propagation

However, a statistical RPC data base for the Doel 2 steam generators has not been performed as it has for the Doel 3 and Tihange 2 steam generators. Such an inspection is not needed for Doel 2 as the cracks are judged to have no safety significance since they are inside the tubesheet. The conclusion about a maximum length must therefore be used with care

Axial PHSCC has also been observed at Doel 3 by RPC inspection and pulled tubes. In this ease, the following characteristics have been observed: crack length can be much longer (up to $22 \mathrm{~mm}-0.866 \mathrm{in}$) than those observed on tubes with a single step transition; two small axial cracks can be generated separatelv in the same alianment to form a single long cracki numerous small cracks (up to 20 in one transverse cross section) can be seent crack initiation and propagation can be influenced by score marks
b. Ciccumferential Cracks - Hot Leg (Fig. 2-3)

This type of cracking has only been olserved solfar on a tube pulled out of Doel 3 (case 3). The cracks were initiated and propagated in a score mark (probably resulting from the rolling tool in fabrication) in the circumferential direction. The longest circumferential crack was however quite short ($3.5 \mathrm{~mm}-0.138 \mathrm{in}$).
c. Axial Cracks Observed After Shot Peening - Hot Leg

Fia. $2-4$ shows tvpical cracking observed on the Doel 3 shot peened tubes, from tube R27C52 pulled in 1986. Crack propagation seems to have been stopped on the surface but not underneath. It should be remembered however that this pattern has been observed after a short time period (one year) and that subsequent RPC inspections evidenced crack propagation on a wider scale. The observed "bubble" shape of the crack might have been a temporary condition.

d. Axial Cracks - Cold Leq

RPC inspection has not been performed routinely in the cald leg, and therefore, no trend can be given as far as PHSCC is concerned. However, as part of a sample examination aimed at establishing the cald led tubes condition, ten tubes were pulled from the cold lea of a Doel 2 steam generator. These tubes were selected from a statistical sampling of 150 tubes inspected with the rotating probe in 1984. Only one tube had a ECT crack indication. Eight of the ten tubes were
exarined and only one (with the ECT indication) of them showed some cracking. Mast of the arack lengths were short (less than 4 mm $0.158 \mathrm{in)}$, none were through wall, and some could be associated with roller macks (Fig. 2-2). Cracking was of the same type as in the hot leq, i e $\operatorname{IG} \operatorname{SCC}(5)$

Three cases are detailed hereafter to lllustrate the type of cracking observed on pulled tubes and the corresponding eddy current indications

Case 1 - Tube R14C72 From Doel 2

The first implementation of LABORELEC prototype rotating pancake coil was performed in December 1979 th identafy the geometry of the PWSCC defects in Doel 2. The eddy current results of the bobbin and rotating colls can be observed from one pulled tube R14C72. The sequence of inspection before and after pulling was

> - bobbin coil examination with multifrequency eddy current ana one mixing to identify the cracked area (Figure $2-5$ (a)):
> - rotating probe inspection to identify the circumferential or axial direction of the orack (Figure $2-5$ (b))

The meta)lurgical analysis (1) is shown on Figure 2-5 (c) and resulted in the following observations

- although the tube was not leaking, three througn wall axial intergranular cracks were observed, over a 90° segment. The cracks extended upwards from the top of the roll teansition over a distance or about $7 \mathrm{~mm}(275$ in).
a11 the cracks had approximately the same axial extent on both $O D$ and $I D$ surfaces, making it difficult to establish the initiation side of the cracking;
detalled optical metallography and Scanning Electron Microscopy (SEM) examinations revealed multiple shallow cracking on the to surface at the elevation of, ant adjacent to, the through-wall cracks. OD craoking was absent. No additional cracking was found at elevations adjacent to, and above, the through-wall cracksi

The EC inspection resulted in the following observations

- Ehe bobbin coil signal of the cracked cross section needed mixing to \Rightarrow juw clear identification of the crackingi
- the rotating probe showed each of the three cracks on the cross section; the length, amplitude and azimuthal location could be obtained from a single examination.

Consequently, although the rotating probe used for this examination was a laboratory prototype (slow and wobble sensitive), it showed a definite advantage for PHSCC detection and identification in comparison with the bobbin coil method.

Case 2 - Tube R15C29 From Doel 3 (Fiqures 2-6; 2-7; 2-8; 2-9)

A leak rate of less than $21 / \mathrm{h}(0.009 \mathrm{gpm})$ during the unit's first eyele prompted detailed irivestigation at the first refueling outage

A secondary side pressure test with fluorescein to detect the leaking tutas (three tubes in the hot leg).

An extensive EC inspection bobbin coil (Figure 2-6), rotating F e (ilçure $2-7$) and profilometry (Figure 2-8).

Extraction of three tubes (only two wère leakers)

Tube R15C29 has been selected as an illustration. since it had cracks both in the expansion transition and at some roll steps in the tubesheet. The profilometry indicates that the rolling was abnormal.

During the extraction process, the tube broke at the level of the 14^{th} roll step, at a load half of the usual value experienced for tube pulling. The metallurgical analysis performed on the portion of the tube contalning the expansion transition revealed the following :

1 crack was evidenced by X-ray at the end of the mechanical expanded zone. X-ray confirmed the crack length of 2 mm (0.079 in) found previously by EC.

EC inspection detected cracks at three levels, out of which only two were confirmed by X-rays and miorographic examsnation.

The EC inspection performed before tahe pulling gave the following vesults

Multifrequency eddy curvent (MFEC) inspectio by the bobbin coil with mixing technique showed indicatione between some roll steps $\left(15^{t h}, 11^{t *}, 8^{* *}, 7^{* *}\right)$, but the mixing signals needed at least a minimum of 4 to 5 oracks on the zross section before developing a detectable indication.

```
MFEC inspection sith the rotating probe showed cracking
Indications at the same levels as those identified with the
bobbin coil. but in addition, it showed i longitudinal orack.
2.mm long located in the roll tramsitiun at the limit of the
21* (1ast) coll step
From the comparison between the mechanical measurements
performed on the tube hole in the tubesheet during
mamufaoturing(11ne a on Figure 2*8) and the EC profilometry
(1)nes b on Figure 2-8), it could be assumed that there was
only a partial contact between the tube and the tubesheet.
The location of the oracks was olearly related to abnormal
proftles
```


Gase 3-Tube R23C23 from Doel 3

Shot peening was performed at Doel 3 in 1985 on the hot leg. roll
 later in order to evaluate the effects of the shot peening

Two types of exami nation were performed (reference 8) : fadiographic examination on the as-pul? ed tuhes and visual examin bion on the tubes after flattening
on the tube discussed here, one circumferential ant " : axial oracks
 the list roll step and the kiss roll isee Fig. 2-10 for qefect
 sumnation of two eracks almost aligned with each other (sef fici a. 14)

The visual examination performed after tube fiattening showed the real
 the 10. The same visual examination irdioated 17 axiel, one "L" shaped and 3 eircumferential eracks. Except for one axial 5 min (0.197 in) Iong arank locatad in bhektae woll atep, giv the eracke werelocdted in the top hard roll to kiss roll trangition The eircumferential cracks (fig 2-3) were Itnked to TD scratches in the upper phtt of the "hard" roll. The longest single axial crack measured 8 mm ((1 3t5 in) and the 1 ongest circumferential crack was 3.5 mm (0.138 in),

Eddy current profilometry performed during pre-service ingfention did not 5 iotf any defect, nor abnormal tube hole dimensions.

Eddy curcent inspection performed with the RPC detected cracks at the Ifmit of the Iast roti to kiss roll trantition one signal had an amplitude of 340 mv and several indications were close to the detection threshold of atout go my The tength of the qargest defect was $9 \mathrm{~mm}(0,354 \mathrm{in})$, which was comparable to the $x-r a y$ measurements and the ehortedt indications were in the ranga of 1 to 2 min (0,039 te) 0.079 in). The circumferential cracks were not detected by B. C. and the maximum number of axial cracks detected were 10 to 12.

The results of the examination of the other tube were very similar ftgure 2 at2 illustrates the correlation betmeen poe indications and visual examination (after flattening) on the two tubes. An average 1ength underestimation of about i mm (0.04 in) results from the eep sizing; this has been corrected to yield a new calibration eurve (see Fig. 4-13 and 5 ection 5)

REFERENCES

1. Doel 2 Nuclear SG Tubing samples. Metallurgical Investigation Results. August 5, 1980
HESTTNGHOUSE Report 80-5D9-Doel-R1/SG-80-09-020
F. H. PEMENT
2. Metallurgieal and Chemical Evaluation of tubes R17C85, R28C32 and R26C50 from Doel 2 SG A
EPRI Report Np-5022LD Dec. 1986
H. TAS, J. VAN DE VELDE SCK/CEN MOL BELCIUM
3. Laboratory Examination of Minisleeved Tube Samples from the Doel 2 "A" Steam Generators - August 17, 1984 Research and Development Division S. C. INMAN Babcock \& Wilcox Company
4. First results of tubes R18C32, R17C45, R15C46, R10C58 examination SCK/CEN MOL BELGIUM
5. Examination of Cold Leg Tube Segments of the Doel 2 Steam Generator I
H. TAS, L. DRIESEN, J. VAN DE VELDE, L. SANNEN SCK/CEN MOL BELGIUM

Examination of Kiss-Sleeved Tube R18C61 From Doel 2 SG A d. STUBBE, CH. LATRE LABORELEC Report PV/C01-02615/1/JS/Cg
7. Report C-Chl/1d/C01-02615-003 for Xiss-Sleeved Tube R18C51 SG A LABORELEC/FRAMATOME, december 18 , : $9 \ell^{\prime}$? J. STUBBE, CH. LATRE, F. ANXIONNAZ
"Centrale de Doel 3: Examen de deux tubes du génerateur de vapeur B. Réf. doc. : D. 5004/CTT/R.84.37"
$\begin{array}{lll}\text { Aprill } & 20,1984\end{array}$
F. CATTANT, J. M. THOMAS, P. HUBERT

Groupe des Laboratoires EDF
"Centrale de Doel 3 - Examen des tubes R23C23 et R27C52 extraits du générateur de vapeur B - Rèf. doc: D. $5004 /$ CTT/R. 87. 11" March 31, 1987
F. CATTANT, A. CONTRE, P. HUBERT

Groupe des Laboratoifes EDF

* INCONEL clsiding on tubesheet secondary side
x All manufastured by COCRERILL MECHANICAL INDUSTBIES (RESTINGHOUSE licensee)
* To datp pnly minimally affected by PHSCC

0 Before start-up

Table 2-2 - Chronological list of pulled tubes from Doel 2 steam generators

Date of extraction	Number of Dulled tubes	Location of oulled tubes	Purdose of extraction	Reference of pulted tube report (see notes?
$\begin{aligned} & \text { JAN } 1980 \\ & \text { (} 54 \text { months operation) } \end{aligned}$	2	SG A. Hot leg R14C72, R16C72	Exaluation of orimary side initiated cracking. Soecial shut down for tube extraction	1
DEC 1982* MAR 1983* (70 months operation)	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	SG A Hot Leg R13C15. R27C49 R17C85, R28C32, R26C50	1) Evaluation of IGSCC in the tubesheet crevice 2) Evaluation of the Drimary side roll transition cracking and the repair measures applied (tube expansion beyond original roll transition and minisleeves)	2
SEP-DCT 1983 Normal outage $(74$ months operation)	9	SG A Hot Leg 5 sent to Babcock 8 W. 1 Eox R06C33, R15C54 R15C63, R16C45. R17C43 4 sent to SCK/CEN Mol R10C58, R15C4a. R17C45, R18C 32 for examination	Purpose of the analyses: B \& u : Determine origin of cracking CEN : 1) Evaluation of 3 minisleeved tubes subsequent $1 y$ stress relieved 2) Evaluation of one tube presenting a secondary side indication above the noll transition	3
AUG-SEP 1984 Normal outage (84 monthe operation)	10	SG A Cold Leq R10C51. R14C55. R06C34. R11C41. R18C66. R15c59. R13C65, R14C24 . 2 tubes non examined R17C52 and R11C72	Sampling for evaluation of cold leg tubes condition	5

* Same plant outage

Table 2-2 - Chronological liet of pulled tubes from Doel 2 steam generators
fesntinueds

Date of extraction	Number of pulled tubes	Location of pulled tubes	Purpose of extraction	Reference of pulled tube report (see notes)
$A U G-S E P=1985$ Advanced refuel ing outage \{103. 5 months operation)	2	SG A Hot Leg	Evaluation of 2 kiss siefved tubes	
```OEC }198 (105,5 months operation)```	4	SG A Hot Leg R18C61. R18C51   +2 tubes non examined	Evaluation of Ni electroplated tubes by LABORELEC/FRAMATOME	$\frac{6}{7}$
JUL 1987   Advanced refueling outage (110 months operation)	3 2	SG A Hot Leg R10C62, R21C59. R21C65   SG 8 Hot Leg R19C14, R20C75	Evaluation of $N i$ electroplated tubes by LABORELEC/FRAMATOME	7

Table 2-3 - Chronological list of pulled tubes from Doel 3 steam generators

Date of extraction	Number of pulled fubes	Location of pulled tubes	Purdose of sutract.on	Reference of pulled tube report
NOU 1983   Normal outage (14 months operation)	3	$\begin{aligned} & \text { SG R Hot Leg } \\ & \text { R10c86 } \\ & \text { SG } 8 \text { Hot Leq } \\ & \text { R15C29, R33C } 36 \end{aligned}$	Phenomenon Evaluation	8
JUN 1986   Normal outage   (42 months operation)	2	SG 8 Hot Leg R23023, R27C52	Characterization of preexiting cracks one year after the shot-peening treatment	9




DOEL. 2. Tube R14C72 pulled from coldside.
Schematic view of inner surface longitudinal cracking
(Longest crack is 4 mm - 0158 in. )

Fig. 2-2

```
 DOEL 3 SG.B - Tube R 23.C. }2
 AREA OF DEFECTS }1
INSIDE SURFACE AFTER FLATTENING AND 120*BENDING
```


(26.0 $\mu \mathrm{ma}$ )

SECTION


Fig. $2-3$


Inside
surface

Top.

Bottom

$3,5 / 3,8 / 2,8$

$6 / 6 / 3$


Fig. 2.4



Fig. 2-6 BOBBIN COIL EXAMINATION OF THE EXPANSION AREA OF THE PULLED TUBE R15C29 (00EL 3-1983)



Fig 2-8 PROFILOMETRY EXAMINATION OF THE EXPANSION AREA OF THE PULLEO TUBE R15C29 (OOEL 3-1983)
R. 15 C. 29


Fig. 2 - 9 METALLOGRAPHY CROSS SECTION OF ONE DEGRADED AREA OF
THE TUBE R $15 . C 29$ PULLED FROM DOEL 3.


Fig. 2 - 10 TUBE FROM DOEL 3. S.G. - B. - LOCATION OF DEFECTS. TUBE P. 23 C. 23

DOEL 3. SG.B - Tube R 23.C.23.
INSIDE SURFACE AFTER FLATTENHIG TEST
Number above the cracks : reference rumber for visual exam
Number under the cracks : length of crack in mm .



Fig $2-12$

## Section 3

## SAEETY PHILOSOPHY

## 3. 1. HISTORICAL BACKGROUND

Basically, Belgian Utilities are committed to follow the U. S. nuclear afety rules; however duly justified deviations (or interpretations) can be obtained on a case by case basis. In the plant Technical Specifications defining the $S G$ inspection requirements, the usual "40 * plugging limit" is implemented but an allowanee is made for alternative criteria based on Regulatory Guide 1. 121. (1)

It is useful to recall the origin of the 40 \% plugging limit. This requirement originatey from the first generic problem encountered with SG's which was a uniform $108 s$ of thickness through corrosion, i.e. wastage in the sludge pile. Based on a factor of safety not less than 3 to be maintained under normal saruice conditions, the required minimum tube wall thickness was 40 \%. This value was increased to 60 \% in order to have an additional allowance to cover uncertainties regarding measurement of the flaw gige and ite grouth between two consecutive inspections. The 60 \% minimum wall thickness meant that tubes with thinning of 40 \% or greater were required to be plugged.

Generalizing this game criterion to other types of more local flaws (oracks in particular) can be excessively conservative. The ASME code (3) stipulates the 40 x criterion, but only for flaws in the external skin of the tube (art. IMB-3521.1); moreover further evaluation of defects exceeding the allowable indication standards is possible (art. IWB-3630) "by analyses acceptable to the regulatory Authority having jurisdiction at the plant site".

On these bases the 40 * limit was considered by BELGATOM not to be mandatory in Belgium and alternate approaches were investigated

The Westinghouse $P^{*}, F^{*}$ and $L^{*}$ approaches (4), (5) were reviewed :
P4 is a oriteria which allows cracke to be ignored below a
certain distance ( $p^{*}$ ) below the top of tubesheet based on
interferences above the tube preventing tube pull out.
E* is a criteria which allows cracks to be ignored below a
certain distance ( $F^{*}$ ) from the top of tubesheet, or bottom of
roll transition, whichever is lower based on resistance to
tube pull out generated by tube expansion in the tubesheet.
$L^{*}$ is a criteria which allows axial cracks to exist above the
$\mathrm{p}^{*}$ or $\mathrm{F}^{*}$ distance, but below the $\mathrm{L}^{*}$ distance from the top of
the tubesheet of bottom of the roll translition, whichever is
lower, based on the limited effect on primary to secondary
leakage of such cracks.

The three approaches were not considerel viable as they avoid the use of the 40 \& limit within the tubesheet but maintain it unchanged for the roll transitions (pnd some depth below the secondary side of the tubesheet) where practically all of the PWSCC cracks are actually located. These latter cracks (above the top of the tubesheet) are also the only significant ones for safety and reliability.

The Leak Before Ereak (LBB) philosophy was also considered (6), (7). According to this approach "a flaw that would be oritical (unstable propagation, leading to Steam Generator Tube Rupture (SGTR) ) under accidental conditions (such as Steam Line Break or Feed Water Line Break) would be reliably detected under normal service conditions (i.e. under a much lower differential pressure) by a leak exceeding the Technical Specification allowable limit (79 1/hr or 0.35 gpm )".

Belgatom considers hBE to be an instrinsically safe behavior usually, but not always, exhibited by the tube material. Among the known exceptions, the following are worth mentionning :

- occasional Steam Generator Tube Rupture (SGTR) without prior notice by any measurable leak (such a case was experienced in a first row U bend of a Doel a SG in 1979)
- in-service low leak rate (below the expected level from laboretory experiments) of relatively long axial oracks (possibly due to elogging by crud or precipitates),
- aligned axial crack components (separated by small axial or offset ligaments), with an overall critical length, without detectable leakage through the components.

One could elso imagine long and deep (but not thruwall) cracks in Eyther axtal or circumferemtial directians iposeibly imttiated by surface seratches)

While some of these exceptions may be dealt with through use of
 allowable in-service leak rate (7). This latter consequence is
 increase of unscheduled shutdowns)

Moreover, even relatively large leaks cannot necessarily be located
 SG, where a 20 to $301 / \mathrm{h}(0.09$ to 0.13 gpm leak oould not be located ky utimy aix porsithe detection methode incinding the Helt im leak test Plant operation was eventually resumed and the leak remained
 plugging/aleeving about 80 tubes iwith the largest detected roll trantition dofnetsy dtutng the itum ge scheduled outate, the ge atill evidenced the same leakage arter start up. At the date of writing (Jantary f989), the plant is etill operating thater these conditions.

On the other hand, extensive hardware and software developments by
 aoquisition and analysis of all roll transitions can be parformed in
 cracks (without any penalty on plant down-time) led to the decision to develop new plugging eriteria derived frum the R. G. 1.121 type サh土 1 owophy

## 3. 2. CRACK STZE MEASUREMENT PRINCIPLES

Conventional "bobbin ooil" ECT teohniques have a low potential for detection of pHeç; based on the extensive expertence of LAponetef in using both tha "bobbin cosi" and the "Rotating Pancake Coil" (RPC) in
 significant length (about $4 \mathrm{~mm}-0.158 \mathrm{in}$ ) and depth (elose to 100 \%) ame required, in the same tube crose section, to achieve meliable detection by the "bobbin coil"; otherwise "distorted signalg" may be obearved but do not necemsamily correlate tith actual eracking

The sizing capability of the "bobbin coil" is even pooror: phase angle measurements are not likely to yield realistic defect depths when there are suveral cracks in the same section. while length measurements suffer from an inaccurate knowledge of axial probe location (especially in the roll transition), with a resulting uncertainty in the order of $5 \mathrm{~mm}(0.2 \mathrm{in})$.

On the contrary, RPC has the potential for sensitive detection and accurate length sizing of individual cracks: details of the specific LABORELEC methodology are given under sections 5 and 6 . It should be noted that practically all of the cracks detected by RPC appeared to be close to 100 o throuah wall. This has been further confirmed by destructive examination of tubes pulled from Doel 3 (section 2).

Thus, without undue conservatism, any detected axial crack is assumed to be actually through-wall and is evaluated as such. Therefore, only the axial length needs to be measured and documented. Most of the cracks to be found in rsll transitions are in the axial direction. Little eircumferential racking has been evidenced; this is fortunate as the corresponding detection capability of even the best available RPC method is still racher poor fit is difficult to mix out the similar discontinuities associated with the profile transition and the outlet of the magnetic tubesheet). LABORELEC is devieloping a substitute ultrasonic method which holds the promise of sensitive detection and reliable sizing. As such a method might be signiilcantly more time consuming than ECT, there is an ongoing parallel development of the RPC method aimed at the reliable detection of circumferential cracks of size close to the pludding limit. However, "false calls" would not be precluded and the detected indications would finally be confirmed and sized by U.T.

Until further experience is gained sbout the depth sizing capability of ultrasonios, detected ciroumferential oracks will also be assumed to be through-wall and evaluated as such. This may prove to be over conservative: if this is the case, plugging eriteria based on both depth and length of defect will be astablished when the NDT performance warrants this.

### 3.3. CRITICAL SIZE CALCULATION PRINCIPLES

Regulatory Guide 1.121 allows the establishment of acceptable flaw aizes based on the following safety factors (with respect to tube bursting) :

- 3 under normal service conditions,
- a value consistent with the limits set by the ASME III Code (3) art. NB-3225, for accidental conditions (a LOCA, steam line break, or feedwater line break concurrent with the SSE).
R.G. 1.121 fovs not specify whether :
- the mechanical and geometrical characteristics of the tubes must be taken at their nominal or most unfavourable value (minxmum for UTS, YS and thickness, maximum for the diameter, etc.). The frequent reference to the design code (ASME III) seems to imply this unfavourable combination (see, for instance, article NB 3641.1):
~ an additional margin $\mathbb{m}$ ust be applied to the dimension of the detected flaw (prior to comparison against the acceptable value) in order to account for :
. the uncertainty relating to the NDE measurement method,
the flaw growth over the period of service until the next inspection.

The reguirements of R.G. 1.83 and of ASME XI (together with the historical basis of the 40 * criterion) suggest these should be taken into account.

Also the following interpretations (considered to be fully justified) are used in order to establish a concrete set of criteria :

- Because of the high ductility of Inconel, tube rupture is preceded by considerable plastic deformation (high COD Crack opening Displacement - ist both ends of a crack, bulgiag, etc) so that the "secondary" stiesses (as defined by ASME) are relieved and can be neglected (whereas they play a major part in the stress corrosion or fatigue processes). The only "primary" type stresses are those resulting from the differential pressure and, possibly, from the inertial effects induced by a steam line break (SLB) or a feed water line break (FWLB) concurrent with the Safe Shutdown Earthquake (SSE). In case of S.L.B. or F.W.L.B., it is clear that the effects of the steam blowing out the SG by the ruptured pipe may be quite important on the tubes located near the discharging nozzle. On the other hand, the portion of tubes of concern in this study, located just above the
tubesheet is far from both nozzles. So, the stresses induced ase quite low and probably of the same magnitude as SSE stresses. Those inertial induced stresses are also neglected because
their value is comparatively low (at the tube sheet level)
the current evalution of the ASME code (seismic design of piping Lends to classify these also in the "secondary" type
the dynamic loads induce essentially tube bending and the resulting stresses do not significantly interact with axial「1aws

However for circumferential cracks the stresses induced by differential expansion between the hot and cold legs could not be negligible despite the "secontary" character usualiy assigned to thermal stresses. Indeed, the axsal deformation on the tube at the flaw level remains low compared with the displacement that would be needed to relieve the stresses. Nevertheless, these stresses will be neglected herearter. because
they are low when compared against those resulting from pressure.
they are compressive in the hot leg. i. e. Where practically all the stress corrosion cracks occur

In compliance with the spirit of ASME III (and in strict conformity with article IWB 3612 of ASME XI) the safety factors are taken as

```
3 for normal and upiet conditions (service levels A and B
of ASME)
/2 for emergenoy and faulted conditions (service levels C
and D of ASME)
```

These factors are intended to apply to loads (in practice, the differential pressure) However, Tables $4-1$ and $4-2$ as Well s Figure $3-1$ show that at pressures 3 times or $\sqrt{2}$ times the norma; peessure, the margins in terms of flaw size (ratios of oritical orack length to actual length) are higher than these values ( 3 and $\sqrt{2}$ ) for axial cracks, and considerabiy lower ror circumfersutial cracks. This does not appear to be reasonable as the cotual uncertainty is more related to size than to losd. Therefore, these safety fuctors have been applied to the flaw length rather than to the pressure.

For axial cracks in the roll transition area, the reinforcing effect of the tube sheet is taken into account based on results of the BELGATOM experimental program

- For circumferential cracks located at the same level, a favourable effect results from the proximity of the Elow Distribution Baffle (FDB) or other next support plate even if, due to manufacturing tolerances and in-service thermal gradients, this leads to some bending of the tube, which may tend to open up the circumferential crack. Indeed:

```
the bending stress induced by a displacement at FDB level
is of the "secondary" type and therefore, may be neglected
in the evaluation of the critical size (whilst this stress
may be very significant in orack initiation and
propagation):
as the instability can be reached only by sufficient
deformation of the oracked section (and particularly by
considerable angular deformation), the presence of the FDB
constrains such deformation, thereby raising the value of
the pressure required to initiate instability. This effect
is illustrated in Figure 3-2
The favourable effect of the FDB is also taken into account
based on results of the BELGATOM experimental program.
```

The detalled calculations are covered by section 4 .

## 3. 4. PLUGGING CRITERIA PRINCIPLES

The following is a summary of the procedure which is further detailed under section 4

* Any orack detected is evaluated as if it were a throughthickness crack; for axial cracks partially engaged within the tube sheet, the crack length to be considered is that extending above the last tube contact point with the tubesheet (upper level of rolled area).

The average critical length is calculated on the basis of
the nominal tube geometry (didmeter, wall thickness);
the average mechanical properiles of the material (Yield Stress, Ultimate Tensile Stress)
for both the normal and accidental service conditions.

- The minimal critical length is calcul, ted on the basis of :
the most unfavourable tube geometry (max. diameter and min. thickness);
the most unfavourable combination of the material properties (minimum of the sum YS + UTS) ;
the accidental service conditions

A11 mechanical properties are those measured at $343^{\circ} \mathrm{C}$ ( $650^{\circ} \mathrm{F}$ ) on the various batches used in the considered SG

For cracks located in the roll transition area, credit is taken for the reinforcing effect of the tubesheet (axial cracks) or the constraining effect of the nearby support plate (circumferential cracks)

The allowable value of the measured crack length is taken equal to the lowest of the two following evaluations : FIRST : best estimate, with safety factor

+ the average critical length is divided by the R. G. 1.121 safety factor, for both the normal and accidental conditions.
The lowest resulting value is retained The allowable length is obtained by deducting the average value of
sizing inaccuracy resulting from the inspection method, the propagation (in length) of the flaw until the next. inspection.

SECOND : most conservative estimate, without safety factor

+ the minimal critical length is considered
+ the allowable length is obtained by deducting the maximum errect of both sizing inaccuracy and crack propagation rate

The plugging limit is taken equal to the (lowest) allowable length, rounded off to the next higher mm . The whole procedure is summarized in Table 3-1
3. 5. INFLUENCE OF CRACK LOCATION ON PLUGGING REQUIREMENTS

The plugging requirements resulting from the above principles apply to
axial cracks located tor extending, at least par ially) above the top of the tubesheet
circumferential cracks located either above or below the top of the tubesheet, but at an elevation such that disengagement of the tube from the tubesheet hole cannot be precluded in case of a complete circumferential severance and in the absence of any pull resistance from the expanded tube section.

This is consistent with the so called p* approach proposed by
WESTINGHOUSE; the subsequent $F \star$ approach has not been adopted because of the uncertainties related to the actual pull strength developed by the upper roll steps

There is no possibility of tube bursting from an axial defect, of any length when entirely eagaged in the tubesheet; thus ns plugaing limit is applicable to that case.

There is also no safety problem (and no plugging limit) for eipoumferential eracks located below the $p$ t level

## 3. 6. CONSEQUENCES OF PROPOSED APPROACH

3. 6. 7. Inspection Requirements

The plugginglrepair policy as outlined above, implies large scale inspections by the rotating oancake coil (RPC)

Once a generic problem, like PWSCC in roll transitions, has been detected and to the extent that arack langths in excess of plugging criteria may be expected, a 100 \% inspection of the degraded area (i.e. the roll transitions) is indeed a requirement; such an inspection has been performed in both the Doel 3 and Tihange 2 plants because of clear prior indication that crack lengths in excess of $15 \mathrm{~mm}(0.59 \mathrm{in}) \mathrm{might}$ be present

This does not imply a 100 * reinspection after each cycle. Reinspection may be limited to those tubes with a crack length such that the maximum increase rate ( $\mathrm{mm} /$ cycle) would allow them to reach the plugging limit; tubes previously uncracked need only be reinspected when they could reach this limit, on basis of a maximum initial length and propagation rate

## 3. 5. 2. Geieralization of the approach

Large scale inspection of a specific area affected by a particular problem does not imply any increase of the general basic inspection (performed with the "bobbin coil" EC technique and aimed at detecting unsuspected defects).

It is not intended to extend such base inspection above the present mandatorv level of 3 \% per SG and per year. However should any other degradation mechanism be evidenced, it would be handied in a way
similar to the hereabove outlined PWSCC approach, such as :

- extension of the inspection sample to establish the (potential) generic nature
- inspection by a dedicated method iff required) of a tube sample of sufficient size to allow the establishment of a meaningful distribution curve of the relevant defect dimension (s)
- if and when the distribution curve shows dimension(s) in excess of plugging limit, the inspection would be extended to cover 100 is of the tube bundle area and of the tube length affected by the problem
- the plugging limit would be established along the same guidelines as for the PWSCC problem, using NDE uncertainty and defect propagation rates specific to the case under consideration.


## REFERENCES

```
 Regulatory Guide 1, 12t "Bases for plugging degraded PFR Steam
 Generator Tubes" (draft August 1976)
 Regulatory Guide 1.83 "In service Inspection of Pressursted
 Hater Reactor Steam Generator tubes"
 Rev, 1 (July 1975)
 ASME Boller and Pressure Vessel Code (edition 1986)
 Section III: Nuclear Power Plant Components
 Section XI ; In service Inspection
```

    Tubesheet region plugging criteria for full depth hardroll
    expanded tubes*
    Restinghouse (September 1985) : private paper
    Safety evaluation by the office of nuclear reactor regulation
    related to amendment no 59 to facility operating licence NPF-9
    (and amendment 40 to NPF-17) - Duke Power Compasy - Mo Guire
    Nuclear station, units 1 and \(2^{*}\) US NRC (Atȳus 1986)
    Analysis of leak-before-break fo" steam generator tubes"
    J. F. LANG, V. K, CHEXAL, T. J. GRIESBACH and R. C. CIPOLLA (EPRI)
    3rd Int. meeting on reactor thermal hydraulics, Newport, Rhode
    Is land (Ootober 1985)
    "Tube performance at EDF 900 Me Units. An update
    J. DE SURGY, J.P. MUTIN, R. SERRES - Nuclear Engineering
    Intarnational (January 1988)
    Flaw analysis in steam generator tubes (LBB eoncept as applied
    to S.G. tubes)"
    J. P. HUTIN (EDF) and F. BILLON (FRAMATOME) 8th SMIRT
    conference postseminar, Varese/ISPRA (1985)
    TABLE 3-1
PLUGGING LIMIT FOR SCC IN ROLL TRANSITIONS BASIC PRINCIPLES


For cracks in ROLL TRANSITIONS, the plugging limit is increased to take credit from the constraining effect
f - of tubesheet, for axial cracks
L - of support plates. for circumferential cracks
(*) mechanical properties measured at design temperature ( $650^{\circ} \mathrm{F}=343^{\circ} \mathrm{F}$ ) for all Inconel heats used in construction.


SAFETY MARGIN ON LENGTH<br>AS A FUNCTISN OF<br>SAFETY MARYIN ON LOAD (pressure).

Figure 3-1


1) Assumed initial oftset condition of F.D.B.

2.) Effect of increased pressure.

3.) Effect of further pressure increase
Figure $3-2$

2) Pressure reaches critical value
5.) Critical pressure for tube with no FD. 8 is much tower

Section 4
CRITICAL SIZ̄E CALCULATION
4. 1. INTRODUCTION

This section details the methodology for establishing the plugging Iimits in compliance with the guidelines outlined in section 3.4

The calculation procedure of critical sizes is outlined in
section 4.2. for axial cracks
section 4. 3. for circumferential cracks.

The corresponding qualification bases are explained in section 4. 4. The procedures are illustrated by sample calculations of eritical sizes in section 4. 5. Finally the actual plugging limits are derived from the oritical sizes in section 4,6 .

## 4. 2. CALCULATION OF CRITICAL SIZE OF AXIAL CRACKS

In the elastic field, the membrane circumferential stress at both tips of a through-wall crack can be computed by multiplying the nominal stress ( $\sigma$ ) (in an uncracked cross section) by a factor ( $m$ ), usually called "bulging factor" or "Folias factor" (after respectively, the looal bulging shape, and one of the first people to investigate the phenomenon)

Experimental work has demonstrated that the same law remains valid in the plastic field up to the break (unstable axial propagation), i. e. when the local circumferential membrane stress (m g) reaches a critical value $(\sigma$,$) (the flow stress) typical of the material and a$ function of the conventional values of the yield stress (YS) and the ultimate tensile stress (UTS)

```
Among the varturs appeoximations of in proposed in thet literature, that
```



```
 m}=0.614+0.386 exp (-2.25 c.Nt) + 0.806 eiNR
 where c a the half-length of the through-wall crack
 R = the mean radius of the tube
 t = the tube thickness
This expression differs from that initially proposed by folias
 m}=f(1+1.67\mp@subsup{c}{}{2}/Rt
 (see Fig. 4. 1) and which is still often used today
A lower bound of the flow stress (\sigma,) is given by
 \sigma1 = 0.513 (YS + UTS)
where YS and UTS are the conventional mechanical properties of the
tube material as measured
 - In the (usual) longitudinal direction;
 - at design temperature (650%F = 3430}\textrm{C})\mathrm{ on the actual material
 used in the SG under consideration (construction records).
The nominal stress (0) is calculated by
 \sigma=p\mp@subsup{R}{1}{}/t=p(R/t-0.5)
where p is the differential pressure
 Ri is the internal radius
 R and }t\mathrm{ are as defined hereabove.
```

The three parameters $(m),(\sigma$,$) and (\sigma)$ being related under critical conditions, by

$$
\sigma_{f}=m \theta
$$

any of them can be calculated from the knowledge of the two others

For instance, the critical pressure, for a given defect length (hence mi), is given by

$$
\alpha_{c}=\sigma_{1} / \mathrm{m} \text { and } p_{s}=\sigma_{c} /(R / t-0.5)
$$

The oritical length, for a given pressure loading (hence o), is given by

```
m}=\mp@subsup{\sigma}{f}{\prime}/\sigma\mathrm{ hences }\sigma=f(\mp@subsup{m}{e}{},\sqrt{}{Rt}
```

This procedure is valid for axial cracks in a "ree" tube section. If the orack is adfacent to the tubesheet, the corresponding reinforcement inoreases the critical pressure or the critical lengthi on basis of the Belgatom experimental test results and for the crack length range of practical interest, the reinforcement effect can be taken into account by a $2 \mathrm{~mm}(0.079$ inf increase of the critical aize calculated in a free span, for both $7 / 8^{\prime \prime}$ and $3 / 4^{\prime \prime}$ tubing

### 4.3. CALCULATION OF CRITICAL SIZE OF CIRCUMFERENTIAL CRACKS

The critical size of a circumferential through-wall flaw is calculated by the "collapse load" or "net section stress" theory (as documented by various authors, e. $q$ ( 2 ), assuming a perfectiy plastic material (as iflustrated by Fig. 4. 2)

This can be formalized in a way similar to the axial case, by defining a "झhape factor" (n)

Tube rupture (unstable circumferential propagation) occurs when the local longitudinal stress $(n$ of reaches a critical value $(\sigma$,$) (the$ flow stress) typical of the material.

The shape factor $(n)$ can be easily calculated as

$$
\mathrm{n}=\frac{1}{2}, \operatorname{are} \cos \frac{\operatorname{sinu}}{2}-\frac{\alpha}{2} \quad \text { (see Fig. } 4-3 \text { ) }
$$

where $(\alpha)=$ half angle (half arc length) of through-wall orack.

This expression applies to pressure loading of an unsupported tube and would be different for flexure loading through an applied bending moment.

The flow stress $\left(\sigma_{t}\right)$ is defined by the same expression as for the axial case

$$
\sigma f=0.513(Y S+U T S)
$$

The nominal stress is calculated by

$$
\theta=p \frac{\pi R_{i}^{2}}{2 \pi R t}=\frac{p(R-t / 2)^{2}}{2}=\frac{P R}{2}\left(\frac{R}{2}-1\right)
$$

where ( $p$ ); ( $\left.R_{1}\right)$; (R) and ( $t$ ) are as defined for the dxial case.

The three pa*mmeters $(n),\left(\sigma_{f}\right)$ and $(\sigma)$ being related, under critical conditions, by

$$
\sigma_{1}=n \sigma
$$

any of them can be calculated from the knowledge of the two others.

In particular :
The critical pressure, for a given defect length (hence $n$ ), is given by

$$
\sigma_{s}=\sigma_{t} / \mathrm{n} \text { and } \mathrm{p}_{\mathrm{s}}=2 \alpha_{k} /(\mathrm{R} / \mathrm{t}=\mathrm{t})
$$

The oritical length, for a given pressure loading (hence a), is given by

$$
\left.n_{c} \neq \alpha_{1} / \sigma \text { hence } \alpha_{c} \neq f^{\prime} n_{c}\right)
$$

It should be noted that the procedure is not valid for small orack lenghte $f=\& 50$ deg), because fallure oneurs through the higher circumferential stress (longstudinal burst after extensive bulging)

If a circumferential crack is located close to the tubesheet, the constrathing effect of the adjacent flow distribution baffla (FDP) or other support plate increases the critical pressure or the oritical length

The "net section stress" theory can again he used to evaluate this affect by taking into ancount the additional bending momsnc induced by the plate support; under failure conditions, this moment ean be considered constant at a value corresponding to initiation of plasticity (thus allowing the large angular deflection needed at the crack location). This corresponds to the moment at yield stress

$$
M_{0}=\underset{(-)}{v} \quad \sigma, \pi t r^{2} \sigma, \quad \text { where } \frac{I}{v} \text { is the bending modulus }
$$ and introduces a $k$ factor in the previous critical equation

$$
n=\frac{\pi}{2} \frac{\left.\operatorname{sirc} \cos \frac{\sin \pi-k}{2}-\frac{\alpha}{2}\right)}{2}
$$

with

$$
K=\frac{\pi}{2} \sigma_{n} / \sigma_{1}
$$

Because the conventional yield stress corresponds ta a relatively high plastio stratn $(0.2$ \%), a value eloser to the proportional itmyt (about $2 \neq 3$ of $Y$ ) should be selected for ay, so that $K \approx 0.6$. Thevnlue of $\pi$ iththe above formula, cannot exceed the I imit value $爪=(1-1 / n)$ it corresponding to a pure tension failure (no significant bending?

The adequacy of this approach has been verified by the BELGATOM experimental test program (8)

```
The "bulging factor" or Folias approach for predinting the distile
failume of axisl]y eraeked pipes has been knomn for a long timm
However until the 80's it lacked any experimental baokground
concerninm
 - small diameterg ($ (3")
 long flaws (\frac{0}{/Rt},4 i.e. 2 o > 15 mm (0,59 in) for
 the properties of the "Alloy 600" material (\sigma, and itg
 dependence on the conventional values for YS and UTS)
For this reason an experimental program was started by BELGATOM in
1980 based on electrie diecharge machined (eDM) through=ضall flaws
The results of this program were presented at the conferences of SMIRT
(Stmbetural Mechaniea in Reactor Technology - Pamie iggi and chicnge
1983) as well as at other international symposiums (3) to (6). The
main peaulta are given belom for axial enazka.
 - the bulging factor theory was confirmed as being applicable
 (Fig. 4,4)
 the flow-stress value could be correlated with the YS and UTS
 values (Fig. 4. 5) allowing extrapolation to mechanical
 charaoteristios other than those being tested
 the break is not preceded by etable crack-growth. However,
 precritical local deformations are considerable
 (Crack Opening Displacement - COD) as illustrated by
 Fig. 4.6
 bulging as illustrated by Fig. 4.7
 fishmouth opening as illustreted by Fig. 4.8
 the experimental program also verified the negligible
 influence of
 secondary stresses (strong initial ovalization);
 the sharpness of the crack tip (fatigue cracks);
 the proximity of several parallel rlaws.
```

As to circumferential through wall craeks，tests were also conducted to vatify the apflicabtifty of the well knonn＂net enetion sheresu＂ theory，with and without bending restraint．The same expression of
 The apparent conservatism of some test results（Fig．4，9）probably originates from the experimental conditions ia smali part of the load being taken by the sealing system used to prevent leakage thraugh the defectat

A complementary program has recently been carried out by BELGATOM in order to evaluate the influence of proximity to tubesheet fthe case of flaws in the roll transition area，at the top of the plate）．The results are summarized by Fig 4 fo；one oan conclude that for cracks adjacent to the tubesheet．having a reduced length of $\sqrt{ }$ Rt（outside the plate）of about 2．5，the bursting pressure is raised to the value corresponding to a 2 mm to 07 g int shorter canck located in the free area

Tests were also conducted to evaluate the beneficial effect of the FDB cor other nearby support platel for tubes with circumferential aracks Located close to the top side of the tubesheet．The results are summarized by Figure $4.1 t ;$ they confirm the adequacy of the net section atress approsch and establish the appropriate value of $k$ to be サ⿴巳d to take 1ateral restraint into aceount

The results from the BELGATOM program have been compared to those from other etmixar nrograms conducted in other countries，to the extent those（generally unpublished）results were made availaole．Good agreement was found for all available information；in particular all programs conclude that the effect of multiple parallel axial cracke can be evaluated on basis of the single isolated longest orack，at． least as 1 ong as the number of cracks is 1 swer than about 20

4．5．SAMPLE CALCULATION OF CRITICAL JIZES

As an illustration of the above procedure，the present section outlimes the detalied caloul ation of critical gizes for axial and
cifcumferential through-wall defects in "frea sections" (away from tubesheet or support platel of $7 / 8^{\prime \prime}$ and $3 / 4^{\circ} \mathrm{M}$ A Inconel tubing.

## Input Data

SG model   tube diameter	$\begin{gathered} 51 \\ 7 / 8 \end{gathered}$	$\begin{gathered} E \\ 3 / 4^{\prime \prime} \end{gathered}$
diameter : nominal	22. 22 (.875)	19.05 (.75)
$(\mathrm{mm})(\mathrm{in})$ max	22.35 (.88)	19.15 (.754)
thickness : nominal	1.27 (.05)	1. 09 (.043)
(mm) (in) min	1. 14 (.045)	0.99 (.039)
H. L. Operating temperature T ${ }^{\circ} \mathrm{C}\left(O^{\circ}\right)$		
UTS MPa (ksi)]	552 (80)	$552(80)$
YS MPa (ksi) (*)	243 (35)	$243(35)$
differential pressure   - bar (pss) (**)		
normal conditions	$100 \quad(1450)$	90 (1305)
accidental conditions	178.512590	189.7(2750)

* Minimum specified properties from AsMP code case N20-1984; the YS value is interpolated between those given at 600 and $650^{\circ} \mathrm{F}$. The code case UTS is kept at the same value from ambient temperature up to 6500 F ; this is somewhat unconservative as tests on actual SG material currently evidence a drop of about 4 \% (see Fig. 4. 12).
* Highest differential pressure resulting from a design basis aceident (FyLB) in safety analysis report.


## Actual Mechanical Properties

For all Belgian SG's, the mechanical properties (YS and UTS) have been measured and documented, for all heat numbers, both at ambient and design $\left(650^{\circ} \mathrm{F}=343^{\circ} \mathrm{C}\right)$ temperatures.

Each SG involves the use of several tens of heats (up to 200);
Fig 4.12 gives a tupical distribution of propertios for a particular se.

As each tube (at a particular row/column looation) of a SG is traceable to ite original heat number, it would be nossible to calculate specific critical crack sizes for each tube. This approach has not been considered to be practical but the principle of critical sizes specific to a particular $5 . G$. has been retained. However when comparing the average and minimal values for all 3 SG's of a particular plant, or even for two sister plants (Doel 3 and Tihange 2), the differences appeared to be small (less than 4 y) and did not warrant the administrative burden of managing separate sets of plugging eriteria. Thus, it was decided to calculate critical crack sizes applicable to all 6 SG' $s$ of Doel 3 and Tihange 2

For the purpose of the following sample calculations, these actual values for $7 / 8^{\prime \prime}$ SG material are also used for the $3 / 4^{\prime \prime}$ case in order to facilitate comparison, although the flow stress is higher by 4 \% for the $3 / 4^{\prime \prime}$ tubing conclusion valid for tubing of Doel 4 and Tihange 3 steam qenerators)

## Calculations

The calculations have been made for a range of
Geometries
nominal dimensions (diameter and thickness);
conservative combinations (maximum diameter and minimum thickness) ;

Mechanical Characteristics
typical;
minimum specified;
actual properties of $S G$ material con basis of 6 SG's of 2 sister plants);

+ average value;
+ absolute minimum (measured on batch);
Differential Pressures : bar (psi)
normal seryice pressure $\left.\quad 100(1450)(7 / 8)^{\prime \prime}\right)$ or $90(1305)\left(3 / 4^{\prime \prime}\right)$;
same, with safety margin 3: $300(4350)\left(7 / 8^{\prime \prime}\right)$ or $270(3915)\left(3 / 4^{\text {" }}\right)$;

```
accidental pressure (SLB/FHLB): 178.5 (2590) (7/80) or
 189.7 (2750)(3/4*)
same with safety margin \sqrt{}{2}:252.5(3660) (7/8") or
268. 3-3890)(3/4")
```

The results are given in

- Tables 4.1 and 4. 2 for axial defects (7/8" and 3/4" tubing)

Tables 4.3 and 4.4 for circumferential defects $\left(7 / 8^{\circ}\right.$ and $3 / 4^{\prime \prime}$ tubing)

## Discussion of Results

For Axial Flaws. The most conservative way to apply R. $\mathbf{Q}, 1,121$ (minimum specified mechanical characteristics and safety margins taken on the pressurel lead to a maximum acceptable length of respectively $7.3 \mathrm{~mm}(0.287 \mathrm{in})$ for $7 / 8^{\prime \prime}$ diametur and 7.8 mm (0) 307 in) for $3 / 4^{\prime \prime}$ diamater

It should be noted that the normal service conditions are prevailing for $7 / 8^{\prime \prime}$ diameter due to the safety margin of 3 i under tha sama very conservative conditions, the acceptable length derived from the acoident conditions (With a $\sqrt{2}$ safety margin) is $9.75 \mathrm{~mm}(0,384$ in)

If an additional margin had to be taken to allow for NDE sizing uncertainties and crack propagation during the next operational cycle (as discussed in 4.6 hereafter), this would reduce the allowable length to the order of $2 \mathrm{~mm}(0.079 \mathrm{in})$, a value which does not even permit reliable detection

For Circumferential Flaws. The most conservative way to apply the R. G. 1. 121 leads to an acceptable length of 1390 or $24.5 \mathrm{~mm}(0.965 \mathrm{in})$ measured according to the inside of the tube wall for $7 / 8^{\prime \prime}$ diameter and respectively $148^{\circ}$ or $22.2 \mathrm{~mm}(0.874 \mathrm{in})$ for $3 / 4^{\prime \prime}$ diameter. It should be noted that, again, the service conditions are dominant for 7/8" diameter; the acceftable length derived from the acoident conditions is $\left.152^{\circ} \quad i=26.5 \mathrm{~mm}-1.047 \mathrm{in}\right)$

It should be noted that there is a striking difference between axial and circumferential ctackg when the safety factormgu is taken on load (as requested by $R, G .1 .121$ )

The result, when expressed as a safety factor on length,
is significantly larger than $S$ for axial oracks;

- is muoh lower than $S$ for circumferential cracks

This is illustrated by Fig. 3. 1, and leads to an unsatisfactory situation as actual uncertainties are more related to defect sizes than to load intensities. This also is the basis for applying the $R, G$ 1.121 safety factors on crack lengths, rather than on loadings. With respect to original requirements this reduces somewhat the conservatism for the axial crack case but increases considerably this conservatism for the circumferential crack case
4. 6 ESTABLISHMENT OF TUBE PLUGGING CRITERIA

## Critical Lengths

Application of the procedures outlined under $4.2 ; 4.3$ and 4.5 allows one $\subset$ calculate

The average critical lengthy on the basis of
the nominal tube geometry (diameter, wall thickness);
the average mechanical properties of the material (Yield Stress, Ultimate Tensile Stress)
for both the normal and aceidental service conditions

The minimat critical length, on basis of
the most unfavourable tube geometry (bre diameter and min. thickness):
the most unfavourable combination of the material properties (minimum of YS + UTS) ;
the accidental service conditions

Al1 mechanical properties being those measured at $343^{\circ} \mathrm{C}$ ( $650^{\circ} \mathrm{F}$ ) on the Qarlous batches (heats) under consideration

## Applicable Margins

The safety factors applicable to the average citical length are ;

- 3 for normal service conditions;
- $f 2$ for accidental conditions:
the lowest rasulting value is to be used (as already explained, the first conditimm is practically always prevailing)

Two additional margins are to be taken into account

> allowance for ECT undersizing of the actual defect length;
> lengin incfease of defect during the subsequent operation period oi time, up to the next ECT inspection.

Evaluation of these two effects is based on field data obtained from axial eracking (roll transition) of $7 / 8^{\prime \prime}$ tubing

For the first effect, a good knowledge of the siaing accuracy has been obtained by comparing the RPC ECT length measurements with the actual maximum (ID) length of about 30 PHSCC roll transition eracks from 3 pulled tubes (see eigure 4-13). The calibration has been adjusted so that the average deviation between measured and true values is elose to zero. This is conservative as the average length of an actual PNSCC flaw is less than the maximum length measured on the $1 D_{i}$ as a confipmation, it has heen cheeked that the RPO method systematically overestimates the length of "square shaped" artificial (EDM) through wall defects

With respect to the calibration line (Figure 4.13) it can be seen that five oracks show an underestimation in excess of $15 \mathrm{~mm}(006$ in): they all relate to tubes pulled from Doel 3 (with kiss rolling), From the tubes destructive examination, these cracks are known to be often shaped as illustrated by Figure $4-14$. It is clear from this pioture. that the apparent length underestimation by RPC results from the particular shape and that a $1.5 \mathrm{~mm}(0.06 \mathrm{in})$ accuracy margin more than adequately covers any structural concern.

As a confirmation, for the Doel 2 pulled tube (with standard roll), Where the $O D$ length of oracks is close to ID length $\{1.5 \mathrm{~mm}-0.06$ in max differencel, the ECT underestimation of in ength never exceeds $1 \mathrm{~mm}(0.04 \mathrm{in})$

As a consequence, the ECT (RPC) sizing accuracy margin has been considered to have a maximum value of $1.5 \mathrm{~mm}(0.06 \mathrm{in})$

For the second effect, the margins are derived from the analysis of all data coming from the last two operating oyoles of the Doel 3 and Tihange 2 plants (see Table 4-5). As the crack propagation is dependent on the initial crack size, the analysis was restricted to al) the cracks with an initial length (at beginning of cyole) of 9 mm (0.354 in) or more (there were 139); on this basis, the average propagation is $1.6 \mathrm{~mm}(0.063 \mathrm{in}) /$ cycla, with a maximum upper bound of $4 \mathrm{~mm}(0.158 \mathrm{in}) /$ eycle

The additional margins are thus summarized in the following table

Value	cycle propagation	ECT underestimation
average	$1.6 \mathrm{~mm}(0.063 \mathrm{in})$	0
maximum	4	$\mathrm{~mm}(0.158 \mathrm{in})$

For a "best estimate" analysis, the average values of both effects are considered, i.e. $1.6+0=1.6 \mathrm{~mm}(0.063 \mathrm{in})$

For a "worst combination" analysis, the maximum values of both effects are taken into account: $4+1.5=5.5 \mathrm{~mm}(0.217 \mathrm{in})$

While these values are strictly applicable to axial crackis measured by ECT in $7 / 8^{\prime \prime}$ tubing, they are kept unchanged (until further information becomes availa lle)
for $3 / 4^{\prime \prime}$ tubing.
for circumferential cracks;
for UT sizing; (a comparison of ECT and UT sizing was performed in June 88 on 7 tubes of a Doel 3 SG , with close agreement within $\pm 1 \mathrm{~mm}$ )

The mentioned values $(1,6$ and 5.5 mm$)$ are of course only applicable if an inspention is being performed at each cyole with an RPC inspeotion technique equivalent to that described in section 6

## A) lowable lengths

The allowable length is taken as the lowest value resulting from the

"Best Rstimate" Analysis, Hith Safety Factors. The average critical lengths ताe calculated for both mormal and acctdental conditions For flaws expected to propagate in the roll transition area, a margin tin length is added to take into account the meinforcing effect of

- the tubesheet vicinity for axial cracks;
* the FDB support plate restraint for cireumferential cracks.

Those values are then devided by the recommended safety factors f 3 for normal conditions and f2 for accldent conditionsy

The additional margin of $1.6 \mathrm{~mm}(0.0631 n)$ is subsequently deducted

The results of the corresponding calculations are summarized in the next table on basis of the followimg average mechanical properties at $343^{\circ} \mathrm{C}\left(650^{\circ} \mathrm{F}\right)$

```
YS}=290\textrm{MPa}(42\textrm{kgi}
UTS =675 MPa (92 ksi)
```

The flow stress is taken as

```
\sigmaf}=0.513(290+676)=495MPA(72 k81
```

$\begin{aligned} & \text { CRACK } \\ & \text { TYPE } \end{aligned}$	$\begin{array}{\|l\|l\|} \text { TUBE } \\ \text { SI Z } \end{array}$	$\begin{gathered} \text { PRESSURE } \\ \text { bar } \\ \text { (psi) } \end{gathered}$	CRITICAL. LENGTH CL.	$\begin{gathered} \text { SAFETY } \\ \text { FACTOR } \\ \text { SF } \end{gathered}$	$\frac{\mathrm{CL}}{\mathrm{SF}}$	ALLOWABLE LENGTH
$A X I A L$	$7 / 8^{\circ}$	$\begin{gathered} +00 \\ (1450) \end{gathered}$	$\begin{gathered} 49 \mathrm{~mm} \\ (1.9291 \mathrm{n}) \end{gathered}$	3	$\left(\begin{array}{c} 16.3 \mathrm{~mm} \\ (0.6421 \mathrm{n}) \end{array}\right.$	$\begin{array}{r} 16.3-1.6=14.7 \mathrm{~mm} \\ (0.571 \mathrm{in}) \end{array}$
		$\begin{array}{r} 178,5 \\ (2590) \end{array}$	$\begin{aligned} & 25 \mathrm{~mm} \\ & (0.9841 \mathrm{n}) \end{aligned}$	$\sqrt{2}$	$\begin{gathered} 17.7 \mathrm{~mm} \\ (0.697 \mathrm{im}) \end{gathered}$	
	3/4 ${ }^{\prime \prime}$	$\begin{gathered} 90 \\ (1305) \end{gathered}$	$\left\{\begin{array}{l} 47 \mathrm{~mm} \\ (1.850 \mathrm{i} \mathrm{n}) \end{array}\right.$	3	$\left\{\begin{array}{c} 15.7 \mathrm{~mm} \\ (0.6181 \mathrm{n}) \end{array}\right.$	
		$\begin{array}{r} 1897 \\ (2750) \end{array}$	$\left\lvert\, \begin{aligned} & 20 \mathrm{~mm} \\ & (0.7871 \mathrm{n}) \end{aligned}\right.$	$\sqrt{2}$	$\begin{gathered} 14.1 \mathrm{~mm} \\ (0.555 \mathrm{in}) \end{gathered}$	$\begin{array}{r} 14.1-1.6=12.5 \mathrm{~mm} \\ (0.492 \mathrm{in}) \end{array}$
$\begin{aligned} & \text { CIPCUM- } \\ & \text { FERE } \\ & \text { NTIAL } \end{aligned}$	$2 / 8{ }^{\prime \prime}$	$\begin{aligned} & 100 \\ & (1450) \end{aligned}$	$\begin{aligned} & 223 \text { deg } \\ & 13341 \mathrm{deg} \end{aligned}$	3	$\begin{gathered} 74 \mathrm{deg} \\ 11111 \mathrm{deg} \end{gathered}$	$\begin{aligned} & 74 \quad 9 \quad 65 \text { deq. }= \\ & 12.2 \mathrm{~mm}(0.441 \mathrm{in}) \\ & 1111 \mathrm{~m}=102 \mathrm{deg} . \\ & =17.5 \mathrm{~mm}(0.689 \mathrm{in})) \end{aligned}$
		$\begin{gathered} 178,3 \\ (2590) \end{gathered}$	$\begin{aligned} & 194 \text { deg. } \\ & 13131 \mathrm{deg} \end{aligned}$	$\sqrt{2}$	$\begin{aligned} & 137 \text { deg } \\ & 12211 \mathrm{deg} \end{aligned}$	
	3/4"	$\begin{gathered} 90 \\ (1305) \end{gathered}$	227 deg. ( 336 ) deg	3	$\begin{gathered} 76 \mathrm{deg} . \\ (112) \mathrm{deg} \end{gathered}$	$\begin{aligned} & 76-11=65 \mathrm{deg}= \\ & 9.6 \mathrm{~mm}(0.178 \mathrm{in}) \\ & (112-11=101 \mathrm{deg} \\ & =14.9 \mathrm{~mm}(0.587 \mathrm{n})) \end{aligned}$
		$\begin{array}{r} 189.7 \\ (2750) \end{array}$	190 deg. $(310) \mathrm{deg}$	$\sqrt{2}$	$\begin{aligned} & 134 \mathrm{deg} \\ & 12191 \mathrm{deg} \end{aligned}$	

(...) : Applicable to roll transition because of restraining effect of TSP (circumferential flaws)
The tubesheet reinforcement for axial cracks is negligible because of the large values of oritical lengths.
"Horst Combination" Analysis, Without Safety Factors. The minimum critical length is considered. In the roll transition area, credit (i.e. increase of allowable length) is then taken for the reinforcing effect of :
the tubesheet vicinity, for axial cracks;

- the FDB/support plate restraint, for circumferential cracks.

The additional margin of $5.5 \mathrm{~mm}(0.217 \mathrm{in})$ is subsequently deducted.

The results of the corresponding calculations are summarizad in the next table on basim of the following minimum meohanisal pronertien at $343^{\circ} \mathrm{C}\left(650^{\circ} \mathrm{F}\right)$
$\left[\begin{array}{l}Y S=228 \mathrm{MPa}(37 \mathrm{kBi}) \\ U T S=600 \mathrm{MPa}(87 \mathrm{ksi})\end{array}\right.$
The flow stress is taken as :

```
0% =0.513 (600+228)= 425 MPa (62 kg1)
```

CRACY TYPE	$\begin{aligned} & \text { TUBE } \\ & \text { SIZE } \end{aligned}$	CRITICAL LENGTH		ALLONABLE LENGTH	
		FREE SECTION	ROLL   TRANSITION	$\begin{aligned} & \text { FREE } \\ & \text { SECTION } \end{aligned}$	$\begin{gathered} \text { ROLL } \\ \text { TRANSITION } \end{gathered}$
AXIAL.	$7 / 8^{\prime \prime}$ $3 / 4^{\prime \prime}$	$\left\{\begin{array}{l} 16.8 \mathrm{~mm} \\ (0,661 \mathrm{in}) \\ 13.6 \mathrm{~mm} \\ (0.535 \mathrm{in}) \end{array}\right.$	$\begin{gathered} \begin{array}{r} 8,8 \\ \mathrm{~mm} \\ (0,740 \mathrm{in}) \\ 15,6 \mathrm{~mm} \\ (0.614 \mathrm{in}) \end{array} \end{gathered}$	$\left(\begin{array}{r} 11,3 \mathrm{~mm} \\ (0.445 \\ 8,1 \\ 8 \end{array}\right)$	$\left(\begin{array}{rrr} 13.3 & \mathrm{~mm} \\ (0.524 & \mathrm{in}) \\ 10.1 & \mathrm{~mm} \\ (0.398 & \mathrm{in}) \end{array}\right.$
CI RCUMFE-	$7 / 8 "$	31.2 mm	52 mm .	25.7 mm	46.5 mm
RENTIAL.	$3 / 4^{n}$	178 deg .   26. 3 mm	297 deg   44.2 mm	147 deg   20. 8 mm	266 deg   38. 7 mm
		175 deg.	295 deg.	139 deg	258 dey.

## Plugging Limit

The two preceding tables are now compared and the lowest value is Ketained ar the attowabla masourad valuo. The plugaina limit is obtained by roundirg off at the higher mim value

The calculation procedure is outlined

```
in Table 4.6 for axial defecty in 7/80 tubes
In Table 4.7 for effoumferential defects in 0/8" tubes
(defects located in roll transstion area)
```

CRACK   TYPE	$\begin{aligned} & \text { TUBE } \\ & \text { ST2E } \end{aligned}$	ALLONABLE L	NGTH* ON BASIS OF	PLUGGING
		best estimate   + safety factor	worst combination analysis   w/o safety factor	
AXIAL	$7 / 8=$ $3 / 4 *$	$\begin{array}{r} 14.7 \mathrm{~mm} \\ (0.579 \mathrm{in}) \\ 12.5 \mathrm{~mm} \\ (0.492 \mathrm{in}) \end{array}$	$\begin{array}{r} 13,3 \mathrm{~mm} \\ (0,524 \mathrm{in}) \\ 10,1 \mathrm{~mm} \\ (0,358 \mathrm{in}) \end{array}$	$\begin{gathered} 14 \mathrm{~mm} \\ (0.551 \mathrm{in}) \\ 11 \mathrm{~mm} \\ (0.433 \mathrm{in}) \end{gathered}$
CIRCUMFERENTIAL	$7 \neq 80$	102 deg. $=17,5 \mathrm{~mm}$   0.689 in)	$266 \mathrm{deg} .=46.5 \mathrm{~mm}$   (1.83* in)	$\left\{\begin{array}{l} (0.433 \mathrm{in}) \\ 18 \mathrm{~mm} \\ (0.709 \mathrm{in}) \end{array}\right.$
	3/4"	$\begin{gathered} 104 \text { deg. }=14.9 \mathrm{~mm} \\ (0.587 \mathrm{in}) \end{gathered}$	258 deg. $=38.7 \mathrm{~mm}$ (1. 524 in )	$\begin{gathered} 15 \mathrm{~mm} \\ (0.591 \mathrm{in}) \end{gathered}$

* Allowable length of flaws situated in the roll transition area.


## REEERENCES

"Ductile fracture theorias for pressuriaed pipes and eontatners" F. ERDOGAN

Int. d Press Ves s Pipinq 4 (1976)
"Practical application of ext femal elasticoideally plastic golutions for the agesesment of the severity of eracks" C. RUI 2 and R.a S. CORRAN Int. 3. Pres. Ves \& Piping 10 (1982)
"Evaluation of critical Iengths for through thickness axial cracks in steam qenerator tubing"
P. HERNALSTEEN (TBL), Gth SMIRT GOnference, Paris (1981), paper F $7 \neq 6$
"Evaluation of eritical sizes for defects in small diameter tubing*
P. HERNALSTERN (TBL), 7th SMIRT Conference, Chicago (1983), paper GF $4 / 3$ (only transparencies copies)
"Critical flau sizas in. steam ganesator tubiag" P. HERNALSTEEN (TBL), NEA/CSNI - URTPEDE specialist meeting on steam qenerators, Stookholm (Ootobre 1984 )
"Belgian requlatery elimate"
Q. FREDERICK and $P$. HERNALSTEFN (BELGATOM)

EPRI-3GOG workshop on primazy side stress coreosion cracking. St-Petersburg - Florida (December 1985), prèsentation résorvee aux "Utilitins"

EDF's Expert's Report on 2 tubes pulled off a Doel 3 sG in june 1986.
"Belgian approach to tube plugging for PWSCC in the tubesheet area - Experimental work"
to be published as an addendum to the present RPRI report.

## TABLE 4-1

CRITICAL LENGTH OF AN AYIAL THROUGH-並ALL DEFECT IN 7/8* TUBING
for a nominal and unfavourable (within brbekets) geometry


TABLE 4-1 (cont'd) (British Units)
CRITICAL LENGTH OF $A N$ ATIAL THROUGH-HALL DEFECT IN $7 / 8$ " TUBING
for a nominal and unfavourable (within brackets) geometry

MECHANICAL PROPERTIES		YS	UTS	0.	CRITICAL LENGTH (in) for			$p$ (PS1)
REFERENCE	T ( $\left.{ }^{\circ} \mathrm{F}\right)$	ksi	ksi	ksi	1450	2590	$\sqrt{2} \times 2590=3660$	$3 \times 1450=4350$
TYPICAL	70	50.7	101.5	78	$2.110$	$\left\{\begin{array}{l} 1.091 \\ (0.898) \end{array}\right.$	$0.713(0.575)$	0.567 (0.453)
ACTUAL aVERAGE	650	42	92	72	$\begin{aligned} & 1.913 \\ & (1.583) \end{aligned}$	$\begin{aligned} & 0.984 \\ & (0.807) \end{aligned}$	0.630 is 520)	0.504 (0.398)
ACTUAL MINIHUM	650	33	87	52	$\begin{aligned} & 1.622 \\ & (1.327) \end{aligned}$	$\begin{aligned} & 0.819 \\ & (0.659) \end{aligned}$	0, 520 (0.413)	0.378 (0.307)
SPECIFIED MINIMUMT	70	40	80	62	$\begin{aligned} & 1.622 \\ & (1.327) \end{aligned}$	$\begin{aligned} & 0.819 \\ & (0.659) \end{aligned}$	0.520 (0.413)	0.378 (0.307)
	600	35	80	59.5	$\begin{array}{ll} 1 . & 508 \\ (1, & 280) \end{array}$	$\begin{aligned} & 0.776 \\ & (0.630) \end{aligned}$	$0.488(0.384)$	0.366 (0, 287)

CRITICAL LENGTH OF AN AXIAL THROUGH-HALL DEFECT IN 3/4* TUBING for a nominal and unfavourable (within brackets) geometry

MECHANICAL PROPERTIES		YS	UTS	$\sigma$	CRITICAL LENGTH (mm) for P (bar)			
REFERENCE	T ( ${ }^{\circ} \mathrm{C}$ )	MPa	MPa	MPa	90	189.7	$f 2 \times 189.7=268.3$	$3 \times 90=270$
TYPICAL	20	350	700	540	$\begin{aligned} & 51,5 \\ & (43,7) \end{aligned}$	$\begin{array}{r} 22.4 \\ (18,6) \end{array}$	14.4 (12)	14.3 (12)
AETUAL AVERAGE	343	290	676	495	$\begin{aligned} & 47 \\ & (39.8) \end{aligned}$	$\begin{aligned} & 20 \\ & (16,5) \end{aligned}$	12.8 (10.5)	12. $8(10.5)$
ACTUAL MINIMUM	34.3	228	600	425	$\begin{aligned} & 39.6 \\ & (34,7) \end{aligned}$	$\begin{aligned} & 16.5 \\ & \text { i13. } 3 . \end{aligned}$	10.3 (8,3)	10, 3 (8, 3)
SPECIFIED MINIMUM	20	276	552	425	$\begin{aligned} & 40 \\ & (34.7) \end{aligned}$	$\begin{array}{r} 16.5 \\ (13.6) \end{array}$	10.3 (8,3)	10.3 (8, 3)
$L$	316	244	552	410	$\begin{aligned} & 38.2 \\ & (32.2) \end{aligned}$	$\begin{aligned} & 15.9 \\ & (13,2) \end{aligned}$	9. 7 (7.8)	9.7(7.8)

TABLE 4-2 (cont'd) (British Units)
CRITICAL LENGTH OF AN AXIAL THROUGH-*ALL DEFECT IN 3/4" TUBING
for a nominal and unfavourable (within brackets) geometry

MECHANICAL PROPERTIES		$\begin{gathered} \text { ys } \\ k s i \end{gathered}$	UTS   ksi	$\frac{a_{i}}{k s i}$	CRITICAL LENGTH (in) for P (psi)			
REFERENCE	T (0.F)				1305	2750	$\sqrt{2} \times 2750=3890$	$3 \times 1305=3915$
TYPICAL	70	50.7	1101. 5	78	$\left\{\begin{array}{l} 2.028 \\ : 1.721) \end{array}\right.$	$\begin{aligned} & 0.882 \\ & (0.732) \end{aligned}$	0. 567 (0.472)	0. 563 (0.472)
ACTUAL AVEPAGE	650	42	92	72	$\left(\begin{array}{l} 1.850 \\ (1.567) \end{array}\right.$	$\begin{aligned} & 0.787 \\ & \mid(0.650) \end{aligned}$	$0.504(0.443)$	0. 504 (0.413)
ACTUAL MINIMUM	650	33	87	62	$\begin{aligned} & 1.559 \\ & \text { (1.366) } \end{aligned}$	$\begin{aligned} & 10.650 \\ & (0.535) \end{aligned}$	0. 406 (0.327)	(0) 405 (0, 327)
SPECIFIED MINIMUM -	70 600	40 35	80 80	$\begin{aligned} & 62 \\ & 59.5 \end{aligned}$	$\left(\begin{array}{l} 1.575 \\ (1.366) \\ 1.504 \\ (1.268) \end{array}\right.$	$\begin{aligned} & 0.650 \\ & (0.535) \\ & 0.626 \\ & (0.520) \end{aligned}$	$\begin{aligned} & 0.406(0.327) \\ & 0.382(0.307) \end{aligned}$	$\begin{aligned} & 0.406 \quad 0.327) \\ & 0.382<0,307) \end{aligned}$

TABLE 4-3
CRITICAL LERGTH AF A CIRCUMFERENTIAL THROUGH-WALL DEFECT IN 7/8" TUBING
for a nominal and unfavolcable (within brackets) geometry

MECHANICAL PROPERTIES		YS	UTS	$\sigma_{6}$	CRITICA	ARC LE	NGTH ( $2 \propto$ (deg. ) )	for P (bar)
$\mathrm{I}\left({ }^{\circ} \mathrm{C}\right)$		MPa	MPa	MPa	100	178. 5	$\sqrt{2 \times 178}, 5=252.5$	$3 \times 100=300$
TYPICAL	20	350	700	540	$\begin{aligned} & 226 \\ & (221) \end{aligned}$	$\begin{aligned} & 198 \\ & \{191\} \end{aligned}$	179 (171)	169 (159)
ACTUAL AVERAGE	343	290	676	495	$223$	$\begin{aligned} & 194 \\ & (186) \end{aligned}$	174 (154)	162 (153)
ACTUAL MINIMUM	343	228	600	425	$\begin{aligned} & 215 \\ & (210) \end{aligned}$	$\begin{aligned} & 185 \\ & (178) \end{aligned}$	164 (154)	152 (141)
SPECIEIED MINTMUM +	$\begin{array}{r} 20 \\ 316 \end{array}$	276 244	552 552	425 410	$\begin{gathered} 215 \\ (210) \\ 214 \\ (207) \end{gathered}$	$\begin{aligned} & 185 \\ & (1783 \\ & 183 \\ & (176) \end{aligned}$	$164(154)$ $162(152)$	$\begin{aligned} & 152(141) \\ & 149(139) \end{aligned}$

[^1]TABLE 4-3 (cont'd) (British Units)
CRITICAL LENGTH OF A CIRCUMFERENTIAL THROUGH-HALL DEFECT IN 7/8* TUBING for a nominal and unfavourable (within brackets) geometry

MECHANICAL PROPERTIES		YS	UTS	$\sigma_{*}$	CRITICAL	ARC L	NGTH ( $2 \alpha$ (deg. ) ;	for P (psi)
$\mathrm{T}(\circ \mathrm{F})$		ks ${ }^{\text {l }}$	ksi	ksi	1450	2590	$\sqrt{2} \times 2590=3660$	$3 \times 1450=4350$
TYPICAL	70	50.7	101.5	78	$\begin{array}{r} 226 \\ (221) \end{array}$	$\begin{aligned} & 198 \\ & \quad(191) \end{aligned}$	179 (171)	169 (159)
ACTUAL AVERAGE	650	42	92	72	$\int_{(216)}^{223}$	$\begin{aligned} & 194 \\ & (186) \end{aligned}$	174 (164)	162 (153)
ACTUAL MINIMUM	650	33	87	62	$\begin{array}{r} 215 \\ (210) \end{array}$	$\left\lvert\, \begin{aligned} & 185 \\ & (178) \end{aligned}\right.$	164 (154)	152 (141)
SPECIFIED MINIMUM	$70$	40	80	$62$	$\begin{aligned} & 215 \\ & (210) \end{aligned}$	$\begin{aligned} & 185 \\ & (178) \end{aligned}$	164 (154)	152 (141)
1	600	35	80	59. 5	$\begin{aligned} & 214 \\ & (207) \end{aligned}$	$\begin{gathered} 183 \\ (175) \end{gathered}$	162 (152)	149 (139)

N. B. : 10 deg. $\approx 0.0677$ in (nominal geometry)
$=0.0689$ in (unfavourable geometry)
as measured around the inner side

TABLE 4-4

CGITICAL LENGTH OF A CIRCUMFERENTIAL THKÜシュu änLL DEFECT IN 3/4* TUBING for a nominal and unfavourable (within brackets) geometry

N. B. : 10 deg. $=1.47 \mathrm{~mm}$ (nominal geometry)

TABLE 4-4 (cont' d) (British Units)
CRITICAL LENGTH OF A CIRCUMFERENTIAL THROUGH-GALE DEFECT IN $3 / 4^{\circ}$ TUBING for a nominal and unfavourable (within brackets) geometry

N. B. : $10 \mathrm{deg}=0.0579$ in (nominal geometry)
$=0.0591 \mathrm{in}$ \{unravourable geometry

TABLE 4-5
MAXIMUM PROPAGATION (FOR 1 CYCLE) OF "LONG" GRAGRS ( 29 mm )

Feference: 2 last cycles of Doel 3 and Tihange 2

UNIT	DOEL 3								TIFANGE 2			
SG $n r$	B		$R$		$G$		8		1		3	
CYCLE	1986	-1987	1987	- 1988	1997	1988	1987	- 1988	1987	1988	1987	1988
INITIAL LENGTH	$\begin{aligned} & \text { omax } x \\ & \text { (min) } \end{aligned}$	$\mathrm{x} / \mathrm{y}$	$\begin{aligned} & \delta \max x \\ & (\operatorname{mm}) \end{aligned}$	$x<y$	$\begin{aligned} & \text { ómax } \\ & (\mathrm{mm}) \end{aligned}$	x ${ }^{\text {y }}$	$\begin{aligned} & \text { Omax } \\ & (\mathrm{mm}) \end{aligned}$	$x / y$	$\begin{gathered} \text { oma } x \\ (\mathrm{~mm}) \end{gathered}$	$x$ - $x^{\prime}$	$\begin{aligned} & \delta \max x \\ & (\mathrm{~mm}) \end{aligned}$	$x / y$
8 mm	2	$1 / 3$	-	-	4	$1 / 10$	5	$5 / 104$	2	$1 / 3$	4	1712
9 mm	3	1/4	-	-	3	$3 / 9$	4	3160	3	$1 / 3$	3	$1 / 5$
10 mm	0	1/1	0	1/4	4	1/5	4	$5: 31$	0	$3 / 3$	1	$1 / 4$
11 mm	-	-	-	-	3	1/1	4	1/4	-		1	$1 / 1$
12 mm		-	-	-	-	-	3	$1 / 5$	3	1/1	-	-
13 mm	-	-	-	-	-	-	2	1/1	-		-	
CONCLUSIONS		For	cracks of cracks of		$\begin{array}{r} z \quad 9 \mathrm{~mm}_{1} \\ 8 \mathrm{~mm}_{2} \end{array}$	$\begin{aligned} & 0 \text { max } \\ & 0 \text { max } \end{aligned}$	$\begin{aligned} & 4 \mathrm{~mm} \text { ( } 10 \\ & 5 \mathrm{~mm} \text { i } 5 \end{aligned}$		$\begin{aligned} & \text { i.e, } \\ & i . e . \end{aligned}$	$\begin{aligned} & \text { 2) } \\ & \text { (6) } \end{aligned}$		

$x / y=r a t i o$ of number of cracks with indicated fmax, to total number of cracks with indioated initial length.
(*) not included
SG $R$ and $G$ for cycle 86-87 (no inspection in 1986)
all SG of Tihange 2 for cycle 86-87

SG 2 for cycle $87-88$
The average propagation rate, for all SG of Doel 3 (cycle $87-88$ ), is 1.6 mm based on 117 eracks with an initial length $\geq 9 \mathrm{~mm}$.

TABLE 4-5 (cont'd) (British Units)
MAXIMUK PROPAGATION (FOR 1 CYCLE) OF "LONG" CRACKS ( 20.354 in)
Reference: 2 last cycles of Doel 3 and Tihange 2

UNIT					EL 3					TIHAN	E 2	
SG nr	8		P									
CYCLE	1986	1987	1987	1988	1987	1988	1987	1988	1987	1986	1987	1988
TNITIAL LENGTH	$\begin{aligned} & \text { omax } \\ & \text { (in) } \end{aligned}$	$x / y$	$\begin{aligned} & \delta \max \\ & (i n) \end{aligned}$	$x / y$	$(\operatorname{sinax}$	$x / y$	$\begin{aligned} & \text { (imax } \\ & (\text { in }) \end{aligned}$	$x / y$	$\begin{aligned} & \text { हmax } \\ & \text { (in) } \end{aligned}$	$x / y$	$\begin{gathered} \delta \text { max } \\ (\operatorname{in}) \end{gathered}$	x. y
0.315 2 n	0.0787	1/3	-	-	0. 158	$1 / 10$	0.197	$5 / 104$	0.0787	$1 / 3$	0.158	$1 / 12$
c. 354 in	0.118	$1 / 4$	*	$\checkmark$	0.318	$3 / 9$	6. 158	$3 / 60$	0. 1118	1/3	0.118	1/5
0.398 in	8. 0	1/1	0.0	1/1	0. 158	$1 / 5$	0.158	$5 / 31$	0. 0	$3 / 3$	0.039	1/4
0.433 in	-	-	-	-	0. 118	$1 / 1$	0.158	$1 / 4$		-	0. 039	$1 / 1$
0.472 in	-	-	-	-	-		0. 118	1/5	0. 118	1/1	-	
0.512 in	-	-	-	-	-	-	0.0787	1/1	-		-	
CONCLUSI ONS		for 139 cracks of for 132 oracks of			$\begin{array}{llll} 2= & 0,354 & 1 n & 0 \\ 0,315 & i n & 8 \end{array}$		$\begin{aligned} & \max =0.158 \text { in } \\ & \max =0.197 \mathrm{in} \end{aligned}$		$\left(\begin{array}{r} 10 \text { cases i. e. } 7 \text { \% }) \\ (5 \text { cases i.e. } 4 \text { \% }) \end{array}\right.$			

$x: y=$ ratio of number of cracks with indicated omax, to total number of cracks with indicated initial length.
(*) not included
SG R and G for cycle $86-87$ (no inspection in 1986)
all SG of Tihange 2 for sycle $86-87$
SG 2 for cycle $87-8 \varepsilon$

```
(no crack }\geq0.354 in
```

The average propagation rate, for all SG of Doel 3 (cycle 87-88), is 0.063 in based on 117 cracks with an initial length $\geq 0.354$ in

TABLE 4-6
PLUGGING LIMIT FOR SCC IN ROLL TRANSITIONS SAMPLE CALCULATION
AXIAL CRACES IN 7/8" TUBE OF A TYPICAL PLANT


## TABLE 4-6 (cont d) (British Units) <br> PLUGGING LIMIT FOR SCC IN ROLL TRANSITIONS Sample calculation <br> AXIAL CRACKS IN 7/8* TUBE OF A TYPICAL PLANT



TABLE 4-7
PLUGGING LIMIT FOR SCC IN ROLL TRANSITIONS SAMPLE CALCULATION
CIRCUMFERENTIAL CRACKS IN 7/8" TUBE OF A TYPICAL PLANT


TABLE 4-7 (cont'd) (British Units)
PLUGGING LIMIT FOR SCC IN ROLL TRANSITIONS
SAMPLE CALCULATION
CIRCUMFERENTIAL CRACRS IN 7/8" TUBE OF A TYPICAL PLANT


## BULGING FACTOR " $m$ "



Figure 4-1

## BURSTING PRESSURE PREDICTION BY USING

THE "NET SECTION COLLAPSE CRITERION"


Figure 4-2


Figure 4-3


Figure $4-6$

COD (AXIAL FLAWS) AS A FUNCTION OF PRESSURE

Figure 4-6


Figure 4-7


CIRCUMFERENTIAL THROUGH_THICKNESS FLAWS INCONEL $\Phi 3 / 4$ "


Figure $4-9$


Figure $4-10$

## CIRCUMFERENTIAL THROUGH WALL CRACKS.

 with and without lateral restraint

Figure $4-11$


Figure 4-12

RPC length versus true length (ID surface)

R13C30	R23C23	R27C52
DOEL 2	DOEL 3	OOEL 3
0	0	$X$

ECT Lengh (mm)


Figure $4-13$

$$
4-45
$$



Accual shape of through-wall eracks in the roll transition of 2 eubes pulled from DOEt. 3. Comparison wich ECT (KPC) lengtir measurement.

Figure 4-14

## section 5

CRACK SIZING METHODOLOGY

## 5. 1. INTRODUCTION

The development of a multifrequency eddy current technique using a rotating pancake coil (fpel answered the need for improved detectability of the small axial stress corrosioz cracks (SCC) observed within the roll transitions As a stae effect, the measurement of the crack length and of the number of indications Within the same cross section provided a powerful tool to study the evolution of the primary water stress corrosion cracking (PMSCC) phenomenon After the shot peening operation at Doel 3 and Tihange 2 , these parameters showed that the growth of existing cracks was no stopped by the peening As plugging ifmits based on the crack length were established, the use of the RPC shifted from an expertise mode to a production mode. The accuracy of the length measurements became more imporiant $\varepsilon s$ it had a direct influence on the maximum allowable crack 1 ength

The qualification of the RPC method included determining the accuracy of the ?ength measumetmenta. The inttial qualification wag baged on electrical discharge machined (EDM) notches. The calibration curve was establiehed for malatively long EnM defacte fanging from 5 to is nm - 0. 2 to 0.59 in) with a large signal amplitude. It was applied betreen 1984 and 1905 Duming the in-eeroice ingpection of Doel in Juiy 1986 , two tubes were selected from the RPC data and pulled from the m steam generator The metallographie examination provided the firgt comparison between eddy current results and actual defects. Two matn conclusions were obtatmed
the RPS was unable to detect some small SCC cracks 1 \& 2 mm 0.08 1, 3
the RPC was undersizing the SCC length (as measured on ID) by an average value of $1 \mathrm{~mm}(0.041 \mathrm{n})$

The rules used to measure the crack length were modified to remove the sustematic error observed for the SCe length range of the pulled tubes (33 data points). These rules were applied to the in-service inspections since 1987 and to a retroactive analysis of inspection data (baok to June 85) It is important to note that the relationships between the eddy current length and the actual length are different if the reference defects are EDM notches, laboratory defects or actual plant SCC specimens. These differences are the consequence of the complex relationship between the crack morphology and the magnetic field produced by the coil. This relationship can be desoribed as the convolution between the coll response in the presence of an infinitely small defect and the response for a infinitely small eddy curcent field to a crack. The main variables that influence the RPC pesponse will be

> the width and penetration depth of the pancake coil detection area.
> the orack profile as a function of the tube wall thickness. the difference in lengths on the $1 D$ and $O D$ of the tube. the width of the crack opening.

Although the width and penetration depth of the magnetic field produced by the coll can be controlled to some extent, the other parameters are unknown. The probe design was optimized to obtain a small magnetic field both axially and tangentially to the coil tip. The ealibration was performed on actual defects observed on the two pulle) tubes in order to minimize the influence of the unknown crack parameters

Three parameters were initially studied; the length, the depth and the number of signals mithin the same croes section Although an eddy current phase angle to defect depth could be established for EDM notches, laboratory reaults on artificial SCC cracks indicated that: the EDM Calitration curve for depth measuraments was not representative of the real penetration. Also, on site inspections showed most eracks to be through-wall. For these reasons, the SCC depth was assumed to be 100 s through the tube wall for all axial defects detected in the roll transitions.

The detection and siaing of circumferential cracks was not a concern hecause only longitudinal SCC was expected in the kiss and hard rolls configurations. However with the inoreased operating time of these plants, the possibility of circumferential SCC may increase. Several developments are currently under way using both eddy current and ultrasonics in order to detect and to measure the azimuthal length of circumferential flaws. Some preliminary measurements performed in the 1 ahoratory and on site with ultrasonics indicates that a $1 \ldots$ industrial inspection can be developed

The iollowing paragraphs detail the qualification results for longitudinal SCC in terms of accuracy and reproducibility. EDM notohes were used for the laboratory study of the reproducibijity of the position and length measurements (1984). Actual SCC cracks obtained from pulled tubes in July 1986 (Doel 3) and July 1987 (Doel 2) were used to demonstrate the length measurement accuracy. All the measurements were performed with the same equipment and procedure that were used during the 100 \& RPC iaspection of Tihange 2 (February 1988) and Doel 3 (June 1988), as dsscribed in Section 6. Laboratory examinations were performed from the trailer using the polar manipulator installed into a steam generator mockup in order to simulate as close as possible the on site conditions. It was considered necessary to repeat the recording of the EDM notches becaute of the significant changes in hardware and software since 1984
5. 2. STUDY OF THE ACCURACY AND REPRODUCIBILITY OF EDM NOTCHES

## Proglam

Fivs parameters were studied: the position and length of the defect, the number of gignals within the same cross se: ts, their amplitude and their phase to depth relationship. The signals were also analysed to determine the detectability and the importance of the dynamic range for the eddy current instrument. The measurements were performed on a set of EDM axial and circumferential notches summirized in Table 5-1.

The length ranges from 1 mm to $25 \mathrm{~mm}\{0.04$ in to i in) and the number of EDM notches from 1 to 6 in the same cross section. The notch depth ranges from 10 \% to 100 \% through the tube wall thickness.

## Detectability And Dynamic Ranqe

The detection of the EDM notches can be studied as a function of their length and penetration depth It appeare that the minimum detentable penetration depth has to be defined as a function of the length, the Width and the initiation side of the defect. The minimum detectable depth for external (OD) EDM notches ranges from 80 \% For a 1 mm (0.04 in) notch to 40 \% for a 25 mm ( 1 in ) notch with a $1 \mathrm{~mm}(0.04 \mathrm{in})$ midth. These values for internal (ID) defects are 80 of for a 1 mm noteh and 20 , for a $25 \mathrm{~mm}(1 \mathrm{in})$ notch with a $1 \mathrm{~mm}(0.04 \mathrm{in})$ width Also, all ASpE standacd defects (which are large volume defects) were easily detectid and sized. It should be pointed out that the amplitudes of the signal for EDM flaws of 100 q dapth are three to four times larger than the greatest amplitude observed so far in steam generators. The amplitude ratio of the majority of SCC flaws to the RPC calibration defect iongitudinal through wall notris of 25 mm (1 in) length) is approximatively -30 dB and decreases for the smallest detectable signals to -45 dB It should be noted that the coil has bean designed to optimize the accuracy of the crack length measurement. To this end, the coil diameter respective to the ferrite coil diameter was held as small as mossible $1 t$ produces a smaller EC field which improves the pescluing power. As a drawback, this technique reduces the detectability for $O D$ oracks and modifies the phase to depth relationship

Accuracy ind Reproducibility
Pesition Measurement. Two series of tests have been performed using the setup presented in Figure 5-2 Tube number 6923 ? was probed sequentially 25 times from top to bottom. The tube position was reversed and probed again another 25 times. The correct position of the defects on the mockup was measured manually before and after each sequence. Figure 5-3 summarizes the results. The reproducibility for locating known defects is $+1-1 \mathrm{~mm}(0.04 \mathrm{in})$ for 97.5 \% of the measurements. These results indicate that locating defects is precise enough to use an automated analysis technique to measure defect growt h
Length Measurement. These measurements were performed on the full set of EDM longitudinal flaws using the "actual SCC" length analysis rule. The length of the longest noteh in each oross section was measured by
the analysis software. Shorter flaws were not taken into account This sequence results from the uge of the normal on site software whioh reports only the length of the longest SCC crack. The length is always measured axially to the tube

As expected from the "actual SCC" calibration, the length estimations for EDM notches are overbized from t to $5 \mathrm{~mm}(0,04$ to a 2 in) as a function of the defect amplitude and shape. It is important to note that the length analysis rules were defined for the defects observed in two pulled tubes from Doel 3 with amplitudes ranging from 0.050 volts to 0.650 volts. The length measurement is based on a fixed threshold that does not take into account the influence of the defect end fabrupt for EDM and smooth for SCCl or its amplitude. Thus, the over or undersizing effect will be a consequence of the defect morphology. As a result, the analysis rules have to be determined as a function of the signals and defects observed in the steam generator tubes. The reproducibility of the length measurements is shown in Figure $5-4$. It can be observed that the error is within $\pm 1 \mathrm{~mm}$ $(0.04 \mathrm{in})$ for 99 of of the measurements

Number of Signals on the Same Cross Section. These measurements were performed on the full tet of EnM flaws The overestimation of 1 to 3 notches resulted from the large amplitude of the $\operatorname{CDM}$ notches that produces small signal overshots after signal processing. These overshots are large enough to thigger the signal connter The asme situation does not ocour for real SCC defects.

Amplitude Measurement. The same measurements used for the study of the defect poeition aceuracy flongitudinal and oipoumferential notches) provided the information for the study of amplitude reproducibility. Although the signal amplitude is not useful for siging SCC opacks, its reproduoibility has an influence on defect detection. The distribution of the largest amplitude in each cross section measured with the analysis software is shown in figure $5-5$. The softoare reports only the amplitude of the most signifieant indication. The reproducibility is +/- 4 \% of the amplitude for 98 * of the sample This value is strongly affected by the rotationnal noise produced by the misalignement, between the test tubes ( 200 mm length and the test bench. The probe centering devices are located

85 mm apart which results in the EDM notches being measured while the probe upper and lower centerinct wheels are located in different tube parts. The amplitude reproduaitility is therefore much better during on site inspections where such misalignment does not occur.
fepth Measurement. The complete set of tubes was analysed in order to determine the eddy current phase to defect depth relationship
Figure 5-6 shows the curve obtained for EDM longitudinal defects. The phase was measured manually because the software used for on site inspections does not provide this function for the RPC analysis The phase was measured only for the defeots that are longer than the magnetic field created by the pancake coll in order to reduce the uncertainty. As it appears from these results, the depth of defects longer than $10 \mathrm{~mm}(0.4 \mathrm{in})$ can be estimated from the eddy current phase angle with an accuracy of $+/=20$ \% at 240 kHz and $+1=10$ \% at 500 kHz . The reproducibility of the depth estimations for EDM notches relies on the accuracy of the phase measurement and che signal to noise ratio
5. 3. STUDY OF THE ACCURACY AND REPRODUCIBILITY FOR ACTUAL CRACKS

## Erogram

This study is based on three tubes :
two pulled tubes from the B steam generator of Doel 3 which wete analyzed by RPC and metallographio examination
one pulled tube from the A steam generator of Doel 2 which was analyzed by RPC, visual examination and dye penetrant.

The tubes from fioel 3 are hard rolled for the full length of the tubesheet wity a final kiss roll; they show only PWSCC in roll transitiors The tube from Doel 2 had a partial depth hard roll for a length of $70 \mathrm{~mm}(2.75 \mathrm{in})$ from the bottom of the tubesheet. It has two types of defects: PWSCC on the roll transition area and one secondary water stress corrosion crack (SHSCC) at 60 mm ( 2.36 in ) above the roll transition.

Four parameters were studied: the length, the number of signals along the same cross section, their amplitude and their phase to depth relat 2. The signals were also analysed to determine crack


#### Abstract

detectabitity A representative sample of Doel 3 and Doel 2 cracka f e etimmanifoed in Tahles 52.2 to 5. 2.3.

For the Doel 3 tubes, the $I D$ lengths range from 1 mm to it mm i 0,04 in tath, 4 Int, tho number of cracke fran 20 te 22 alent the bame transverse aross section. Their depth and the amplitude range cespectively from 63 \% to 100 \% through wall and fram 0.050 voltg to a KKa white de the noel 2 tuhe has not been examined destructivelv. only the indications observed from the ID and OD dye penetrant tests can be used. The iD lengths range from 3.3 mm to $13 \mathrm{~mm}(0.13$ in to (1) 5t in), the number of ctacks tangen from i (susce defeck) ta to roll transition area) The depth is $100 \%$ penetration for all the


 FWSCC defectsDetectability and Dynamic Ranse

The detection of actual SCC cracks can be studied as a function of thetr length and nenefration tanth Tables 5.2. 1 to 5. 2. 3 indicate the results ohtained for each flaw.

The minimum detectable depth for external cracke cannot be estimated J5 tho actutl crack denth of the succe is mot known Tha pwsec defects that were not detected by RPC are between $\lll 1$ mm and 2.0 mm (0.04 in and 0.08 in) Iong with penetration depths between 71 is and
 and an azimuthal length of 1.5 mor and $3.5 \mathrm{~mm}(0.06$ in and 0.14 in) were not detected A close examination of the orack loeations along the tube ctretmfertnce iffgures $5-7 a+0$ o) ghows that several eracks are close enough to produce a single eddy current signal. For tube R23 C23. this is the case for the oracks $8 / 9,10 / 10,11 / 12 / 12$ and $+6 \times 19+17$ In pitrticular, the two etretmferential oracks are included in the signal produced respectively by the longitudinal defects $11 / 12 / 12^{\prime}$ and $16 / 17 / 17$. The same situation ocours for oracks $2 / 3 / 3^{\prime}$,
 phenomenon results from the eddy ourrent detection field being about of 5 min in diameter. For a non optimized coil design, the diameter of influence can exceed to mat further reducina ihe resolvino power of the RPC probe. These results indicate that all defects with 100 粦 penetration depth and a length greater than 2.0 mm lead to a deteetable aignal

Pasition Measurenient. Position measurements were performed only on the Doel 2 tube. Three inspections of the same tube were analysed in order to determine the accuracy of the position measurement. The accuracy and ine reproducibility of positioning are within $+1-1$ mm (0. 04 in)

```
Length Measurement. The study of the accuracy of the length
measurements was performed in 1986 on the two pulled tubee from Doel }
(see Fig. 5-8). This led to the interpretation rules used since 1987. The results for the Doel ? defects were determined using this calibration curve. The lenath of the longest crack in each cross section was measured by the analysis software. The other cracks were measured manually using the same rules. This procedure was required since the on site software reports only the length of the longest ScC orack
```

The results of the comparison between real and measured orack lengths are shown on Figure 5.8 . The regression line is diven by RPC length $=$ $-0.123+0.981 *$ (ID crack length) with a currelation coefficient of 0.882 . The analysis of the effect of the orark profile on the RPC over of underestimation indicates that the serur is mainly a function of :

> the difference between the OD and ID crack lengths
> the profile between the OD and ID crack extremities
> the presence of two or more oracks close enough to produce a single RPC signal.

The ovecestimation was already observed during the measurements of EDM notches with rectangular profiles As an example, the overestimation can be seen on the PHSCC crack 12 of the tube R27 C52 (Figure 5-9) However, triangular or trapezoidal profiles will produce an underestimation of crack length as can be seen for oracks 7 of tube R23 C23 and 6 of tube R27 C52 (Figure 5-10). As a confirmation, for the Doel 2 tube (R13 C30) where the OD length of the cracks is close to the ID length (difference of $1.5 \mathrm{~mm} \max (0.06 \mathrm{in})$ ), the RPC underestimation of the ID length never exceeds 1 mm . As a consequence of both Doel 2 and Doel 3 tube examinations, the RPC sizing accuracy margin has been considered to have a maximum value of 1.5 mm
(0.06 in). This value is conservative as the average length of an antual DWSCC flaw is lees than the maximtimlength moasurad on in Consequently, it more than adequately covers any structural concern

Number of Stqnals in the Same Cross Section Tables. 5. 2. 1 and 5.2.2 summarize the number of signals detected by the eoftuare on the same oross section. It appears that this value underestimates the real number of defects for the Doel 2 and 3 tubes. Two reasons explain this ohmervation the small volume of SCC cracks and the integratimg effect of the eddy current field. Some very small defects of the Doel 3 tubes not detected by eddy current, radiography and visual testing wepe only deteetable after the tube had been flattened As the ededy ourrent field has a radius of $2.5 \mathrm{~mm}(0.1$ in) at the detection frequeney, it will integrate the influence of cracks that are closer than this atstance consequently, although the Etudy of the number of signals along the same cross section provides useful information about the inorease in number of SCC eracke, it hae to be conetdered as an underestimation of the actual progression

Amplitude Measurement From the comparison of several hundreds of mepeated pecorde in boel 3 and Ti hange 2 , the reproducibility of the amplitude measurement is better than 0.05 volts for 90 \& of the sample. In most circumstances, the difference results from the influence of the probe ifft-off during the notationnal movement

Depth Measurement The PWSCC defects that were detected in the pulled tubee show a tof \& nenetration depth. The same observation can be obtained from the analysis of the 100 क inspection of all steam generator tubes of Doel 3 and Tihange 2. Therefore, since the erack length and amplitude, influence the phasefdepth relationship, it has been considered that this information was not sufficiently acourate to be usefull for the SCC examination. This conclusion about the RPC capabilities to size the depth of defects is only true for small length and small volume defects like PWSCC. Accurate depth measuremente ean be obtained for fastage or mear

## 5. 4. CONCLUSIONS

This work had the objective of defining the detection oapability, accuracy, and the reproducibility of the multifrequency eddy curpent
method 4 sing a rotating pancake coil for primary water stress


 SCC cracks. The RDM noteh ressults have been pestrioted to equipment
 mas suraments using EDM defects should not be used for the Quailtication of eithor the detectability of crack刀 or the acouracy or the lensth estimates

The RPC inethod is able to measure with a good reproducibility the
 $p o s i t i o n(+f-1 \mathrm{~mm}-0.04 \mathrm{in})$ of SCC flaws Defects longer than
 detectability For smallat defects, the minimum signal to noise
 thpeshold Again, if ome considers EDM notohes which are large yolume
 40 क (OD) penetration depth. All ASME standard defects, which are
 reproducibility of the amplitude medsurements indicates that the detectability mitt he ratpty coñtant mitn conctumton hat tint confirmed from on stit data where the pereertage of very Bmatl defents
 0. $5 \%$

The modsured number of oracks in the same eross section should be considered a an approximate matcation of the actual number वf efackg This is betatse defects up to 2.0 min (o. OB inf may not be
 Into a s f ngle signal. Nevertheless, the ppo method constitutes an


The 1 ength estimete constitutes the main objective of the ingpection.
 measurement of longitudinal PhSCC cracks between 2 and 15 mm (os og and
 demonstrated within the 1 man (0.04-in). It has benen onfirmed from on

decrease f not exceeding 1 mm$)$ between successive inspections is less than $5 \%$. The accurady of the lenath estimates can be expected within $+1=1.5 \mathrm{~mm}(0.061 \mathrm{n})$ ot the ID real crack length. The error in length estimates results from the orack morphology in terms of profile freotangular, triangular or trapezoidal shapes), respectiva TD to OD lengths and the opening of the crack. An optimiaed coll design with a small eddy current field (axially and tangentially to the coil tip) assoctated with a calibration curve established from actual defects minimizes the influence of the unknown orack parameters on the EC length measurement

TABLE 5. 1

EDM notches (1)

Notches							
Tube \#	$\begin{aligned} & \text { type } \\ & \text { (3) } \end{aligned}$	origin	$\begin{gathered} 1 \text { ength } \\ (\mathrm{mm}) \end{gathered}$	width   ( mm)	depth ( 4)   ( ${ }^{2}$ )	Nr .	Remarks
57.969	L	$\begin{aligned} & \text { OD } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$1$	$\begin{aligned} & 40 \\ & 20 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
58.712	TWH   FBH   FBH   FBH   FBH   TWH	$\begin{array}{rr} 100 & \% \\ O D & \\ O D & \\ O D & \\ O D & \\ 100 \% \end{array}$			$\begin{array}{r} 100 \\ 19 \\ 41 \\ 64 \\ 82 \\ 100 \end{array}$	$\begin{aligned} & 4 \\ & 4 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	ASME tube from LABORELEC
69.237	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{~L} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$		$\begin{array}{r} 10 \\ 15 \\ 25 \\ 15 \\ 10 \\ 5 \\ 2 \\ 1 \\ 5 \\ 2 \end{array}$	$\begin{array}{ll} 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \end{array}$	$\begin{array}{r} 100 \\ 80 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	] same cross section ]same cross section ] same cross section ] same cruss section
69.777	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 10 \\ & 00 \\ & 10 \end{aligned}$	25 10 25	$\begin{aligned} & 0.2 \\ & 0 . \\ & 0 . \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \\ & 60 \end{aligned}$	$\begin{aligned} & 4 \\ & 6 \\ & 2 \end{aligned}$	
69.778	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \text { ID } \\ & \text { OD } \\ & \text { ID } \end{aligned}$	$\begin{gathered} 25 / 26 \\ 2 \\ 25 \end{gathered}$	$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 80 \end{aligned}$	$\begin{aligned} & 6 \\ & 1 \\ & 1 \end{aligned}$	$\text { (see Fig. } 5-1 \text { b) }$
69.780	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \text { ID } \\ & \text { OD } \\ & \text { ID } \end{aligned}$		$\begin{array}{ll} 0 & 2 \\ 0 . & 2 \\ 0 . & 2 \end{array}$	$\begin{aligned} & 80 \\ & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & 1 \\ & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & (\text { see Fig. } \\ & (\text { see Fig. } \\ & (\text { b }) \\ & \end{aligned}$
69.781	L	OD	10	0,2	40	4	
69.782	t	OD	10	0.2	60	2	
69.785	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \text { ID } \\ & \text { OD } \\ & \text { ID } \end{aligned}$	$\begin{gathered} 10 \\ 25 / 28 \\ 10 \end{gathered}$	$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 80 \\ & 20 \\ & 60 \end{aligned}$	$\begin{aligned} & 1 \\ & 6 \\ & 2 \end{aligned}$	(see Fig. 5-1b)

TABLE 5. 1 (continued)

Tube \#	Notches						
	type   (3)	origin	$\begin{aligned} & \text { length } \\ & (\mathrm{mm}) \end{aligned}$	width   ( mm)	$\begin{gathered} \text { depth } \\ \text { (4) } \\ \text { (w) } \end{gathered}$	Nr .	Remarks
69.788	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$O D$   00   ID	$\begin{array}{r} 25 \\ 25 / 31 \\ 2 \end{array}$	$\begin{array}{ll} 0 & 2 \\ 0 & 2 \\ 0 & 2 \end{array}$	$\begin{aligned} & 60 \\ & 80 \\ & 20 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 6 \end{aligned}$	(see Fig. 5-1b)
69.789	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & O D \\ & I D \end{aligned}$	$\begin{array}{r} 25 \\ 2 \end{array}$	$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 80 \\ & 20 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	
69.792	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 10 \\ & \text { OD } \end{aligned}$	$\begin{array}{r} 2 \\ 10 \end{array}$	$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
$76 / 001$	FBH   FBH   FBH   FBH   TWH	$\begin{aligned} & O D \\ & O D \\ & O D \\ & O D \\ & 100 \% \end{aligned}$	$\begin{array}{lll} \$ & 4,8 \\ \$ & 4.8 \\ \$ & 2.8 \\ \$ & 2 & \\ \$ & 1.7 \end{array}$		$\begin{array}{r} 20 \\ 40 \\ 60 \\ 80 \\ 100 \end{array}$	$\begin{aligned} & 4 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	ASME tube from WESTI NGHOUSE (2)
84/094	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { ID } \\ & \text { ID } \\ & O D \\ & I D \\ & \text { ID } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{array}{ll} 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \end{array}$	$\begin{aligned} & 10 \\ & 20 \\ & 10 \\ & 20 \\ & 40 \\ & 60 \\ & 80 \\ & 40 \\ & 60 \\ & 80 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	] Same cross section ] same cross section   ] same cross sectinn   ] same cross section   ] same oross section
84/006	L.   L.   L   L   L   L   L.   L   L.   L	$\begin{aligned} & I D \\ & I D \\ & O D \\ & I D \\ & I D \\ & I D \\ & I D \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{array}{ll} 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \end{array}$	$\begin{aligned} & 10 \\ & 20 \\ & 10 \\ & 20 \\ & 40 \\ & 60 \\ & 80 \\ & 40 \\ & 60 \\ & 80 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { ] same cross section } \\ & \text { ] same cross section } \\ & \text { ] same cross section } \\ & \text { ] same cross section } \\ & \text { ] same cross section } \end{aligned}$

TABLE 5, 1 (continued)


## fameral Remark

(1) Except for tube $76 / 001$, all notches and holes flat bottom or through walll are elentrical discharde maehined
(2) Holes of tube $76 / 001$ are drilled
(3) The notches are
L. longitudinal

C circumferential
The holes are :
THH: through wall hole
FBH: flat bottom hole
(4) Except for tube 58712 , all the depth values are only theoretical values.

Table 5, 2. 1

COMPARISON OF EXAMINATION RESULTS
Doel 3 tube Ri3 C23)

 (destruetive examination)
** measurement by destructive examination
visual ID surface of sectionned half tube
10 from metalographic examinations
OD (eross sections or opened eracks)

Table 5. 2. 2
COMPARISON OF EXAMINATION RESULTS
Doel 3 (tube R27 C52)

EdF$(*)$	Length (**)			$\int_{8}^{D}+\mathrm{pth}$	$\begin{gathered} \mathrm{LE} \text { i } \\ (\star) \end{gathered}$	$\begin{gathered} \text { EC } \\ \text { length } \end{gathered}$	Remark
	Visual	10	OD				
1	1	0.2	-	71	ND	-	
2	1. 5	1. 1	-	94	7		$\checkmark$
3	2	1. 5	-	94	6	2	$\Sigma(2+3+3)$
3.	1. 5	-		$?$	J		
4	1. 5	1. 2	-	71	ND	-	-
5	5: 5	-	-	?	4	5	-
6	9	9. 2	5	100	3	8	-
7	7. 5	$\sim$	-	100	] 2	8	2 cracks
8	2. 5	-	-	$?$	J		$\Sigma(7+8)$
9	2	1.7	-	87	ND	-	-
10	8	7.7	5	100	1	8	-
11	2	-	-	$?$			
12	4	3.6	2. 8	100	10	5	$\Sigma(11+12+13)$
13	2	*	$\sim$	?			
14	5. 5	-	-	$?$	9	5	2 cracks
15	1. 5	-	"	?			
16	6	6	3	100			
17	5. 5	-	-	?	7	3	-
18	< 1	-		?	ND	-	-
19	< 1	*	-	?	ND	-	-
20	< 1	-	-	$?$	ND	-	$\stackrel{ }{-}$
21	< 1	-	-	$?$	ND	-	-

* identification numberg differ between LABORELEC (LE) and EdF
(destructive examination)
** measurement by destructive examination
visual : ID surface of sectionned half tube
ID from metalographic examinations
OD feross sections or opened eracks)


## TABLE 5. 2.3.

## COMPARISON OF EXAMINATION RESULTS

DOEL 2 (tube R13 C30).

$\underset{i}{\text { DATA }}$	VISUAL LENGTH mm		EC MEASURED LENGTH mm	REMARK
	ID	00		
1	13	12	15	
2	8. 5	7. 9	8	
3	6 (2)	5. 7	6	
4	6. 3	5	6	
5	11	9. 5	10	
6	10. 5	8.9	10	
7	B. 9	7.1	9	
8	8	6. 9	9	
9	$7.5-8(7)$	8. 4 (7)	9	
10	3. 3	2. 8	*	assocsated with \# 1



Figure 5-1-a Normal notches.


Figure $5-1-\mathrm{b}$ Special notches.

Figure 5-1

## TEST SETUP.



Figure 5-2


Figure 5-3
Figure 5-4
Figure 5-5

EDDY CURRENT CALIRRATION CURVE


Figure 5-6




yisual and destructive
examination

Doe: 3 - Tube R23 123

Figure 5-7 a
Crecks tocation along the tube circonference

Figure $5-76$ crasks location aiong the rube circonterence

# RPC length versus true length (ID surface) <br> <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">R13C30</td>
<td style="text-align: center; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">R23C23</td>
<td style="text-align: center; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">R27C52</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">DOEL 2</td>
<td style="text-align: center; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">DOEL 3</td>
<td style="text-align: center; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">OOEL 3</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: center; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">8</td>
<td style="text-align: center; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$X$</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| R13C30 | R23C23 | R27C52 |
| :---: | :---: | :---: |
| DOEL 2 | DOEL 3 | OOEL 3 |
| 0 | 8 | $X$ |</table-markdown></div> 

ECT length (mm)


Figure 5 -8



Figure $\$-10$ \&C length - Undecestimation

## ECT INSPECTION TECHN1QUES

## 6. INTRADUOPTON

The field appltcation of the rotating pancakn-cos) (APC) was rocused on tha etudu of the arawth of pWSCe butwoon 1984 and $10 R 7$ Tabe sampling during this period increased from a few lapos to 1.500 tubes in some steam generators. The methodology and the equipment were improved so as to reduea the inspection time below two to three days When it appeared that shot peening had not atopped the length inerease of esisting cracks, the application of the rotating pancake-cosl (RPC) teehntque increated Lemardes a ton s inepectien of the top of the tubesheet in order to allow the implementation of a plugging limit based on craek length. The acquisition and analysis procedures and the equipment had te be modifited to be able to perfopm the ingpaction of one steam generator within two to three days.

This optimiaed RPC system was first applied in February 1988 in Tihange 2. The plans for inspeotion resulted in the simultaneous examination of two steam generators followed by the inspection of the third one. The inspaction team performed the complete operation in 6 days and 10 hours finoluding equipment installation and removall. Each steam qenerator was inspected in 1 ess than 65 hours. The second inspection was performed at Doel 3 (July 88) following the same sequence. The operation was completed in less than six days. Each Ateam generator kas inspeoted in less than 60 hours (including equipment installation and removal, as well as performance of the final analysis and preparation of the preliminary report).

## 6. 2. SYSTEM PHILOSOPHY

The NDE equipment is made up of three main parts data acquisition, data analyais and data managament A mobile trailer contains the equipment to perform the simultaneous inspection of two steam
generators (Pigure 6-1), (1). Currently, two trailers are operational Hhen IInked, they altow the simultaneous inspection of up to four steam generators. Permanently installed electrical cables connect each steam generator platform to the trailers (Figure 6-2), Several
computers control the acquisition and the analvsis gequences. There is nearly no human intervention except for maintenance and final signal interpretation. This Computer Controlled Measuring System (CCMS) provides the high inspection efficiency as it integrates each task within a common flow ahart (Figure 6-3)
the data base is used to select the tube sampling;
the tube sequence determines the manipulator displacements;
the quality of the RPC data is checked before each recording;
each record is immediately analysed;
the diagnostics are compared with the data base to determine defect evolution

Each task is performed automatically using either microprocessor contwol of hiah nemformance desktop computers

## 6. 3 DATA ACQUISITION

The data acquisition system contains the electronic and the mechanical units needed to drive the manipulator and the probe.

Figure 6-4 shows the main components of one data acquisition unit The rotating pancake coil ampangement is made of two ferrite cores with an impedance matoh to minimize the differential residue both in temperature and in lift off effect. Probe centering is performed at. t 40 diffepent lavels with three retractile wheels while the coils are spring loaded against the tube surface (Figure 6-5). The large diameter variations between the unexpanded and expanded in out of tolemance holes) tube sections (from $19.2 \mathrm{~mm}(0.76$ in) up to 23.0 mm (0.9 in) , required a contacting coil principle.
more accurate. This problem was solved with the addition of a complemntiary degree of freedom to the probe intection mechanism.

Several other pieces of equipment were optimized in order to reduce as much as poestble the need for human intervention durimg the acquisition sequence (installation, maintenance and measurement).

## Installation

Installation of the polar manipulator requires one entry in the channel head for approxtmatively 2 to 3 minutes Afterwards 99 of of the tutes can be reached without further $S$. G. entry. The pusher puller ie inetalled in the manmay. The complete instaliztion of the manipulator and the pusher puller takes one hour (including health physies and initial tests). The time needed to link the electrical cables between the remote units and the inetrumente is especiatly short because of the permanently installed cables between each steam generator platform and a connection box located outside the reactor bus?aing The total time between the amrival of the tratier at the power plant and the first tube inspection is usually less than 24 hourg

## Maintenance

Laboratory simulations and performance analysis have led to a drastio reduction of failumes and repatr time mratned fumprts are able to exchange probes within 15 minutes. The probe auxiliary system cable, rotational encoder and slip rings) has a normal lifetime of $2500 \theta$ tubee

Speoial attention was given to the design of the pusher puller The thit can be weptaced in less than 3日 minutes and most of the replacable parts (slip rings, probe, cables) can be exchanged without tooling. The Tihange 2 and Doel 3 inspections were performed with two pusher pullems tising only one eet of potitional encoder and alip winge for each steam generator

## Measurements

Data acquisition of each steam generator of Doel 3 (about 3330 tubes) was performed at a speed of 120 tubes per hour during 90 \% of the inspaction.

The sequencing of tasks has taken advantage of the trailer philosophy which inclides the permanent instaliation of as much equipment as possible in a mobile trailer so that as little installation adjustment work is pequired as practical

Three operations are performed simultaneously
tube inspection:
quality control of a tube record
laser disc recording

The maximum acquisition efficiency is achieved because there is no जaiting period between the end of a tube inspect1on, manlpulator displacement and the laser recording

The measured area is programabie in 10 mm $(0,4$ int inorements to a
 $+30 \operatorname{mm}(1.181 n)$ to $-120 \mathrm{~mm}(4.701 \mathrm{n})$ from the top of the tubesheet requites 28 secands. The probe rotattonal gpeed is 42.5 revolutions/second and the pitch is $1 \mathrm{~mm}(0.04$ in)/revolution. This corresponds to a tube surface saannl ig speed of 750 mal $(29.5$ in)/second The analoque to digital conversion rate is


The eddy eurpent equipment is a multifrequency device providint tio or three differential rrequencfes and one or two absolute channele The absolute channel is used for the location of the roli tranitions.

The eddy ourfent signals are encoded with a I 5 bits resolution after
 analysis) has been measured higher. than 80 dB. Simultaneousiy with the 15 bits eddy current datas seqeral digital pieces of information are encoded: tube number, probe location in elevation and azimuthal pasition This information is transferred to a destitup compthem that performs the quality control of the data. It verifies th amplitude and h he phase of Ehe referemce defect for each thhe record.

The probe speed is compared to minimum and maximum thresholds. This on-1 fine quality control goes beyond the AsME and eppr MDe guidelimes It constitutes a major guaranty of accuracy and reproducibility during the matsurements. After this verification, the data are arittento an optioal disc

The tube to tube sequence provided by the data base is the single piget of information netded to stant the data acquiaition The sequence is shown in Figure 6-6. There is no operator interventian With the exception of the manipulatorimitialtaation amd the replacements required in case of a system or probe failure

## 6. 4. DATA ANALYSIS

The data analysis unit contains the electronic interfaces and the computer which takes came of the calibmation the detection and the measurement of the eddy current signals (figure 6-7)

The analysis sequencing takes advantage of 1 aser dise recording and the trailer philosophy Thnee openatione occur eimultaneowely
laser disc reading;
detection and analysis;
printing of eddy curfent signals arid computer diagnostics

The analysis sequence is performed with a computer system that calibrates, detects and measuses each suspected indication The approaoh is identical for the bobbin coil and the rotating panoake coil analysis whe software has been demsgnet to detect any indieation above the detection threshold. It leaves the final decision to human analyst it is preferred to obtain some false calle rather than missing a potentially dangerous indication.

The optical disc is shared between the acquisition and the analysis units. सhen a tube has been written on disc, it its sensed by the analysis computer and loaded in memory

The software locates the referenoe defect (longitudinal EDM notch) and calibrates each frequency channel as a fuñtlon of the andlysis
procedure. This operation rotates and amplifies the eddy current signals in order to quarantee $+/-2$ ded and $+1-1$ dB for eaoh record Extensive checking is built into the software to ensure an optimum dynamic range,

For example, the software is not allowed to amplify the eddy current signal more than 3 dB. If this situation occurs, it is detected during the acquisition sequence and is followed by a calibration of the eddy current instrument prior to recording on the optical disc. This algorithm ensures the optimum dynamic range as expected by the ASME code

The record is searched to recognize the start and the end of the tubesheet. Each 360 deg. section is scanned for a possible abnormal indication which is flajged. The suspected areas are displayed on the computer bit mapped display and printed by a high speed electrostatie plotter

The number of signals in the defective cross section, the amplitude and the length of the longest crack are measured by the computer and printed by the plotter. The information is written on the magnetic disc of the analysis computer. The complete analysis sequence is shown on Figure $6-8$. However, the final decision depends on the analyst His interpretation controls when low signal to noise ratio or complex patterns induee erroneous computer diagnosties.

The average analysis speed is 120 tubes per hour. A summary of the suspected areas is printed and in case of a bad record, the reason for the rejection is documented and the tube is rlagged for re-inspection.

## 6. 5. EVALUATION OF DEFECT OCCURRENCE AND GROHTH, AND ANALYSIS VERIPICATION

During the inspection, different software progran provide an immediate comparison between the previous data base records and each diagnosis. The longest cracks are inspected twice to ensure the best length evaluation. The plant operator receives twice a day a statistical evaluation of the steam generator situation (number of defects ranked by length, number of cracks, tubes to plug, ....)


#### Abstract

Tubesheet maps with the tubes to plug are provided in order to allow preparations to be made ror the plugging operatton.

At the end of the inspection the tubes to be plugged are marked with paint using a smali dedicated device mounted on the polar manipulator. These operations minimize the intervention time after the RPC inspection.


## 6. 6. FIELD EXPERTENCE

This RPC system was first implemented in March 1988 at Tihange 2. The first steam generator was available on March 9, at 9 a. in. Two steam generators were inspected simultaneously. The third steam generator was available for inspection 24 hours after the end of the inspection of the first steam generator. The total operation needed 6 days and 10 hours. This time includes equipment installation and removal from each steam generator channel head and platform. The final analysis and the preliminary defect statistics were available two days after the last tube inspection.

The total personnel irradiation exposure was 4.7 R for the laborelec team and 4.2 R for the jumpers. The general average channel head of each steam generator was measured at $8 \mathrm{R} / \mathrm{h}$. These values inolude the ASME Section $X I$ bobbin coil inspection and the tube marking operation.

The second inspection occured in June 1988 at Doel 3. The same planning was proposed by the plant. Because of some equipment and software optimization, the insyection time was further reduced. The total operation needed less than 6 days and the final report with orack progression statistics was avallable 4 hours after the last inspected tube The total irradiation exposure was reduced by 30 \% although the channel head measured value was the same at the both Doel 3 and Tihange?

The acquisition team worked 24 hours a day, in three shifts of
A hours The team consistad of
two site supervisors;
three shift leaders;
nine operators;
three electronie technicians;
twelve jumpers

```
The amalyst team worked 24 hourg a day in three shifts of 8 hours.
The team was made of
 One gitesupervisor;
 chree shift leaders;
 six analysts;
 six operators
It should be pointed out that the operators were also responsible for several administrative tasks which resulted, for example, in the filing of more than 15000 signal prints during each inspection.
```


### 6.7. COMPLIANCE HITH EPRI GUIDELINES

The PRC inspection teennique satisfiee each recommendation of the EPRT NDE guidelines. The reproducibility of the measurements is ensured with a high dynamic range and sampling rate. The equipment reaches $t$ wice the minimum values for both dynamic range and sampling rate specified in the guidelines. The quality control computer achieves the highest possible quality for each tube record. Such exhaustive and error free check cannot be achieved by human operators during the full work time of theit shift

The analysis proeedures fulfill the guidelines both in terms of team organization and eomputer implementation. The interpretation task can be considered as a three step sequence
the signal detaction:
the signal identification:
the defect characteriaation

For the detection task, the computer is by far superior to the human analyst. Indeed. this operation is nothing more than a visual threshold translated into a logical threshold on the $x$ and $y$
projections of the eddy current patterns. The superior detectability and reproducibility of the software algorithms were confirmed by comparing human and computer detections during a full year qualification period (1985)
Signal identification is usually a context sensitive task.
It implies the codification of analysis rules that are "expert dependent". For the RPC PHSCC inspection, the identification rules are simple because the defect location and the eddy current signal -
patterns are known.
Defect characterization is also simplified because the values to measure are the number of signals in the same cross section, the longest crack length and the largest signal amplitude. These values can be measured accurately with specific algorithms

Although the detection task is performed only by the computer, the automated identifioation and characterization are submitted to a human analyst team. Differences between computer and human analysis are settled by a third analyst team.

## 6. 8. CONCLUSION

The described RPC technology satisfies the safety goal and the utility requirements both ir tarms of reliability, accuracy and efficiency (inspection time). An optimum has been reached by

- advanced equipmelit design
- integration of the data acquisition and analysis procedures
- efficient computer data screening
- independent data analysis by computer and human teams

While maintaining compliance with the latest applicable
recommandations of the EPRT NDE guidelines

Field experience demonstrates that 100 \% RPC inspection in less than 60 hours per $S G$ can be achieved.

## REFERENCES

1. Tubesheet RPC inspection of three steam generators or 6. 5 days
for 10000 tubes
EPRT Steam Generator Gorkshop-June 1988- DOBBENI D.
2. Field experience with an eddy current and graphics display
imaging system for primary side cracking
EPRI Steam Generator Horkshop - August 1986- DOBBENI D.
Improving NDE in nuclear power plants with computer controlled
acquisition and analysis
Betgian Nuclear Society - May 1987 - DOBBENT D
3. Steam Generator Inspection Engineering
4 th European Conference on NDT - London September 1987 .
DOBEENT D
4. PWR Steam Generator Examination Guidelines Rev. 2. December 1988
EPRI NP 6201


CCMS DATA ANALYSIS
Figure 6-1


## INSPECTION SEQUENCE



Figure 6-3 NDT tasks submitted to a CCMS equipment

Figure 6-4 Data acquisition hardware.

PRINCIPLE OF THE L/E HELICAL SCAN ROTATING PROBE.


Figure 6-5


Figure 6-6 Dcta acquisition sequence.


Figure 6-7 Datd onalysis hardwore


Figure 6-8 Data analysis sequence.

## Section 7

## SG INSPECTION FIELD DATA

## 7. 1 PURPOSE

The purpose of this sention is to demonstrate the safe and reliable operation of the Relgian steain generators despite the fact that some of them are affected by through-wall cracks in several thousand of tubes

The review of steam generator (SG) inspection field data includes historical background in-service leak rate data and ehannel head radiation level Qutage leak data fhelium test, fluoresceine andfor secondary side pressure test, primary side pressure test)
eddy curpent Rotating Probe Control (RPC) statistical data (distributions of crack length. number of cracks per shetion,
correlation between eddy current "bobbin coil". RPC and hellum test data

### 7.2. LEAK RATE EVALUATION METHODS

The steam gèneratof pifmary to secondary leak rate evaluation methods used by the Belqian plant operators are

> radio-ifotope activity balance of fission products in the secondary $100 p(\mathrm{H}-3, \mathrm{~N}-16, \mathrm{~F}-18$, Na-24, Ar-41, I-131)
> bocon batance of the primary and secondary 1 oop primary water balance.

The radio-isotope leak rate evaluation method is based on isotope activity measurements by qamma-gpectrometry in varlous parts of the fecondary loop (steam genepators. maln steam, feedwater, blow down. ) A representative mathematical model of the secondary loop and precise knowiedge of the isotope activifies at the SG secondary inlets and outlets allow, by a balance the calculation of the isotope dotivity Ieak fate finatiy, the computed primary bu secondary sG
antivity leak rate (in Ci/h) is translated to a water leak rate (in $k g f h+y$ (thmfhr) by dividing it by the isotope specific activity ith Ci/kg) ( $\mathrm{Ci} / \mathrm{Lbm}$ ) in the primary water.

The borion balance is based on the same principle: after measurement of the boron content in the primary 1 oop and in the $S G$ secondary inlets and outlets, one can compute the SG leak rate. The primary gater batance is a direct method based on the primary leak rate evaluation.

## Discussion

whe radto=i sotope methods are the most reliable for determining a realistic leak rate. Leak determination by activity measurements of fiagion producte or activation in the primary and secondary loopa ia only valid if the steady state conditions are established for a sufficient time (approximately one half life of the isotope). When these conditions ere not met, activity fituctuations, which follow a power transient, induce a large spread in the evaluated primary to secondapy leak leyels

F-18 analysis is performed by each plant at least once a week on a routtme basis and when an abmormal glotat gamma radioactivity (continuously measured) is detected in the secondary loop. Leak rate ayaluation by the $F-18$ method is reliable Neyertheleee F-ig aetivity is difficult to measure by gamma-spectrometry and requires $10 n g$ times for computation (especially for small leaks, whinn the low activities of the secondapy samples pequire a 1 ong g\#mma cothting time). Generally, a total time of two and one-ha: f hours is needed when using the $F-18$ method from the start of water sampling operations to the determination of a leak rate number

N-16 activity has been used in several cases and will soon be monttored on a contintous baeie gpeetrotentry a 170 ene a vepy good evaluation of the $N-16$ content. Isotope $N-16^{\prime} s$ short half-1ife ( 7 sec) requires the measurements to be performed in the vicinity of the

[^2]source. Na-24 is also an excellent leak marker, Boron analysis in the primary and secondary 100 ps is a precise $( \pm 10$ \%) and rapid method for leak rate evaluation as long as the boron concentration in the secondary water is greater than 20 ppb . This method is independent of the power transient history

The primary water balance method gives absolute leak rates (total primary leak) but depends on many parameters and is not sensitive for small leaks. Great differences between total primary leak rates and indivadual steam generator leak rates can be observed in the tables of suhsection 7.4

The main lessons learned from the Belgian plant leak experience are the different. radio-isotope methods for leak evaluation lead to similar rates. This means that these methods and their corresponding mathematical models are reliabie
a precise leak rate evaluation by chemical analysis requires having about the same blow-down flow rate in each steam generator
a boron content in steam generators greater than 2 ppm cor lower than 20 ppb does not allow a reliable leak determination with the boron balance
spectroscopy determination of Ar-41 allows a quick evaluation of the leak rate

Tritium $(H-3)$ analysis over a long period of time gives a good total primary leak estimation
continuous $N-16$ measurements appear to be the quickest leak evaluation method. However, the N-16 leak determination is partially based on computed values and is strongly dependent on the location of the leak. Therefore, the absolute leak rates have to be confirmed by comparison with other chemical analysis resulta

## 7. 3. LFAK RATE EVALUATION/PLANT HISTORY

## Doel 2

Since the beginning of Doel 2 plant operation, the main method of SG leak rate evaluation has been radiochemical analysis of f-18 (by gamma-spectrometry measurements in the secondary loopl and primary watar and horon balances Both steam qenerators are now equipped with a permanent gamma-meter. The Doel 2 F-18 model 15 very reliable and has been improved during the 14 year life of the plant. The knowledge
of the isotope activity behavior in the secondary loop at 100 \% nominal power has led to the use of a simplified model requiring only the measurement of the specific activity in the primary loop and in the steam generators. The use of this simplified model results in a substantial time savings

Installation of a continuous $N-16$ monitoring system is now planned at Doel 2. A temporary system is already in operation. Tritium ( $\mathrm{H}-3$ ) balance leak determination on the basis of repetitive measurements is also planned for the near future.

## Doel 3

$\mathrm{H}=\mathbf{3}, \quad \mathrm{F}-1 \mathrm{~B}, \mathrm{Na}-24, \mathrm{Ar}-41, \mathrm{I}-131$, boron and primary water balances and, since August 1987 , the $N-\{6$ leak rate evaluation method are used at Doel 3. Installation of a permanent gamma-meter for each steam qenerator is planned.

## Tihange ?

Since the first start up, leak measurement. methods are global gamma" spectrometry, boron and $\mathrm{Na}-24$ analysis in the secondary water (and accasionally $I-131$ ). Each steam generator is equipped with a permanent gamma-meter giving precise radioactivity levels. Na-24 is measured at least once a week. Leak detection by $\mathbb{N}-16$ monitoring is now planned. A temporary system is already in operation.

## 7. 4. IN-SERVICE LEAK RATE DATA

## Doel 2 Leak Rate Data

The technical specifications applicable to Doel 2 identify:

$$
\begin{aligned}
& \text { a maximum allowable primary to secondary leak of } 28 \mathrm{I} / \mathrm{h} \\
& (0.123 \mathrm{gpm}) \\
& \text { - maximum } \mathrm{I}-131 \text { activity in the secondary system of } \\
& \text { 2. } 10^{-2} \mathrm{G} / \mathrm{h} \text {. }
\end{aligned}
$$

These limits are presently being revised to comply with the other Belgian units $(791 / \mathrm{h})(0.35 \mathrm{apm})$. The in-service leak rates are listed in Table 7-1 with the date of the leak evaluation, the possible subsequent outage caused by the $S G$ leak and its origin. Since the first criticality of Doel 2 on August 5,1975 , no significant in-
service $S G$ primary to secondary leak occurred until june 1979. From 4986, the leak rateg ape plottec on a time history diagram (see fig $7-1$ to $7-3$ )

A total of eight outages were caused at Doel 2 by leaking SG tubes, Three of them were dealt with during an aarly refueling For the first outage, the afrected zone of the tube was the U-bend area. Five other foreed outages were caused by leaking SG tube plugs, one by secondary water Sce in the crevice area and the last one by a tube damaged by a loose part. None of the forced outages concerned the roll transition area. Leaks due to PHSCC were identified twice in 1978; an earlier, Very small leak (october 1977) was probably due to the same catae.

## Doel 3 Leak Rate Data

The technical specifications limit the primary to secondary leak to the following rates
$700 \mathrm{~kg} / \mathrm{day}(1,544 \mathrm{Lbm} / \mathrm{day})(29 \mathrm{~kg} / \mathrm{hr})(64 \mathrm{Lbm} / \mathrm{hr})$ total
leak if (I) $>10^{-4} \mathrm{Ci} / \mathrm{kg}\left(4.510^{-3} \mathrm{Ci} / \mathrm{Lbm}\right)$ or
( Xe ) $>4 \cdot 10^{-2} \mathrm{Ci} / \mathrm{kg}\left(1.8 \cdot 10^{-2} \mathrm{Ci} /[\mathrm{bm})\right.$
$1,900 \mathrm{~kg} / \mathrm{day}(4.190 \mathrm{Lbm} / \mathrm{day})(79 \mathrm{~kg} / \mathrm{hr})(174 \mathrm{Lbm} / \mathrm{hr}) \mathrm{per} \mathrm{SG}$ if
(I) $\leqslant 10^{-4} \mathrm{Ci} / \mathrm{kg}\left(4,510^{-9} \mathrm{Ci} / \mathrm{Lbm}\right)$ and
$(X e)<4,10^{-2} \mathrm{Ci} / \mathrm{kg}\left(1.8,10^{-2} \mathrm{Ci} / \mathrm{Lbm}\right)$

Since the first criticality of Doel 3 on June 14,1982 , no significant 1n- डervice sG leak occurred until August 1985 . The in-service leak rates are 1 isted in Table $7-2$ with the date of the leak evaluation and the possible subsequent outage caused by the leak, A total of 3 outages were the result of leaks. The first one was related to roll transition cracking The other two nere related to a "mysterious" leak. Up to now, it has been impossible to locate it from all the leak tests performed during several outages (see subsection 7. 5.) It has been observed that quick power changes induce peaks in the leaks These peaks can reach a rate twice as 1 arge as the steady state value. Leak rate stabilization occurs normally within about a week.

## Triange 2 Leak Rate Data

The technical specifications limit the primary to secondary leak to the following rates :
if the leak is located in one steam generator :
at 100 \% nominal power, the $I-131$ leak activity rate from the primary to the secondary side of the steam generator must be limited to 2. $810^{-2}$ Ci/h.
the absolute leak rate per steam generator is limited to $19001 /$ day $(502 \mathrm{gpd})(791 / \mathrm{h}=0.35 \mathrm{gpm})$
the I-131 mass activity in the secondary side of the SG affected by the primary to secondary leak is limited to $7 \times 10^{-4}$ Ci/ton $110^{-3}$ Ci/ton equivalent $1-131$ dose)
if leaks are located in several steam generators :
at 100 \% nominal power, the $1-131$ leak activity rate from the primary to the secondary side of two of the three steam generators must be limited to $1.4 \times 10^{-2} \mathrm{Ci} / \mathrm{h}$.
the absolute leak rate per $S G$ is limited to $791 / \mathrm{h}$
( 0.35 gpm )
the I-131 mass activity is limited to $3.6 \times 10^{-4}$ Ci/ton in the total blow down of the 3 steam generators $\left(5.2 \times 10^{-4}\right.$ Ci/ton equivalent $I-131$ dose)

The technical specifications for Tihange 2 are now under revision : the former allowable $1-131$ activitias will be divided by 2 : respectively $14 \times 10^{-3} \mathrm{Ci} / \mathrm{h}$ and $7 \times 10^{-3} \mathrm{Ci} / \mathrm{h}$. The absolute allowable leak rate per $\$ G$ will remain $79 \mathrm{l} / \mathrm{h}(0.35 \mathrm{gpm})$

Since the first criticality of Tihange 2 on Oetober 5, 1982, no eignifieant in-seryice SG primary to seeondary laak ocourred until February 5, 1985 . At that time a leak, rapidly increasing at a rate of 5 to $61 / \mathrm{h}$ per hour ( 0.022 to 0.026 gpm ) in SG 3 (see Table 7-4) resulted in an aarlier than planned outage for refueling ischeduled for 12 days later). The leak rate was about $601 / \mathrm{h}(0.26 \mathrm{gpm})$ just before shutdown. Three tubes reported to have been rolled in severely out of tolerance holes were affected with cracks in several roll steps (from 2 to 6 steps) ranging from $2 \mathrm{~mm}(0.08 \mathrm{in})$ to $9 \mathrm{~mm}(0.35 \mathrm{in})$ long (five sections had a crack length $\approx$ ? mim ( 0.27 in); in several sections, as much as ten cracks were detected). The high leak rate is belleved to have resulted from the lack of contact between tube and tubesheet hole

In June-July 1986 another in-service SG leak isteady and limited to z$31 / \mathrm{h})(0.009-0.013 \mathrm{gpm})$ did not require an emergency shut down

On May 25, 1987, a tube in the first row of SG 3 leaked at the U-bend transition (cold leg side), and caused an emergency cold shut down ( 173 hours long). The leak rate was about $1 \mathrm{l} / \mathrm{h}(0.0044 \mathrm{gpm}$ ) on May 18, 1987 aind increased rapidly (within one hour) on May 25,1987 from $321 / \mathrm{h}(0.141 \mathrm{gpm})$ ta $911 / \mathrm{h}(0.4 \mathrm{gpm})$ ust before shutdown The crack length was measured to be between 30 and $45 \mathrm{~mm}(1,2$ and 1.77 in) (bobbin coil inspection did not allow a more accurate evaluation),

Since then no additional significant in-service leaks ocourred until 4988. However, a leak was observed during the Maroh 1988 refueling outage in a row $1 U$-bend and is discussed in the next section.

## Standard leak Tests Description

This section provides the results of the standard leak tests performed during norma? or forced autages of Doel 2 , Doel 3 and Tihange 2 (secondary side pressure test, with or without fluarescein, and primary side pressure tests)

The secondary side pressure test consists of filling up the steam generators with water or with water mixed with fluorescein fabout 50 ppm ). The secondary side is then pressurized at 40 to 45 bar ( 570 to 640 psil and the leaking tubes are visually detected in the channel head $f$ presence of water drops in case of a simple water secondary test, yellow-green colored tube mouths revealed by an ultraviolet (UV) lamp when using the fluorescein dye)

For primary side pressure tests, the primary water (at room temperaturel is usually pressurized at about 30 bar ( 435 psi) Radiochemical analysis performed in the secondary side allows an evaluation of the primary to secondary leak fthis test characterizes the size of the leak but does not allow one to locate the leaking tube) To determine the influence of various parameters on the leak, the primary water pressure test is sometimes carried out at other temperature and pressure conditions: e. a. at $50^{\circ} \mathrm{C}$ or during hot stand-by conditions $\left(260^{\circ} \mathrm{C}, 155 \mathrm{bar}\right):\left(500^{\circ} \mathrm{F}, 2200 \mathrm{psi}\right)$

A 5 bar ( 74 psi) helium leak test has been performed once at Doel in An attempt to laeate the leaking tohen fresults and correlation with RPC ECT data are presented in subsection 7-9) A sniffer measures the helfum leak rate at the mouth of each tube on the primary side of the tubesheet. All outaqe leak tests premented in ihts subsection are quasitative and da not give the actual in-service leak rate

## Doel 2. Doel 3 and Tihange 2 Qutage Test Results

The Doel 2, Doel 3 and Tihange 2 outage leak data are presented in Table $7-5,7-6$ and $7-7$ respectively. All the test methods vere applied for the detection of the Doel 3 "mysterious" leak and the results of this investiqations are described subsequently.

This "mysterious" leak continuously increased following the start up after a normal vefueling on Julv 25,1987 It resulted in an outage on August 7, 1987, A secondary pressure test with fluorescein performed on SG B revealed only 19 tubes with very small fluorescein indications on the primary side Secondary prassure testg without fluorescein performed on $S G R$ and $G$ did not reveal any leaking tubes. Eleven tubes were plugged on the basis of ECT with the rotating probe $\{37$ tubes inspected). Start up oceurred on August 18. 1987 but a new outage was required on August 20, 1987 because of a remaining leak in SG B. A new fluorescein test revealed 17 leaking tubes. A hellum leak test was also perfopmed during this gutage teee subsection 7-9) but did not succeed in identifying the leak lacation. A primary side pressure test (30 bar ( 435 psi ), room temperature) carried out on August 26,1987 showed onlv a leak of $0251 / h \quad 60011 \mathrm{gam}$ in 50 B . The temperature of the primary water was then increased to $50^{\circ} \mathrm{C}$ by means of the primary pumps in order to study the temperature effect on the leak rate. After a peak of is $1 / \mathrm{h}(0.066 \mathrm{gim})$, a non significant leak, less than 2 1/h (0,0089 gpm) was observed in wach steam generator (F1g. 7-6 to $\quad 2$-8). Another primary test ( 155 bar at $\left.2600^{\circ} \mathrm{C}\right)\left(2200 \mathrm{psi}\right.$ at $\left.500^{\circ} \mathrm{F}\right)$ did not reveal anv detectable leak

The leak which has caused these 2 qutages has been called the "mysterious" or "ahost" leak because it disappears when the reactor power is under 30 of of rated power.

The plant was started again on September 9, 1987 and the power increased by efeps isn a on Sentember 1475 a om Sentember 14 and rull power on September 12). Once at full power, the leak in SG B remained steady $(241 / \mathrm{h})(0.106 \mathrm{gpm})$ as well as the total leak rate tabout $251 / \mathrm{h})$ ( 0110 ami During the Jume 1988 pegular pefueling outage, about 70 tubes (w)th the known larger defects in roll transitions) were either plugged or sleeved. Howover, the leak rate remained essentially unchanged after resumina power and has slowly

```
decreased down to is 1/h (0.066 gpm) up to the present time of
paporting (Mamah togal
```


## Channel Head Radiation level

Doel 2 and 3
For all Doel power plant units $(1$ to 4), channel head radiation levels usually range between 80 and 120 mSv (h maximum ( 8 to 12 Rem/h) after opening of the manholes and decrease to about $40 \mathrm{mSy} / \mathrm{h}(4 \mathrm{Rem} / \mathrm{h})$ after claaning at the and of the refueling periad

## Tihange?

The channev head radiation levels are 81 milar to the Doel units and detalls can be found in tabla 7-8

The RPC methodology outlined in section 5 has been used on a statistical basis sinee May 84 (Tihange 2 inspection Aftap the first operational cycle). The equipment and data acquisition system have remained unchanged since this early date (*); improvements in data analyais (such as automatio computer sopeening and diagnostieg) have been retroactively applied to previous data, so that all sets of inspection data can be reliably compared

RPC inspection was initially performed in addition to the regulatory inspection using the standard "bobbin coil" method fimproved by the multifrequency mixing technique and sophisticated data analysis) During each outage, from 1 to 3 SG's were inspected by RPC over the Full haight of the tubesheet and the samnle sige varied from a low of 50 to a high of 2000 tubes/SG; as the sample selected often included the tubes previously found to be cracked, not all inspected tubes can be used to estahlish a representative oraoking status of the ontire tube bundle; the statistical information is based on the best available random samples (the size of which is indicated, within brackets in the graphic presentations) in most eases a significentiy larger number of tubes was actually inspected

Since February 1988 (Tihange 2 inspection, after the fifth operational ovele) 100 \& RPC examination has been performed on all three SG's at each outage but the inspected length limited to the upper part of the tubesheet (about $150 \mathrm{~mm}(5.9 \mathrm{in})$, including the 4 upper roll steps, the normal poll transition and the kisg polll This is the only area of concern where crack plugging limits need to be considered (see Section 3)

The first crack indications were detected by RPC after the first cycle in at least one of the SG.s for both plants (Doel 3 and Tihange 2) Two familles of tubes should be clearly differentiated
(*) The only exception is the Doel 3 inspection in October 1983 (after the first operational cycle) where a few tubes (about in) were examined with a laboratory version of RPC (development stage)

## Tubes Rolled in out of Tolerance Tubesheet Holes

This case relates to a very $11 \mathrm{~m} t e d$ percentage of the tube bundle (lass than 100 tubes distributed over the 6 SG's of the two plants) but leads to an accelerated initiation and propagation of the PHSCC cracks ias the result of a significant increase of the residual stress 1evel)

In the few extreme cases were the tube was not even rolled against the tubesheet, the craoking was oxtensive both in axial and 45 degree oblique directions), to the extent of yielding detectable in service leaks ring the first operational cycle and reducing by half the tube axia? lgth (as evidenced during the tube pull performed on Doel, . SG-B in August 1983). All tubes in this category have been plugged

In the other cases (hole diameter tolerance exceeded but rolling axpactad to be correotl, no such behaviour was abserved but the rate of increase of cracked tubes with time has olearly shown a steeper sio see Fig. 7-9). Owing to the limited size of the concerned popt ion this was not considered to be a significant problem as it could easily be solved by plugging

## Normal Tubes

Due to the avallability of ECT profilometry measurements for all tubes (along 4 diameters for the ful) height of the tubesheet), it was attempted to correlate tube oracking with various known profile ifregularities or abnormalies (other than out of tolerance boles) This proved unsucoessfull so that no further "families" need be d) frerentiated

```
It should be noted, however, that there is
 no "overrolling", as the rolling specification froll
 transition to be located within - 2, - 4 mm f = 0.08,
 0. 16 In) from the top of the tubesheet) was strictly adhered
 to by the SG manufacturer;
 practically no "skip rolls", as all such abnormalies fexcept
 when located close to the lower seal weld) were field
 reprired by rerolling before commissioning the plants
```

Within this large family of (quasi) normal tubes (close to 100 * of tube bundle) the following bshaviour was systamatically observed regarding crack locations within the rolled region.

The first crack indications are randomly distributed over the height of the tubesheet f this statement applies statistically to the inspected sample as, in this early stage, each individual oracked tube usually shows no more than 1 cracked section, with a single crack of very short length - typically 1 to 2 mm ). With time $(1$ or 2 years later), the detected cracks tend to concentrate in the roll transition; simultaneously there is an increase in the number of oracke per eracked section but parely a large number of cracked sections per tube

In a later $s t a g e$ (after 2 to 3 years), the majority of detectable cracke are lacated in the roll transition For ingtance at the time shot peening was performed (i.e. after 3 operational cycles), the following distribution was observed


As to the distribution of cracked tubes over the surface of the tubesheet, it may vary, for unknown reasons, from relatively homogeneous (Fig. 7-10) to severely heterogeneous, with concentrations 1 ying either on the nozzle side (Fig. 7-11) or on the manway side (Fig 7-12)

## Rate of Increase of the Number of Cracked Tubes

The percentage of cracked tubes in the tube bundle as a function of $t$ ime (expreseed in months after commigeioning) is given in fig 7-9)

The diagram is of historical value, because it summarizes the best awatiable impormation and mes produced by atucensive inmpectione However, it is difficult to read because of the significant digeontinutties caused by
the variation in sample size
The sample, especially when of small size (as was initially the case for SG 3 of Tihange 2) may be non representative of the entire tube bundle fespecially for a non homogenous distribution of the cracked tubes over the tubesheet surface
the variation in inspected length Since the last inspection of both plants was performed on a reduced length ( 150 mm versus 600 mm ) ( 5.9 in versus 23. 6 in , a number of tubes oracked only within the lower part of the tubesheet were "lost", leading to an apparent reduced annual increase rate, or even an apparent reduction, of the number of cracked tubes

The overall combined effect is
minimal, for $S G-B$ of Doel 3 because of a significant sample size ( 500 tubes), which proved to be fully representative, and a high concentration of cracks in roll transition; thus resulting only in a 4 z discontinuity (Junt 87)
maximal, for SG-3 of Tihange 2 because
of a small initial sample size ( 50 tubes) switching to a larger sample size (1.030 tubes), with a resulting curve discontinuity of about 10 \% (Feb. $86 \rightarrow$ Feb. 87)

- of a lower concentration of cracks in roll transition, with a resulting curve discontinuity of about $15 \%$ (Feb. $87 \longrightarrow$ March 88)

Also, since all SG's were not inspected at each outage (and, fu the particular ingpection of SG-R and $G$ in June 87, the sampta was severely biased by a prior "bobbin coil" seleotion - so Section 7.8.), the curve cannot always be reliably frawn between the available data points; in such cases "best estimate" repends are 111 ustrated by dotted lines.

In order to get a clearer picture of the overall process all data have been reanalvsed to select only those tubes with cracks in the roll transition, while the sample discontinuity has been removed by a proportional adjustment. This leads to Fig. 7-13, which is the "best estimate" of cracking evolution in the roll transition for the most documented cases (SG-B of Doel 3 and SG-3 of Tihange 2); it should be understood that the total percentage of cracked tubes may be sionificantly larger, especially for the case of the Tihange plant, if oracks in the tubesheet region were also included

## overall cracking status

From the above statistics, additional information given in the following paragraph $(7,7)$ and the knowledge about the morphology of short non detectable cracks (section 5), it can be inferred that the total number of actual oracks in the roll transitions of the Doel 3 and Tihange 2 units ranges from 6000 to 20000 cracks per steam generator, with crack lengths between 1 and 14 mm but all very deep (through-wal? or thin memaining ligament)
While this amounts, for both units, to about 50000 eracks with (potential) open leak patis to the secondary side, it does not prevent the safe and reliable alant operation, with only small in-service leakage (Section 7, 3)
Whis the oracking status of the Doel 2 plant is less well defined (IImited RPC ECT inspection), the same conclusion holds true since over $2 / 3$ of the tube bundle is known to be affected for at least one of the two steam generators.

### 7.7. STATISTICS OF CRACK PARAMETERS

For each oracked section (yielding a single "bobbin coil" defect signal. if detectable), the RPC inspection methodology measures ard documents the 3 following parameters

```
number of axial eracks in the section
 length of the longest orack
 amplitude (mV) of the largest individual signal.
```

Statistics presently available are based on these parameters
Maximum erack depth is not included becatuee it is eyetematieally found to be (close to) through wall. More information (such as orack topology, length of other cracks than the longest. ....) is stored as ram data or can be prodtued on graphte dieplaye (ste pig. 9-14); however no detailed computer analysis is systematically performed and the retrieval of this complementary information, if required, is somewhat more time consuming

When a particular crack section is repeatedly reinspected at each outage, at? three characteristic parameters shon a continuous increase; the annual rate of increase may vary from 0 up to some upper bound described Iater

After peening was performed the (apparent) rate of increase of the number of erackeleection tas stoued doun but not reduced to tero. The incre rate was essentially unaffected for the two other parameters.

Furt disoussion of this subject will be limited to the number and length $f$ aracke, as the eignal amplitude io of $1 i t+1$ epractical tee

Statistics will be presented as "distribution ourves", with an fondinate (y) axie labeled in pereentage and an abecigea (x) axie labeled as either
the number of cracks per section
the imaximum) crack length
the number increase (annual rate)
the length increase (annual rate)

By definition, the area under any of those histograms is equal to 100 a The data scatter may result in negative increase valueg; the corresponding actual (physical) values are of course either zero or slightly positive

The information presented includes inspections
for all 3 SG's of Tihange 2, for the 1 ast 100 \% inspection of March 88;
for all successive inspections of SG-B of Doel 3 (from the early sample inspection in August 84 up to the last 100 \% inspection of June 88)

Tihange 2 March 88 Inspection

Information obtained from the $100 \%$ RPG inspection of $\mathrm{SG}^{\prime} 8$ i 1 , 2 and


Fig. 7-15: Length distribution of oracks in the roll transition from fuliy expanded to ktss rowl areal

This figure gives the absolute number of tubes showing, in tht roll tranattion t through wali) atial cracks The maximum crack length ranges from 1 to $16 \mathrm{~mm}(0,04$ to 083 in) $\operatorname{tonly} 2$ (ates) The वverall cracking statts is comparable for the 3 steam generators and is summarized in the following tatle


Fig. 7-16: Distribution of mimber of cracks in roli transitions Fhts fitgure gtves the abeolute number of tubes showing. in the roll transition, the indicated number of oracks (in the same cmosestection?

This number of eracks per section ranges from 1 to 13 ,


## Fig. 7-17 : Distribution of crack length increase

This figure gives the percentage of tubes showing the indicated length increase (yearly rate) since the last RPC inspection

The length inorease ranges from - $1 \mathrm{to} \mathrm{+} 6 \mathrm{~mm} / \mathrm{year}$ ( -0.04 to +0.236 in /year)

The negative values are of course not physically meaningfull but result from data scatter. However, the fact that the amount of data with $1 \mathrm{~mm}(0.04$ in) "decreese" is rather small, and that no "decrease" has been observed in excess of this value illustrates the high degree of reproductibility and reliability achieved by the RPC methodology

The following table further summarizes this data

SG	1	2	3
Last inspection	1987	1986	1987
Number of tubes	63	79	339
Average annual crack   length increase   (mm/year)   (in/year)	(ind	0.069	0.049

Eig. 7-18 : Distribution of the increase in number of cracks in roll transition
This figure gives the percentage of tubes showing the indicated increase in number of cracks/section (yearly mate)

The increase ranges from - 1 to 5 oracks/year. The same sample size has been used to monitor length and crack number inerease the average values range fom $0,22 /$ vear (SG-3) to 0. 54 (year (SG-1)

Fig. 7-19 : Dependency of the erack length increase on the initial orack lenath

This figure illustrates the distribution of orack length 1 nerease (from 0 to $+6 \mathrm{~mm})$ ( 0 to +0.236 in ) as a function of the initial crack length (in 1987 ) for the 339 cracked tubes sample used to monitor the increase in PWSCC of $\mathrm{SG}-3$

It is quite clear that "long" cracks tend to propagate significantly less than shorter ones.

## Doel 3-SG-B Evolution From 1984 To 1988

The data obtained from SG-B of Doel 3 during successive RPC inspections from August 84 to June 88 are illustratad by Figures $7-20$ to 7-26, which are of the same type as for Tihange 2 (but not including the inorease distributions) A summary of all key data is also provided by Table 7-9.

The overall crack progression obtained from these inspections leads to the following conclusions :

In the early stage of detectable PHSCC, after 2 years of service operation (Fig. $7-20$ ), the cracks are short (usually $1 \mathrm{~mm}(0.04 \mathrm{im})$ long) and there is rarely more than a single crack in the roll transition.

At the time shot peening was performed, after 3 years of service operation (Fig. 7-20), both the "orack length" and "number of oracks" distribution curves are extending towards larger values while showing an overall decreasing exponential shape ( $1, e$ a large number of 8 mall or isolated defects)

One year after shot peening (Fig. 7-21), the length distribution and, to a lesser extent the number distribution, curves have clearly shifted to the right, with an overall evolution towards a Gausian bell shape (i.e. there is a decreasing number of small or isolated defects, while there is a marked peak of the curve for an average value of either length or number).

This trend is confirmed by the 1937 inspection results, 2 years after shot peening Two sets of inspection data are available (Fia. 7-22)

- June 87, based on the same random sample as for the previous inspections
- July 87, based on a larger sample resulting from (and thus biased by) a prior 100 \% "bobbin coil" inspection.

The bias introduced by the July tube selection is apparent from a shift of the peak location. The "bobbin coil" pre-selection (sci vening) resulted in a relatively larger proportion of longer cracks. The magnitude of the effect remains, however, rather small. The incr,ase in crack length is quite clear, with an average value of 1. $1 \mathrm{~mm}(0.043 \mathrm{in})$. Results from the last June 88 inspection (Fig. 723), 6 years after commissionning and 3 years after shot peening, confirm all of the previcus obseruations, except for one unexpected feature : a general acceleration of the degradation process.

This is apparent from the marked shift of both distribution curves and affects all aspects of the degradation process
proportion of cracked tubes, increasing from 40 \% to 57 \% average crack length increase of $2.5 \mathrm{~mm}(0.098 \mathrm{in})$
average number of cracks (per section) increase of 1.6

All of these annual rates are larger than for the previous cyole, by a factor of 2 or more. The reason for this unexpected behaviour is still under investigation. However there are strong reasons to suspect
features particular to the last operating cycle; these might be related to the several successive cold shutdowns taking place at the time of the regular 1987 outage from May 28 to September 9 - see Table 7-6)

On the other hand, all other characteristics of the inspection data remained essentially unchanged including the distribution shape and dependance of crack length increase on initial orack length (pig. 724). This also explains why the analytical prediction model developed by BELGATOM on the basis of the previous inspection results still yielded excellent agreement with the field data when a time span of 2 cycles was considered instead of one.

## 7. 8. CORRELATION OF RPC WITH BOBBIN COIL ECT DATA

Because of the May 1987 forced outage of Doel 3, due to a large leak in SG-B and the subsequent evidence of two leaking tubes fromeraoks in the roll transition with lengths of 18 and $22 \mathrm{~mm}(0.709$ and $0.866 \mathrm{in)}$, it was considered necessary to perform as soon as possible a 100 R RPC inspection of all SG roll transitions. However the available RPC equipment did not allow such an intensive inspection without intermediate maintenance. It was therefore decided to proceed to a large RPC sample inspection based on a selection from a prior 100 \% bobbin call inspection

For this purpose a correlation between RPC and bobbin coil was first eetablished in Jume 87 , during the forced outage, on the basis of a sample population of 200 oracked tubes of SG-B Fig. 7-25 illustrates the correlation obtained between the RPC (max) length and the "bobbin cor ${ }^{\prime \prime}$ signal amplitude cafter mixing out the effect of the roll transition geometrical discontinuity)

The correlation is rather poor but was still helpful gince only the langest cracks are of actual interest Based on a $13 \mathrm{~mm}(0.512 \mathrm{in})$ limit, an amplitude threshold of 6,5 y was selected.

It should be noted that a significantly better correlation fee Fig $7-261$ could be ohtained between the bobbin coil eignal amplitude and the product of (longest) crack length by number of cracks in the same section, as measured by RPC. Such a correlation was indeed to be expected on basis of physical grounds, as the selected index (length x number) is a "measure" of the total amount of material loss in the cracked section, known to be the prime influence factor ror signal amplitude for the bobbin coil. The fact that there is also a (less expectablel correlation with crack length only is the result of another empirical correlation between number of cracks and maximum crack length (see Fig 7-27) this feature has indeed been systematically observed in the continuous degradation process of the SG's.

The July 1987 inspection (scheduled outage) was thus performed on the following basis :

- $100 \%$ bobbin coil inspection of roll transitions for all 3 SG's
- RPC reinspection of roll transitions with signal amplitude in excess of the selected threshold

The bobbin coil signal amplitude distributions are illustrated by Fig $\eta-28$ EO $7-30$ for $S G-R, G$ and $B$ Intagration of these curves $i F_{i g}$. 7-31 to 7-33) allows one to define the percentage of tubes in excess of any predefined threshold

To be conservative the threshold was lowered to $4.5 V$ for the first $S G$ to be ingpected (SG-B) while it was kept at 65 V for $S G-R$ and $G$

The number of RPC inspected tubes, the percentage of "false calls" and the list of "long" cracks detected are summarized in the following table

SG	THRE -   SHOLD	NUMBER OF TUBES								
		INSPECTED*	PALSE CALLS**	WITH CRACK LENGTH						
				10 .394	11 433	12 .472	$\begin{aligned} & 13 \\ & 512 \end{aligned}$	$\begin{aligned} & 14 \\ & 551 \end{aligned}$	$\begin{gathered} 15 \\ 591 \end{gathered}$	$\begin{aligned} & 16 \\ & 630 \end{aligned}$
B	4. 5 V	$275 \quad\left(\begin{array}{cc}\text { A A A } \\ \\ 788\end{array}\right.$	166 (21.5 \%)	27	2	5	2	1	1	-
G	6. 5 V	843 (26 \%)	497 ( 59 \%)	5	1	-	1	-	$\stackrel{ }{ }$	1
R	6. $5 . \mathrm{V}$	443 (11 \%)	113 (48 8)	1	-	-	-	1	-	-

A \% of total number of SG tube
** * of inspected tubes
*** the number corresponding to a 4.5 V threshold is 31 \% but some tubes were already inspected during the June 87 forced outage.

```
In order to further cheok the initial correlation (June 8%) between
bobbin eoil and RPC, all data for the langetc cratks f> {0 mml
(0.394 in) have been plotted on a similar diagram (see Fig. 7-34)
It can be seen that the agreement is rather satisfactory, but that it
isetill possible to uccaslonally mtst t long crack when strch a cFack
is isolated (exceptional oase). This is i)lustrated by a SG-G 16 mm
(0 670 (n) long cmack जith a elanal amplitude bamely in excess ef thस
selected 6.5 v threshold.
```


### 7.9. CORRELATION OF RPC ECT DATA HITH HELIUM LEIK TEST RESULTS

As one of the numerous attempts to locate the "mysterious" leak in
 outage of September 1987 with the best available technique

Fig. $7-35$ and $7-36$ show the correlations between the helium leak test
 the detected leakers

The following conclusions can be drawn

335 tubes had detectable helium leaks while 858 had RPC indications of close to 100 o through wall depth.

There were 27 tubes with a hellum leak rate over the "significant" threshold value of 5 co/hr. while there were 49 tubes with orack lengths over $10 \mathrm{~mm}(0,394$ in) by RPC. Only one of the 27 defects with a helium leak rate over 5 ce/hr. had a length over $10 \mathrm{~mm}(0.394 \mathrm{in}), 1 . e .$, the other 48 long defects were not detested by the helium test.

There was no correlatiun betweet helium flow rate and bobbin coil amplitude.

There was no correlation between helium flow rate and RPC indicated crack length. In fact, the peak flow rate ocourred for RPC crack lengths of $7 \mathrm{~mm}(0.276 \mathrm{in})$, and was 1 ower for longer cracks.

These conclusions must be considered preliminary as this was the only occurrence of a such testing in a Belgian plant; while the test conditions were considered normal by the experienced service company in charge of the test, it cannot be ruled out that some specific feature might have reduced the method sensitivity belom its normal expected level.

Table 7-1 - Qverview of the Doel 2 SG primary to secondary
in-service leaks since the first start up


Table 7-1 - Overview of the Doel 2 SG primary to secondary in-service leaks since the first start up (continued)


See notes on page $7-28$
icontinued)


See notes on page $7-28$

Table 7-1 - Qverviek of the Doel 2 SG primary to secondary in-service leaks simce the rirst start up tcontimued!


* NB Normal fefueling

Ek: Early refueling
An All leak rates evaluated by F-18 analysis except for the June 1979 leak rate fis lis or 54000 I (h) evaluated with the RELAP 5 model.

Axx Ieak rate evaluation unreliable due to a much higher leak in SG a theak ranged from s G. 5 to 1 i/hy
**** "Leakings plugs" usually resulted from phscc of explosively expanded Inconel 600 plugs f f design).
(1) During 2 outages in March and July 1978 , leaking tubes due to porece $1 \pi$ the tubestieet roti transitfon area were detected in $S G A$ (by $F=18$ radioactivity measurements in the gecondary loop) and subseäuent ty plugged The tuly 197a leak appeaped during the shut down operations
(2) On June 25, 1979, during the heating of the primary loop (154 bar, 25506) $\{2,232$ pes, $4900 \%\}$ a tube break oceurred in a first ros $U=$ bend of SG-8 and was fol owed by Safety Injection. Other detected leakirg tubus amd tubes presenting a too large ovality ( $\rightarrow$ io w) in the il-banda जeme stbewquentlo pl ugged
(3) Due to a leak in SG A, the normal refueling date was advanced a Faw daya
(4) On botober 8, 1782, a large leak in SGA caused a 7-days outage Auming this outage and the former one f 3; 9 twben were plugged itt SG A
(5) On November 21, 1982, a cold shut down due to a high 1-131 madtodet:Mty in the secondary side of steam generatorst tho minisleeved tubes R13C16 and R27C49 were leaking in SG A) was protonged until Apmil 26,1983 to perform an extended el enaming campaign on the fuel elements and the primary loop. During this outage the two leaking minisleeved tubee were pulled in December 1982 and three other tubes probably oracked (R17C85, R28932 and R26050), were also pulled in March 4983 (see Section 2)
(6) An emergency outage for leaking steam generator tubes oceurred on 3une 4, 1986 and lagted 8 dave. The leak iH SGA reached 27 an 1/h (7.265 gpm), After plugging of 17 tubes and start un, the teak remained $1 i \mathrm{mited}$ to $2.51 / \mathrm{h}(0.661 \mathrm{gpm})$
(7) An early refueling due to a high leak in steam generators started on July 27 1986 Duming the outage, $B$ tubes here plugged in ig A
(8) An early refueling due to a high leak in SG A started on dune 12 , 1987. Duming the ataft up operations (tuly 24, 1987), a latge 1eak in SG B oecurred and extended the outage for 9 days Nine tubes were plugged in SG A and two in SG B
(9) A cold shutdown due to leaking tubes in SG A lasted from Jamuery 28 to February 3 198 two tubes ware plugged

Table 7-2 - Overview of the Doel 3 primary to secondary in-service leaks since the first etart up

Date of leak evaluation	SG-R   leak   rate   ( $1 / \mathrm{h}$ )   ( g pm)	SG-G   leak rate   ( $1 / \mathrm{h}$ )   (gpm)	SG-B   leak   rate   ( $1 / \mathrm{h}$ )   (gpm)	Total primary leak rate ( $1 / \mathrm{h}$ ) (gpm)	Forced outage induced by SG leak	Comments and leak rate evaluation method
$\begin{array}{lll} 24 & \text { SEP } & 1983 \\ 21 & \text { OCT } & 1983 \end{array}$	-	*	-	$\begin{gathered} <^{2} \\ (0.0009) \end{gathered}$	-	(1)
$\begin{aligned} & \text { NOV } 1983- \\ & \text { JUL. } 1985 \end{aligned}$	-	-	-	-	-	(no significant leaks)
AHG-SEP 1985	-	-	$\left(\begin{array}{l} 0^{5}-7 \\ 0.022 \\ 0.031 \end{array}\right)$	*	-	(2)
$\begin{aligned} & 1986= \\ & \text { MAY } 1987 \end{aligned}$	-	$\left\|\begin{array}{c} z \\ 0.013 \end{array}\right\|$	$\begin{gathered} =9 \\ (C .039) \end{gathered}$	-	-	leak rates evaluated by F-18 activity measurements
27 MAX 1987	-	-	$\begin{gathered} 77 \\ (0.34) \end{gathered}$	-	-	F-18
28 MAY 1987   11 H 00		- -8 $\ldots$	$\left[\begin{array}{ccc} 75 & (0.33) \\ 40 & (0, & 18) \\ \hdashline \cdots & 70 & 90 \\ 0 & 31 & \\ 0 & 40) \end{array}\right.$	-	Emergency shut down leak in SG-8	$\begin{aligned} & \mathrm{F}=18 \\ & \mathrm{Na}-24 \end{aligned}$ $F-18$   (3)
13 JUN 1987 after start up	-	-	(0. 2 (0.009)	-	-	(4)
$\begin{aligned} & 25 \text { JUN } 1987 \\ & \text { NR } \end{aligned}$	-	-	$\begin{aligned} & \text { \{<5i0. } 022 \\ & \text { (very } \\ & \text { small) } \end{aligned}$	*	-	(5)
27 JUL 1987	-	*	$19(0.084)$	*	-	(6) (10)
29 JUL 1987	+	-	$12(0,053)$	,	+	$\begin{gathered} F-18 \\ \text { (6) }(10) \end{gathered}$
02 AUG 1987	-	-	$13(0.057)$	-	-	$\begin{gathered} \mathrm{F}-18 \\ \text { (6) } \quad(10) \end{gathered}$

Table $7-2$ - Overview of the Doel 3 primary to secondary in-service leaks since the
firgt otart up fcont nued)

Date of leak evaluation	SG-R   leak rate   (1/h)   (gpm)	$\mathrm{SG}-\mathrm{G}$   1eak rate   (1/h)   (gpm)	SG-B   leak   rate   ( $1 / \mathrm{h}$ )   (gpm)	Total primary leak rate (1/h) (gpm)	Furced   outage   induced   by 56   leak	Comments and leak rate evaluation method
03 AUG 1987	-	-	$\begin{aligned} & 23 \\ & +0.1) \end{aligned}$	$\cdots$	-	F-18 (6) ( 10 )
04 AUG 1987		-	$\begin{aligned} & 39 \\ & (0.44) \end{aligned}$		-	$\begin{aligned} & F-18 \\ & (6) \quad(10) \end{aligned}$
05 AUG 1987			$\begin{aligned} & 49 \\ & (0.22) \\ & 78 \\ & (0.34) \end{aligned}$		-	$\begin{array}{cc} F-18 \\ (6) \quad(10) \\ 8 \end{array}$
06 AUG 198?	\%		$\begin{aligned} & 32 \\ & 2,: 41 \\ & 41 \\ & 0.18) \end{aligned}$		-	$\begin{gathered} f-18 \\ (6) \quad(+0) \\ 8 \end{gathered}$
07 AUG 1987   01 H 00 $10 \mathrm{H} 20$	8	-	$\begin{gathered} 33 \\ (0.14) \\ \hline \end{gathered}$ $\begin{aligned} & 48 \\ & (0,21) \\ & 29 \\ & (0.13) \end{aligned}$	$\left[\begin{array}{c} 120 \\ (0.53) \end{array}\right.$	Emergency shutdown : too large leak 1 n SG-B	8   (6) (10) $\begin{aligned} & (6) \quad(10) \\ & F=-18 \end{aligned}$
$\begin{aligned} & 19 \text { AUG } 1987 \\ & 10 \mathrm{H} 50 \\ & 11 \mathrm{H} 00 \\ & 11 \mathrm{H} 15 \end{aligned}$	-	-	$\begin{aligned} & 155 \\ & (0.68) \\ & 136 \\ & (0.6) \\ & 00 \rightarrow 51 \\ & (0.44) \\ & (0.22) \end{aligned}$	$\begin{gathered} 100 \\ (0.44) \end{gathered}$	*	$\begin{aligned} & (7) \\ & \mathrm{F}-18 \\ & \mathrm{~F}-18 \\ & \mathrm{~N}-16 \end{aligned}$
$\left.\begin{array}{l} 20 \text { AUG } 1987 \\ 06 \text { H } 00 \\ 15 \\ 1530 \\ 15 \\ H \end{array}\right]$	- - -	*	$\begin{aligned} & 153 \\ & (0,67) \\ & 63 \\ & (0,28) \\ & 90 \\ & (0,4) \end{aligned}$	$[$	Energency shutdown leak in SG-B	$\begin{aligned} & F-18 \\ & F-18 \end{aligned}$   8   (7) (10)

Table 7-2 - Reyiew of the Doel 3 primary to secondary in-service leaks since the first start up (continued)

Date of leak evaluation	$\begin{aligned} & \text { SG-R } \\ & \text { leak } \\ & \text { rate } \\ & (1 / h) \\ & (g p m) \end{aligned}$	3G-a leak rate ( $1 / \mathrm{h}$ ) (gpm)	SG-B   leak   rate   (1/h)   (gpm)	Total primary leak rate ( $1 / \mathrm{h}$ ) (gpm)	Forced outage induced by SG leak	Comments and leak rate evaluation met hod
09 SEPT 1987 (start up)	-	-	$\begin{aligned} & 25 \\ & (0.11) \end{aligned}$	$\begin{gathered} 30 \\ (0.13) \end{gathered}$	-	$\begin{aligned} & 30 \text { \& } \mathrm{Pn} \\ & (8) \quad(10) \end{aligned}$
23 NoV 1987	$\begin{gathered} 1.5 \\ 0.006 \end{gathered}$	$\left\|\begin{array}{cc} 3 & 8 \\ 0 & 0 \\ 0 & 2 \\ 0 & 009 \\ 4 \\ 0 & 017 \end{array}\right\|$	$\begin{gathered} 21.6 \\ (0.095) \\ 16 \\ (0.07) \\ 19 \\ (0.084) \end{gathered}$	27 $(0.119)$ 18 $(0.079)$ 23 $(0.101)$ 21 $(0.093)$ 19 $(0.084)$		$\begin{aligned} (9) & \mathrm{N}-16 \\ & \mathrm{~F}-18 \\ & \mathrm{Na}-24 \\ & \mathrm{H}-3 \\ & \mathrm{Ar}-41 \end{aligned}$
DEC 8? TO THE JUNE BS NR	-	$\checkmark$	$\begin{gathered} =20 \\ (0.088) \end{gathered}$	$\begin{gathered} z 20 \\ (0.088) \end{gathered}$	-	(10)
JUL-OCT 1988	-	-	-	$20 \rightarrow 15$	-	(10)

NR a Normal Refueling
(1) The leak appeared on September 24,1983 after a SCRAM due to a turbine by-pase incident and remained steady unt:l October 21, 1983, date of the normal refueling outage During this outage, 2 tubes were pulled from SG B (R15C19, R33C36) and one from SG R (R1OCgS) These 3 leaking tubes mere deteeted by a secondary pressure test with fluorescein (see next subsection "outage leak data"). The examination and analysis performed on the pulled tuhes (see Seotion 2) allowed identification of the origin of the cracking phenomenon as PHSCC. High local stresses were induced by a lack of contact in the roll area between the expanded tube on wall and the tubesheet due to severely out of tolerance hole diameters in the upper part of the tubesheet (larger than the maximum expansion allowed by the rolling tool).
(2) In August and September 1985, SG-B was affected by a steady leak rate whioh did not require a plant outage. This leak was found by radioactivity measuremens of the secondary water, To avoid imposing atresses su the steam generator tubes which could have increased the leak rate above the allowable threshold requiring an emergency outage, the plant operator was instructed to avoid any power modulation until the end of the fuel cycle in June 1986 (about 9 months later). These instructions had a successful result : only four electrical power modulations occurred until the next normal refueling and the leak did not increase during that $t$ ime
(3) Detailed radiochemical leak analyses (F18, $N_{4} 24,1133$ ) during the pertod from the 23 th to the 28 th of May 1987 and sesociated leaka are listed in Table 7-3

On May 2B, 1987, a rapidly rising leak in SG-B (in the tube expansion transition areal resulted in an emergency shutdown which lasted until June $13,1987$.
(4) After plugging of 4 tubes in SG-B (2 selected on the basis of both eddy current signals and a fluorescein test and 2 on the basis of the fluorescein test alonel and start-up, the leak was 11 mited to about $21 / \mathrm{h}(0.009 \mathrm{~g} \mathrm{pm})$
(5) Between the new start up (June 13, 1987) and the next normal refueling (July 25,1987 ) the leak rates were difficult to evaluate since the radiochemical activities were near their limit of detection.
(6) Leak rates were observed to be about twice the steady state value during power inereases The peak values then deoreased to the steady state value within about one week. This leak rate variation can lead to wrong conclusions about its stabilized value.
(7) Following the 7th of August shutdown, a new start up occurred on Abgust 181987 The plant was soon shutdown on Abgust $20 \quad 1987$ ( 51 hours later) for a large leak still looated in SG-B. This leak was observed with a peak value of $1531 / \mathrm{h}(0.674 \mathrm{gpm})$. It decreased to $631 / \mathrm{h}(0.277 \mathrm{gpm})$ on the 20 th of August. During this periad, the first $N-16$ measurements were performed. $N-16$
measurements indicated a leak of about $1001 / \mathrm{h}(0.44 \mathrm{gpm})(51 \mathrm{l} / \mathrm{h}$

(8) Leak data evaluated during the period from the $9 t h$ of September intil the t9th of Novembel 4967 and plotted an py show that
under 30 \% nominal power ( 270 Mh$)$ no measurable leaks were detected (detection threshold)
the different methods $\left(N-16, ~ F-18, N_{4}-24\right)$ lead to very simtlar results whioh means that the models used for leak evaluation are reliable
(9) Boron, $\hat{F}-18, A+-41$ and $H-3$ parameters were $s y s t e m a t i c a l l y$ measured
 different methods of evaluation are very similar
(10) From July 27,1987 to October 1988 the leak is mysterious end
 increases with the power level isee Fig. 7-4)

Table $7-3$ - Doel 3 leak chenical data from the 23 th to the 28 th of Nay 1987

Date	hour	E1. P NWe	ener		$\begin{gathered} \text { rimary } \\ \text { RC } \\ \mathrm{Na}-24 \end{gathered}$	LOOD * I-133	F-18	SG-B $8 a-24$	$*$ I-133	$\begin{aligned} & \mathrm{SG}-\mathrm{R}^{*} \\ & \mathrm{~F}-18 \end{aligned}$	$\begin{aligned} & S G-\mathrm{q}^{\kappa} \\ & \mathrm{F}-18 \end{aligned}$	$\begin{aligned} & f P A \\ & f-18 \end{aligned}$	MS * $f-18$	$\begin{gathered} \text { Leak } \\ \text { rate } \\ \mathrm{kg} / \mathrm{br} \\ \mathrm{SG}-\mathrm{B} \end{gathered}$
23/05	e5. 30	860	96		18. 8	5.7		0.013	0. 009					
24/05	08. 00	360	96		19.7	7.2	0. 621	0.018	0.011	0. 28				
25/05	03. 10	850	94		18. 9	6. 9	0. 548	0.021	C. 017		0. 30	0. 089	10. 094	
$26 / 05$	08.00	850	94		19.6	3. 2	0. 794	0. 025	0.013	0.44				
27/05	Q8. 00	850	94		19.1	4. 0	1. 10	6. 035	0. 012	0.56	0. 31	0.152	0.162	$\left\lvert\, \begin{gathered} 77 \\ (F-18) \end{gathered}\right.$
27/05	08.00	750	83	3165	18.2	4. 0	2. 14	0. 151	0. 667	1.45	1. 36	0. 39	0. 35	
	11.00	750	83	13180	17.3	4. 1	2. 01	0. 163	0. 069	1. 35	4. 30	0.38	0. 33	$\left\|\begin{array}{c} 75 \\ (F-18) \\ 40 \\ \mathrm{Na}-24 \end{array}\right\|$
	14. 00	750	83	2760			2.7	0.190	0.098	1. 50	1. 37	0.42	0.36	
	21.00	750	83	3090			1.74			1. 06	1. 06	0. 26	0. 24	$\begin{gathered} 70 \\ (f-18) \end{gathered}$

* : activities in $\mathrm{MBq} / \mathrm{m}^{3}$

RC : Reactor Coolant
FF : Feedwater Fump
KS: Main Stear

Table 7-4 - Tihange 2 Example of in-servise rapid SG leak rate growth
Cestimated by $\mathrm{Na}-24$ radiochemical analysis)

Table 7-5 - Doel 2 outage leak data

Date of ottage	Dete of start up	SG	Secondary pressure test (witn fluorescein)	Primary pressure test	Number of leaking tubes detected
05 MAR 78 Planned outage	21 MAR 78	A	res	-	4
15 JVL 78   Planned outage	24 JuL 78	A	YES	-	5
16 SEP 83   Normal refue1-   ing	15 Oct 83	A	res	-	20
```11 AEG 34 Mormal refuel- ing```	24 SEP 84	A   B	YES   yES		$5$   3
14 ADC 85 Kormal refuel- ing	05 OCT 85	 B	YeS	-	37 (1 eracked in the 0 -bend as revealed by ECT bobbin eo11)
28 Jak 88	03 FEB 88	a	yes	-	2

Table 7-6 - Doel 3 outage leak data

Parpose of outsge	Sate of ebut down	Date of start up	$\begin{aligned} & \text { S } \\ & \text { G } \end{aligned}$	Leak (1/h) before shut doen (gpe)	$\begin{aligned} & \text { F2 sotes } \\ & \text { cein } \end{aligned}$	p sec test (bar) (psi)	$\left\{\begin{array}{c} 1 \text { primar } \\ \text { test } \\ \text { (bar) } \\ (\text { psi) } \end{array}\right.$	Number of Leaking tubes detected	Comments
Normel refueling	21 OCT 83	23 Nov 83	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	```& 2 60.009) ftotal prim- ary leaki```	YES	$\begin{array}{r} 45 \\ (650) \end{array}$	-	$\left\{\begin{array}{ll} & 3 \\ c 1 & \text { in } \\ S G-1 \end{array}\right)$	
Hormal refueling	17 \&0G 84	15 SEP 84	B		Yes	$\begin{aligned} & =40 \\ & (580) \end{aligned}$	-	$\$$	
Wormal refueling	14 ग\% 85	05 AUG 85	B		res	$\begin{aligned} & =40 \\ & (580) \end{aligned}$	-	1	
$\begin{aligned} & \text { Leak in } \\ & 3 G-8 \end{aligned}$	28 May 87	13 JUN 87	B	$\left(\begin{array}{c} 70-90 \\ (0.31-0.40) \end{array}\right.$	res	$\begin{aligned} & =40 \\ & (589) \end{aligned}$	-	23	4 tubes plugged
Norazi rerueling			§	?					
$\begin{aligned} & \text { Leak in } \\ & \text { SG-E } \end{aligned}$	078868	18 AgG 87	B 8 6	```48 (0.21) (F-18) 29(0.13)(B) 120 (0.53) (Total primary)```		$\begin{array}{r} 42 \\ (610) \end{array}$ (610)		very $1:-$ ttle fluores cein indica- tions i9 tubes \qquad Mo leak detected	41 tabes plugged
$\begin{aligned} & \text { Leak in } \\ & \text { sG-B } \end{aligned}$	20 A 2097	09 SEP 87	B	$\begin{gathered} 150(0,66) \\ (\mathrm{F}-1,6) \end{gathered}$	YES	$\begin{gathered} 42 \\ (610) \end{gathered}$	-	17	4 tubes plugged after hellus leak test

Table 7-6 - Doel 3 outage leak data (continued)

* Primary hater temperature increased to $50^{\circ} \mathrm{C}\left\{120^{\circ} \mathrm{F}\right.$) fprimary pumps) to evaluate the temperature effect on the leaks: after a peak of about $151 / \mathrm{h}(0.066 \mathrm{gpm})$, the leak decreased to a steady rate 10 , 0 , than 2 i/h (0.009 gpm) in each SG.

Table 7ー7 - Tinanae 2 outage leak de Ee

Purpose of shut down	Date \& hour of shut down	Date \& howr of start uD	Leak rate: ($1 / \mathrm{h}$) before shut down (g р雨)	$\begin{aligned} & 3 \\ & 6 \end{aligned}$	Seeondary pressure Test	Nuaber of leaking tubes detected
Planied outage	10 OCT 84	19 OCT 84	meak *	3	35 bar hydratest with fluorescein	5 in 36
12 days accelerated refueling outage (ieak in S6 3)	05 FEB 85	12 MAA 85	$\left.\begin{array}{\|cc\|} 61 & (0.269) \\ 0.6(0.0026) \end{array}\right]$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	25 bar hydrotest with fluorescein for 24 hours (360 -psi)	$\begin{aligned} & \text { B40c44; } \\ & \text { Ro5c33 } \\ & \text { and } \\ & \text { Ro3c76 } \\ & \text { all rol- } \\ & \text { led in } \\ & \text { severesy } \\ & \text { out of } \\ & \text { tolerance } \\ & \text { holes and } \\ & \text { suspected } \\ & \text { not to } \\ & \text { provide } \\ & \text { leaktight } \\ & \text { contact } \end{aligned}$
Leak in SG 3	25 May 87	01 J\$N 87	-	3	hydrotest yith fituorescein	$\begin{aligned} & 1 \\ & \{\mathrm{f} \text {-bend } \\ & \text { R01Ci5) } \end{aligned}$
Normal refueling	06 MAR 88	04 APR 88	-	3 2 1	hydrotest mith fluorescein **	$\begin{aligned} & 1 \text { in SG } 3 \\ & \text { (} 1 \text { i-bend } \\ & \text { Ro1cy7) } \end{aligned}$

* Leak appeared during planned shutdown
** Hydrotests performed after 10 -hend heat treatment

Table $7-9$ - DOEL $3-$ SG B - BPC INSPECTION DATA

(*) number of tubes already cracked, reinspected after one cycle
** This figure is biased because all tubes inspected were selected on basis of a prior 400 s "bobbin coil" inspection
(***) This figure might be biased because the 1985 data were obtained before shot peening

Figure 7-1

DOEL 3 SGB LEAK DATA: [NFLUENCE OF ELECTRICAL POWER INCREASE ON LEAK RATES EVALUATED BY DIFEERENT RADIOCHEMICAL ANALYSESIF-18, Na-24, N-16)

DOEL 3 SG B \& G LEAK RATES EVALUATED BY $N-16$ ANALYSES

DOEL 3 OUTAGE LEAK RATE EVALUATION IN SG R WITH THE PRIMARY WATER AT $50^{\circ} \mathrm{C}$

DOEL 3 OUTAGE LEAK RATE EVALUATION IN SG G WITH THE PRMMARY WATER AT $50^{\circ} \mathrm{C}$

DOEL 3 OUTAGE LEAK RATE EVALUATION IN SG B WITH THE PRIMARY WATER AT $50^{\circ} \mathrm{C}$
as determined by boron analysis on the secondary side
$1 / h$
in
ư
∞

\mathbb{A}

Figure $7-9$

Figure 7-10

Figure 7-11

Figure 7-12

Figure 7-13

TYPICAL GRAPHIC DISPLAY OF RPC－ECT DATA PRODUCED BY THE COMPUTER ANALYSIS FOR EACH CRACKED SECTION （Roll transition of a Tihange 2 tube is illustrated）


```
T1MPNCE z - 50 1-api - He
T1MPNCE z - 50 1-api - He




Piscaz？



THHANGE 2-SG 1 - Length distribution dam/21


䘖 \(x\)

TIHANGE 2-SG 3 - Length distribution dam/21

DAM/21 pefers to the transition betweun last hard and kiss foil


DAM/21 reters to the Iransition between last hard and kiss roll.


聞 51
TIHANGE 2 - SG 2-Length increase/year for dam/21


䦩 82


DAMi21 refers to the transition befween last hard and kiss rall.

Figure 7-17


OAM/21 reters to the transition between last hard and kiss roll.

Figure 7-18


\section*{DISTRIBUTION OF LENGTH AND NUMBER OF CRACKS IN ROLL TRANSITION (DOEL 3.)}
\# OF CRACKS ON SECTION 21-DAM


CRACK LENGTH 21 -DAM


\footnotetext{
NOTE: 1984 RESULTS NOT STATISTICALLY ME ANINGFUL IONLY 2 CRACKFD TUBES 1
}

Figure \(7-20\)


Figure 7-21(a)


Figure 7-21(b)

DOEL 3 - SG B
DISTRIBUTION OF THE CRACK LENGTH (UPPER ROLLS)

JUNE 1987
JUL 1987


DOEL. 3 - SG B
DISTRIBUTION OF THE NUMBER OF CRACKS (UPPER ROLLS)

HIME 1987
Н11 1987


Figure 7-22

\section*{DISTRIBUTION OF LENGTH AND NUMBER OF CRACKS \(\operatorname{IN}\) ROLL TRANSITION. (JUNE 1988 INSPECTION.)(DOEL 3.)}



Figure 7-23
DEPENDENCY OF THE CRACK LENGTH INCREASE
ON THE INITIAL CRACK LENGTH.
(BETWEEN JUNE 1987 AND JUNE 1988 INSPECTIONS)


Figure 7-24


Figure 7.25

DOEL 3 BOBBIN COLL AND R F G E C T INSPECTION
(fume 8? \(/\) population of about 200 cracked twhes in SG-B)

> CORRELATION OF BORBIN COIL SIGAAL AMPLITUOE WITH NUMBER OF CRACKS AND MAXIMM CRACK LENGTH (as
> measured by R P C)


Figure 7-26

DOEL 3 BOBEIN COIL AND R P C E C T INSPECTION
finu- 87 ( nonutation of shout 300 -racked twhee in \(\mathrm{SC}_{\mathrm{C}} \mathrm{B}\) )

CORRELATION BETWEEN NUMBER OF CRACKS AND MAXIMIM CRACK LENICTH
(bobbin coil signal amplitude used as parameter)









Figure 7-34


\author{
Prepared by \\ BELGAIOM \\ rue de la Loi, 75 \\ B-1040 Brussels, Belgium \\ Principal Investigators \\ J Mathonet \\ TRACTEBEL \\ P. Hernalsteen \\ LABORELEC
}

Prepared for
Electric Power Research Institute
3412 Hiliview Avenue
Palo Alto, California 94304
EPRI Project Manager
A A Mcliree
Steam Generator Reliability Program
Nuclear Power Division

\section*{CONTERTS}
Section Page
1. INTRODUCTION ..... 1-1
3 DESCRIPTION OF TESFS ..... 2-1
2.1. Materialis ..... 2-1
2.2. Geometry ..... 2-2
2.3. Sealing system ..... 2-4
2,4 . Test ria ..... 2-5
2.5. Test procedure ..... 2-7
3 THROUGH WALL AXIAL CRACKS ..... 3-1
3.1. Thaoretical model ..... 3-1
3.2. Experimental programs and test results ..... 3-10
3.3. Discussion of results ..... 3-13
3,3,1. Phenomenology ..... 3-13
3.3.1.1. Failure Mode ..... 3-13
3.3.1.2. Plastic Deformations ..... 3-14
3,3,1,3, Sealing Patch Behaviour ..... 3-14
3.3.1.4. Effect of Loading Path ..... 3-16
3.3.1.5. Effect of Residual stresses ..... 3-16
3.3.1.6. Effect of Parallel Flaws ..... 3-16
3.3.1.7. Effect of Notch Sharpness ..... 3-17
3.3.2. Model validation ..... 3-17
3.3.3. Influence of tubesheet ..... 3-21
3,3,3,1. Statistical Evaluation ..... 3-21
3.3.3.2. Direct Verification ..... 3-23
3,3,3,3. Conclusions ..... \(3-24\)
4 THROUGH WALL CIRCUMFERENTIAL CRACKS ..... 4-1
4.1. Theoretical model ..... 4-1
4.3. Experimental programs and test results ..... 4-9
4.3. Discussion of results ..... 4-14
4.3.1. Phenomenology ..... 4-14
section Page
4.3.2. Model validation (with and without lateral ..... 4-16restraint)
5 REFERENCES ..... \(5-1\)

\section*{ILLUSTRATIONS}
\begin{tabular}{|c|c|c|}
\hline Figure & & Page \\
\hline 2-2 & Types of Test specimens & 2-31 \\
\hline \(2-3\) & Sketches of systems used to keep leak tight specimens uith through wall flaws & 2-33 \\
\hline 2-4(a) & Test rig & 2-34 \\
\hline 2-4 (b) & Sketches of tubesheet simulation & 2-35 \\
\hline \(2-4(c)\) & Lateral restraint test rig & 2-36 \\
\hline & General Assembly with test specimen illustrated for \(7 / 8^{\prime \prime}\) on tubing (Model \(51 \mathrm{~S} . \mathrm{G}\) ) & \\
\hline 2-4(d) & Lateral restraint test rig & 2-37 \\
\hline & Main frame & \\
\hline 2. 4 (e) & Lateral restraint test rig restraining plate (typical) & 2-38 \\
\hline \(2-5\) & Measurements of tube deformation & 2-39 \\
\hline 3-1(a) & Bulging factor "m" & 3-52 \\
\hline 3-1 (b) & Universal "two parameter design curve" & 3-53 \\
\hline 3-2(a) & ```
General tube deformation (deflection, ovality
at the crack tips) as a function of the final
crack length (from tables 3-2(a): (b))
``` & 3-54 \\
\hline 3-2(b) & Elaw width and leakage area, as a function of the final crack length (from tables 3-2(a); (b)) & \(3-55\) \\
\hline 3-2(c) & Flaw width (b) as a function of the final crack length (2c) (from tables 3-2(c); (d)) & 3-56 \\
\hline \(3-2(d)\) & Ovalization as a function of the final crack & 3-57 \\
\hline & length (2c) (from tables 3-2(c): (d)) & \\
\hline \(3-2(e)\) & cob versus \(p / p\) max (from table \(3-2(d)\)) & 3-58 \\
\hline 3-2(f) & \(C O D\) versus \(p / p\) max (from table \(3-2(d)\)) & 3-59 \\
\hline \(3-2(\mathrm{~g})\) & CoD versus \(p / p\) max (from table \(3-2(d)\)) & 3-60 \\
\hline 3-2(h) & Through wall axial flaws & 3-61 \\
\hline & Bulging as a function of pressure & \\
\hline \(3-2(1)\) & Through wall axial flaws & 3-62 \\
\hline & Flaw (central) opening as a function of pressure & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Figure & & Page \\
\hline 3-2(j) & Influence of the proximity of tubesheet Increase in burst pressure & 3-63 \\
\hline \multirow[t]{2}{*}{3-2(k)} & Bulging measurement & 3-64 \\
\hline & Axial defect in free span - Length : 16 mm & \\
\hline \multirow[t]{3}{*}{3-2(1)} & Bulging measurement & 3-65 \\
\hline & Axial defect tangent to tubesheet - Length : & \\
\hline & 16 mm & \\
\hline 3-3(a) & Test specimens after bursting & 3-66 \\
\hline 3-3(b) & Burst pressure for axial crack through wall & 3-67 \\
\hline 3-3(c) & \(7 / 8^{\prime \prime}\) tubes perforating axial cracks in typical areas "Burst Criterion" & 3-68 \\
\hline 3-3(d) & Correlation between "flow stress" and the transverse mechanical properties YS and UTS & 3-69 \\
\hline 3-3(e) & Frequency histogram & 3-70 \\
\hline 3-3(f) & Tubesheet reinforcing factor & 3-71 \\
\hline 3-3(g) & Reinforcement effect of tubesheet & 3-72 \\
\hline 4-1 (b) & Net section stress - thin wall model & 4-38 \\
\hline 4-1(c) & Net section stress - thick wall model & 4-39 \\
\hline \multirow[t]{2}{*}{4-2(a)} & Circumferential through wall flaws & 4-40 \\
\hline & Inconel 3/4" OD & \\
\hline 4-2 (b) & Bending stressas in tube roll transition region due to tubesheet - FDB alignment & 4-41 \\
\hline & offset (\(\delta\)) & \\
\hline \multirow[t]{2}{*}{4-2(c)} & Circumferential through wall flaws & 4-42 \\
\hline & Inconel 3/4" OD & \\
\hline 4-2 (d) & Unflawed test specimen Inconel 3/4" OD & 4-43 \\
\hline \multirow[t]{2}{*}{4-2(e)} & Schematic illustration of influence of a FDB offset on the burst of a tube with \(180^{\circ}\) circ. & 4-44 \\
\hline & crack & \\
\hline \multirow[t]{2}{*}{4-2(f)} & Schematic illustration of influence of a FDB & 4-45 \\
\hline & offset on the burst of a tube with \(105^{\circ}\) circ. & \\
\hline 4-2(g) & Burst testing without FDB & 4-46 \\
\hline 4-2(h) & Burst testing with FDB & 4-47 \\
\hline 4-2(i) & Circumferential through wall flaws & 4-48 \\
\hline 4-2(j) & Program C3 (subset 1) - Pictures from video & 4-49 \\
\hline & recording & \\
\hline
\end{tabular}
\begin{tabular}{lll}
Figure & & Page \\
4-2(k) & Circumferential through wall flaws. Typical & \(4-50\) \\
4-3(a. record of pressure and load - Time history & Circumferential through wall flaws, Lateral & \(4-51\) \\
\(4-3(b)\) & restraint load as a function of pressure & \\
& Circunferential through wall cracks with & \(4-52\)
\end{tabular}

\section*{TABLES}
\begin{tabular}{|c|c|c|}
\hline Table & & Page \\
\hline \(2-0\) & Belgatom experimental program & \(2-10\) \\
\hline & General structure & \\
\hline 2-1 & Dimensions and mechanical properties & 2-11 \\
\hline & of material selected for the test & \\
\hline & program & \\
\hline \(2-2(a)\) & Geometry of test specimens & \(2-14\) \\
\hline & Program Al (through wall axial flaws) & \\
\hline \(2-2(b)\) & Geometry of test specimens & \(2-15\) \\
\hline & Programs A2 and C1 (through wall flaws) & \\
\hline \(2 \cdots 2(c)\) & Geometry of test specimens & \(2-17\) \\
\hline & Program c2 (through wall circumferential & \\
\hline & flaws) & \\
\hline \(2-2(d)\) & Geometry of test specimens & 2-18 \\
\hline & Program A3 (through wall axial flaws) & \\
\hline \(2-2(e)\) & Geometry of test specimens & \(2-20\) \\
\hline & Program A4 - Subset 1 (through wall axial & \\
\hline & cracks) & \\
\hline 2-2(f) & Geometry of test specimens & \(2-21\) \\
\hline & Program A4 - subset 2 (through wall axial & \\
\hline & cracks) & \\
\hline \(2-2(g)\) & Geometry of test speoimens & \(2-23\) \\
\hline & Program A4 - Subset 3 (through wall axial & \\
\hline & oracks) & \\
\hline \(2-2(h)\) & Geometry of test specimens & 2-24 \\
\hline & Program A4 - Subset 4 (through wall axial & \\
\hline & cracks) & \\
\hline \(2-2(1)\) & Geometry of iast specimens & \(2-25\) \\
\hline & Program C3 mbset 1 (through wall & \\
\hline & circuaferential cracks) & \\
\hline \(2-2(j)\) & Geometry of test specimens & 2-26 \\
\hline & Program C3 - Subset 2 (through wall & \\
\hline & circumferential cracks) & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Table & & page \\
\hline 4-1 (b) & Net section stress - thick wall model for -7/8" & 4-19 \\
\hline 4-1(c) & Net section stress - thick wall moudl for - \(7 / 8^{\prime \prime}\) & 4-20 \\
\hline 4-1 (d) & Net section stress - thick wall model for - \(7 / 8^{\prime \prime}\) & 4-21 \\
\hline 4-1 (e) & Net section stresf, - thick wall model for - 7/8" & 4-22 \\
\hline 4-1(f) & Net section stress - thick wall model for - \(7 / 8^{\prime \prime}\) & 4-23 \\
\hline 4-1 (g) & Net section stress - thick wall model for - \(7 / 8^{\prime \prime}\) & 4-24 \\
\hline 4-1(b) & Net section stress - thick wall model for © \(3 / 4^{\prime \prime}\) & 4-25 \\
\hline 4-1(i) & Net section stress - thick wall model for \& 3/4" & 4-26 \\
\hline 4-1(j) & Net section stress - thick wall model for - 3/4" & 4-27 \\
\hline 4-1(k) & Net section stress - thick wall model for - 3/4" & 4-28 \\
\hline 4-1(1) & Net section stress - thick wall model for - 3/4" & 4-29 \\
\hline 4-1 (m) & Net section stress - thick wall model for - \(3 / 4^{\prime \prime}\) & 4-30 \\
\hline 4-1(n) & Net section stress - thick wall model for - 3/4" & 4-31 \\
\hline 4-1(p) & Circumferential through wall cracks in \(7 / 8^{\prime \prime}\) OD tube. Calculated values of \(\sigma / \sigma_{t}=1 / n\) & 4-32 \\
\hline 4-2(a) & Program C1 & 4-33 \\
\hline & Tube diameter : 3/4" (heat 9866) M3 unsupported geometry & \\
\hline \multirow[t]{2}{*}{4-2 (b)} & Program Cl & 4-34 \\
\hline & Measurements of : COD (\(\delta\)) ; slit opening (b) and bulging (omax) versus internal pressure (circumferential through wall flaws) & \\
\hline 4-2(c) & Program Ca & 4-35 \\
\hline & Tube diameter : \(3 / 4^{\prime \prime}\) & \\
\hline
\end{tabular}
4-2 (d) Program c3 4-36Tube diameter : \(7 / 8^{\prime \prime}\)(Test performed with 1 shim of \(0,13 \mathrm{~mm}\).except as noted)
\(4-2(e)\) Program c3 4-37
Tube diameter : \(3 / 4^{\prime \prime}\) (heat 70699)
(Test performed with 1 shim of 0.13 mm , except as noted)

\section*{Section 1}

\section*{INTRODUCTION}

The purpose of the present addendum to EPRI report NP-6626 is to document the large experimental program conducted by BELGATOM, since the early \(80^{\prime} \mathrm{s}\), to establish the critical dimensions of defects in rteam generator tubes.

This program addressed mainly through-wall cracks, in either the axial or circumferential direction, and established their critical length under a variety of configurations.

Several Inconel heats of \(7 / 8^{\prime \prime}\) or \(3 / 4^{\prime \prime}\) OD tubing as well as other matertals in the same gize range were used to verify the applicability of the theoretical plastic analyses (bulging factor, net section stress, ...) and to correlate their characteristic parameters to measured material propertieg

Particular emphasis was put on quantifying the reinforcing effects provided by structures such as tubesheet (for axial cracks), tube support plate, and flow disbribution baffle (for circumferential cracks).

This provided a reliable data base for calculation of critical crack sizes under actual steam generator conditions and was used to support the establishment of new plugging limits for the Belgian plants.

\section*{Section 2}

\section*{DESCRIPTION OF TESTS}

The BELGAIOM experimental program involved several gub-programs (Furthor detailed under gections 3 and 4) whieh are deeignated hereatter as
programs Al through A4, For asilal eracks programs C1 through C3, for circumferential cracks.

The general structure of the program is detailed in Table \(2-0\). The test samples used for these (sub) programs are defined in this saction.

\subsection*{2.1. MATERIALS}

Materials included in the test program are :
Inconel 600 (2 sizes \(\times 9\) heats)
Austenitic stainless steel SA 376 Tp 304 (2 sizes)
Austenitic alloy \(\mathrm{AL}-6 \mathrm{X}-\mathrm{HT}(25\) क \(\mathrm{Ni} / 20\) क \(\mathrm{Cr} / 6\) के Mo)
Ferritic alloy SEA CURE (2.5 \% Ni/26 \% Cr/3 \% Mo/.5 \% Ti).

Dimensions and mechanical properties are given in Table 2-1.

In order to cover a wide range of mechanical properties and provide a broad theoretical basis for extrapolation to cases of practical interest, the materials in the test program were not \(1 i m i t e d\) to Inconel.

For the first programs \((A 1, A 2)\), which were oriented towards a basic undergtanding of the hehaviour of axial oracks and of the correlation of the "flow stress" with the conventional yield strength (YS) and ultimate tensile strength (UTS), it was considered appropriate to
measure these properties in the direction of hoop stresses responsible for axial orack opening and extension; thus Ys and UTs were measured frow flatened transverse tensile specimens. However, it soon became clear that the unconventional transverse tensile test was inappropriate for general use; thus in order to derive data specific to the Inconel material, the usual longitudinal properties (available from mill certificates), were systematically used for correlation with the flow stress (programs A3 and A4),

\subsection*{2.2. GEOMETRY}

The 8 sketches in Fig. \(2-2\) illustrate the various types and locations of defects machined on the test specimens, namely :

Through wall axial electrodischarge machined (EDM) slits or natural (fatigue) cracks

Through wall circumferential EDM or laser cut slits.

Tables \(2-2(a)\) through \(2-2(k) 1\) ist all the test pieces according to defect type, number and length of defects, and the various sealing systems used (as described in Section 2-3).

The slits (produced by EDM or laser cutting) are about 0.2 min wide, the corner radius at tip being 0.1 mm . In a few cases (program C2 and 4 specimens from program A4), the slits were machined with an increase in width from 0.55 mm (circumferential flaws) to 0.8 mm (axial flaws).

For circumferential flaws the tip fronts were initially aligned; this resulted in some variation of the crack length across the wall thickness in programs C1 and C2. Later on (program C3), a more elaborate EDM process allowed the flaw tips to be radial (with a constant flaw length).

As a general rule, for test specimens representative of the "free span" of a \(S G\) tuhe, any defect was at least 60 mm distant from a discontimuity guch as another defect or the swagELOCK end fitting.

When two slits are machined in one specimen, they are sometimes idertical and situated in orthogonal planes (sketch 4).
\[
A-2-2
\]

This geometry makes it possible to observe the deformation of one defect (at pre-critical conditions) after the unstable propagation of the other (at critical pressure). The bursted portion of the tube is then removed and the shortened test piece is further pressure tested until the burst of the second defect oocurs.

While in the latter case, the two defects were located in different planas to minimiza any nogsible interference, a different tonology of aligned defects was used to compare the behaviour "next to" and "away from" the tubesheet discontinuity (see sketch 6). In this case. the collar around the tegt specimen eliminatas any mutual influence while the flaw alignment minimizes the influence of other factors (such as wall thickness which might not be uniform along the tube circuinference).

As to the test-specimens used to correlate mechanical properties (orogram A2), the lenaths of flaws were calculated to be "equivalent" to 20 mm for a \(7 / 8^{\prime \prime}\) O.D. (th. 1.27 mm) tube, from :
\[
2 c=20 \mathrm{~mm} \cdot\left(\frac{R, t}{R_{0}, t_{0}}\right)^{1 / 2}=5.47 \gamma(R t)
\]

Where : \(R=\) mean radius
\(t\) = wall thickness

For specimens used to evaluate the sharpness of flaw tips (programs A2 and A3). E.D.M. slits were lenghtened on both sides through oracks initiated by a fatigue test bench (pressure cycling).

The fatigue crack propagation proved difficult to control and, in some cases, the extended defect opened un sufficiently to permit the sealing system to extrude at a pressure well below the critical value When the plastic deformation was excessive, the specimens could not be resealed and were lost for further testing.

\subsection*{2.3. SEALING SYBTEM}

Several sealing systems were used to restore the leak tightness of specimens with through wall flaws. The main dimensions and characteristics of the flaws are listed in Table z-3 (a),

Seal 1 - a biass patch, 0.2 or 0.3 mm thick and 10 mm wide, glued with a silicone compound: (Fiq. 2-3; sketch 1)
Seal 2 - a copper patch, 0.3 mm thick and 25 mm wide, backed by a non reinforced plastic hose sealed at both ends of the test specimen with a silicone compound; (Fiq. 2-3; sketch 2)
Seal 3-similar to mode 2, but patch width reduced to 15 mm;
Seal 4 - no copper patch; the plastic tube sealed as fcr modes 2 and 3.

Seals 5 and 6 - the opportunity to get plastic tubes with an external diameter equal to the inner diameter of the specimen made it possible to seal tightly without the use of gilicone.

Seals 5 to 10 - the burat pressure of the specimens was reached without installing a metallic patch to prevent the premature rupture of the plastic hose.
Seads 11 to 14 - the same system as for Seal 2 but the brass patches lead different thicknesses and widths.

Seals 15 to 17 used a different, simpler and more efficient way to ingure leak tightness between plastic hose and inconal tube: conical metal inserts were used at both ends to expand the plastic hose in tight contact with the metal tube. For seals 15 and 16 , a thinner but atronger gteel pateh was used, in some cases (mentioned in the test result tables), it was necessary to use two such shims (total thickness about 0.25 mm). Seal 17 could only be used for relatively low critical pressures: the fiber-reinforced plastic hose proved more resistant than the combination of two standard hoses (seal 10) but was only available to fit the \(7 / 8^{\circ}\) OD tubes.

Seal 1 was aimed to minimize interference with the specimen behaviour; it did not reach the tube burst pressure because of premature rupture.

Seal 2 was satistactory but was modified into systems 3 and 4 (for ahort cracks anly) to reduce interference effects.

For sealing systems 1 to 14 , the leak tightness of each test piece was systematically checked at a 6 bar pressure. Leaks resulting from a lack of adherence between ailicone and she tube wall frequently occured. Some rare failures of seals were also observed at the beginning and during the course of testing. This required removal of the specimen from the test rig and building a new seal. For sealing system 15 and beyond, leak tightness problems were usually not abgervad.

The swelling of a plastic hose exposed to gradually increased internal presaure is recorded in Table \(2-3\) (b).

The mechanical characteristics of the metal patch were checked in two савея
copper plate : YS \(=241 \mathrm{MPa}\) UTS \(=302 \mathrm{MPa}\) A 11 *
steel strip : UFS \(=1200 \mathrm{MPa}\).

\subsection*{2.4. TEST RIG}

Different types of test rigs were used in pressure tests, all were based on quasi static, cold-water pressurization.

The first program (A1) used a volumetric pump (17 1/min: manually adjustable head up to 400 bar) with direct pressure reading from a large scale manometer.

The next programs (\(\mathrm{A} 2+C 1\)) used a sophisticated system consisting of a power operated air-water pressure amplifier (as shown in Fig. 2-4 (a)). The pressure was measured using a piezoelectric gauge connected to a multi-channel analogic recorder,

For programs \(\mathrm{A} 3, \mathrm{~A} 4, \mathrm{C} 2\), and C 3, a simpler, manual high pressure is 660 bar) pumn was used, with either analng reading (c2 only) or digital reading + analog recording.
\[
A-2-5
\]

In all cases the test specimens were cornected to the test rig by means of standard sWAGELOCK end fittings

In order to evaluate the ifiect on critical burst pressure of reatraining geometrias such as tubesheet or flow distribution baffle (FDB), special tools were designed to constrain the test-specimen, the description of which is given below.

Tubesheet constraint was simulated by either

1 : two half collars bolted together around the test specimen so as to leave practically zero clearance.
2 : a full collar, slipped around the test specimen, with minimum clearance and maintained in the desired position by a SWAGELOCK fitting.
3 : a full collar, slipped around the test specimen, with minimum clearance and maintained in the desired position by mechanical roll expansion of the tube.
4 : a full collar slipped around the test specimen, with diametral clearance within the tolerance range applicable to S.G. manufacturing \((0.2 \mathrm{~mm}\) to 0.6 mm\()\), and fixed by mechanical roll expansion (either by "underrolling" or "overrolling").

Modes 1 to 3 depicted in sketch 1 of Fig. 2-4 (b) have been used on test specimens with the intended flaw (s). For mode 4, shown in sketch 2 of Fig. \(2-4\) (b), the flaw (s) can only be machined (EDM) after roll expansion (to avoid non-representative opening of the flaw and, especially, stretching of the orack tip adjacent to the collar).

Axial flaws were located at various distances from the simulated tubesheet (including partial length engagement within the collar). circumferential flaws were systematically located at \(6 \mathrm{~mm}\left(1 / 4^{\prime \prime}\right)\) from the face of the simulated tubesheet.

Lateral restraint (from Elow Distribution Baffle - FDB - and/or Tube Support plate - TSP), was simulated by a special test rig, adjustable to the various geometries under consideration \(\left(7 / 8^{\prime \prime}\right.\) or \(3 / 4^{\prime \prime}\) OD, SG model 51 or D4).

Fig. 2-4 (c) shows a general assembly of this test rig with an installed \(7 / 8^{\prime \prime} \mathrm{OD}\) specimen. The test rig consists of a main frame (as detailed in Fig. \(2^{-4}\) (d)) and four relocatable lateral restraint subassemblies (as detailed in Fig. 2-4 (e)).

Two restraint subassemblies were used to assemble and fix the two half collars simulating the tubesheet. The two other subassemblies were used to simulate the FDB and the TSP; These was consisted of plates with machined holes at the appropriate tube to TSP or FDB clearance (usually larger for \(E D B\) than for TSP). A different set of collars and plates was used to iit the tube diameter (7/8" or \(\left.3 / 4^{\prime \prime}\right)\); the plates Incation was adjusted in accordance with the geotaetry specific for ea.h type of steam generator; an offset can be imposed to the plates (as illustrated on Fig. \(2-4\) (c)) prior to testing. A specially designed load cell (using strain gages) can be adapted to the TSP/FDB subassemblies in order to perform restraining force measurements.

Thus, this flexible mock-up allows full scale simulation of any actual field configuration.

\subsection*{2.5. TEST PROCEDURE}

The pressure was slowl; ratsed until burst; in case of seal failure, a retest was performed with a stronger sealing svstem.

For ingtance, specimens exhibiting sealing system 1 failure were refurbished with sealing system 2 which consisted of a wide patch that bridged the deformed slit area (widened slit, bulging).

In some cases, the crack extension under burst pressure was sufficiently small to permit the specimen to be resealed and retested (with the initial slit length increased by natural oracks at both ends).

For program Al, the pressurization was halted at a few intermediate pressure levels (scheduled at about 70,80 , and \(90 \%\) of the expected burst pressure) to allow for visual examination and the following geometrical measurements :
flaw width, at mid span on the O.D. surface

Crack Opening Displacement (COD) at bo:h frids of initial slit (Eja. 2-5 sketch 2)
- Lo: axial flaws, diametral extension (oulging) of the tube in the center of the slit (Fig. 2-5 sketch 1).

For safety reasons, measurements requiring close visual examination were taken on'y after releasing the pressure to less than 50 \% (and frequently to 0). This approach did not affect the accuracy of results because the elastic restitution remained very small with regard to the large plastic opening stretch of the flaw.

Specimens equipped with two defects were retested after the removal of the runtured portion and the earlier measurements were made again.

After dismantling the tested specimen from the rig, the following measurements were performed :
- COD at both ends of initial slit, by summation of the ruptured ligament widths on both sides of the tearing crack; only the mean value of these two measurements was recorded
overall crack length
- crack central opening (width measured at the inner and outer surface bint and bext in Fig. 2-5 sketch 1).
overall tube deformation : bulging at the center of the defect, ovality at defect tips, and deflection fsee sketches in Fig. 3-2 (a)), (the bulging is taken as the larger of diameters \(\varnothing 1\) and \(\varnothing 2\) as shown in Fig. \(2-5\) sketch 1).
- in some cases the leakage area, available through close-up photography of the cracked section.

While the two first measurements were performed almost systematically for all program phases, the others were essentially limited to program Al which was more of a phenomenological nature.

However, some other measurements were also performed as a function of the increasing pressure, depending on the particular program objectives.
- Program C2 involved measurement (manual recording of gauge reading) of
- lateral displacement of unrestrained specimens
- axial elongation of restrained specimens

Program A4 (first subset) involved meacurement (manual recording of gauge reading) of the tube bulging
program C3 involved measurement (analog recording) of either
- the maximum lateral deformation (subset 1)
. the lateral load on the restraining plate (subset 2)
Additionaliy, the deformed profile of the test specimen was sometimes measured in the "post mortem" condition.

It should be noted that the simple pressurization (manual pump) used for all later phases of the program involved significant pressure fluctuations. Although these may slightly affect the ultimate value of critical pressure (thus contributing to some data scatter), they were not considered an undesirable feature as similar fluctuations could also be expected to occur also under actual steam generator accidental conditions.

Table 2-0
BELGATOM EXPERIMENTAI. PROGRAM GENERAL STRUCTURE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{PROGRAM} & \multirow[t]{2}{*}{SUBSEI} & \multicolumn{2}{|l|}{CRACKS} & \multicolumn{2}{|l|}{MATERIAL} & \multicolumn{3}{|c|}{DIAMEIER} & \multirow[t]{2}{*}{PERIOD} & \multirow[t]{2}{*}{MAIN OBJECIIVE} \\
\hline & & AX. & CIRC. & Inconel & other & 7/8" & \(3 / 4 "\) & other & & \\
\hline A1 & - & X & & X & - & X & \(\sim\) & - & 1980-81 & \begin{tabular}{l}
phenomenology \\
[model validation
\end{tabular} \\
\hline A2 & - & X & & X & X & X & X & X & 1982-83 & \[
\left[\begin{array}{l}
\text { phenomenology } \\
\text { flow stress } \\
\text { characterization }
\end{array}\right.
\] \\
\hline A3 & - & X & & X & - & X & - & - & 1987-88 & LBB of Ni plated tube \\
\hline A4 & 1
2
3
4 & \[
\begin{aligned}
& \mathrm{X} \\
& \mathrm{X} \\
& \mathrm{X} \\
& \mathrm{X}
\end{aligned}
\] & & X
X
X
X & -
-
- & X
X
X
- & - & - & \[
\begin{aligned}
& 1987 \\
& 1988 \\
& 1988-89 \\
& 1989
\end{aligned}
\] & \(\left[\begin{array}{c}\text { preliminary } \\
\text { statistical } \\
\text { direct } \\
\text {-verification }\end{array}\right]\)\begin{tabular}{l}
study of \\
tubesheet \\
influence
\end{tabular} \\
\hline C1 & - & & X & X & - & - & X & -- & 1982-83 & phenomenology \\
\hline C 2 & - & & X & X & - & - & X & - & 1987 & preliminary \(\quad\) study of \\
\hline c3 & 1 & & X
X & X & - & X & \(\overline{\mathrm{X}}\) & - & \[
\begin{aligned}
& 1988-89 \\
& 1989
\end{aligned}
\] & \[
\left|\begin{array}{l}
\text { frepresentative }
\end{array}\right| \begin{aligned}
& \text { lateral } \\
& \text { restraint }
\end{aligned}
\] \\
\hline
\end{tabular}

Table 2-1

DIMENSIONS AND MECHANICAL PROPERTIES OF MATERIAL SELECTED FOR THE TEST PROGRAM

(1) Mechanical properties measured on transverse test-sperimens machined from rings cut irom tubes.
(2) Elongation in 5.65 /S
(3) Lonqitudinal properties (from W Blairsvillemill ctrificax : YS = 425 YPa; UTS = 730 MPa

Table 2-1 (cont'd)
DIMENSIONS AND MECHANTCAL PROPERTIES OF MATERIAL SELECTED EOR THE TEST PROGRAM
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
MATERIAL \\
(INDEX)
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { LOT } \\
& \mathrm{N}^{\circ} .
\end{aligned}
\]} & \multirow[t]{2}{*}{TEST REFORT} & \multicolumn{2}{|l|}{DIMENSIONS (mm)} & \multicolumn{2}{|l|}{YIELD STRENGTH (1)
YS (MPa)} & \multicolumn{2}{|l|}{TENSILE STRENGTH (1)
UTS (MPa)} & \multirow[t]{2}{*}{\[
\text { A }(2)
\]} \\
\hline & & & outside
diameter & wall thickness & recorded & mean & recorded & mean & \\
\hline \[
\begin{array}{|ll|}
\hline \text { (M5) } & \\
\text { AISI } & 304 \\
3 / 4^{\prime \prime} & 0 . D . \\
\text { Program } n^{\circ} \text { A2 }
\end{array}
\] & - & \[
\begin{aligned}
& G 40 / 01099 \\
& G 40 / 01099 \\
& 32.192 \\
& 34,539 \\
& 35,667-1
\end{aligned}
\] & 19.1 & 1.2 & \[
\begin{aligned}
& 289 \\
& 342 \\
& 408 \\
& 334 \\
& 299
\end{aligned}
\] & 334 & \[
\begin{aligned}
& 607 \\
& 619 \\
& 669 \\
& 707 \\
& 565
\end{aligned}
\] & 633 & \[
\begin{aligned}
& 49.3 \\
& 51.3 \\
& 50 \\
& 55.6 \\
& 50.0
\end{aligned}
\] \\
\hline \begin{tabular}{l}
(M6) \\
AISI 304 \\
\(1 / 2^{\prime \prime}\) Sch 40 \\
Program n \({ }^{\circ} \mathrm{A} 2\)
\end{tabular} & - & \[
\begin{aligned}
& 32,192 \\
& 34,539
\end{aligned}
\] & 20.9 & 2. 65 & \[
\begin{aligned}
& 369 \\
& 434
\end{aligned}
\] & 402 & \[
\begin{aligned}
& 720 \\
& 727
\end{aligned}
\] & 723 & \[
\begin{aligned}
& 50.0 \\
& 61.7
\end{aligned}
\] \\
\hline \begin{tabular}{l}
(M7) \\
AL-6X-HT \\
\(25 \mathrm{Ni} / 20 \mathrm{Cr} /\) \\
6 Mo \\
Program \(n^{\circ}\) A2
\end{tabular} & - & \[
\begin{gathered}
G 40 / 01099 \\
32,192 \\
34,539
\end{gathered}
\] & 20.1 & 0.77 & \[
\begin{aligned}
& 554 \\
& 585 \\
& 639 \\
& 632
\end{aligned}
\] & 603 & \[
\begin{aligned}
& 739 \\
& 696 \\
& 805 \\
& 792
\end{aligned}
\] & 758 & \[
\begin{aligned}
& 13.3 \\
& 14.7 \\
& 14.6 \\
& 18.5
\end{aligned}
\] \\
\hline (M8)
SEA CURE
\(2.5 \mathrm{Ni} / 26 \mathrm{Cr}\)
\(3 \mathrm{MO} / .5 \mathrm{Ti}\)
Program \(\mathrm{n}^{\circ} \mathrm{A} 2\) & & \[
\begin{gathered}
\mathrm{G} 40 / 01099 \\
n \\
32.192 \\
34,539
\end{gathered}
\] & 20.0 & 0.71 & \[
\begin{aligned}
& 569 \\
& 557 \\
& 538 \\
& 596
\end{aligned}
\] & 590 & \[
\begin{aligned}
& 654 \\
& 666 \\
& 717 \\
& 707
\end{aligned}
\] & 686 & \[
\begin{aligned}
& 15.3 \\
& 16.7 \\
& 13.1 \\
& 20.8
\end{aligned}
\] \\
\hline
\end{tabular}
(1) Mechanical properもies measured on transverse test-specimens machined from rings cut from tubes.
(2) Elongation in 5.65 fs

Table 2-1 (cont'd)
DIMENSIONS AND MECHANICAL PROPERTIES OF MATERIAL SELECTED FOR THE TEST PROGRAM
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{MATERIAI (INDEX)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { LOT } \\
& \mathrm{N}^{5} .
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { TEST } \\
\text { REPORT }
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { DIMENSIONS } \\
(\text { ma })
\end{gathered}
\]} & YIELD STRENGTH (1)
YS (MPa) & TENSILE STRENGTH (1) (UTS (MPa) & \multirow[t]{2}{*}{\[
A_{\%}(2)
\]} \\
\hline & & & outside diameter & \begin{tabular}{l}
wal? \\
thickness
\end{tabular} & & & \\
\hline \begin{tabular}{l}
(M9) \\
Inconel 600 \\
7/8" OD Programs A3. A4 and C3
\end{tabular} & 71692 & \[
\begin{aligned}
& \text { mill } \\
& \text { certifi- } \\
& \text { cate } \\
& \text { VALLOUREC }
\end{aligned}
\] & 22.22 & 1.27 & 292 & 701 & 42 \\
\hline \begin{tabular}{l}
(M10) \\
Inconel 600 \\
7/8" OD \\
Program A3
\end{tabular} & \[
\begin{gathered}
74749 \\
(3)
\end{gathered}
\] & LABORELEC (division C) & 22.22 & 1.27 & 184 & 596 & 38 \\
\hline \begin{tabular}{l}
(M11) \\
Inconel 600 \\
7/8" OD \\
Program C3
\end{tabular} & 71383 & \begin{tabular}{l}
mill \\
certifi- \\
cate \\
EINETUBES
\end{tabular} & 22.22 & 1.27 & 276 & 655 & 50 \\
\hline \[
\begin{aligned}
& \text { (M12) } \\
& \text { Inconel } 600 \\
& 3 / 4^{\prime \prime} \text { OD } \\
& \text { Program A4 } \\
& \text { and C3 }
\end{aligned}
\] & \[
70 \quad 699
\] & \[
\begin{aligned}
& \text { mill } \\
& \text { certifi- } \\
& \text { cate } \\
& \text { VALLOUREC }
\end{aligned}
\] & 19.05 & 1.09 & 346 & 740 & 44 \\
\hline \[
\begin{aligned}
& \text { (M13) } \\
& \text { Inconel } 600 \\
& 3 / 4^{\prime \prime} \text { on } \\
& \text { Progran C2 }
\end{aligned}
\] & & & & UNDOCUME & NTED STOCK MATERIAL & & \\
\hline
\end{tabular}
(1) Mechanical properties measured in the longitudinal direction.
(2) Elongation in 5.65 fS
(3) Material (M11) + thermal heat treatment.

Table 2-2 (a)

GEOMETRY OF TEST SPECIMENS PROGRAM AI (THROUGH WALL AXIAL FLAWS)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
MATERIAL let. \\
Table 2-1)
\end{tabular}} & \multicolumn{2}{|l|}{DEFELT GEOMEIRY} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { SKETCH } \\
& N^{\circ} . \\
& \text { (cf. } \\
& \text { Fiq. } \\
& 2-2)
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
SEALING \\
SYSTEM \\
(INDEX)
\end{tabular}} & \multirow[t]{2}{*}{TEST PIECE \(\mathrm{N}^{\mathrm{a}}\).} \\
\hline & TYPE & LENKTH (mm) & & & \\
\hline \multirow[t]{3}{*}{M1} & \begin{tabular}{l}
7 spectmans with \\
1 flaw
\end{tabular} & \[
\begin{aligned}
& 15 \\
& 20 \\
& 25 \\
& 35 \\
& 50 \\
& 70 \\
& 70
\end{aligned}
\] & 1 & \[
\begin{array}{ll}
1 ; & 2 \\
1 ; & 2 \\
1 ; & 2 \\
1 ; & 2 \\
1+b ; & 2 \\
1+b ; 2 \\
2
\end{array}
\] & \[
\begin{array}{r}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
6 \\
12
\end{array}
\] \\
\hline & 5 specimens with 2 flaws & \[
\begin{aligned}
& 12 ; 12 \\
& 15 ; 15 \\
& 20 ; 20 \\
& 35 ; 20 \\
& 50 ; 20
\end{aligned}
\] & 4 & \[
\begin{array}{ll}
2 ; & 4 \\
2 ; & 4 \\
2 ; & 3 \\
2 ; & 4 \\
2 & 4
\end{array}
\] & \[
\begin{array}{r}
7 \\
8 \\
9 \\
10 \\
11
\end{array}
\] \\
\hline & \[
\begin{aligned}
& 1 \text { ovalized speci- } \\
& \text { men (11 \%) with } \\
& 2 \text { flaws }
\end{aligned}
\] & 20:20 & 5 & 2 & 13 \\
\hline
\end{tabular}

Table 2-2 (b)
GEOMETRY OF TEST SPECTMENS PROGRAMS AZ AND C1 (THROUGH WALL FLAWS)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
MATERIAL (cf. \\
Table
\[
|2-1|
\]
\end{tabular}} & \multicolumn{2}{|l|}{DEFECT GEOMETRY} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { SKETCH } \\
& N^{\circ} . \\
& \text { (cf. } \\
& \text { Fig. } \\
& 2-2)
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
SEALING SYSTEM \\
(INDEX)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
TEST- \\
RIECE \(\mathrm{N}^{\circ}\).
\end{tabular}} \\
\hline & TYPE & \[
\begin{gathered}
\text { LENGTH } \\
(\mathrm{mm})
\end{gathered}
\] & & & \\
\hline \multirow[t]{2}{*}{M2} & 2 specimens with
2 axial flaws & \[
\begin{aligned}
& 18 ; 18 \star \\
& 20 ; 20
\end{aligned}
\] & 4 & \(5-10\)
\(9-10\) & 0
1 \\
\hline & ```
1 \text { specimen with}
2 parallel axial
flaws + 1 isolated
flaw
``` & \[
\begin{aligned}
& 20 ; 20 \\
& 20
\end{aligned}
\] & 3 & \[
8-8
\]
\[
10
\] & 23 \\
\hline \multirow[t]{2}{*}{M3} & 2 specimens with 2 axial flaws & \[
\begin{gathered}
16.5 ; \\
16.5 \\
16.5 ; \\
16.5
\end{gathered}
\] & \begin{tabular}{l}
4 \\
4
\end{tabular} & \[
\begin{aligned}
& 12 \\
& 12
\end{aligned}
\] & \[
\begin{aligned}
& 7 \\
& 8
\end{aligned}
\] \\
\hline & 4 specimens with 2 circumferential flaws & \[
\begin{aligned}
& 15 ; 15 \\
& 30 ; 31 \\
& 20 ; \\
& 21.5 \\
& 23 ; 23
\end{aligned}
\] & \[
\begin{aligned}
& 7 \\
& 7 \\
& 7 \\
& 7
\end{aligned}
\] & \[
\begin{aligned}
& 12 \\
& 11 \\
& 12
\end{aligned}
\] & \[
\begin{array}{r}
9 \\
10 \\
11 \\
12
\end{array}
\] \\
\hline M4 & 1 specimen with 2 axial flaws & \[
\begin{aligned}
& 16.5 ; \\
& 16.5 \star \star
\end{aligned}
\] & 4 & 6 & 24 \\
\hline
\end{tabular}
* slits increased in lenght to 19.7 and 20.3 mm , respectively, by fatigue crack propagation :
1.162 .000 cycles at frequencies ranging from 3.75 to 7.5 Hz partitioned as : 432,500 at 5 to \(10<p<55\) to 60 bar
\[
\begin{array}{llll}
592,000 \text { at } & 15<p<50 & \text { bar } \\
137,000 \text { at } & 20<p<65 & \text { bar }
\end{array}
\]

Crack initiation was observed after 72,000 pressure cycles at one tip and atter 89,500 cycles at the other.

A* excessive fatigue propagation resulted in useless, deformes
specimen.

Table \(2-2\) (b) (cont' \(d\) )
GEOMETRY OF TEST SPECTMENS PROGRAMS A2 AND C1 (THROUGH WALL FLAWS)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
MATERIAL lcf. \\
Table 2-1)
\end{tabular}} & \multicolumn{2}{|l|}{DEFECT GEOMETRY} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { SKETCH } \\
& \text { N } \\
& \text { (cf. } \\
& \text { Fig. } \\
& 2-2 \text { ) }
\end{aligned}
\]} & \multirow[t]{2}{*}{SEALING SYSTEM (INDEX)} & \multirow[t]{2}{*}{TESTPIECE \(\mathrm{N}^{\circ}\) 。} \\
\hline & TYPE & \[
\begin{aligned}
& \text { LENGTH } \\
& (\mathrm{mm})
\end{aligned}
\] & & & \\
\hline M5 & 2 specimens with 2 axial flaws & \[
\begin{gathered}
16.5 \\
16.5 \\
16.5 \\
16.5
\end{gathered}
\] & \begin{tabular}{l}
4 \\
4
\end{tabular} & \[
\begin{aligned}
& 12 \\
& 12
\end{aligned}
\] & \[
\begin{aligned}
& 13 \\
& 14
\end{aligned}
\] \\
\hline M6 & \begin{tabular}{l}
2 specimens with \\
2 axial Elaws
\end{tabular} & \[
\begin{gathered}
27.5 \\
27.5 \\
27.5 \\
27.5
\end{gathered}
\] & \[
2
\]
\[
2
\] & \[
\begin{aligned}
& 14 \\
& 14
\end{aligned}
\] & \[
\begin{aligned}
& 15 \\
& 16
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{M 7} & 2. specimens with 2 axial flaws & \[
\begin{gathered}
14.5 \\
14.5 \\
14.5 \\
14.5
\end{gathered}
\] & \[
4
\]
\[
4
\] & \[
7
\]
\[
7
\] & \[
\begin{aligned}
& 17 \\
& 18
\end{aligned}
\] \\
\hline & 1 specimen with \(2 \times 2\) parallel axial flaws & \[
\begin{gathered}
14.5 \\
14.5 \\
14.5 \\
14.5
\end{gathered}
\] & \[
3
\]
\[
3
\] & 7
\[
7
\] & 22 \\
\hline \multirow[t]{2}{*}{M8} & 2 specimens with 2 axial flaws & \[
\begin{gathered}
14.5 \\
14.5 \\
14.5 \\
14.5
\end{gathered}
\] & \begin{tabular}{l}
\[
4
\] \\
4
\end{tabular} & \[
7
\]
\[
7
\] & \begin{tabular}{l}
19 \\
20
\end{tabular} \\
\hline & 1 specimen with 2 parallel axial flaws & \[
\begin{array}{r}
14.5 \\
14.5
\end{array}
\] & 3 & 7 & 21 \\
\hline
\end{tabular}

Table 2-2 (c)
GEOMETRY OF TEST SPECIMENS
PROGRAM C2 (THROUGH WALL CIRCUMFERENTIAL FLAWS)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
MATERIAL (cf. \\
Table
\[
|2-1\rangle
\]
\end{tabular}} & \multicolumn{2}{|l|}{DEFECT GEOMETRY} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { SKETCH } \\
& \text { N }^{\circ} \text {. } \\
& (\mathrm{Cf} . \\
& \text { Fig. } \\
& 2-2)
\end{aligned}
\]} & \multirow[t]{2}{*}{SEALING SYSTEM (INDEX)} & \multirow[t]{2}{*}{\begin{tabular}{l}
TEST- \\
PIECE \(\mathrm{N}^{\circ}\).
\end{tabular}} \\
\hline & TYPE & LENGTH (deg. of are) & & & \\
\hline \multirow[t]{3}{*}{M13} & \[
\begin{aligned}
& \text { I specimen without } \\
& \text { flaw }
\end{aligned}
\] & 0 & - & - & 1 \\
\hline & 7 flawed specimens & \[
\begin{aligned}
& 180 \\
& 180 \\
& 180 \\
& 180
\end{aligned}
\] & 8-1 & 16 & \[
\begin{aligned}
& 2 \\
& 3 \\
& 4 \\
& 8
\end{aligned}
\] \\
\hline & & \[
\begin{aligned}
& 105 \\
& 105 \\
& 105
\end{aligned}
\] & 8-1 & 16 & \[
\begin{aligned}
& 5 \\
& 6 \\
& 7
\end{aligned}
\] \\
\hline
\end{tabular}

Table 2-2 (d)
GEOMETRY OF TEST SPECIMENS
PROGRAM A3 (THROUGH WALL AXIAL FLAWS)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
MATERIAL (cf. \\
Table 2-1)
\end{tabular}} & \multicolumn{3}{|c|}{DEFECT GEOMETRY} & \multirow[t]{3}{*}{\[
\left\{\begin{array}{l}
\text { SKETCH } \\
N^{\circ} . \\
\text { (cf. } \\
\text { Fig, } \\
2-2)
\end{array}\right.
\]} & \multirow[t]{3}{*}{\begin{tabular}{l}
SEALING \\
SYSTEM \\
(INDEX)
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
TEST- \\
PIECE \(\mathrm{N}^{6}\).
\end{tabular}} \\
\hline & \multirow[t]{2}{*}{TYPE} & \multicolumn{2}{|l|}{LENGTH (mm)} & & & \\
\hline & & EDM & Fatigue & & & \\
\hline \multirow[t]{4}{*}{M9} & \multirow[t]{4}{*}{unplated

Ni
plated} & \[
\begin{aligned}
& 16 \\
& 15.9
\end{aligned}
\] & \(\stackrel{+}{+}\) & 1 & 15 & \[
\begin{aligned}
& 2 \\
& 7
\end{aligned}
\] \\
\hline & & \[
\begin{aligned}
& 16 \\
& 16 \\
& 16
\end{aligned}
\] & \[
\begin{aligned}
& 18 \\
& 19.5 \\
& 19
\end{aligned}
\] & 1 & 15 & \[
\begin{aligned}
& 33 \\
& 36 \\
& 37
\end{aligned}
\] \\
\hline & & \[
\begin{aligned}
& 16 \\
& 16.3 \\
& 15.9 \\
& 16.1 \\
& 16 \\
& 16
\end{aligned}
\] &  & 1 & 15 & \[
\begin{array}{r}
1 \\
6 \\
8 \\
9 \\
10 \\
11
\end{array}
\] \\
\hline & & \[
\begin{aligned}
& 16 \cdot 4 \\
& 12 \\
& 12 \\
& 12 \\
& 12 \\
& 12 \\
& 12 \\
& 12 \\
& 12 \\
& 16 \\
& 16 \\
& 16
\end{aligned}
\] & \[
\begin{aligned}
& 18 \\
& 12+ \\
& 12+ \\
& 12+ \\
& 23 \\
& 12.5 \\
& 14 \\
& 12.5 \\
& 15.5 \\
& 18 \\
& 17 \\
& 17
\end{aligned}
\] & 1 & 15 & \[
\begin{array}{r}
5 \\
18 \\
20 \\
23 \\
24 \\
25 \\
26 \\
27 \\
28 \\
35 \\
40 \\
43
\end{array}
\] \\
\hline M10 & Ni
plated & \[
\begin{aligned}
& 16 \\
& 16 \\
& 16 \\
& 16 \\
& 16 \\
& 16
\end{aligned}
\] &  & 1 & 15 & \[
\begin{array}{r}
3 \\
4 \\
5 \\
6 \\
7 \\
10
\end{array}
\] \\
\hline
\end{tabular}

\section*{Notes}
1) For easy reference, the specimens are noted
r Ni for M9
[Ni* for M10
where i is the test piece number
2) For all specimens, the initial EDM flaw was machined only part through wall (remaining ligament in the range from 0.2 to 0.3 mm ); through wall penetration was obtained by fatigue cycling to minimize the crack width and allow representative nickel plating. In a number of cases, this fatigue cycling also initiated cracking
in the axial direction (the extended length is quoted as the "fatigue length"). A typical cycling sequence is given hereafter (from test specimen \(\mathrm{N}^{\circ}\). 33)
initial EDM flaw length : 16 mm
[remaining ligament thickness : \(195 \mu \mathrm{~m}\)
[ 10.500 dycles between 0 and 70 bar (resulting in first leakage)
14.000 cycles between 0 and 70 bar
[13.400 cycles between 0 and 65 bar
final fatigue crack length (measured after tube [fatigue crack width (max) \(\quad:\)\begin{tabular}{l}
18 mm \\
\hline
\end{tabular}

Table 2-2 (e)
GEOMETRY OF TEST SPECIMENS
PROGRAM A4 - SUBSET 1 (THROUGH WALL AXIAL CRACKS)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
MATERTAL (ef. \\
Table 2-1)
\end{tabular}} & \multicolumn{4}{|c|}{DEEECT GEOMETRY} & \multirow[t]{3}{*}{\[
\left\{\begin{array}{l}
\text { SKETCH } \\
\text { N } \\
\text { (cf. } \\
\text { Eig. } \\
2-2)
\end{array}\right.
\]} & \multirow[t]{3}{*}{\begin{tabular}{l}
SEAL- \\
LING \\
SYSTEM \\
INDEX
\end{tabular}} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { TEST } \\
\text { PIECE } \\
\mathrm{N}^{\circ} .
\end{gathered}
\]} \\
\hline & \multirow[t]{2}{*}{TYPE} & \multirow[t]{2}{*}{DISTANCE EROM TS (min)} & \multicolumn{2}{|l|}{LENGTH (mm)} & & & \\
\hline & & & Total & Outsi-
de TS & & & \\
\hline \multirow[t]{2}{*}{M9} & INFLUENCE OF TUBESHEET (TS) & \(\begin{array}{r}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 8 \\ 16 \\ 0 \\ 0 \\ 8 \\ -\quad 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ -8 \\ -8 \\ \hline 0\end{array}\) & \[
\begin{aligned}
& 12 \\
& 12 \\
& 12 \\
& 16 \\
& 16 \\
& 16 \\
& 16 \\
& 16 \\
& 16 \\
& 16 \\
& 20 \\
& 20 \\
& 20 \\
& 24 \\
& 24 \\
& 24 \\
& 24
\end{aligned}
\] & \[
\begin{aligned}
& 12 \\
& 12 \\
& 12 \\
& 16 \\
& 16 \\
& 16 \\
& 16 \\
& 16 \\
& 16 \\
& 16 \\
& 16 \\
& 20 \\
& 20 \\
& 24 \\
& 16 \\
& 16
\end{aligned}
\] & 1 mode 1 & 15 & 1
2
3
5
6
7
8
9
11
12
14
15
16
17
18
19
20 \\
\hline & REFERENCE & \(\square\) & 16
16
16 & - & 1 & 15 & \[
\begin{array}{r}
4 \\
10 \\
13
\end{array}
\] \\
\hline
\end{tabular}

Notes :
1) For easy reference, the specimens are noted Pi where i is the testplece \(\mathrm{N}^{\circ}\).
2) Specimen dimensions are given in Table 2-2 (k)
3) Indicated "mode" refers to tubesheet constraint, as defined by section 2.4.

Table 2~2 (f)
GEOMETRY OF TEST SPECIMENS
PROGRAM A4 - SUBSET 2 (THROUGH WALL AXIAL CRACKS)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
MATERIAL (c) \\
Table 2-1)
\end{tabular}} & \multicolumn{4}{|c|}{DEFECT GEOMETRY} & \multirow[t]{3}{*}{\[
\left\{\begin{array}{l}
\text { SKETCH } \\
N^{\circ} . \\
\text { (cf. } \\
\text { Fig. } \\
2-2)
\end{array}\right.
\]} & \multirow[t]{3}{*}{\begin{tabular}{l}
SEALING \\
SYSTEM \\
INDEX
\end{tabular}} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { TEST- } \\
\text { PIECE } \\
\mathrm{N}^{\circ} .
\end{gathered}
\]} \\
\hline & \multirow[t]{2}{*}{TYPE} & \multirow[t]{2}{*}{DISTANCE EROM IS (mm)} & \multicolumn{2}{|l|}{LENGTH (mm)} & & & \\
\hline & & & Total & Outside TS & & & \\
\hline \multirow[t]{4}{*}{M9} & INFLUENCE OF TUBE SHEET (TS ) & \[
\begin{aligned}
& 8 \\
& 8 \\
& 8 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 19 \\
& 19 \\
& 19 \\
& 19 \\
& 19 \\
& 19
\end{aligned}
\] & \[
\begin{aligned}
& 19 \\
& 19 \\
& 19 \\
& 19 \\
& 19 \\
& 19
\end{aligned}
\] & \[
\begin{aligned}
& 1+ \\
& \text { mode } 4 \\
& (\text { gap }= \\
& 0.4 \mathrm{~mm})
\end{aligned}
\] & 15 & \[
\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5 \\
& 6
\end{aligned}
\] \\
\hline &  & \[
\begin{array}{r}
0 \\
0 \\
0 \\
-\quad 19 \\
-\quad 19 \\
-\quad 19
\end{array}
\] & \[
\begin{aligned}
& 19 \\
& 19 \\
& 19 \\
& 38 \\
& 38 \\
& 38
\end{aligned}
\] & \[
\begin{aligned}
& 19 \\
& 19 \\
& 19 \\
& 19 \\
& 19 \\
& 19
\end{aligned}
\] & \[
\left\lvert\, \begin{aligned}
& 1+ \\
& \text { mode } 3
\end{aligned}\right.
\] & 15 & \[
\begin{array}{r}
7 \\
8 \\
9 \\
10 \\
11 \\
12
\end{array}
\] \\
\hline & & \begin{tabular}{r}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\(-\quad 0\) \\
\(-\quad 6\) \\
\(-\quad 6\) \\
\(-\quad 5\) \\
\(-\quad 5\) \\
\(-\quad 5\) \\
\hline
\end{tabular} & \[
\begin{aligned}
& 19 \\
& 19 \\
& 19 \\
& 18 \\
& 18 \\
& 18 \\
& 24 \\
& 24 \\
& 24 \\
& 24 \\
& 34
\end{aligned}
\] & \[
\begin{aligned}
& 19 \\
& 19 \\
& 19 \\
& 18 \\
& 18 \\
& 18 \\
& 18 \\
& 18 \\
& 19 \\
& 19 \\
& 19
\end{aligned}
\] & \[
\left\lvert\, \begin{array}{lll}
1 & + \\
\text { rode } & 1 \\
1+ & \\
\text { mode } & 2
\end{array}\right.
\] & 15 & \[
\begin{aligned}
& 13 \\
& 14 \\
& 60(2) \\
& Y 18 \mathrm{G} 1 \\
& Y 18 \mathrm{G2} \\
& Y 18 \mathrm{G3} 3 \\
& Y 24 \mathrm{Cl} \\
& \mathrm{Y} 24 \mathrm{C} 2 \\
& Y 24 \mathrm{D} 1 \\
& Y 24 \mathrm{D} 2 \\
& \mathrm{Y} 24 \mathrm{D} 3
\end{aligned}
\] \\
\hline & & \[
\begin{array}{r}
5 \\
-\quad 5
\end{array}
\] & \[
\begin{aligned}
& 24 \\
& 24
\end{aligned}
\] & \[
\begin{aligned}
& 19 \\
& 19
\end{aligned}
\] & \[
\left\lvert\, \begin{aligned}
& 1+ \\
& \text { mode }
\end{aligned}\right.
\] & 15 & \[
\begin{aligned}
& \mathrm{Y} 24 \mathrm{~F} 1 \\
& \mathrm{Y} 24 \mathrm{~F} 2
\end{aligned}
\] \\
\hline
\end{tabular}
1) Indicated "mode" refers to tubesheet constraint, as defined by section 2.4.

Table \(2-2\) (f) (cont'd)
GEOMETRY OF TEST SPECIMENS
PROGRAM A4 - SUBSET 2 (THROUGH WALL AZLAL CRACKS)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
MATERIAL (cf. \\
Table 2-1)
\end{tabular}} & \multicolumn{4}{|c|}{DEFECT GEOMETRY} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { SKETCH } \\
& N^{\circ} . \\
& (c f . \\
& \text { Eig. } \\
& 2-2)
\end{aligned}
\]} & \multirow[t]{3}{*}{SEALING SYSTEM INDEX} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { PEST- } \\
\text { PIECE } \\
\mathrm{N}^{\circ} .
\end{gathered}
\]} \\
\hline & \multirow[t]{2}{*}{TYPE} & \multirow[t]{2}{*}{\begin{tabular}{l}
DISTANCE \\
EROM TS \\
(amin)
\end{tabular}} & \multicolumn{2}{|l|}{LENGTH (mm)} & & & \\
\hline & & & Total & outside TS & & & \\
\hline \multirow[t]{15}{*}{M9} & \multirow[t]{15}{*}{REFERENCE} & \multirow[t]{15}{*}{NA} & 16 & NA & 1 & 15 & 50 \\
\hline & & & 16 & & & & 52 \\
\hline & & & 16 & & & & 54 \\
\hline & & & 16
16 & & & & \[
\begin{gathered}
61 \\
Y 16 B 1
\end{gathered}
\] \\
\hline & & & 16 & & & & Y1682 \\
\hline & & & 16 & & & & Y16B3 \\
\hline & & & 18 & & & & Y18G4 \\
\hline & & & 18 & & & & Y18G5 \\
\hline & & & 18 & & & & F8 3 \\
\hline & & & 18 & & & & \\
\hline & & & 18 & & & & F10] \\
\hline & & & 19 & & & & 15 \\
\hline & & & 19 & & & & 30 \\
\hline & & & 19 & & & & 51 \\
\hline & & & 19 & & & & 53 \\
\hline
\end{tabular}

Notes :
1) For easy reference, the specimens are noted Pi*, where i is the test-piece \(N^{\circ}\). \(\left(N^{0}\right.\). already beginning with a letter are left unchanged)
21 Specimen \(N^{6}\). 60 had no backing device (the collar was forced onto the tube with a small negative clearance)
3) The flaws of test specimens F7 to F9 were pachined to 0.8 mm in width, with a prior hydrostatic expansion of 0.2 \% (residual plastic deformation) for F? and FB.

Table \(2-2(g)\)
GEOMETRY OF TEST SPECIMENS
PROGRAM A4 - SUBSET 3 (THROUGH WALL AXIAL. CRACKS)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
MATERIAL (cf. \\
Table
\[
(2-1)
\]
\end{tabular}} & \multicolumn{3}{|r|}{DEFECT GEOMETRY} & \multirow[t]{3}{*}{SKETCH
\(N^{\circ}\).
(cf.
Fig.
\(2-2\) )} & \multirow[t]{3}{*}{\begin{tabular}{l}
SEALING \\
SYSTEM \\
(INDEX)
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
TEST- \\
PIECE \(\mathrm{N}^{\circ}\) 。
\end{tabular}} \\
\hline & \multirow[t]{2}{*}{TYPE} & \multicolumn{2}{|l|}{LENGTH (mm)} & & & \\
\hline & & outsi-
de TS & \[
\begin{gathered}
\text { next to } \\
\text { TS }
\end{gathered}
\] & & & \\
\hline \multirow[t]{2}{*}{49} & \multirow[t]{2}{*}{INFLUENCE OF TUBESHEET (IS)} & \[
\begin{aligned}
& 15 \\
& 15 \\
& 15 \\
& 15 \\
& 17 \\
& 17 \\
& 17 \\
& 17
\end{aligned}
\] & \[
\begin{aligned}
& 17 \\
& 17 \\
& 18 \\
& 18 \\
& 19 \\
& 19 \\
& 20 \\
& 20
\end{aligned}
\] & \begin{tabular}{l}
\(6+\) \\
mode 4 \\
(qap \(=\) \\
0.6 mm )
\end{tabular} & 15 & \begin{tabular}{l}
\[
1
\]
\[
8
\] \\
3 \\
6 \\
4 \\
7 \\
2
5
\end{tabular} \\
\hline & & \[
\begin{aligned}
& 15 \\
& 15 \\
& 15 \\
& 15 \\
& 17 \\
& 17 \\
& 17 \\
& 17
\end{aligned}
\] & \[
\begin{aligned}
& 17 \\
& 17 \\
& 17 \\
& 17 \\
& 19 \\
& 19 \\
& 19 \\
& 19
\end{aligned}
\] & \[
\left\lvert\, \begin{aligned}
& 6+ \\
& \text { mode } 4 \\
& \text { (gap }= \\
& 0.2 \mathrm{~mm})
\end{aligned}\right.
\] & 15 & \[
\begin{aligned}
& 1 * \\
& 3 * \\
& 3 * \\
& 4^{*} \\
& 5 \star \\
& 6 \star \\
& 7 \star \\
& 8 *
\end{aligned}
\] \\
\hline
\end{tabular}

Notes :
1) For easy refererce, the specimens are noted Di, where is the test-piece number.
2) The number engraved on who test specimens is \(75315 / 1\) for the first set of 8 and \(75316 / 1\) for the second set of 8 .
3) Indicated "mode" refers to thisesheet constraint, as defined by Section 2. 4.

Table 2-2 (h)
GEOMETRY OF TEST SPECIMENS
PROGRAM A4 - ЗUBSET 4 (THROUGH WALL AXIAL CRACKS)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
MATERIAL (cf. \\
Table
\[
(2-1)
\]
\end{tabular}} & \multicolumn{3}{|r|}{DEFECT GEOMETRY} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { SKETCH } \\
& N^{\circ} . \\
& \text { (cf. } \\
& \text { Fig. } \\
& 8-2)
\end{aligned}
\]} & \multirow[t]{3}{*}{SEALING SYSTEM (INDEX)} & \multirow[t]{3}{*}{\begin{tabular}{l}
TEST- \\
PIECE \\
\(\mathrm{N}^{\circ}\).
\end{tabular}} \\
\hline & \multirow[t]{2}{*}{TYPE} & \multicolumn{2}{|l|}{LENGTH (mm)} & & & \\
\hline & & outsi-
de TS & next to
TS & & & \\
\hline \multirow[t]{2}{*}{M12} & \multirow[t]{2}{*}{INFLUENCE OF TUBE SHEET (IS)} & \[
\begin{aligned}
& 12 \\
& 12 \\
& 12 \\
& 12 \\
& 14 \\
& 14 \\
& 14 \\
& 14
\end{aligned}
\] & \[
\begin{aligned}
& 14 \\
& 14 \\
& 15 \\
& 15 \\
& 16 \\
& 16 \\
& 17 \\
& 17
\end{aligned}
\] & \[
\begin{aligned}
& 6+ \\
& \text { mode } 4 \\
& \text { (gap }= \\
& 0.2 \mathrm{~mm} \text { ) }
\end{aligned}
\] & 16 & \[
\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5 \\
& 6 \\
& 7 \\
& 8
\end{aligned}
\] \\
\hline & & \[
\begin{aligned}
& 12 \\
& 12 \\
& 12 \\
& 12 \\
& 14 \\
& 14 \\
& 14 \\
& 14
\end{aligned}
\] & \[
\begin{aligned}
& 14 \\
& 14 \\
& 15 \\
& 15 \\
& 16 \\
& 16 \\
& 17 \\
& 17
\end{aligned}
\] & \[
\left\lvert\, \begin{aligned}
& 6+ \\
& \text { mode } 4 \\
& \text { (gap }= \\
& 0.6 \mathrm{~mm})
\end{aligned}\right.
\] & 16 & \[
\begin{array}{r}
9 \\
10 \\
15 \\
16 \\
11 \\
12 \\
13 \\
14
\end{array}
\] \\
\hline
\end{tabular}

\section*{Notes :}
1) For reference in summary tables, the specimens are noted \(k i\), where \(i\) is the test-piece number.
2) Indicated "mode" refers to tubesheet constrdint, as defined by Section 2.4.

Table 2-2 (i)
GEOMETRY OF TEST SPECIMENS
PROGRAM C3 - SUBSET 1 (THROUGH WALL CIRCUMFERENTIAL CRACKS)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { MATERIAL } \\
& \text { (ct, } \\
& \text { Table } \\
& 2-1)
\end{aligned}
\]} & \multicolumn{2}{|l|}{DEFECT GEOMETRY} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { SKETCH } \\
& \text { No. } \\
& (c f, F i g . \\
& 2-2)
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
SEALING \\
SYSTEM \\
(INDEX)
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { TEST- } \\
& \text { PIECE } \\
& \mathrm{N}^{\circ} \text {. }
\end{aligned}
\]} \\
\hline & TYPE & LENGTH (deg. ) & & & \\
\hline M9 & NO LATERAL RESTRAINT (flaw al 6 mm from TS) & 120
120
150
150
180
180
210
210
240
240 & 8-3 & \[
\begin{gathered}
15 \\
\text { and/or } \\
17
\end{gathered}
\] & \[
\begin{aligned}
& 29 \\
& 62 \\
& 26 \\
& 31 \\
& 22 \\
& 25 \\
& 27 \\
& 28 \\
& 23 \\
& 24
\end{aligned}
\] \\
\hline M11 & LATERAL RESTRAINT AT TSP (1100 min) & \[
\begin{aligned}
& 210 \\
& 270 \\
& 300 \\
& 300
\end{aligned}
\] & & & \[
\begin{array}{r}
8 \\
11 \\
1 \\
2
\end{array}
\] \\
\hline & LATERAL
RESTRAINT
AT
FD8
\((500 \mathrm{~mm})\)
TSP
\((1100 \mathrm{~mm})\) & \[
\begin{aligned}
& 180 \\
& 180 \\
& 210 \\
& 210 \\
& 210 \\
& 240 \\
& 240 \\
& 270 \\
& 270 \\
& 300 \\
& 300
\end{aligned}
\] & 8-4 & \[
\begin{gathered}
15 \\
\text { and/or } \\
17
\end{gathered}
\] & 4
12
5
6
\((15)\)
7
9
3
10
13
14 * \\
\hline
\end{tabular}
* Machined flaw (width \(=0.55 \mathrm{~mm}\) ) / used for testing methodology.

Table 2-2 (j)

GEOMETRY OF TEST SPECIMENS
PROGRAM C3 - SUBSET 2 (THROUGH WALL CTRCUMFERENTIAL CRACKS)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
MATERIAL \\
(INDEX) (ct. \\
Table \\
2-1)
\end{tabular}} & \multicolumn{2}{|l|}{DEFECT GEOMETRY} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { SKETCH } \\
& \text { N } \\
& \text { (cf.Fig. } \\
& 2-2)
\end{aligned}
\]} & \multirow[t]{2}{*}{SEALING SYSTEM (INDEX)} & \multirow[t]{2}{*}{TESTPIECE N \({ }^{2}\).} \\
\hline & TYPE & LENGTH (deg. of arc) & & & \\
\hline \multirow[t]{4}{*}{M18} & NO LATERAL RESTRAINI fllaw at 6 rath from TS) & \[
\begin{aligned}
& 165 \\
& 165 \\
& 165
\end{aligned}
\] & \(8 * 1\) & 16 & 4
5
11 \\
\hline & \begin{tabular}{l}
LATERAL \\
RESTRAINT \\
AT FDB \\
( 150 mim)
\end{tabular} & \[
\begin{aligned}
& 270 \\
& 270 \\
& 270 \\
& 270 \\
& 300 \\
& 300 \\
& 300 \\
& 300
\end{aligned}
\] & \[
\begin{aligned}
& 8-1 \\
& +\quad \text { offset } \\
& 10 \mathrm{~mm} \\
& - \text { of } \mathrm{fset} \\
& 20 \mathrm{~mm} \\
& 7-1 \\
& - \text { offset } \\
& 10 \mathrm{~mm} \\
& + \\
& \text { offset } \\
& 20 \mathrm{~mm}
\end{aligned}
\] & 16 & \[
\begin{array}{r}
7 \\
8 \\
9 \\
6 \\
1 \\
10 \\
3 \\
2 \\
2
\end{array}
\] \\
\hline & LATERAL RESTRAINT AI ISP (900 mm) & \[
\begin{aligned}
& 270 \\
& 270 \\
& 300 \\
& 300
\end{aligned}
\] & \(8-2\) & 16 & \[
\begin{aligned}
& 18 \\
& 20 \\
& 19 \\
& 22
\end{aligned}
\] \\
\hline & \begin{tabular}{l}
LATERAL \\
RESTRAINT \\
AT FDB AND TSP
\end{tabular} & \[
\begin{aligned}
& 270 \\
& 300
\end{aligned}
\] & 8-2 & 16 & \[
\begin{aligned}
& 17 \\
& 21
\end{aligned}
\] \\
\hline
\end{tabular}

Table 2-2 (k)
PROGRAM A4 - SUBSET 1
DIMENSIONAL, CONTROL


Table 2-3 (a)
DIMENSIONS AND CHARACTPRISTYCS OP SEALING SYSTEMS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Sealing system Indes} & \multirow[b]{2}{*}{Plastic tube Dimensions} & \multicolumn{3}{|c|}{Patch Characteristics} & \\
\hline & & Material & \[
\begin{aligned}
& \text { T'uickness } \\
& \text { (ma) }
\end{aligned}
\] & width (mim) & \begin{tabular}{l}
Sealing \\
Material
\end{tabular} \\
\hline 1 & No & Brass & 02. 50.3 & 10 & Silicone \\
\hline 2 & ? & Copper & 0.3 & 35 & Silicone \\
\hline 3 & ? & copper & 0.3 & 15 & Silicone \\
\hline 4 & ? & No & No & No & Silicone \\
\hline 5 & \(20 \times 16\) (th. 2) & No & No & No & No \\
\hline 6 & \(17 \times 12\) (th. 2.5) & No & No & No & No \\
\hline 7 & 16 * 12 (th, 2) & No. & No & No & Silicone \\
\hline e & \(18 \times 14\) (th. 2) & No & No & NO & Silicone \\
\hline 9 & \(18.5 \times 12.5\) (th. 3) & No & No & No & Silicone \\
\hline 10 & \[
18 \text { v } 14+14 \times 10
\] & No & No & No & Silicone \\
\hline 11 & \(14 \times 10\) (th. 2) & Brass & 0.2 & 20 & Silicone \\
\hline 12 & \(16 \times 12\) (th, 2) & Brags & 0.2 & 20 & silicone \\
\hline 13 & \(14 \times 10\) (th. 2) & Brass & 0.3 & 20 & Silicone \\
\hline 14 & \(14 \times 8\) (th. 3) & Brass & 0.3 & 20 & Silicone \\
\hline
\end{tabular}

\section*{Table 2-3 (a) (cont'd)}

\section*{DIMENSIONS AND CHARACTERISTICS OF SEALING SYSTEMS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & \multicolumn{3}{|c|}{Patch Characteristies} & \\
\hline Sealing system
Index & Plastic tube
Dimensions & Material & Thickness (mm) & Width (min) & \begin{tabular}{l}
sealing \\
Material
\end{tabular} \\
\hline 15 & \(18 \times 14\) (th. 2) & Steel & 0.13 to 0.15 & 15 & Pressure insert \\
\hline 16 & \(16 \times 12\) (th. 2) & Steel & 0.13 co 0.15 & 15 & Pressure insert \\
\hline 17 & \(18 \times 14\) (reinforced) & No & & No & Pressure insert \\
\hline
\end{tabular}

Table 2-3 (b)
SWELLING VERSUS INTERNAL PRESSURE OF A PLASTIC HOSE ( \(16 \times 12\); th 2 mim)

The diameter was measured in 3 sections
\begin{tabular}{|c|c|c|c|}
\hline Bressure bar &  & 2nd \(\Phi\) ( mm ) & \({ }_{(\mathrm{mm})}^{3 \mathrm{rd}}\) ( \({ }^{\text {a }}\) \\
\hline 0 & 16 & 15.5 & 16.0 \\
\hline 0.5 & 16.2 & 15.8 & 15.8 \\
\hline 1.0 & 15.8 & 16.0 & 15.7 \\
\hline 1. 5 & 15.0 & 16.0 & 16.4 \\
\hline 2.0 & 16.8 & 16.8 & 16.8 \\
\hline 2.5 & 17.0 & 17.0 & 17.0 \\
\hline 3.0 & 17.2 & 17.2 & 17.3 \\
\hline 3.5 & 17.9 & 18.0 & 18.0 \\
\hline 4.0 & 18.0 & 18.0 & 18.0 \\
\hline 4.5 & 18.5 & 18.5 & 18.8 \\
\hline 5.0 & 19.5 & 19.3 & 19.0 \\
\hline 5.5 & 20.2 & 20.2 & 20.0 \\
\hline 6.0 & 20.8 & 20,4 & 21.1 \\
\hline 6.5 & 21.2 & 20.9 & 22.0 \\
\hline 7.0 & 22.0 & 22.5 & 22.5 \\
\hline 7.5 & 23.5 & 24.0 & 24.0 \\
\hline 8.0 & 25.2 & 25.0 & 24,8 \\
\hline 8.5 & 28.0 & 27,0 & 28.0 \\
\hline
\end{tabular}


Notes (1): The specimen is notched like sketch 1
(2): The other side of the specimen is either smooth (Na 21 ) or has only one slit (No. 23 ) or two parallel slits 5 mm aport (No 22)

Figure 2-2 Types of Test Specimens


Figure 2-2 (cont'd)

Figure 2-3 Sketches of systems used to keep leak

tight specimens with through wall flaws


Figure 2-4 (a) Test rig




Figure \(2-4(c)\) Lateral restraint test rig
General Assembly with test specimen
illustrated for \(7 / 8^{\prime \prime}\) OD tubing (Model \(51 \mathrm{~S} . \mathrm{G}\) )



Figure \(2-4\) (e) Lateral restraint test rig restraining plate (typical)

* \(\$ 2\) is the largest diameler. (outside of \(\$ 1\) location.)

Figure 2-5 Measurements of tube deformation

\title{
section 3 \\ THROUGH KALL AXIAL CRACKS
}
3.1. IHEOREIICAL MODEL
3.1.1. Plate theory

If we consider a through wall crack of length \(2 c\) in an infinite plate subiectad to a uniform tenglle stress o,
a briftle fracture will be predicted by LEFY* when the stress intensity factor \(K_{1}=0 \quad f(\pi c)\) reaches a critical value \(k_{1}\) e
("fracture toughness");
a plastic collapse will be predicted by limit analysis when the net section stress in the plane of the crack reaches an ultimate flow stress value.
dssuming an elastic - perfectly plastic material and the so-called "nugdale atrin yield model" - Goodier and Field (1), Burdekin and Stone (2) established the following formulation of the crack tip opening displacement COD :
\[
\begin{equation*}
\bar{\sigma}=\left(8 \sigma_{y} / \pi E\right) \subset \ln \sec \left(\pi \sigma / 2 \sigma_{y}\right) \tag{3-1}
\end{equation*}
\]

In this formula \(\sigma_{y}\) denotes the yield strenght and \(E\) is the Modulus of elagtioity.

According to the COD theory, failure will occur when oreaches a oritical value de.

Hence,
\[
\begin{equation*}
\delta_{c}=\left(8 \alpha_{y} / n E\right) \text { c } \ln \sec \left(\pi \alpha_{c} / 2 \alpha_{y}\right) \tag{3-2}
\end{equation*}
\]

\footnotetext{
- LEFM : Linear Elastic Fracture Mechanios
}
or, conversely
```

Oc =(20y/n) arc cos exp (nEठe/20y) (3-3)

```
For small values of \(\sigma / \sigma_{y}\) or of \(\delta E / C O_{y}\) Eq. \(3-1\) reduces to :
\(\bar{\partial}=o^{2} \mathrm{HC} / E O_{y}=K^{2}+/ E O_{y}\)
(3-4)
and, as \(\delta_{c}=K^{2}{ }_{z}\) /EGy the critical condition reduces to the classical LEFM formulation \(K_{1}=K_{6} c\). That is the reason why

Eq. (3-1) is often written as :
\(K^{2} 1=\left(80 y^{2} / \pi\right) \mathrm{c}\) in \(\sec (n 0 / 20 y)\)
\((3-5)\)

Under plane stress conditions and limited amount of yielding at the crack tips, failures will still be predicted by Eqs. \((3-3)\) or \((3-4)\). However, unstable fracture might be preceded by stable crack growth undex monotonically increasing load. Under such conditions, only the initiation COD value (denoted ö̀) is considered to be fully reliable. Eq. (3-1) has also been shown experimentally to be valid only up to about \(\delta=0.25 \mathrm{~mm}\).
```

When gross yielding occurs, the COD formulation is no longer
valid but the collapse load is predicted as $\sigma=\sigma_{y}$. The shape
of Eq. $(3-2)$ can nevertheless be retained as a transition
fitting curve between the fracture mechanics and collapse
load extremes, by making changes as follows :
$\delta_{0} \mathrm{EO}_{y} / \sigma^{2} \mathrm{nc}=8 / \pi^{2} \quad\left(\sigma_{y} / \sigma\right)^{2}$ in $\mathrm{sec}\left(\mathrm{no} / 2 \sigma_{y}\right)$
or
$\tilde{K}_{r}=\pi \mathrm{S}_{r} / \sqrt{8} \cdot\left(1 n \mathrm{sec}\left(n \mathrm{~S}_{r} / 2\right)\right)^{0.9}$
$(3-6)$
with
$K_{r}=0\left(\mathrm{nc} / \mathrm{EO}_{\mathrm{y}} \delta_{\mathrm{e}}\right)_{0,0}^{0}=\mathrm{K}_{1} / \mathrm{K}_{\mathrm{l}}$
and
$S_{r}=\sigma / \sigma_{y}$

```
```

For lue plastic strain, rupture is predicted by fracture

``` mechanics at \(k_{r}=1\).

For large plastic strain, rupture is predicted by imit analysis at \(S_{r}=1\).

For intermediate conditions, rupture is expected according to Eq. \((3-6)\).

It can be shown that E.q. (3-6) can be replaced (to a 5 \% acouracy on the a valual by:
\(K_{r} \approx 1\) for E, \(0 /\) Oy \(C \leq 0.75\)
\(S_{r}=1\) for EÖ/Oy \(\geq 6.5\)
3.1.2 Pipe theory

Retaining the elastic, perfectly plastic material model, the critical length of an axial crack in a pipe can be directly derived from the plate theory by considering the stress magnification tactor induced by the "bulging effect", which is often expressed as a function of the non dimensional parameter
\(\lambda=\left(18\left(2-V^{2}\right)\right)^{0.35} \quad \mathrm{c} / f(R t)=1.8 \mathrm{c} / f(R t)\)
Where \(V\) is the poisson's ratio, \(R\) the mean radius of the pipe and t its thickness
3.1.2.1. Through wall crack

In the elastic range, the stress intensity factor \(\mathrm{K}_{\mathrm{i}}\) is multiplied by a factor \(m\). first calculated by Folias (3) and often referred to by his name, for which refined numerical values have been further calculated by Krenk (4) up to a value of \(\lambda\) equal to 10 .

Figure \(3-1(a)\) illustrates the various analytical expressions that can be used.

The initial Folias law
\[
\begin{equation*}
m=\left(1+1.62 \mathrm{c}^{2} / \mathrm{Rt}\right)^{0.5}=\left(1+0.5 \lambda^{2}\right)^{0.0} \tag{3-7}
\end{equation*}
\]
used by kiefner and al (5), although still often used, has been recognized to be overconservative. Valid numerical data have heen further approximated by the following expressions :
```

m=[1+1.255 c
which on simplifying gives
A=[1+0.387\mp@subsup{\lambda}{}{3}-0.00129 \mp@subsup{\lambda}{}{4}\mp@subsup{1}{}{0.0}
used by Schulze ot al (6)
or :
III = 0.614 + 0.386 exp (-2.25 c/f(Rt))+0.866 c/f(Rt)
which on simplifying gives
m}=0.614+0.386\operatorname{exp}(-1.25\lambda)+0.481
proposed by Erdogan (7).

```

As can be seen from Fig. 3-1(a). Eq. (3-8) cannot be used for \(\lambda>8\); Eq. (3-9), while not validated for \(\lambda>10\) (no data available), exhibits a consistent 1 inear trend and will thus be further used in this paper.

In the plastic range. Erdogan (7) used the yield strip model to calculate COD as a function of 0 and used the asymptotic behaviour of the calculated curve to define the collapse stress, which appears to match oy \(/ \mathrm{m}\) closely.

In conclusion, the plate theory can be directly extrapolated to the cylindrical geometry (vessel or pipe) by replacing a by \(m a\).

The applicable formulas are thus :
\[
\begin{equation*}
\delta=\left(8 \sigma_{y} / \pi E\right) \text { c } 1 n \sec \left(\mathrm{rmo} / 2 \sigma_{y}\right) \tag{3-10}
\end{equation*}
\]

Eq. (3-6) temains valid as a general transition curve.
Rematk : the factor \(m\) considered above is applicable to the membrane stress. A difterent factor applies to bending stresses but is generally neglected; this appears fully justified when failure is preceded by extensive plastic deformation at the orack tip.
3.1.2.2. Surface cracks

A semi-empirical expression has been proposed by Kiefner et al ( 2 ) for a surface crack of depth \(a\). This amounts to replacing \(m\) in Eq. (3-11) by :
\[
\begin{equation*}
m_{p}=\frac{1-a / t m}{1-a / t} \tag{3-12}
\end{equation*}
\]

Again, the yield strip model used by Erdogan (7) can be used to support Eq. (3-12).

\subsection*{3.1.3. Strain hardening materials}

The assumption of elastic-perfectly plastic behavior of course does not apply to most real materials.

Real materials may saibit considerable strain hardening and a oorrespondingly high ratio \(G_{4}\) iow of ultimate tensile strength to yield strength.

Most authors have circumvented this difficulty by substituting, in Eq. (3-5), dy with a "Elow stress" of .

Thus,
\[
\begin{align*}
& K^{2}+=\left(8 a^{2}, / n\right) \text { c } \ln \sec \text { (nmoc/2ar) }  \tag{3-13}\\
& \delta c=\left(8 \sigma^{2} t / \pi E \sigma_{y}\right) \text { c } \ln \sec \left(\pi m \sigma_{c} / 20 r\right)
\end{align*}
\]
or, conversely,
```

Oe = (20,/mn) arc cos exp (}=\textrm{mEOy

```
where ill is defined by Eq. (3-9) for d through wall crack or is replaced by mp as defined by Eq. (3-12) for a parti,1. penetration crack.

Of may take any value tetween \(\sigma_{y}\) and \(\sigma_{0}\) in order to best fit the experimental data. The most fremmently maed corpelatiang are.
```

Of = Oy +70 MPa (10 ksi)
Tor carbon steels (see (5) and (8)), and

```
\(O_{2}=O_{z}+k\left(O_{y}-\sigma_{y}\right)\) with \(0.3 \leq k \leq 0.4\)
for austenitic stainless steels (see (9) and (10)).

It should be noted chat Eqe. (3-13) and (3-14) can no longer be transposed to a suborilical loading condition.

Eq. \((3-6)\) still remains unchanged as:
```

Kr}=(n/\sqrt{}{\prime})\mathrm{ Sr [1n sec (nSr}/2)\mp@subsup{]}{}{-\alpha.5

```
but with
\[
\begin{aligned}
& \mathrm{Kr}_{r} \text { a } K_{1} / K_{1 c}=\text { mor/nc/Eor } \sigma_{e} \\
& S_{r}=m o / \sigma_{r}
\end{aligned}
\]

In fact, this is a special application of a general approach oriqinally developed by Downling and Townley and often used by the British CEGB as a "two parameter design curve" (11).

Fig. 3-1 (b) illustrates this curve, which is a failure locus dividing the plane into a "safe area" and an "unsafe area".

For a particular material and geometry, the ratio \(\mathrm{Kr} / \mathrm{Sr}\) is a
constant
\[
k=\left(n c^{2}+c / E \sigma_{y} \vec{\sigma}_{e}\right)^{3}
\]
and defines the slope of a "load line": increasing o will move the representative point ( \(h_{v}\) : \(S_{n}\) ) alana this line, trom the safe towards the unzafe area.

To aliow easy drawing of the appropriate load line, Fig. 3-1 (b) is provided with 2 scales :
general graduation (constant k)
graduation in c/ōe, applicable to any material with
\(0^{2}+/ \mathrm{EO}=0.05\) :
this value is typical for Inconel and very ductile steels.
3.1.4. Incone1. 5. 6. tubing

In the early \(80^{\circ} s\), when BELGATOM first adressed the problem of oritical crack size in steam generator tubina (PWSCC detected in Doel 3 roll transitions), there was no literature available regarding the applicability of the above theories to this particular case. For instance, there was practically no informatio about
small diameter pipes (s \(3^{\prime \prime}\) dia.)
Inconel material (flow stress) of any size.
Based upon a reasonable estimation of \(\bar{o}_{c} \approx 0.5 \mathrm{~mm}\) for the oritical COD value and the orack lencth range of pracitical interest ( \(2 \mathrm{c} \leq 20 \mathrm{~mm}\) ). the index used in Fig. 3-1 (b) (c/סc s 20) shows that only the collapse tailure mode need be considered. i.e. \(\alpha_{c}=a_{\mathrm{c}} / \mathrm{m}\) The remaining uncertainties were essentially related to
```

 confirmation of the bulging factor m to be used and, more
 precisely, its dependance on the c/f(Rt) parameter
 establishment of the flow stress of applicable to trconel
 and, move precisely its dependance on the conventional
 mechanical properties (YS and UTS).
    ```

\subsection*{3.1.5. Influence of tubesheet confinement}

All of the above considerations are applicable to defects located in the free span of a tube: more precisely, they apply to straight runs but can be uxtrapolated to large radius bends without much loss of accuracy, However a significant conservatism would result if the tube geometrical environment was not taken into consideration.

If the tube is surrounded with zero clearance by a resistant structure (such as in the case of the exnanded area in the tubesheet), there is no more a critical crack size as unstable propagation is prevented because the load is taken over by the surrounding structure. This is also true if the clearance is less than the precritical bulging deformation of the crack. This is the case for through wall cracks, the length of which is entirely within the thickness of the tubesheet (when tubes are only partially rolled at the lower end), the flow distribution baff \(2 e\), or another tube support plate.

When the crack extends outside the confinement, there is still a reinforcement effect, raising the oritical pressure for increasing the critical length) beyond the "free span" value; the actual critical pressure of a crack pariially extended into a confining collar will fall between that of the full crack length and the protruding length of the crack as a function of gap value.

Only the extreme cases (infinite and zero gap) can be evaluated on a theoretical basis.

For an axial crack located entirely outside but adjacent to a zero gap confinement (such as a roll transition crack at the top of a full depth expansion tubesheet), there is also a reinforcement effect.

As the tubesheet's constraining effect on the crack tip (farthest away from the TS) is the controlling factor, a semi-quantitative knowledge can be derived from the radial deformation of a locally pressure loaded tube.

According to Roark (12) (Table 30 , case 12) the order of magnitude of the radial deformation at a distance \(x\) from the built-in section is
\[
\bar{o}_{\boldsymbol{r}}=\left(p / 4 D \dot{Y}^{\prime}\right) \operatorname{esp}(-Y x)
\]
where
\[
\left[\begin{array}{l}
Y=\left[3\left(1-V^{1}\right) / R^{2} t^{2}\right]^{1 / 1} \\
D=E t^{3} / 18\left(1-V^{2}\right) \quad \text { with } V=\text { Poisson's ratio }
\end{array}\right.
\]
reducing to
```

\varepsilon= ठ̈r/R = (pR/Et) exp (- 1.28x/f(Rt))

```
or
\(\varepsilon=\varepsilon_{0} \exp (-1.28 x / \sqrt{R} t)\)
where
\(\varepsilon \quad\) is the residual constraining effect at distance \(x\)
\(\varepsilon_{0}\) is the masimum constraining effect at confinement outlet
( \(x=0\) )
Rt is the product of the mean radius by the tube thickriess. The following tentative conclusions can be drawn
- similar reinforcing effects trelative increase of critical pressure) are expected for distances (and crack lengths) normalized to f(Rt)
the reinfolcing effect is expected to "die out" exponentially with distance (or crack length). For a ciack adjacent to the tubesheet, it is not clear, however, whit fraction of the crack length should be considered in tte exponent; if half length is assumed, the reinforcing effest should decrease as
\(\exp (-1,28 c / f(R t))\)
- the reinforcing effect should be significant for \(\varepsilon / \epsilon_{a}>5.10^{-2}\), leading to \(c<2.3 f(b t)\). This should be observable for orack lenṭths up to an order of magnitude of \(2 \mathrm{c}=4.5 \mathrm{r}(\mathrm{Rt})\), i.e., a range of about 17 mm for \(5 G 3 / 4^{\prime \prime}\) to 7/8" OD tubing.

\subsection*{3.2. EXPERIMENTAL PROGRAMS AND TEST RESULTZ \\ \(3,2,1\). objectives}

The experimental program conducted by BELGATOM involved four consecutive phases with the following specifie ohiectiveg ;

Program A1 : validation of general theory for small diameter Inconel tubing.
- Iimited to through wall flaws in a single heat of \(7 / 8^{\circ} \mathrm{OD}\) Inconel tube
- main results presented at the 6th SMIRT Conference (Paris, 1981) (13)

Program A2 : extension of program A1
other materials and dianeters in order to investigate flow stress dependance on conventional mechanical properties parametric investigations (effect of notch sharpness, multiple flaws, residual stresses, partial penetration cracks)
main results presented at the 7tb BMIRT Conference (Chicago, 1983) (14)

Programi A3 : leak before break (LBB) behaviour of Nickelplated cracked tubes
- within the frame of a general R \& D program for \(8 G\) tube repair by Nickel plating, conducted jointly by BELGATOM and FRAMATOME
- completed in 1988

Program A4 : effect of geometric confinement (tubesheet or tube support plate)
- completed in 1989.

\subsection*{3.2.2. Program A1}

The first programi involved Material Ml with test-pieces \(N^{\circ}\), 1 through 15 (see Table \(2-2\) (a) 1.

The test results are listed in Tables \(3-2(a)\) and (b) and further detailed in Figs. 3-2(a) and (b).

\subsection*{3.2.3. Program AZ}

The second program intended to define the tube plugging limits for the SG's at Doel 3 and 4 and Tihange 2 and 3 in agreement with the requirements of R,G. 1.121. As a consequence, that program focused on
the definition of oritiual dimensions of axial through wall flaws, as a function of the specific sG characteristics.

Special attention was given to the dependance of critical defect sizes on :
geometrical characteristics (diameter and thickness)
- mechanical properties inamely yleld strength Ys and ultimete tensile strengh UTS)
in order to allow reliable extrapolation to other sizes (in the same raneal and mechanical properties.

This was made possible by selecting other materials which experience large plastio deformation prior to rupture (austenitic stainless steel type AISI 304, ...).

That program was sondicted on Materials M2 to M8 (see Tables 2-2 (b) and \(2-2\) (c)). The test-results are listed in Tables 3-2 (c) and (d) and further detailed in Figs. 3-2 (c) to (i).
\(3,2,4\), Program A3

According to the Leak Before Break (LBB) principle, a orack that would have a oritical length (leading to unstable propagation) under the most unfavourable accidental condition (main steam or feedwater line break) should be detectable by a large leak (in excess of the "technical specification" allowable limit) under normal service conditions.

As the nickel electroplating process, which was jointly developed by BERGATOM and FRAMATOME as a repair method for PWSCC in SG tube roll transitions, involves deposition of a thin leak tight layer of ductile material on preexisting tube cracks, there was a potential concern that nickel electroplating might unfavourably affect the desirable LBB feature. In order to eliminate this concern, BELGATOM conducted an experimental program from 1986 to 1988 , to establish that the LBB behaviour still was in force on the repaired tubes. Detailed results of this program are the common property of BELGATOM and FRAMATOME and cannot be disclosed within this report. However, all of the burst data obtained on either the nickel plated or reference unplated samples are
reported below. These program results are of special interest because a significant proportion of the test samples contained fatigue crack extension of the initial EDM flaw.

28 samples, from 2 different \(7 / 8^{\prime \prime}\) OD Inconel heats and 14 samples from one \(3 / 4^{\prime \prime}\) OD inconel heat, were selected from this program and considered relevant to this report. Table 3-2 (e) lists the sample characteristics and the corresponding test results.

\subsection*{3.2.5. Program A4}

When it became evident that PWSCC continued to propagate in the roll transitions of the full-depth rolled tubes at Doel 3 and Tihange 2 , the roinforcing effect of the tubesheet was investigated in order to increase the applicable plugging limit.

A preliminary program (subset 1) conducted in 1987 on a set of 20 samples yielded conclusive results. However, the large scatter of data points did not allow an accurate quantitative assessment
(Fig. 3.2 (j)). The tube bulging was recorded as a function of pressure; the comparison of curves recorded in Fig. 3.2 (k) and 3.2 (1) clearly illustrates the constraining effect of the tubesheet.

Later, when the longest site defects were approaching the contemplated plugging limit, the program was resumed (in 1988) as follows :
increase of the number of test samples with single defects, in order to provide a better statistical representation (subset 2).
- Direct verification by use of test specimens provided with 2 flaws, the shorter one in the free span and the longer one adjacent to the tubesheet, the difference in length being in the range of the expected equivalent burst pressure (subsets 3 and 4).

In addition the half collar assemblies used initially were replaced by full collars to improve the representativity of tubesheet simulation, ; the tube was either force fitted or actually rolled into the collar
with either the minimum or maximum clearance allowed by the manufacturer' 8 spacification.

Tables 3-2 (f) and (g) List the sample characteristics and test resultg for the 4 program subsets.

\subsection*{3.3. DISCUSSION OF RESULTS}

\subsection*{3.3.1. Phenomenology}

\subsection*{3.3.1.1. Failure Mode}

For all burst tests (a total of 155 flaws ), the reported critical pressure corresponds to unstable crack propagation: at this pressure, there is an instantaneous orack extension of several mat both ends of the initial flaw (Fig. 3-3 (a) sketch 2). Crack propagation was arregted by the immediate pressure drop of the uncompressible cold water; the release of the elastic energy stored in the metal pressure boundary cannot sustain a larger propagation (as would be the case for hot water or gas pressurization).

The axial propagation sometimes ends up in some circumferential deviation (this behaviour seems to be material dependant and was seldom observed on Inconel).

However, for inconel samples in tubesheet simulations, the flaw tip adjacent to the collar usually failed in the circumferential direction.

For EDM flaws, no stable growth took place before bursting; this was observed, danending on the test series, by
- visual observation and/or video recording of the flaw behaviour during pressure build-up.
visual (optical) examination of salaples at intermediate pressure levels close to the final burst value.
final examination of the unfailed flaw for those samples containing two identical defects.

However, a small crack initiation (less than 0.1 mm long and not extending through the entire wall thickness) was observed in a few cases. For fatigue cracks, a more significant, but still small, amount
of stable crack propagation was occasionally observed to precede the unstable bursting.

Fracture appearance was typically ductile, with \(45^{\circ}\) shear lips and significant wall thinning (similar to the oracking in a conventional tensile test): Fig. \(3-3\) (a) sketch 3 illustrates a cross section at the tip of an arrested crack.

\subsection*{3.3.1.2. Plastic Deformations}

In all cases, large plastic deformations were observed prior to criticality (Fig. 3-3 (a) sketch 1) ; deformations were initiated at values as low as half the critical pressure; they include
local blunting of the flaw tips, or crack opening Displacement COD, increasing up to a fairly constant failure value of about 1 mm for EDM Flaws and 0.8 mm for fatigue cracks.
flaw opening (with a maximum central width of a few mm) and increasing leak area.
tube "bulging", with a large increase of the diameter measured at the center of the flaw (fig. 3-2 (h)); this may lead to contact with a surrounding structure (such as tube support plate or tubesheet in an unexpanded area) and prevent any critical (unstable) condition when the pressure is increased further.

Ultimate tube failure (flaw unstable propagation) was further characterized by
"fishmouth" shaped deformation of the crack area (Fig. 3-3 (a) sketch 2 and Figs. \(3-2\) (b): 3-2 (c): 3-2 (i) )
- general bending deformation of the tube (the center of curvature being on the crack side) (Fig. 3-2 (a))
- tube section ovalization at both tips of the (extended) crack (Figs. 3-2 (a): 3-2 (d) ) ; surprisingly, the minor axis of the deformed section lies in the crack plane. This also means that the observation of ovalization in a steam generator tube rupture (in a tube bend, for instance) should differentiate between that present in the component before rupture and that caused by the rupture.
3.3.1.3. Sealing Patch Behaviour

The seaiing system exhibited a variety of behaviours at the time of tailure.

Occasionally the sealing system did not fail (while the orack propaqated to some extent in an unstable manner) ; the plastic membrane remained leaktight and the plastically deformed metal patch remained in the tube.

More often than not, leaktightness was lost through perforation of the plastic membrane: the metal patch might either
- be extruded (without any tearing) through the opening crack: this is the usu l behaviour for the longest cracks
tear along the urack (in the longitudinal atrection); this was often observed with the softer (brass) but thicker shims used initially (programs A1 and A2)
tear across the crack (in the circumfential direction); this was usually observed with the stronger (steel) but thinner shims used later in programs A3 and A4
show a cuabined pattern of axial and circumferential tearing components (a less often occurring but not exceptional behaviour)

It was not possible to correlate the sealing patch behaviour with any signifioant variation in the burst pressure value.

While the friction action of the metal patch introduced tangential loads that interfered with the tube fallure process, this influence was mainly observed in the (sometimes large) scatter of precritical deformations but does not seem to significantly affect the actual value of ultimate failure. For instance, the various sealing systems (including the few cases with no wetal shim at all) cannot be differentiated within the usual (relatively small) scatter band of burst data points. This might be due to the fact that the dominant contribution to burst strength is in the longitudinal direction (as the result of the bulging process) while the friction load developed by the sealing patch is mainly in the transverse direction (as it follows the direction of major displacement associated with flaw opening). While some residual effect on burst pressure still must exist, it is not expected to exceed a 5 to 10 क range.

\subsection*{3.3.1.4. Effect of Loading path}

In most cases where a pressure test was intarrupted (by full unloading from a level close to the expected failure value), and further resumed, the resulting failure appeared to be premature (usually not exceeding or being even lower than the initial pressure level).

This is possibly related to an oligocyclic plastic fatique process. It may have significantly reduced the reported burst pressure values of some tests and contributes some conservatism to the experimental program.

This is likely to be more applicable to programs A1 and A2, as pressure loading interruptions were scheduled to better observe precritical deformations
dual slit specimens were used with repressurization of the second flaw after cutting off the first failed section.

Some (probably smaller) effects of the same type might also occasionaly have been present in the later phases as the pressurizing process being used did not result in monotonic loading but involved successive (small) unloading and reloading steps associated with the strokes of manual pump actuation.

\subsection*{3.3.1.5. Effect of Residual Stresses}

The effect of residual stresses was simulated by plastic deformation of the cracked area prior to pressurizing the flawed tube. This resulted in a calculated high residual stress field either enhancing or opposing the tensile loading of the crack tips. As expected on theoretical grounds, this did not differentiate the burst pressure.

\subsection*{3.3.1.6. Effect of Parallel Flaws}

A few tests were conducted with 2 parallel flaws of equal length and variable spacing in the circumferential direction. This did not result in a significant modification of burst pressure within the usual scatter band of failure data points.
```

3.3.1.7. Effect of Notch Sharpness
Various degrees of notch sharpness were used
"1arge" vidth machined flawe (0.8 mm)
EDM flaws (typical width 0.2 to 0.3 mm)
ductile tear crack (from repressurization of a former burst
test with small crack extension)
fatigue crack extension of EDM flaws.

```
The resulting effect on burst pressure was shown to be very low, if
present at all.

A possible reduction factor of 2 \% for fatigue cracks has been assumed and is further discussed under section 3,3.2.

\subsection*{3.3.2. Model validation}

The model validation was performed in three steps :
veritication of the collapse load theory for a large range of crack lengths
establishment of the flow stress value dependance on the conventional mechanical properties
measurement of the actual \(f\) low stress value applicable to Inconel material.

The first step was achieved in program A1; it confirmed that the tailure (unstable extension of the length of a through wall flaw) can accurately be predicted by the "collapse load" model \(\sigma_{c}=0, / \mathrm{m}\) as illustrated by Fig. \(3-3\) (b) for a range of cracks from 10 to 70 mm in length (single heat of \(7 / 8^{\prime \prime}\) OD Inconel tubes). similar curves have later been produced by other research teams, as illustrated by Fig. \(3-3\) (c), from the French \(R \& D\) program.

The second step was achieved in program A2 due to the availability of a large range of conventional mechanical properties (ratio in excess of 1.5 between maximum and minimum values).
As the properties YS and UTS governing the behaviour of an axially flawed tube are clearly those in the circumferential direction, a correlation was established between the flow stress, derived from the burst pressure, and a direct measurement of the tensile properties in
the transverse direction; the latter involved somewhat unconventional techniques
flattened tensile test specimens (Ys and UTS measurements)
"ring" tensile test (only applicable to UTS measurement).

Several correlations were attempted, as summarized in Table 3-3 (a).

The best experimental fit was with a relation of the type
\(O_{r}=k(Y S+U T S)\)
as illustrated by Fig. 3-3 (d) trom results calculated in Table 3-3 (a).

Bome care must be exercised when using this figure
For practical reasons, the ordinate is labelled as mpe \(R / t\), which is a close approximation but not equal to of (the actual flow stress value would be about of a lowers

The abscissa refers to transverse properties measured by unconventional means (requiring multiple test samples because of a signitfcant data seatier) which are not usually available for commercial bitches of tube material.

This means that only the concept that flow stress is proportional to (YS + UTS) and not the parameter value (proportionnal constant \(=0.57\) ) can be considered for Inconel tubing in the field.

The third step, dedicated to the Inconel material, was achieved by integrating the results from the larger set of data produced by programs A3 and A4, where the calculated value of the flow stresa (from m Ri/t \(x\) burst pressure) was systematically correlated to the conventional properties (YS + UTS) as measured in the longitudinal direction by the tube supplier.

A11 of these data are summarized in Table 3-2 (e): they refer to 81 axial flaws burst tested without tubesheet simulation cor sufficiently far away from it). A further set of 8 data points from Table \(3-2\) (g) (relative to tubesheet influence) was also used because it was demonstrated (see Section 3.3.3.) that they were not sianificantly affected by TS proximity.
From the resulting 89 data points, 3 extreme values were disregarded
because they fell either below ( 1 case) or above ( 2 cases) 15 of the average. The remaining ast of 86 "qualified" data points were further analysed as indicated in Table 3-3 (b).

In order to avoid any bias from the particular testing conditions, the data were first grouped into 9 consistent data sets for which
the number of samples
the average value of \(K=O_{f} /\) (UTS \(+Y S\) )
the standard deviation
are systematically reported.

Examination of these data indicated that the following sets can be grouned together
```

sets 1, 2 and 3 (46 data)
sets 5 and 6 (14 data)
sets 7 and 8 (16 data)

```

A comparison of the average values for the remaining 5 sets of data, oovering a range from 0.547 to 0.603 , tended to suggest that they belong to a single family.

Because, the observed differences were consistent with theoretical expectations, they are and taken into account as further discussed below.

The ratio of set 4 to set \((1+2+3)\) amounts to \(0.547 / 0.557=0.98\) and can be coneidered to reflect a slight effect of notch sharpness (fatigue crack versus EDM notch). A similar difference is not observed between sets 5 (EDM notch) and 6 (fatigue crack) of the \(7 / 8^{\prime \prime}\) OD nickel-plated specimens; however this might result from a compensating effect of the nickel coating thickness (average of \(90 \mu \mathrm{~m}\) for set 5 and \(125 \mu \mathrm{~m}\) for set 6 ).

The effect of a 125 um coating can be approximated by the ratio of get 4 (unplated) to 6 (plated), \(1 . e, 0.547 / 0.576 \approx 0.95\); this appears reasonable as the mechanical properties (YS, UTS, and ductility) are lower for Nickel than for Inconel. The compensating effect between notch gharpness and the difference in coating thickness can thus be
checked by noting that
\[
1-0.05((125-90) / 125)=0.985 \approx 0.98
\]

Both adjustment tactors (0.98 for notch sharpness and 0.95 for coating) have thus been applied to the last set ( \(\mathrm{N}^{\circ}, 9\) ) of data.

This allowed for recombining the adjusted data seta.

First, all 64 data points of \(7 / 8^{\prime \prime}\) OD - heat 1 were combined with an average value of 0.547 .

This value was consistent with the average of 0.532 ( 16 data points) of \(3 / 4^{\prime \prime}\) OD, so that the resulting combination yielded an average of 0.544 ( 80 data points).

Finally, this was compared with the last set of 6 data points, with an average of 0.562 . The difference was quite small but might be significant because the material of set \(N^{\circ}, 9\) had been heat treated in order to reduce the ratio of YS/UTS to a value of 0.31 well below the range of commercial heat values or of the materiala considered in the BELGATOM program A2. Nevertheless, the combination was made with an overall average adjusted value of
\[
K=0.545
\]
for all 86 "qualified" data points, with a standard deviation of 0.030 .

The corresponding distribution is shown in Fig. 3-3 (e) together with its "normal" (Gaussian) approximation.

Thus, the value selected to perform all critical length calculations of axial cracks was conservatively taken at one standard deviation below the average, i.e.
\[
K_{C a 1=}=K_{4 \times}-\Sigma=0.545-0.030=0.515
\]

\section*{Notes}
1. It can be checked that the "adjusted" values of the only three cases excluded from the "qualified" set of data 10.652 ) 0.638 and 0.442 ) are all outside a \(\pm 3\) L range and are thus confirmed "outliers".
2. If no adjustment had been made, the average of all 86 "raw" data points would have been 0.561 with \(\Sigma=0.034\).
3. Bince lower bound values (from 13 nonburst specimens) Were included in the distribution of qualified data, the resulting analysis is clearly conservative.
4. It is interesting to review the only values of \(K\) falling below that retained for further calculations ( \(K=0.515\) ). The 4 lowest ones are in fact lower bounds ( \() 0.470 ;>0.487\); ) 0.496 and 0.499 which do not conflict with the retatned value. Among the 9 others \((0.514 ; 0.513 ; 0.512 ; 0.510 ; 0.509\); \(0.509 ; 0.508 ; 0.501 ; 0.501\) ), only two (at 0.501 ) are significantly lower (by about 2.5 क) than the retained value, which can thus be considered as a lower bound value for all experimental data.

\subsection*{3.3.3. Influence of Tubesheet}

The influence of the tubesheet was established in two different ways :
Btatistleal evaluatton of the "Relnforcing ractor" re deftned as the ratio of \(K\) values (as calculated under 3,3,2, above) for any particular configuration and for the free span. RF thus represents the expected relative increase of burst presisure due to the proximity of the tubesheet.

Ditect verification using "dual defects" test specimens.

\section*{3,3,3,1. Statistical Evaluation}

Al1 results from program A4 have been regrouped in Tables 3-2 (f)
(7/8" OD) and \(3-8\) (g) (3/4" OD)
by general configuration
£law tangent to the tubesheet
flak pactially engaged within the tubesheet
- tlaw at some distamce from the tubesheet (with reference to the closest effective contact point, which may be inside the tubesheet hole)
by crack length ftor flaws partially engaged in Ts, the length outside Is is considered).

Lower bound values from the nonburst flaw of dual specimens were also included. One invalid reault P60* and 6 abnormal values (differing by more than 10 from the average of their particular category) were disregarded. The remaining 66 "qualified" data points were divided into 15 categories with an average of 4 data points per category, the normal scatter of values made the analysis particularly delicate. For each of the 66 data points, a "K" value was calculated by
```

R1Pr./{t (YS + UTS)} or 7.75 mpe/(YS + UTS)

```

The average of K was calculated for each ceiegory and "adjusted" by a .98 coefficient (assumed effect bet.gen EDM and fatigue crack) before performing the ratio RF to the known average figure in the free span of a tube \((0,545)\).

The following conclusions can be drawn
the \(R F\) becomes negligtble when the crack tip farthest away from the TS is at a distance of \(\geq 26 \mathrm{~mm}\) (for 7/8" OD) from the TS contact point.
This includes
- 24 mm long flaws tangent to TS
- 19 mm long flaws, 5 to 8 mm away from TS
- 16 mm long flaws, 8 mm away from TS

The average of these 8 data points leads to an
insignificantly lower RF value of 0.976 , well within the scatter band ( \(30 / 545=5.5\) \%) of free span data (nc \(\tau_{0}\) effect.).
the RF of flaws engaged within the TS is systematica:ly lower than that of flaws of the same length tangent to the tubesheet.
This effect is considered to be specific to the EDM nature of the flaws. In fact, the finite width \((0.2\) to 0.3 mm\()\) of the flaw allows for an easier angular deflection of the flaw lips at the \(T S\) contact point than would be possible for an ant ual (fatigue or corrosion) crack with negligible width, whes, the corresponding tests (13 data points) yield only ) q/a peai \& values that are too low to be of actual use.

For flaws tangent to the tubesheet, the calculated RF yields a relatively consistent inverse relationship to crack lenyth, with a maximum of about \(20 \%\) for the length range under investigation. There are, however, 'wo notable exceptions
- for \(3 / 4^{\prime \prime}\) OD where RF is apparent ly lower for 14 mm than for 15 and 16 mm .
for \(7 / 8^{\prime \prime}\) OD where RF is apparently lower for 12 min than for 16 mm .

These result most probably from a data scatter effect which can be expected when only a few data points, each particular category contains.

To get a better synthetic picture, by integrating the \(7 / 8^{\prime \prime} O D\) and 3/4" OD test results, all RF values were evaluated as a function of the reduced crack length \(c / f(\mathrm{Rt})\), as suggested theoretically isection 3.1.5.). Fig. 3-3 (f) is taken from Table 3-3 (c); a further reference data point has been added from results published by EDF ( 25 o pressure increase for a 15 mm long crack tangent to \(T 8\) in a \(7 / 8^{\prime \prime}\) OD tube (17))

Referring to the theoretical calculations, a shape dependance factor of exp ( \(-1.28 \times f(R t))\) should be expected, with \(x\) being some fraction of the crack length 2 c .

There was good agreement when \(x\) was taken to be equal to \(f 2\) times half of the erack length o (or \(1 / f 2\) times the full erack length).

An overall description of all qualified data tests can be summarized by the following relationghip with \(1.28 \quad \sqrt{2}=1.8\).
\[
\mathrm{RF}=1+10 \exp (-1.8 \mathrm{c} / f(\mathrm{Rt}))=1+10 \exp (-\lambda)
\]

This again can be translated into equivalent length margin (see Table 3,3 (d) and Fia, 3-3 (g))
3.3.3.2. Direct verification

For \(7 / 8^{\prime \prime}\) OD tubes, the previous statistical analysis predicts a length margin in excess of 2 mm for crack lencths (in free span) in the range of 15 to 17 mm .

Out of 16 tests performed with dual flaws :

For 15 mm long cracks in free span
- falled outside the TS for a 2 mm difference (the inverse behaviour of the 6 th case was clearly related to the flaw being 1 mm away from the TS)
```

I failed outside and 1 failed next to the TS, for a }3\textrm{mm
difference.
For 17 mm long cracks in free span
5 failed outside the TS for a 2 mm difference (the inverse behaviour of the 6 th case was associated with unexplained low burst pressure, and was discarded for the statistical analysis).
2 failed next to the TS for a 3 mm difference.
This can be considered in excellent agreement with the statistical conclusion.
Similarly, for $3 / 4^{\prime \prime}$ OD tubes, the statistical analysis predicts a length margin in excess of 1.9 mm for crack lengths in free span in the range of 12 to 14 mm .
Out of 16 tests ferformed with dual flaws :
For 12 mm long cracks in free span
1 failed outside the TS and 3 failed next to the TS (with one case of crack initiation outside the TS) for a 2 mm
difference.
1 failed outside the TS (with crack initiation next to the TS) and 3 failed next to the TS for a 3 mm difference.
For 14 min long cracks in free span
4 failed outside the TS Eor a 2 mm cifference
1 failed outside the TS and 3 failed next to tie TS for a
3 mm difference.
This is consistent with the statistical conclusions, with the exception of 3 tests (with 12 mm mitside Ts and 14 mm next to Tg) which were considered an abnormal data set within the statistical analysis.

```

\section*{3,3,3,3. Conclusions}

Considering the usual data scatter typical of this type of tests las evidenced by the larger data basis relative to the free span), it is not surprising to observe some local inconsistencies. When all the data are considered, in view of the supporting theory, a reliable (averaqe) quantitative assessment of the reinforcement factor for a
crack adjacent to the tubesheet is given by the semi-empirical formulation
```

RF=1 + 10 exp (-\lambda)

```
where
\[
=\left[12\left(1-V^{2}\right)\right]^{0.20} \mathrm{c} / f(\mathrm{Rt}) \approx 1.8 \mathrm{c} / f(\mathrm{Rt})
\]

Unless further validation becomes available, the domain of application ghould be restricted to
```

1.5 S c/f (Rt) \leq2.5
i.e. 15 mms c c < 20 mm for 7/8" OD tubing
13 mm s 2 c s 17 mm for 3/4" OD tubing

```
which is the useful range when establishing tube plugging limits
for axial cracks in the roll transition area.

Table 3-2 (a)
SUMMARY OF RESULTS (progras A1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Material Index} & \multirow[t]{3}{*}{Test-piece number and type} & \multirow[t]{3}{*}{\begin{tabular}{l}
slit length \\
(max)
\end{tabular}} & \multirow[t]{3}{*}{Sealing system} & \multirow[t]{3}{*}{\begin{tabular}{l}
Pressure \\
(bar)
\end{tabular}} & \multicolumn{3}{|l|}{Flaw width (me)} & \multirow[t]{3}{*}{\begin{tabular}{l}
Elat length \\
(man)
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
 \\
(ma)
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
Oval. \\
(8)
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
Def. \\
(nmin)
\end{tabular}} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Leak } \\
\text { age } \\
\text { area } \\
\\
\text { (amán }^{2}
\end{gathered}
\]} & \multirow[t]{3}{*}{Sotes} \\
\hline & & & & & & mid-1 & length & & & & & & \\
\hline & & & & & tip & outer & inner & & & & & & \\
\hline \multirow[t]{9}{*}{\(\cdots 1\)} & 1 & 15 & 1 & [230 ? 250 & \[
\begin{aligned}
& 1.05 \\
& 1.40
\end{aligned}
\] & 2.4
18.4 & 2
16 & 49 & \[
\begin{aligned}
& 23.6 \\
& 28
\end{aligned}
\] & & 0.4 & 370 & 1
3 \\
\hline & 2 & 20 & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& 170 \\
& (234)
\end{aligned}
\] & \[
\begin{aligned}
& 0.8 \\
& 1.35
\end{aligned}
\] & \[
\begin{gathered}
3.3 \\
21
\end{gathered}
\] & \[
\begin{array}{r}
2.5 \\
18.5
\end{array}
\] & \[
54
\] & \[
\begin{aligned}
& 24.3 \\
& 27.5
\end{aligned}
\] & 4.5 & \[
0.6
\] & \[
450
\] & 1 \\
\hline & \begin{tabular}{l}
3 \\
repeated burst
\end{tabular} & \[
25
\] & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline 125 \\
150 \\
(226) \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline 0.45 \\
& 0.6 \\
& 1.35
\end{aligned}
\] & \(\left\lvert\, \begin{aligned} & 1.9 \\ & 2.1 \\ & 11\end{aligned}\right.\) & \[
\begin{aligned}
& 1.65 \\
& 9.2
\end{aligned}
\] & - & \[
\begin{gathered}
23.5 \\
- \\
26
\end{gathered}
\] & - & - & \[
\begin{array}{r}
37 \\
200
\end{array}
\] & 6 \\
\hline & & (crack) & 2 & (138) & 0 & 125.5 & 23 & 61 & 29.5 & 4.9 & 0.9 & 815 & 4-5 \\
\hline & 4 & 35 & 1 & \[
\begin{array}{r}
75 \\
(143)
\end{array}
\] & \[
\begin{aligned}
& 0.4 \\
& 1.35
\end{aligned}
\] & \[
\begin{array}{r}
3.4 \\
20.5
\end{array}
\] & \[
\begin{gathered}
2.7 \\
18
\end{gathered}
\] & 60 & \[
\begin{aligned}
& 24.1 \\
& 29
\end{aligned}
\] & 5.8 & \[
0.8
\] & \[
580
\] & 1 \\
\hline & 5 & 50 & \(1{ }^{2}+r\) & \begin{tabular}{|c} 
(104) \\
150
\end{tabular} & \[
\begin{aligned}
& 1.35 \\
& 0.40
\end{aligned}
\] & \[
\begin{array}{r}
28.5 \\
0.6
\end{array}
\] & 26 & 77 & \[
\begin{aligned}
& 32 \\
& 22.6
\end{aligned}
\] & 6.3 & 1.9 & 1150 & 1-6-7 \\
\hline & 6 & 70 & \(1^{2}+r\) & \[
\begin{aligned}
& (89) \\
& 180 \text { ? }
\end{aligned}
\] & \[
\begin{aligned}
& 1.35 \\
& 0.40
\end{aligned}
\] & \begin{tabular}{|c}
21 \\
1.15
\end{tabular} & \[
\begin{array}{|c|}
\hline 18.5 \\
0.95
\end{array}
\] & 82 & \[
\begin{aligned}
& 29 \\
& 22.8
\end{aligned}
\] & 6.3 & 1.9 & 920 & 1-6-7 \\
\hline & 7 & 12 & 2
4 & \(\left\lvert\, \begin{gathered}320 \\ (328)\end{gathered}\right.\) & 0.7
1.3 & 1.1
14.6 & \(\left\lvert\, \begin{gathered}1 \\ 12.5\end{gathered}\right.\) & 41 & 23
27 & 3.6 & - 0.3 & 260 & 9 \\
\hline & dual
slit & 12 & 2
4 & 320
328 & 0.65
1.2 & \begin{tabular}{|l|l|}
1 \\
2.4
\end{tabular} & |l 1.7 & - & 23
23.7 & \(1{ }^{-}\) & - & E & \[
\begin{aligned}
& 9 \\
& 2
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{(...) denotes burst pressure}

Table 3－2（a）
SUMPARY OF RESULTS（program A1）（cont＇d）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Material Index} & \multirow[t]{3}{*}{Test－piece nusber and type} & \multirow[t]{3}{*}{\begin{tabular}{l}
Slit length \\
（组m）
\end{tabular}} & \multirow[t]{3}{*}{Sealing system} & \multirow[t]{3}{*}{\[
\left\{\begin{array}{c}
\text { Press- } \\
\text { ure } \\
\text { (bar) }
\end{array}\right.
\]} & \multicolumn{3}{|l|}{Flaw width（mat）} & \multirow[t]{3}{*}{\begin{tabular}{l}
Elaw length \\
（锄）
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
max． \\
（anat）
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
Oval． \\
（\％）
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
Def． \\
（sam）
\end{tabular}} & \multirow[t]{3}{*}{\[
\begin{array}{|c}
\text { Leak- } \\
\text { age } \\
\text { area } \\
\left(5 m^{2}\right)
\end{array}
\]} & \multirow[t]{3}{*}{Notes} \\
\hline & & & & & \multirow[b]{2}{*}{tip} & \multicolumn{2}{|l|}{戊1d－length} & & & & & & \\
\hline & & & & & & outer & mater & & & & & & \\
\hline \multirow[t]{9}{*}{M1} & \multirow[t]{3}{*}{\begin{tabular}{l}
8 \\
deal \\
slit
\end{tabular}} & \multirow[t]{3}{*}{15} & \[
2
\] & \[
\begin{array}{|c}
\hline 165 \\
230 \\
(314)
\end{array}
\] & \[
\begin{aligned}
& 0.2 \\
& 0.4 \\
& 1.3
\end{aligned}
\] & \[
\begin{aligned}
& 0.35 \\
& 0.7 \\
& 9.5
\end{aligned}
\] &  &  & \[
26
\] &  & － & 150 & 13 \\
\hline & & & 2 & 314 & 0.7 & 1.5 & － & － & 23.3 & － & － & － & \\
\hline & & & 4 & 252
\((252)\) & 0.9
1.4 & 10 & \[
8
\] & 32 & \[
26.2
\] & \[
2.7
\] & － & 170 & 10－11 \\
\hline & \begin{tabular}{l}
dual \\
slit
\end{tabular} & 20 & 2 & \[
\begin{array}{|c}
120 \\
160 \\
200 \\
(261)
\end{array}
\] & \[
\begin{aligned}
& 0.2 \\
& 0.3 \\
& 0.5 \\
& 1.2
\end{aligned}
\] & \(\left\lvert\, \begin{gathered}0.3 \\ 0.4 \\ 1 \\ 22.5\end{gathered}\right.\) & \(\mathrm{r}^{-}\) & 7
\(\sim\)
59 & \[
29
\] & -
-
-
5.4 & － & -
-
-
490 & 13 \\
\hline & & 20 & 2 & （261） & 0.7 & 1.8 & & － & 23.5 & － & － & － & \\
\hline & & & 3 & 289 & 1.4 & 12.4 & 10.5 & 38 & 26.5 & \(3.1 / 4.4\) & － & 235 & 10 \\
\hline & 10 & 35 & 2 & \(?\) & 1.2 & 8.1 & 7.6 & 38 & 26 & － & － & 190 & 12 \\
\hline & repeated burst & \[
\begin{gathered}
38 \\
\text { (crack) }
\end{gathered}
\] & 2 & \[
\begin{gathered}
140 \\
(1148)
\end{gathered}
\] & 0
0 & \[
\begin{array}{r}
9.5 \\
14.5
\end{array}
\] & 12.4 & 46 & 27 & 5.5 & － & 350 & 4
13 \\
\hline & & 20 & 4 & 148 & 0.35 & 10.6 & － & 22.6 & & － & － & & \\
\hline
\end{tabular}
（．．．）denotes burst pressure

Table 3-2 (a)
SUMRARY OF eEstuts (progras Al) (cont'd)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Material lndex} & \multirow[t]{3}{*}{Test-piece number and type} & \multirow[t]{3}{*}{\begin{tabular}{l}
slit length \\
(man)
\end{tabular}} & \multirow[t]{3}{*}{Sealing systea} & \multirow[t]{3}{*}{\begin{tabular}{|c} 
Press- \\
ure \\
\\
(bar)
\end{tabular}} & \multicolumn{3}{|l|}{Flaw width (am)} & \multirow[t]{3}{*}{\begin{tabular}{l}
Flaw length \\
(min)
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
max. \\
(mas)
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
Oval. \\
(3)
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
Def. \\
(man)
\end{tabular}} & \multirow[t]{3}{*}{\[
\left|\begin{array}{c}
\text { Leak- } \\
\text { age } \\
\text { area } \\
\\
\left(\operatorname{man}^{2}\right)
\end{array}\right|
\]} & \multirow[t]{3}{*}{Notes} \\
\hline & & & & & & mid-1 & length & & & & & & \\
\hline & & & & & tip & outer & inner & & & & & & \\
\hline \multirow[t]{6}{*}{M1} & \multirow[t]{2}{*}{\begin{tabular}{l}
11 \\
dual \\
slit
\end{tabular}} & 50 & 2 & \[
\begin{gathered}
65 \\
80 \\
(99)
\end{gathered}
\] & 0.3
0.4
1.25 & \begin{tabular}{|c}
0.8 \\
1.4 \\
18
\end{tabular} & 15 & 58 & - & 5.7 & 1.3 & 575 & \\
\hline & & 20 & 2 & 99 & 0.2 & 0.3 & - & - & 22.3 & - & - & - & \\
\hline & 12 & 70 & 2 & \[
\begin{gathered}
65 \\
75 \\
(89)
\end{gathered}
\] & 0.5
0.6
1.2 & \(\left\lvert\, \begin{gathered}3 \\ 5 \\ 22.5\end{gathered}\right.\) & 20 & 79 & 30 & 6.3 & 1.5 & 925 & \\
\hline & \[
13
\] & \[
\begin{aligned}
& 20 \\
& \text { (winor } \\
& \text { axis) }
\end{aligned}
\] & 2 & (243) & 1.25 & 16 & 13.5 & 46 & 27 & - & \(\checkmark\) & 330 & \[
1 \begin{aligned}
& 13-14- \\
& 15
\end{aligned}
\] \\
\hline & \[
\begin{gathered}
\text { slit } \\
\text { ovalized }
\end{gathered}
\] & \[
\begin{gathered}
20 \\
\text { (major } \\
\text { axis) }
\end{gathered}
\] & 2 & | 243 & 0.5 & 1.2 & 0.9 & - & 23.5 & - & - & & 14-16 \\
\hline & 15 & 25 & - & 50
105 & 0.25 & 0.3 & - & & & & & & \\
\hline
\end{tabular}
(...) denotes burst pressure
(1) Test arrested after the extrusion of the patoh (without rupture)
(2) Crack initiation visible at one tlaw tip, Liom In surface to mid wall thickness
( 3) Burst pressure beyond manometer range
( 4) The silt lengthened in the first test \(1 s\) resealed for the second test
(5) Extrusion of the patah
(6) Fest conducted with d ring centered over the slit fwith a 0.4 mm diametral clearance)
(7) The ring becomes tight for \(p=55\) bar and becomes loose again when depressurized after \(p=150\) bar
8) Manometer valve left closed by omission: inaccurate reading on pump manometer
( 9) Maximum pump piessure
(10) Tube recut to perform the test on the second siit
(11) Rupture accuring (after \(\& 30 \mathrm{~s}\) ) at constant pressure during the visual measurement of the COD
(12) Uncontrol1ed fast pressure rise, inaccurate reading of the pump manometer, low frack extension (2 and 1.3 mm on both sides, respectively) as a result of the high circumferentidl excentricity of the patch which is responsible for fast depressurization
(13) कलat पf the pateh
(14) Ovalized tube
(15) Slit situated on the smali diameter (initial width natrowed)
(16) Slit gituated on the large diameter (initial width stretched)

TABLE 3-2 (b)
CRACK OPENING DISPLACEMENTS (COD) VERSUS INTERNAL PRESSURE
(from table 3-2 (a))
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
\[
2 c
\] \\
(man)
\end{tabular} & \begin{tabular}{l}
pe \\
(bar)
\end{tabular} & (bar) & \begin{tabular}{l}
б \\
(mani)
\end{tabular} & \[
\begin{gathered}
\delta \\
m \\
c \\
\left(10^{-3}\right)
\end{gathered}
\] & \[
\underset{\substack{\delta \\ \delta_{n} \\ * \\ *}}{\substack{n_{n}}}
\] & \[
\begin{gathered}
\frac{\mathrm{p}}{\mathrm{pe}^{2}} \\
\text { of }
\end{gathered}
\] & Sealing system \\
\hline 12 & 363 & \[
\begin{aligned}
& 320 \\
& 320 \\
& 328 * *
\end{aligned}
\] & \[
\begin{aligned}
& 0.45 \\
& 0.5 \\
& 1
\end{aligned}
\] & \[
\begin{array}{r}
75 \\
83 \\
167
\end{array}
\] & \[
\begin{aligned}
& 68 \\
& 75 \\
& 91
\end{aligned}
\] & \[
\begin{array}{r}
88 \\
88 \\
99 \quad(100)
\end{array}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& 4
\end{aligned}
\] \\
\hline 15 & 303 & \[
\begin{aligned}
& 165 \\
& 230 \\
& 314^{* \star} \\
& 252^{\star \star}
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0.2 \\
& 0.5 \\
& 0.8
\end{aligned}
\] & \[
\begin{array}{r}
0 \\
27 \\
67 \\
93
\end{array}
\] & \[
\begin{array}{r}
0 \\
18 \\
45 \\
64
\end{array}
\] & \[
\begin{gathered}
54 \\
76 \\
103(100) \\
83(100)
\end{gathered}
\] & \[
\begin{aligned}
& 2 \\
& 2 \\
& 2 \\
& 4
\end{aligned}
\] \\
\hline 20 & 243 & \[
\begin{aligned}
& 170 \\
& 120 \\
& 160 \\
& 200 \\
& 261^{\star *} \\
& 148 \\
& 99
\end{aligned}
\] & \[
\begin{aligned}
& 0.6 \\
& 0 \\
& 0.1 \\
& 0.3 \\
& 0.5 \\
& 0.15 \\
& 0
\end{aligned}
\] & \[
\begin{array}{r}
60 \\
0 \\
10 \\
30 \\
50 \\
15 \\
0
\end{array}
\] & \[
\begin{array}{r}
55 \\
0 \\
9 \\
27 \\
45 \\
14 \\
0
\end{array}
\] & \[
\begin{gathered}
70 \\
49 \\
66 \\
82 \\
107 \quad(100) \\
61 \\
41
\end{gathered}
\] & \[
\begin{aligned}
& 1 \\
& 2 \\
& 2 \\
& 2 \\
& 2 \\
& 4 \\
& 2 \\
& 2
\end{aligned}
\] \\
\hline 25 & 203 & \[
\begin{aligned}
& 125 \\
& 150
\end{aligned}
\] & \[
\begin{aligned}
& 0.25 \\
& 0.4
\end{aligned}
\] & \[
\begin{aligned}
& 20 \\
& 32
\end{aligned}
\] & \[
\begin{aligned}
& 23 \\
& 36
\end{aligned}
\] & \[
\begin{aligned}
& 61 \\
& 74
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] \\
\hline 35 & 153 & 75 & 0.2 & 23 & 18 & 49 & 1 \\
\hline 50 & 111 & \[
\begin{aligned}
& 65 \\
& 80
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 0.2
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 8
\end{aligned}
\] & \[
\begin{array}{r}
9 \\
18
\end{array}
\] & \[
\begin{aligned}
& 59 \\
& 72
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2
\end{aligned}
\] \\
\hline 70 & 82 & \[
\begin{aligned}
& 65 \\
& 75
\end{aligned}
\] & \[
\begin{aligned}
& 0.3 \\
& 0.4
\end{aligned}
\] & \[
\begin{aligned}
& 9 \\
& 11
\end{aligned}
\] & \[
\begin{aligned}
& 27 \\
& 36
\end{aligned}
\] & \[
\begin{aligned}
& 79 \\
& 91
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2
\end{aligned}
\] \\
\hline
\end{tabular}
* calculated critical piessure
** experimental burst pressure
*** \(\delta_{m}=1.1\) man

TABLE 3-2 (c)
SUMRARY OF RESULTS (prograw A2)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Material Index} & \multirow[t]{3}{*}{Test-piece number and type} & \multirow[t]{3}{*}{\begin{tabular}{l}
Slit length \\
(min)
\end{tabular}} & \multirow[t]{3}{*}{Sealing system} & \multirow[t]{3}{*}{\begin{tabular}{l}
Pressure \\
(bar)
\end{tabular}} & \multicolumn{3}{|l|}{Flaw width (nam)} & \multirow[t]{3}{*}{\begin{tabular}{l}
Flaw length \\
(細)
\end{tabular}} & \multicolumn{2}{|l|}{Comex (mim)} & \multirow[t]{3}{*}{\begin{tabular}{l}
Oval. \\
(*)
\end{tabular}} & \multirow[t]{3}{*}{Codes} & \multirow[t]{3}{*}{Notes} \\
\hline & & & & & & mid-le & ength & & central & extr. & & & \\
\hline & & & & & tip & onter & inner & & & & & & \\
\hline \multirow[t]{3}{*}{42} & 16 & \[
\begin{aligned}
& 18 \\
& 18
\end{aligned}
\] & 5
10 & \[
\begin{gathered}
161 \\
(182)
\end{gathered}
\] & \[
\left[\begin{array}{l}
0.7 \\
0.9
\end{array}\right.
\] & \[
\begin{array}{r}
3.3 \\
18.7
\end{array}
\] & \[
\begin{array}{r}
3.2 \\
16.2
\end{array}
\] & \[
\begin{aligned}
& 0.4 \\
& 43
\end{aligned}
\] & \[
\begin{aligned}
& 24.45 \\
& 27
\end{aligned}
\] & 22.15 & \[
\begin{aligned}
& 0.9 \\
& 4.1
\end{aligned}
\] & 0 & 1-2 \\
\hline & 17 & 20
20 & r 9 & \[
\begin{gathered}
175 \\
(219)
\end{gathered}
\] & \[
\begin{aligned}
& 1.15 \\
& 1.2
\end{aligned}
\] & \[
\begin{aligned}
& 12.3 \\
& 11.8
\end{aligned}
\] & \[
\begin{gathered}
10 . \\
9.8
\end{gathered}
\] & \[
\begin{aligned}
& 33 \\
& 32
\end{aligned}
\] & \[
\begin{aligned}
& 26.35 \\
& 26.3
\end{aligned}
\] & 22.15 & 1.8 & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & 3 \\
\hline & 39 & \[
\begin{aligned}
& 20 \\
& 20 \\
& 20
\end{aligned}
\] & 8
8
10 & \[
\begin{gathered}
175 \\
175 \\
(252)
\end{gathered}
\] & \[
\begin{aligned}
& 1.05 \\
& 0.75 \\
& 1.25
\end{aligned}
\] & \[
\begin{array}{r}
4.6 \\
4.6 \\
12.6
\end{array}
\] & \[
\begin{gathered}
3.4 \\
10.3
\end{gathered}
\] & 32 & \begin{tabular}{l}
\[
24.7
\] \\
26.7
\end{tabular} & - & \[
\begin{aligned}
& 1.0 \\
& 3.5
\end{aligned}
\] & 1
1
\(?\) & \[
\begin{gathered}
2-1 \\
7
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{M3} & 23 & \[
\begin{aligned}
& 16.5 \\
& 16.5
\end{aligned}
\] & 12
12 & \[
\begin{aligned}
& (256) \\
& (279)
\end{aligned}
\] & \[
\begin{array}{|l}
0.8 \\
1.0
\end{array}
\] & \[
17
\] & \[
\begin{aligned}
& 15 \\
& 12.6
\end{aligned}
\] & \[
\begin{aligned}
& 41 \\
& 33
\end{aligned}
\] & \[
\begin{aligned}
& 23.2 \\
& 23.1
\end{aligned}
\] & 19.05 & \[
\begin{aligned}
& 4.7 \\
& 4.7
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2
\end{aligned}
\] & \\
\hline & 24 & \[
\begin{aligned}
& 16.5 \\
& 16.5
\end{aligned}
\] & 12
12 & \[
\begin{aligned}
& (266) \\
& (272)
\end{aligned}
\] & \[
\left\lvert\, \begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}\right.
\] & \[
\begin{array}{r}
10.0 \\
9.6
\end{array}
\] & \[
\begin{aligned}
& 8.2 \\
& 7.8
\end{aligned}
\] & \[
\begin{aligned}
& 29 \\
& 27
\end{aligned}
\] & \[
\begin{aligned}
& 22.7 \\
& 22.5
\end{aligned}
\] & 19.05 & \[
\begin{aligned}
& 1.8 \\
& 2.6
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 2
\end{aligned}
\] & \\
\hline \multirow[t]{2}{*}{M4} & \multirow[t]{2}{*}{40} & \[
\begin{aligned}
& 16.5 \\
& 16.5
\end{aligned}
\] & 6 & \[
\begin{aligned}
& 105 \\
& 105
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 0.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.5 \\
& 1.1
\end{aligned}
\] & 4.3 & \[
\begin{aligned}
& 35.5 \\
& 30.0
\end{aligned}
\] & \[
\begin{aligned}
& 21.2 \\
& 19.7
\end{aligned}
\] & 19.05 & 1.5 & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & 9 \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}
(...) denotes burst pressure

TABLE 3-2 (c)

SUMAARY OF RESULTS (progra* A2) (cont d)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Materíal Index} & \multirow[t]{3}{*}{Test-plece nuaber and type} & \multirow[t]{3}{*}{\[
\left\lvert\, \begin{gathered}
\text { Slit } \\
\text { length } \\
\text { (min) }
\end{gathered}\right.
\]} & \multirow[t]{3}{*}{Sealing system} & \multirow[t]{3}{*}{\begin{tabular}{l}
Pressure \\
(bar)
\end{tabular}} & \multicolumn{3}{|l|}{Flaw width (mam)} & \multirow[t]{3}{*}{Elaw
length
(une)} & \multicolumn{2}{|l|}{Soax (mame)} & \multirow[t]{3}{*}{\begin{tabular}{l}
Oval. \\
(\%)
\end{tabular}} & \multirow[t]{3}{*}{Codes} & \multirow[t]{3}{*}{Notes} \\
\hline & & & & & \multirow[b]{2}{*}{tip} & \multicolumn{2}{|l|}{wid-length} & & \multirow[t]{2}{*}{central} & \multirow[t]{2}{*}{extr.} & & & \\
\hline & & & & & & fouter & inner & & & & & & \\
\hline \multirow[t]{2}{*}{45} & 29 & \[
\begin{aligned}
& 16.5 \\
& 16.5
\end{aligned}
\] & \[
\begin{aligned}
& 12 \\
& 12
\end{aligned}
\] & \[
\begin{aligned}
& (274) \\
& (255)
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 13.5 \\
& 13.7
\end{aligned}
\] & \[
\begin{aligned}
& 11.4 \\
& 11.5
\end{aligned}
\] & \[
\begin{aligned}
& 28 \\
& 28
\end{aligned}
\] & \[
\begin{aligned}
& 23.0 \\
& 23.0
\end{aligned}
\] & 19.1 & \[
\begin{aligned}
& 3.7 \\
& 3.7
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 2
\end{aligned}
\] & 4 \\
\hline & 30 & \[
\begin{aligned}
& 16.5 \\
& 16.5
\end{aligned}
\] & \[
\begin{aligned}
& 12 \\
& 12
\end{aligned}
\] & \[
\begin{aligned}
& (280) \\
& (266)
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.1
\end{aligned}
\] & \[
\left\lvert\, \begin{aligned}
& 15.4 \\
& 10.7
\end{aligned}\right.
\] & \[
\begin{aligned}
& 14 \\
& 9.5
\end{aligned}
\] & \[
\begin{aligned}
& 35 \\
& 25
\end{aligned}
\] & \[
\begin{aligned}
& 23.3 \\
& 22.9
\end{aligned}
\] & 19.15 & \[
\begin{aligned}
& 4.7 \\
& 2.6
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 5
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{M6} & 31 & \[
\begin{aligned}
& 27.5 \\
& 27.5
\end{aligned}
\] & \[
\begin{aligned}
& 14 \\
& 14
\end{aligned}
\] & \[
\begin{aligned}
& 440 \\
& 480
\end{aligned}
\] & \[
\begin{aligned}
& 1.2 \\
& 1.2
\end{aligned}
\] & \[
\begin{aligned}
& 7.0 \\
& 6.6
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 4.5
\end{aligned}
\] & - & \[
\begin{aligned}
& 23.4 \\
& 23.3
\end{aligned}
\] & \[
\begin{aligned}
& 20.9 \\
& 20.9
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 6
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 6
\end{aligned}
\] \\
\hline & 32 & \[
\begin{aligned}
& 27.5 \\
& 27.5
\end{aligned}
\] & \[
\begin{aligned}
& 13 \\
& 13
\end{aligned}
\] & \[
\begin{aligned}
& 414 \\
& 414
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.5 \\
& 5.5
\end{aligned}
\] & \[
\begin{aligned}
& 3.9 \\
& 3.9
\end{aligned}
\] & - & \[
\begin{aligned}
& 23.2 \\
& 22.7
\end{aligned}
\] & 21.0 & \[
\begin{aligned}
& 1.5 \\
& 1.5
\end{aligned}
\] & 5 & \[
\begin{aligned}
& 2 \\
& 6
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{M 7} & 33 & \[
\begin{aligned}
& 14.5 \\
& 14.5
\end{aligned}
\] & \[
\begin{aligned}
& 7 \\
& 7
\end{aligned}
\] & \[
(208)
\] & \[
\begin{aligned}
& 0.5 \\
& 0.5
\end{aligned}
\] & \[
\begin{aligned}
& 12.0 \\
& 12.2
\end{aligned}
\] & \[
\begin{aligned}
& 12.0 \\
& 10.9
\end{aligned}
\] & \[
\begin{aligned}
& 40 \\
& 47
\end{aligned}
\] & \[
\begin{aligned}
& 24.0 \\
& 24.2
\end{aligned}
\] & 20.1 & \[
\begin{aligned}
& 2.8 \\
& 5.0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & 5 \\
\hline & 34 & \[
\begin{aligned}
& 14.5 \\
& 14.5
\end{aligned}
\] & \[
\begin{aligned}
& 7 \\
& 7
\end{aligned}
\] & \[
\begin{aligned}
& (214) \\
& (215)
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 0.5
\end{aligned}
\] & \[
\begin{gathered}
8.9 \\
10.10
\end{gathered}
\] & 7.8 & \[
\begin{aligned}
& 36 \\
& 36
\end{aligned}
\] & \[
\begin{aligned}
& 23.7 \\
& 23.6
\end{aligned}
\] & 20.1 & \[
\begin{aligned}
& 3.5 \\
& 3.5
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & 5 \\
\hline & 38 & 14.5
14.5
14.5
14.5 & \[
\begin{aligned}
& 7 \\
& 7 \\
& 7 \\
& 7
\end{aligned}
\] & \[
\begin{gathered}
(185) \\
186 \\
(220) \\
220
\end{gathered}
\] & 0.4
0.35
0.6
0.35 & |r \(\begin{array}{r}14.0 \\ 0.8 \\ 13.0 \\ 1.0\end{array}\) & \begin{tabular}{l}
- \\
\hline \\
-
\end{tabular} & \[
\begin{aligned}
& 50.5 \\
& 45
\end{aligned}
\] & 26
23.9 & - & \[
\begin{aligned}
& 5.0 \\
& 5.0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & 5
7
5
7 \\
\hline
\end{tabular}
..) denotes burst pressure

TABLE \(3-2\) (c)
SUMMARY OF RESULTS (progras A2) (cont \({ }^{*}\) d)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Material Index} & \multirow[t]{3}{*}{Test-piece number and type} & \multirow[t]{3}{*}{Slit
length
(mal)} & \multirow[t]{3}{*}{Sealing systea} & \multirow[t]{3}{*}{\begin{tabular}{l}
Pressure \\
(bar)
\end{tabular}} & \multicolumn{3}{|l|}{Flaw width (mam)} & \multirow[t]{3}{*}{Flaw
length
(men)} & \multicolumn{2}{|l|}{Deax (main)} & \multirow[t]{3}{*}{\begin{tabular}{l}
Oval. \\
(\%)
\end{tabular}} & \multirow[t]{3}{*}{Codes} & \multirow[t]{3}{*}{Notes} \\
\hline & & & & & \multirow[b]{2}{*}{tip} & \multicolumn{2}{|l|}{mid-length} & & \multirow[t]{2}{*}{central} & \multirow[t]{2}{*}{extr.} & & & \\
\hline & & & & & & outer & inner & & & & & & \\
\hline \multirow[t]{3}{*}{M8} & 35 & \[
\begin{aligned}
& 14.5 \\
& 14.5
\end{aligned}
\] & 7 & \[
\begin{aligned}
& (171) \\
& (164)
\end{aligned}
\] & \[
\left[\begin{array}{l}
0.7 \\
0.7
\end{array}\right.
\] & \[
\begin{aligned}
& 100 \\
& 3.45
\end{aligned}
\] & - & \(\begin{array}{r}33 \\ +\quad 2 \\ \hline\end{array}\) & \[
\begin{aligned}
& 23.7 \\
& 21.8
\end{aligned}
\] & 20.0 & \[
\begin{aligned}
& 3.0 \\
& 0.5
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{gathered}
5 \\
4-6
\end{gathered}
\] \\
\hline & 36 & \[
\begin{aligned}
& 14.5 \\
& 14.5
\end{aligned}
\] & 7 & \[
\begin{aligned}
& (190) \\
& (170)
\end{aligned}
\] & \[
0.7
\] & \[
\begin{aligned}
& 12.9 \\
& 17.0
\end{aligned}
\] & - & \[
\begin{aligned}
& 41.5 \\
& 38
\end{aligned}
\] & \[
\begin{aligned}
& 23.6 \\
& 24.2
\end{aligned}
\] & - & \[
\begin{aligned}
& 4.5 \\
& 3.0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 4
\end{aligned}
\] \\
\hline & 37 & 14.5
14.5 & \(\frac{7}{7}\) & \[
\begin{gathered}
(150) \\
150
\end{gathered}
\] & \[
\begin{aligned}
& 0.5 \\
& 0.3
\end{aligned}
\] & \[
\begin{array}{r}
13.0 \\
0.8
\end{array}
\] & - & 39 & 25.0 & 20.0 & 2.5 & 0 & 5
7 \\
\hline
\end{tabular}
(...) denotes burst pressure

\section*{NOTES FOR TABLES 3-2 (c)}
```

(1) A stable crack growth is observable prior to tin : :ctabitity of
precracked slit.
Slit Ne : 1: (161 bar) both sides (-0.1 and $+1,3 \mathrm{~mm})$
Slit No : 2 : (167 bar) at one side (+6.1 am)
(2) Test arrested after patch leak and not recc oducisd
(3) Burst pressure abnormaly low, for the same pressure a slight
initiation of crack is observed on the second slit
(4) The critical pressure of the second defect is lower than that
already sustained by bursting of the first defect (both defects
were the samel
(5) Both defects propagated in a non-axial maner.
The length was measured as shown below.

```

```

(6) The burst pressure could never be reached bertause the flaw opening was large enough to permit every patch to be extruded
(7) Slit parallel to the previous one
(8) Slight crack initiation detectable at one tip
(9) Fatique crack propagation $(t=4 \mathrm{~Hz})$, fasiar than expected (long crack propagation). Test arrested after patch bursting at about 17,100 cycles.
Test parameters :
11,600 cycles at $p=85$ to 90 bar (kigher chan 80 specified)
800 cycles at $p=105$ to 55 bat
1,800 cycles at p linearly decreds mu iom 105 to 55 bar
1,500 cycles at $p=50$ to 55 bar
1,400 uycles at p decreasing from 50 to 0 bar.

| Code | Description of pitch after tube burst |
| :--- | :--- |
| 0 | no patch |
| 1 | stay in place |
| 2 | extruded without break |
| 4 | break orthogonal to the slit |
| 5 | orthogonal twin breaks (at both flaw tips) |
| 6 | orthogonal breaks in the center. |

```

TABIE 3-2 (d)
PROGRAM A2
MEASUREMENTS OF : COD ( \(\delta\) ) ; SLIT OPENING (b) and bulaing ( \(\boldsymbol{p}_{\text {axa }}\) ) VERSUS INTERNAL PRESSURE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Material & Test-piece & & Sealing & P & \(\delta\) & \(b\) & ¢asa & \multirow{2}{*}{p/Dasex} \\
\hline & and type & (nain) & & bar & mati & mim & thin & \\
\hline \multirow[t]{6}{*}{M2} & 16 & 18 & \[
\begin{aligned}
& 5 \\
& 5 \\
& 5
\end{aligned}
\] & \[
\begin{array}{r}
80 \\
120 \\
161
\end{array}
\] & \[
\begin{aligned}
& .03 \\
& .10 \\
& .70
\end{aligned}
\] & \[
\begin{array}{r}
.03 \\
.15 \\
3.3
\end{array}
\] & 24.45 & \[
\begin{aligned}
& 0.44 \\
& 0.66 \\
& 0.89
\end{aligned}
\] \\
\hline & \[
\begin{aligned}
& \text { dual } \\
& \text { slit }
\end{aligned}
\] & 18 & \[
\begin{array}{r}
5 \\
5 \\
5 \\
5 \\
10
\end{array}
\] & \[
\begin{array}{r}
80 \\
120 \\
161 \\
167 \\
(182)
\end{array}
\] & \[
\begin{array}{r}
.05 \\
.08 \\
.70 \\
.90 \\
1.91
\end{array}
\] & 3.6
16.2 & 23.6
24.3
27.0 & \[
\begin{aligned}
& 0.44 \\
& 0.66 \\
& 0.89 \\
& 0.92 \\
& 1.00
\end{aligned}
\] \\
\hline & 17
dual
slit & 20 & 9
9
10 & \[
\begin{gathered}
125 \\
175 \\
(219)
\end{gathered}
\] & \((1.20)\) & 0.65
2.8
11.8 & \[
\begin{aligned}
& 23.9 \\
& 26.3
\end{aligned}
\] & \[
\begin{aligned}
& 0.80 \\
& 1.00
\end{aligned}
\] \\
\hline & 39 & 20 & 8
8
8
8 & \[
\begin{aligned}
& 127 \\
& 141 \\
& 155 \\
& 175
\end{aligned}
\] & .20
.35
.85
1.05 & .75
1.4
2.5
4.6 & 22.5
23.0
23.5
24.6 & \[
\begin{aligned}
& 0.50 \\
& 0.56 \\
& 0.62 \\
& 0.69
\end{aligned}
\] \\
\hline & \[
\begin{gathered}
2 / / \text { slit } \\
+ \\
1 \text { alone }
\end{gathered}
\] & 20 & \[
\begin{aligned}
& 8 \\
& 8 \\
& 8 \\
& 9
\end{aligned}
\] & \[
\begin{aligned}
& 127 \\
& 141 \\
& 155 \\
& 175
\end{aligned}
\] & .20
.35
.60
1.05 & .75
1.4
2.3
4.3 & 22.5
23.0
23.5
24.5 & \[
\begin{aligned}
& 0.50 \\
& 0.56 \\
& 0.63 \\
& 0.69
\end{aligned}
\] \\
\hline & & 20 & \[
\begin{array}{r}
8 \\
8 \\
8 \\
8 \\
10
\end{array}
\] & \[
\begin{gathered}
127 \\
141 \\
155 \\
175 \\
(252)
\end{gathered}
\] & .10
.25
.45
.75
(1.25) & \begin{tabular}{|c|c|}
\hline .60 \\
1.0 \\
1.6 \\
2.8 \\
12.6
\end{tabular} & \[
\begin{aligned}
& 22.4 \\
& 22.7 \\
& 23.2 \\
& 23.8 \\
& 26.7
\end{aligned}
\] & \[
\begin{aligned}
& 0.50 \\
& 0.56 \\
& 0.62 \\
& 0.69 \\
& 1.00
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{M3} & 23
dual & 16.5 & \[
\begin{array}{r}
7 \\
12 \\
12
\end{array}
\] & 200
250
\((256)\) & .75
.80
\((.80)\) & \[
\left.\right|_{2.7} ^{27}
\] & 20.6
20.7
23.2 & \[
\begin{aligned}
& 0.78 \\
& 0.98 \\
& 1.00
\end{aligned}
\] \\
\hline & & 16.5 & \[
\begin{array}{r}
7 \\
12 \\
12 \\
12
\end{array}
\] & \[
\begin{array}{r}
200 \\
250 \\
256 \\
(279)
\end{array}
\] & \[
\begin{array}{r}
.15 \\
.55 \\
.60 \\
(1.0)
\end{array}
\] & .7
1.7
1.9
12.6 & 19.5
20.0
20.2
23.1 & \[
\begin{aligned}
& 0.72 \\
& 0.90 \\
& 0.92 \\
& 1.00
\end{aligned}
\] \\
\hline
\end{tabular}
(...) denotes burst pressure

TABLE 3-2 (d) (cont'd)

PROGRAM A?
MEASUREMENTS OF : COD ( \(\delta\) ): SLIT OPENING (b) AND BULGING (sanx) VERSUS INTERNAL, PRESSURE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Material Index} & \multirow[t]{2}{*}{Test-piece
Nuaber
and type} & \multirow[t]{2}{*}{\[
\left|\begin{array}{c}
\text { S1it } \\
\text { length } \\
(\text { man })
\end{array}\right|
\]} & \multirow[t]{2}{*}{Sealing System} & D & \(\delta\) & b & Dmax & \multirow{2}{*}{p/pana} \\
\hline & & & & bar & nim & main & 既 & \\
\hline \multirow[t]{2}{*}{M3} & \multirow[t]{2}{*}{\[
\begin{array}{r}
24 \\
\text { dual } \\
\text { slit }
\end{array}
\]} & 16.5 & \[
\begin{array}{r}
7 \\
7 \\
12 \\
12
\end{array}
\] & \[
\begin{gathered}
170 \\
192 \\
246 \\
(266)
\end{gathered}
\] & \[
\begin{array}{r}
.15 \\
.30 \\
.70 \\
(1.0)
\end{array}
\] & \[
\begin{array}{r}
.45 \\
1.0 \\
2.5 \\
10.0
\end{array}
\] & \[
\begin{aligned}
& 19.4 \\
& 19.8 \\
& 20.6 \\
& 22.7
\end{aligned}
\] & \[
\begin{aligned}
& 0.64 \\
& 0.72 \\
& 0.92 \\
& 1.00
\end{aligned}
\] \\
\hline & & 16.5 & \[
\begin{array}{r}
7 \\
7 \\
12 \\
12 \\
12
\end{array}
\] & \[
\begin{array}{r}
170 \\
192 \\
246 \\
266 \\
(272)
\end{array}
\] & \[
\begin{array}{r}
.15 \\
.30 \\
.70 \\
.90 \\
(1.0)
\end{array}
\] & \[
\begin{aligned}
& .45 \\
& 1.0 \\
& 2.5 \\
& 3.9 \\
& 9.6
\end{aligned}
\] & \[
\begin{aligned}
& 19.4 \\
& 19.8 \\
& 20.6 \\
& 20.9 \\
& 22.5
\end{aligned}
\] & \[
\begin{aligned}
& 0.62 \\
& 0.71 \\
& 0.91 \\
& 0.98 \\
& 1.00
\end{aligned}
\] \\
\hline \multirow[t]{4}{*}{M5} & \[
\begin{array}{r}
29 \\
\text { dual } \\
\text { slit }
\end{array}
\] & 16.5 & \[
\begin{array}{r}
7 \\
7 \\
7 \\
12 \\
12 \\
12 \\
12
\end{array}
\] & \[
\begin{aligned}
& 147 \\
& 166 \\
& 190 \\
& 218 \\
& 241 \\
& 260 \\
& (274)
\end{aligned}
\] & \[
\begin{gathered}
.15 \\
.30 \\
.55 \\
.75 \\
1.25 \\
2.0 \\
(2.0)
\end{gathered}
\] & .7
1.5
2.0
2.8
3.7
5.1
13.5 & \[
\begin{aligned}
& 19.4 \\
& 19.9 \\
& 20.5 \\
& 20.7 \\
& 21.1 \\
& 22.2 \\
& 23.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.54 \\
& 0.61 \\
& 0.69 \\
& 0.80 \\
& 0.88 \\
& 0.95 \\
& 1.00
\end{aligned}
\] \\
\hline & \[
\begin{array}{r}
29 \\
\text { dual } \\
\text { slit }
\end{array}
\] & 16.5 & \[
\begin{array}{r}
7 \\
7 \\
7 \\
12 \\
12 \\
12 \\
12
\end{array}
\] & \[
\begin{gathered}
147 \\
166 \\
190 \\
218 \\
241 \\
260 \\
(255)
\end{gathered}
\] & .15
.30
.55
.75
1.25
2.0
\((2.0)\) & \[
\begin{array}{|c} 
\\
1.25 \\
2.0 \\
2.8 \\
3.7 \\
5.1 \\
13.7
\end{array}
\] & \[
\begin{aligned}
& 19.4 \\
& 19.9 \\
& 20.5 \\
& 20.7 \\
& 21.1 \\
& 22.0 \\
& 23.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.54 \\
& 0.61 \\
& 0.69 \\
& 0.80 \\
& 0.88 \\
& 0.95
\end{aligned}
\] \\
\hline & \[
\begin{array}{r}
30 \\
\text { dual } \\
\text { slit }
\end{array}
\] & \[
16.5
\] & 12
12
12
12
12
12 & \[
\begin{aligned}
& 140 \\
& 172 \\
& 195 \\
& 220 \\
& 265 \\
& (280)
\end{aligned}
\] & \[
\begin{gathered}
.05 \\
.20 \\
.50 \\
1.70 \\
2.0 \\
(2.0)
\end{gathered}
\] & \[
\begin{array}{r}
.35 \\
.70 \\
1.4 \\
2.5 \\
5.7 \\
15.4
\end{array}
\] & \[
\begin{aligned}
& 19.2 \\
& 19.5 \\
& 20.0 \\
& 20.4 \\
& 21.6 \\
& 23.3
\end{aligned}
\] & \[
\begin{aligned}
& 0.50 \\
& 0.61 \\
& 0.70 \\
& 0.79 \\
& 0.95 \\
& 1.00
\end{aligned}
\] \\
\hline & & 16.5 & \[
\begin{aligned}
& 12 \\
& 12 \\
& 12 \\
& 12 \\
& 12 \\
& 12 \\
& 12
\end{aligned}
\] & \[
\begin{gathered}
140 \\
172 \\
195 \\
220 \\
265 \\
280 \\
(266)
\end{gathered}
\] & \[
\begin{gathered}
.05 \\
.20 \\
.40 \\
.65 \\
1.55 \\
1.9 \\
(2.1)
\end{gathered}
\] & \[
\begin{gathered}
.35 \\
.70 \\
1.25 \\
2.15 \\
4.8 \\
5.4 \\
10.7
\end{gathered}
\] & \[
\begin{aligned}
& 19.2 \\
& 19.4 \\
& 19.8 \\
& 20.3 \\
& 21.4 \\
& 21.6 \\
& 22.9
\end{aligned}
\] & \[
\begin{aligned}
& 0.50 \\
& 0.61 \\
& 0.70 \\
& 0.79 \\
& 0.95 \\
& 1.00
\end{aligned}
\] \\
\hline M6 & \[
\begin{array}{r}
31 \\
\text { dual } \\
\text { slit }
\end{array}
\] & 27.5 & 13
13
14
14 & \[
\begin{aligned}
& 3: 0 \\
& 372 \\
& 415 \\
& 440
\end{aligned}
\] & \[
\begin{array}{r}
.05 \\
.30 \\
.90 \\
1.20
\end{array}
\] & .55
1.6
5.4
7.0 & 21.0
21.5
22.8
23.4 & \[
\begin{aligned}
& (0.52) \\
& (0.61) \\
& (0.68) \\
& (0.72)
\end{aligned}
\] \\
\hline
\end{tabular}
(...) denotes burst presisure

TABLE 3-2 (d) (cont'd)
PROGRAM AZ
MEASUREMENTS OF : COD ( \(\delta\) ) ; SLIT OPENING (b)
AND BULGING ( \(\phi_{\mathrm{max}}\) ) VERSUS INTERNAL PRESSURE

(...) denotes burst pressure

Table 3-2 (d) (cont'd)
PROGRAM AZ
MRASUREMENTS OF : COD ( \(\delta\) ) : SLIT OPENING (b) AND BULGING (祭ax) VERSUS INTERNAL PRESSURE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Material Index} & \multirow[t]{2}{*}{Test-piece Number and type} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { slit } \\
\text { length } \\
(\text { man })
\end{gathered}
\]} & \multirow[t]{2}{*}{Sealing System} & p & \(\delta\) & b & Deax & \multirow{2}{*}{p/pana} \\
\hline & & & & bar & mam & \(\operatorname{mom}\) & nim & \\
\hline \multirow[t]{2}{*}{M 7} & \multirow[t]{2}{*}{\% 38} & 14.5 & \[
\begin{aligned}
& 7 \\
& 7 \\
& 7 \\
& 7
\end{aligned}
\] & \[
\begin{gathered}
150 \\
170 \\
186 \\
(220)
\end{gathered}
\] & \[
\begin{array}{r}
.10 \\
.20 \\
.30 \\
(.6)
\end{array}
\] & \[
\begin{array}{r}
.45 \\
.65 \\
.9 \\
.9
\end{array}
\] & \[
\begin{aligned}
& 20.3 \\
& 20.4 \\
& 20.8 \\
& 23.9
\end{aligned}
\] & \[
\begin{aligned}
& 0.68 \\
& 0.77 \\
& 0.85 \\
& 1.00
\end{aligned}
\] \\
\hline & & 14.5 & \[
\begin{aligned}
& 7 \\
& 7 \\
& 7 \\
& 7
\end{aligned}
\] & \[
\begin{aligned}
& 150 \\
& 170 \\
& 186 \\
& 220
\end{aligned}
\] & \[
\begin{array}{r}
.10 \\
.20 \\
.30 \\
.35
\end{array}
\] & .45
.65
.9
1.0 & \[
\begin{aligned}
& 20.3 \\
& 20.4 \\
& 20.8
\end{aligned}
\] & \[
\begin{aligned}
& 0.68 \\
& 0.77 \\
& 0.85 \\
& 1.00
\end{aligned}
\] \\
\hline \multirow[t]{6}{*}{M8} & 35 & 14.5 & \[
\begin{aligned}
& 7 \\
& 7 \\
& 7 \\
& 7
\end{aligned}
\] & \[
\begin{gathered}
119 \\
136 \\
153 \\
(171)
\end{gathered}
\] & \[
\begin{array}{r}
.05 \\
.15 \\
.30 \\
1.7)
\end{array}
\] & .35
.70
1.20
10.0 & \[
\begin{aligned}
& 20.1 \\
& 20.5 \\
& 20.9 \\
& 23.7
\end{aligned}
\] & \[
\begin{aligned}
& 0.70 \\
& 0.80 \\
& 0.90 \\
& 1.00
\end{aligned}
\] \\
\hline & slit & 14.5 & \[
\begin{aligned}
& 7 \\
& 7 \\
& 7 \\
& 7 \\
& 7
\end{aligned}
\] & \[
\begin{gathered}
119 \\
136 \\
153 \\
171 \\
(164)
\end{gathered}
\] & \[
\begin{array}{r}
.05 \\
.15 \\
.30 \\
.60 \\
(.7)
\end{array}
\] & \[
\begin{array}{r}
.35 \\
.70 \\
1.20 \\
1.85 \\
3.45
\end{array}
\] & \[
\begin{aligned}
& 20.1 \\
& 20.5 \\
& 20.9 \\
& 21.4 \\
& 21.8
\end{aligned}
\] & \[
\begin{aligned}
& 0.70 \\
& 0.80 \\
& 0.90 \\
& 1.00
\end{aligned}
\] \\
\hline & 36 & 14.5 & \[
\begin{aligned}
& 7 \\
& 7 \\
& 7 \\
& 7
\end{aligned}
\] & 120
143
160
\((190)\) & .05
.15
.30
(.7) & .35
1.60
17 & 20.1
20.3
20.8
23.6 & \[
\begin{aligned}
& 0.63 \\
& 0.75 \\
& 0.84 \\
& 1.00
\end{aligned}
\] \\
\hline & slit & 14.5 & \[
\begin{aligned}
& 7 \\
& 7 \\
& 7 \\
& 7 \\
& 7
\end{aligned}
\] & \[
\begin{gathered}
120 \\
143 \\
160 \\
190 \\
(170)
\end{gathered}
\] & \[
\begin{array}{r}
.05 \\
.15 \\
.30 \\
.70 \\
1.77
\end{array}
\] & \[
\begin{aligned}
& .35 \\
& .60 \\
& 1.05 \\
& 2.0 \\
& 13
\end{aligned}
\] & \[
\begin{aligned}
& 20.1 \\
& 20.3 \\
& 20.8 \\
& 21.6 \\
& 24.2
\end{aligned}
\] & \[
\begin{aligned}
& 0.63 \\
& 0.75 \\
& 0.84 \\
& 1.00
\end{aligned}
\] \\
\hline & \[
37
\] & 14.5 & 7
7
7 & 116
140
\((150)\) & .05
.45
\((.5)\) & \({ }_{13} 3^{.5}\) & 20.3
20.8
25 & 0.77
0.93
1.00 \\
\hline & & 14.5 & 7
7
7 & \[
\begin{aligned}
& 116 \\
& 140 \\
& 150
\end{aligned}
\] & \[
\begin{array}{r}
.05 \\
.30 \\
.30
\end{array}
\] & .5
.8
.8 & 20.3
20.6 & \[
\begin{aligned}
& 0.77 \\
& 0.93 \\
& 1.00
\end{aligned}
\] \\
\hline
\end{tabular}
(...) denotes burst pressure

TABLE 3-2 (e)
PROGRAMS A3 AND A4 - CORRELATION OF FLOV STRESS WITR (YS + UTS) YOR ALL AXIAL CRACKS IN FREE SPAN


TABLE 3-2 (e) (cont \({ }^{\text {' } d) ~}\)
PROGRAMS A3 AND A4 - CORBEEAT:~M FLON STRESS YITH (YS + UTS)
FOR ALL AXILL CRACRS IR FREE SPAN
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{DATA SET} & \multirow[t]{2}{*}{\begin{tabular}{l}
REF \\
\(\mathrm{N}^{\circ}\).
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 2 \mathrm{c} \\
& \text { minf }
\end{aligned}
\]} & \multirow[t]{2}{*}{\(\pi\)} & \multirow[t]{2}{*}{\begin{tabular}{l}
pe \\
bar
\end{tabular}} & \multicolumn{2}{|l|}{\(\mathrm{K}=7.75 \mathrm{apc} /(\mathrm{YS}+\) UTS \()\)} & \multirow{2}{*}{COMMENT} \\
\hline & & & & & RAW & ADJUSTED & \\
\hline & \[
\begin{aligned}
& \text { D5 } \\
& \text { D7 } \\
& \text { D5* } \\
& \text { D6* } \\
& \text { D7* } \\
& \text { D8* } \\
& \text { Y18-4 } \\
& \text { Y18-5 } \\
& \text { F7 } \\
& \text { F8 } \\
& \text { F9 } \\
& \text { F10 } \\
& \text { P15* } \\
& \text { P30* } \\
& \text { P51* } \\
& \text { P53* }
\end{aligned}
\] & 18
8
19 & \[
2.75
\]
\[
2.87
\] & 242
\((.220)\)
281
286
290
286
250
238
270
260
245
282
245
235
228
232 & 0.497
\((>0.451)\)
0.577
0.587
0.595
0.587
0.537
0.511
0.579
0.558
0.526
0.605
0.549
0.526
0.511
0.520 & \[
\begin{aligned}
& 0.487 \\
& 0.565 \\
& 0.575 \\
& 0.583 \\
& 0.575 \\
& 0.526 \\
& 0.501 \\
& 0.567 \\
& 0.547 \\
& 0.515 \\
& 0.593 \\
& 0.538 \\
& 0.515 \\
& 0.501 \\
& 0.510
\end{aligned}
\] & \begin{tabular}{l}
failed at +3 pext to IS abnormally low \\
machined at 0.8 man width \\
prior 0.2 * expansion for 7 and 8
\end{tabular} \\
\hline \(7 / 8^{\prime \prime}-71692\)
fatigue crack
\(\mathrm{f}(\mathrm{RT})=3.65 \mathrm{~mm}\)
\(\mathrm{YS}+\mathrm{UTS}=993 \mathrm{MPa}\) & \[
\begin{aligned}
& \text { N34 } \\
& \text { N33 } \\
& \text { N37 } \\
& \text { N36 }
\end{aligned}
\] & \[
\begin{aligned}
& 15.5 \\
& 18 \\
& 19 \\
& 19.5
\end{aligned}
\] & \[
\begin{aligned}
& 2.46 \\
& 2.75 \\
& 2.87 \\
& 2.93
\end{aligned}
\] & \[
\begin{aligned}
& 278 \\
& 268 \\
& 244 \\
& 233
\end{aligned}
\] & \[
\begin{aligned}
& 0.534 \\
& 0.575 \\
& 0.547 \\
& 0.533
\end{aligned}
\] & \[
\begin{aligned}
& 0.534 \\
& 0.575 \\
& 0.547 \\
& 0.533
\end{aligned}
\] & \\
\hline
\end{tabular}

TABLE 3-2 (e) (cont 'd)
PROGRAMS A3 AND A 4 - CORRELATION OF FLON STRESS WITH (YS + GTS) FOR ALL AXIAL CRACKS IN FREE SPAN


TABLE 3-2 (e) (cont 'd)
PROGRAMS A3 AND A4 - CORRELATION OF FLOW STRESS YITH (YS + UTS) FOR ALL AXIAL, CRACKS IF FREE SPAK

* Adjusted values of \(K\), differing by more than 15 from the average ( 0.545 ) have been disregarded (K<0.46 or K \(K<63\) ).

TABLE 3-2 (f)
PROGRAMS A3 AKD A4 - CORRELATTON OF FLOE STRESS YITR (YS + UTS) FOR ALL AXIAL CRACKS ADJACENT TO TUBESHEET IS \(7 / 8^{\circ}\) OD TUBING (batch 71692; YS + UTS \(=993 \mathrm{MPa} ; f(\) Rt \()=3.65\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline data set & \[
\begin{aligned}
& \text { REF } \\
& \mathbf{N}^{\circ} .
\end{aligned}
\] & \[
\begin{aligned}
& 2 c \\
& \text { men }
\end{aligned}
\] & ¢ & Be bar & \[
\mathrm{K}=\frac{7.75 \mathrm{mpe}}{Y S+\text { UTS }}
\] & RF* & COMMENT \\
\hline \multirow[t]{4}{*}{Flaw tip tangent to tubesheet} & \[
\begin{aligned}
& \mathrm{P} 1 \\
& \mathrm{P} 2 \\
& \mathrm{P} 3
\end{aligned}
\] & 12 & 2.05 & \[
\begin{aligned}
& 418 \\
& 415 \\
& 394
\end{aligned}
\] & \[
\begin{aligned}
& 0.669 \\
& 0.664 \\
& 0.630
\end{aligned}
\] & 1.177 & \\
\hline & \begin{tabular}{l}
P5 \\
P6 \\
P9 \\
P11
\end{tabular} & 16 & 2.51 & \[
\begin{aligned}
& 348 \\
& 320 \\
& 334 \\
& 342
\end{aligned}
\] & \[
\begin{aligned}
& 0.682 \\
& 0.627 \\
& 0.654 \\
& 0.670
\end{aligned}
\] & 1.184 & \\
\hline & \[
\begin{aligned}
& \text { D1 } \\
& \text { D8 } \\
& \text { D1* } \\
& \text { D2* } \\
& \text { D3* } \\
& \text { D4* }
\end{aligned}
\] & 17 & 2.63 & \[
\begin{aligned}
& 335 \\
& > \\
& > \\
& >380 \\
& >312 \\
& > \\
& >
\end{aligned} 317
\] & \[
\begin{array}{ll}
> & 0.688 \\
> & 0.575 \\
> & 0.616 \\
> & 0.640 \\
> & 0.651 \\
> & 0.634
\end{array}
\] & 2.140 & failed at -2 in free span crack tip 1 傫 from TS \\
\hline & \[
\begin{aligned}
& \mathrm{Y} 18 \mathrm{G1} \\
& \mathrm{Y} 18 \mathrm{G} 2 \\
& \mathrm{Y} 18 \mathrm{G3} \\
& \mathrm{D} 3 \\
& \mathrm{D6}
\end{aligned}
\] & 18
18 & 2.75
2.75 & \[
\begin{array}{r}
286 \\
295 \\
272 \\
310 \\
\times \quad 308
\end{array}
\] & \[
\begin{array}{r}
0.614 \\
0.633 \\
0.584 \\
0.665 \\
>
\end{array}
\] & 1.135 & failed at -3 in free span \\
\hline
\end{tabular}

TABLE 3-2 (i) (cont'd)
PROGRAMS A3 AND A4 - CORRELATION OF FLOK STRESS WITE (YS + UTS) FOR ALL AXIAL CRACES ADJACEMT TO TUBESHEET IN \(7 / 8^{\prime \prime}\) OD TUBING (batch \(71692 ;\) YS + UTS \(=993 \mathrm{MPa} ; f(\mathrm{Rt})=3.65 \mathrm{ma}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline DATA SET & \[
\begin{aligned}
& \text { REF } \\
& \mathbf{N O}^{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& 2 \mathrm{e} \\
&
\end{aligned}
\] & m & \[
\begin{aligned}
& \text { pe } \\
& \text { bar }
\end{aligned}
\] & \[
\mathrm{K}=\frac{7.75 \mathrm{mpe}}{\mathrm{YS}+\text { UTS }}
\] & RF* & COMMENT \\
\hline \multirow[t]{3}{*}{Elaw tip tangent to tubesheet} & \begin{tabular}{l}
P13* \\
P14* \\
D4 \\
D7 \\
P60* \\
P7* \\
P8* \\
P9: \\
D5* \\
D6* \\
D7* \\
D8*
\end{tabular} & 19 & 2.87 & \begin{tabular}{c}
257 \\
252 \\
\(0305)\) \\
\(?(220)\) \\
\((\geqslant 235)\) \\
245 \\
252 \\
257 \\
\(>281\) \\
\(>\) \\
\(>\) \\
\(>\) \\
286 \\
\(>\) \\
\hline
\end{tabular} & 0.576
0.564
\((>0.683)\)
\((0.493 ?)\)
\((0.526)\)
0.549
0.564
0.576
0.629
, 0.641
\(>0.650\)
,
0.641 & 21.077 & ```
abnorkally high
abnormally low
slipping ring (unvalid)
    underrolled
    in minimum
    clearance
\(\int\) failed at -2 in tree span
``` \\
\hline & \begin{tabular}{l}
P15 \\
P16 \\
D2 \\
D5
\end{tabular} & 20 & 2.99 & \[
\begin{aligned}
& 254 \\
& 263 \\
& 278 \\
& 242
\end{aligned}
\] & \[
\begin{aligned}
& 0.569 \\
& 0.589 \\
& 0.623 \\
& 0.542
\end{aligned}
\] & 1.044 & \\
\hline & \[
\begin{aligned}
& \text { P17 } \\
& \text { P20 }
\end{aligned}
\] & 24 & 3.46 & \[
\begin{aligned}
& 217 \\
& 203
\end{aligned}
\] & \[
\begin{aligned}
& 0.586 \\
& 0.548
\end{aligned}
\] & 1.030 & \\
\hline
\end{tabular}

TABLES 3-2 (f) (cont'd)
PROGRAMS A 3 AKD A4 - CORRELATLON OF FLOY STRESS WITH (YS + UTS) FOR ALL AXIAL CRACKS ADJACEKT TO TUBESAEET IN \(7 / 8^{\circ}\) OD TUBING (batch \(71692 ; \mathrm{YS}+\mathrm{UTS}=993 \mathrm{MPa} ; ~ J(\) 足t \()=3.65 \mathrm{ma})\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline DATA SET & \[
\begin{aligned}
& \text { REF } \\
& \mathrm{N}^{\mathrm{c}} .
\end{aligned}
\] & \begin{tabular}{l}
\[
2 \mathrm{c}
\] \\
\(\operatorname{man}\)
\end{tabular} & \(\pm\) & \begin{tabular}{l}
De \\
bar
\end{tabular} & \[
\mathrm{K}=\frac{7.75 \mathrm{mpe}}{\mathrm{YS}+\mathrm{UTS}}
\] & RF* & COMMENI \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Elaw tip } \\
& \text { within } \\
& \text { tubesheet }
\end{aligned}
\]} & \[
\begin{aligned}
& \text { P14 } \\
& \text { P18 } \\
& \text { P19 }
\end{aligned}
\] & 16 & 2.51 & \[
\begin{aligned}
& 322 \\
& 292 \\
& 309
\end{aligned}
\] & \[
\begin{aligned}
& 0.631 \\
& 0.572 \\
& 0.605
\end{aligned}
\] & 1.084 & \[
\begin{aligned}
& 20 \text { total length } \\
& 24 \text { total length } \\
& 24 \text { total length }
\end{aligned}
\] \\
\hline & \[
\begin{aligned}
& \mathrm{Y} 24 \mathrm{Cl} 1 \\
& \mathrm{Y} 24 \mathrm{C} 2
\end{aligned}
\] & 18 & 2.75 & \[
\begin{aligned}
& 270 \\
& 272
\end{aligned}
\] & \[
\begin{aligned}
& 0.579 \\
& 0.584
\end{aligned}
\] & 1.046 & \\
\hline & \[
\begin{aligned}
& \text { Y24D1 } \\
& \text { Y24D2 } \\
& \text { Y24D3 } \\
& \text { Y24F1 } \\
& \text { Y24F2 } \\
& \text { P10* } \\
& \text { P11* } \\
& \text { P12* }
\end{aligned}
\] & 19 & 2.87 & \[
\begin{aligned}
& 232 \\
& 250 \\
& 250 \\
& 260 \\
& 245 \\
& 247 \\
& 256 \\
& 256
\end{aligned}
\] & \begin{tabular}{l}
0.520 \\
0.560 \\
0.560 \\
0.582 \\
0.549 \\
0.553 \\
0.573 \\
0.573
\end{tabular} & 1.005 & \begin{tabular}{l}
24 natal length \\
24 man total length \\
24 mai total length \\
\(24 \operatorname{man}\) total length \\
24 mm total length \\
38 me total length underrolled in miniaum clearance
\end{tabular} \\
\hline
\end{tabular}

TABLE 3-2 (f) (cont'd)
PROGRAMS A3 AMD A4 - CORRELATION OF FLOY STRESS XITH (YS + UTS) FOR ALL AXIAL CRACRS ADJACENT TO TUBESHEET IA \(7 / 8^{\prime \prime}\) OD TUBING

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline data SET & \[
\begin{aligned}
& \text { REF } \\
& N^{\circ} .
\end{aligned}
\] & \begin{tabular}{l}
\[
2 c
\] \\
nat
\end{tabular} & 5ill & \[
\begin{aligned}
& \text { De } \\
& \text { bar }
\end{aligned}
\] & \[
K=\frac{7.75 \mathrm{mpe}}{Y S+\operatorname{erS}}
\] & RE * & COMMENT \\
\hline Plaw tip
away frow
tubesheet & \begin{tabular}{l}
P7 \\
P12 \\
P4* \\
P5* \\
P6* \\
P1* \\
P2* \\
P3*
\end{tabular} & 16
19 & \[
\begin{aligned}
& 2.51 \\
& 2.87
\end{aligned}
\] & \[
\begin{gathered}
(342) \\
278 \\
242 \\
242 \\
237 \\
233 \\
(215) \\
235
\end{gathered}
\] & \((0.670)\)
0.545
0.542
0.542
0.531
0.522
\((0.482)\)
0.526 & 0.961 & 8 me from TS
one value abnormally high
tangent to TS but
underrolled (5 mua)
in large clearance
8 min from TS underrolled
in minimus clearance
one value abnormally low \\
\hline
\end{tabular}
* The reinformsent factor (RF) is calculated by 0.98 (average of K\() / 0.545\).

Individua slues of K differing by more than 10 frow the average have been diregarded.

PABLE 3-2 (q)
PROGRAMS A3 AND A4 - CORRELATION OF FLOE STRESS YITH (YS + UTS) FOR ALL AXIAL CRACKS ADJACEKT TO TUBESHEET IN \(3 / 4^{*}\) OD TUBTNG (batch 75317; YS + UTS \(=1086 \mathrm{MPa} ; f(\mathrm{Rt})=3.13 \mathrm{~ms})\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline DATA SET & \[
\begin{aligned}
& \text { REF } \\
& \mathbf{N}^{\circ} .
\end{aligned}
\] & \begin{tabular}{l}
\[
2 c
\] \\
sata
\end{tabular} & * & \begin{tabular}{l}
pe \\
bar
\end{tabular} & \[
\mathrm{K}=\frac{7.75 \mathrm{MPc}}{\mathrm{YS}+\mathrm{UTS}}
\] & RF* & COMMENT \\
\hline \multirow[t]{4}{*}{Flaw tip tangent to tubesheet} & \begin{tabular}{l}
K1 \\
K2 \\
\(K 9\) \\
K 10
\end{tabular} & 14 & 2.55 & \[
\begin{aligned}
& 331 \\
& 314 \\
& 325 \\
& 340
\end{aligned}
\] & \[
\begin{aligned}
& 0.602 \\
& 0.571 \\
& 0.591 \\
& 0.619
\end{aligned}
\] & 1.071 & failed at -2 in free span \\
\hline & \begin{tabular}{l}
K 3 \\
E4 \\
K15 \\
K 16
\end{tabular} & 15 & 2.69 & \[
\begin{gathered}
\geq 330 \\
350 \\
(296) \\
366
\end{gathered}
\] & \[
\begin{gathered}
20.633 \\
0.672 \\
(0.568) \\
0.703
\end{gathered}
\] & 1.204 & crack initiation but tube tailed at -3 in free span abnormally low \\
\hline & \begin{tabular}{l}
K5 \\
K6 \\
K11 \\
K12
\end{tabular} & 16 & 2.83 & & & 21.085 & failed at -2 in free span failed at -2 in free spas failed at -2 in free span failed at -2 in free span \\
\hline & \[
\begin{aligned}
& \text { K7 } \\
& \text { K8 } \\
& \text { K13 } \\
& \text { K14 }
\end{aligned}
\] & 17 & 2.97 & 312
\((336)\)
\(>297\)
278 & \[
\begin{gathered}
0.661 \\
(0.712) \\
, 0.629 \\
0.589
\end{gathered}
\] & 1.126 & \begin{tabular}{l}
abnormally high \\
failed at -3 in free span
\end{tabular} \\
\hline
\end{tabular}
* The reinforcement factor RF is calculated by 0.98 (average of K) \(/ 0.545\).

Individual values of \(\mathbb{K}\) differing by more than 10 \% from the average have been diregarded.

TABLE 3-3 (a)
CORRRLATIOE BETYEEA Of , UTS AWD YS ffroe test results on axial through Vall Flaws

* from table \(2-1\) (values rounded of \(f\) to the next 5 MPa)
table 3-3 (b)
PROGRAMS A3 AND A4 - STATISPICAL ANALYSIS OF Of (YS+UTS)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{9}{|c|}{COMBINATION OE 86 "QUALIFIED" DATA POINTS} \\
\hline & \multicolumn{6}{|c|}{\(7 / 8^{\prime \prime}\) - heat 1} & \multicolumn{2}{|l|}{} & \multirow[t]{2}{*}{\begin{tabular}{|c}
\(7 / 8^{\prime \prime}\) beat 2 \\
PLATED
\end{tabular}} \\
\hline & \multicolumn{4}{|c|}{UNPLATED} & \multicolumn{2}{|r|}{PLATED} & \multicolumn{2}{|l|}{UNPLATED} & \\
\hline & \multicolumn{3}{|c|}{EDM} & CRACK & EDM & Crack & \multicolumn{2}{|r|}{EDM} & EDM \\
\hline & \multicolumn{2}{|r|}{BURST} & funburst & Burst & BURST & gurst & BURST & UnBurst & BURST \\
\hline data set & 1* & 2** & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline \(\left.\right|_{\text {ar }} ^{\text {avg }} \mathrm{A}\) & \(\begin{array}{r}34 \\ 0.561 \\ 0.033 \\ \hline\end{array}\) & \begin{tabular}{c}
8 \\
0.543 \\
0.020 \\
\hline
\end{tabular} & \(|\)\begin{tabular}{c}
4 \\
0.555 \\
0.045 \\
\hline
\end{tabular} & 4
0.547
0.020 & \(\begin{array}{r}6 \\ 0.571 \\ 0.029 \\ \hline\end{array}\) & \begin{tabular}{c}
8 \\
0.584 \\
0.032 \\
\hline
\end{tabular} & \begin{tabular}{|c}
7 \\
0.541 \\
0.015 \\
\hline
\end{tabular} & \begin{tabular}{|c}
9 \\
0.545 \\
0.046 \\
\hline
\end{tabular} & 6
0.603
0.014 \\
\hline \[
\int_{I}^{\mathrm{ar}}
\] & & \[
\begin{gathered}
46 \\
0.557 \\
0.032
\end{gathered}
\] & & \[
10
\] & \begin{tabular}{l}
0.5 \\
0.
\end{tabular} & & & \[
\begin{aligned}
& 43 \\
& 35
\end{aligned}
\] & \\
\hline ADJUSTMENT & \[
x
\] & \[
0.98
\] & & 4 & & \[
\frac{1}{5}
\] & & \[
\frac{1}{98}
\] & \(0.98 \times 0.95\) \\
\hline AVG & & \[
\begin{aligned}
& 0.546 \\
& 0.031
\end{aligned}
\] & & 0.547
0.020 & & \[
\begin{aligned}
& 49 \\
& 29
\end{aligned}
\] & \[
\begin{aligned}
& 0 . \\
& 0 .
\end{aligned}
\] & \[
\begin{aligned}
& 532 \\
& 034
\end{aligned}
\] & \[
\begin{aligned}
& 0.562 \\
& 0.013
\end{aligned}
\] \\
\hline 2 & & \[
0.031
\] & & 0.020 & & \[
29
\] & & & \\
\hline \[
\int_{\Sigma}^{\mathrm{AV}}
\] & & & & \[
\begin{gathered}
64 \\
0.547 \\
0.030
\end{gathered}
\] & & & & & \\
\hline \[
\left.\right|_{\Sigma} ^{\mathrm{nr}} \mathrm{AVG}
\] & & & & & & \[
\begin{array}{r}
80 \\
0.54 \\
0.03
\end{array}
\] & \[
\begin{aligned}
& 44 \\
& 30
\end{aligned}
\] & & \\
\hline \(\left.\right|_{\text {a }} ^{\text {ar }}\) a & & & & & & & & \[
\begin{gathered}
86 \\
0.545 \\
0.030
\end{gathered}
\] & \\
\hline
\end{tabular}
* vithout tabesheet sisulation ** vith negligible effect from tubesheet

TABLE 3-3(c)
PROGRAM A4 - TUBESHEET REINFORCING FACTOR (66 cases)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\emptyset\) & CONDITION & NUMBER OF CASES & \[
\begin{aligned}
& 2 \mathrm{c} \\
& (\mathrm{~mm})
\end{aligned}
\] & \[
\frac{2 c}{f(R T)}
\] & RF \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& 3 / 8^{\prime \prime} \\
& O D
\end{aligned}
\]} & a. flaw tip tangent to tubesheet & \[
\begin{aligned}
& 3 \\
& 4 \\
& 6 \\
& 5 \\
& 9 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& 12 \\
& 16 \\
& 17 \\
& 18 \\
& 19 \\
& 20
\end{aligned}
\] & \[
\begin{aligned}
& 3.29 \\
& 4.38 \\
& 4.66 \\
& 4.93 \\
& 5.21 \\
& 5.48
\end{aligned}
\] & \[
\begin{aligned}
& 1.177 \\
& 1.184 \\
& 1.140 \\
& 1.135 \\
& 1.077 \\
& 1.044
\end{aligned}
\] \\
\hline & b. fla tip within tubesheet & \[
\begin{aligned}
& 3 \\
& 2 \\
& 8
\end{aligned}
\] & \[
\begin{aligned}
& 16 \\
& 18 \\
& 19
\end{aligned}
\] & \[
\begin{aligned}
& 4.38 \\
& 4.93 \\
& 5.21
\end{aligned}
\] & \[
\begin{aligned}
& 1.084 \\
& 1.046 \\
& 1.005
\end{aligned}
\] \\
\hline & c. flaw tip away from tubesheet (distance of farthest point) & 8 & \(\geq 24\) & 26.58 & 0.976 \\
\hline \[
\begin{aligned}
& 3 / 4^{\prime \prime} \\
& 0 D
\end{aligned}
\] & d. flaw tip tangent to tubesheet & \[
\begin{aligned}
& 4 \\
& 3 \\
& 4 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 14 \\
& 15 \\
& 16 \\
& 17
\end{aligned}
\] & \[
\begin{aligned}
& 4.47 \\
& 4.79 \\
& 5.11 \\
& 5.43
\end{aligned}
\] & \[
\begin{aligned}
& 1.071 \\
& 1.204 \\
& 1.085 \\
& 1.126
\end{aligned}
\] \\
\hline
\end{tabular}

TABLE: 3-3 (d)
PROGRAM A4 - TUDESHEET REINFORCING FACTOR
EXPRESSED AS CRITICAL CRACK La NGTH MARGIN
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\bullet\) & 2 C ¢
tum & \(C * / f(R t)\) & m* & RF & m \(=\ldots \times\) RRF & C/f(Rt) & 2 C & \(\underset{\mathrm{mm}}{(2 \mathrm{C})}\) \\
\hline \multirow[t]{6}{*}{\[
\begin{aligned}
& 7 / 8^{\prime \prime} \\
& 00
\end{aligned}
\]} & 15 & 2.055 & 2.397 & 1.247 & 1.922 & 1.495 & 10.9 & 4.1 \\
\hline & 16 & 2.192 & 2.515 & 1.193 & 2.108 & 1.715 & 12.5 & 3.5 \\
\hline & 17 & 2.329 & 2.633 & 1.151 & 2.288 & 1.928 & 14.1 & 2.9 \\
\hline & 18 & 2.466 & 2.751 & 1.118 & 2.461 & 2.130 & 15.5 & 2.5 \\
\hline & 19 & 2.603 & 2.869 & 1.092 & 2.627 & 2.322 & 17.0 & 2.0 \\
\hline & 20 & 2.740 & 2.988 & 1.072 & 2.787 & 2.508 & 18.3 & 1.7 \\
\hline \multirow[t]{6}{*}{\(3 / 4^{\prime \prime}\)
OD} & 12 & 1.917 & 2.279 & 1.317 & 1.730 & 1.263 & 7.9 & 4.1 \\
\hline & 13 & 2.077 & 2.416 & 1.238 & 1.952 & 1.532 & 9.6 & 3.4 \\
\hline & 14 & 2.236 & 2.552 & 1.179 & 2.165 & 1.781 & 11.2 & 2.8 \\
\hline & 15 & 2.396 & 2.691 & 1.134 & 2.373 & 2.027 & 12.7 & 2.3 \\
\hline & 16 & 2.556 & 2.829 & 1.100 & 2.572 & 2.258 & 14.1 & 1.9 \\
\hline & 17 & 2.716 & 2.967 & 1.075 & 2.760 & 2.477 & 15.5 & 1.5 \\
\hline
\end{tabular}
\(C\) and mefer to crack in free span
\(C^{\star}\) and \(m^{\star}\) refer to crack adjacent to tubesheet TS
ii \(=0.514+0.386 \mathrm{exp}(2.25 \mathrm{ctf}(\mathrm{Rt}))+0.866 \mathrm{c} / \mathrm{f}(\mathrm{Rt})\)
\(R E=1+10 \exp (-1.8 \mathrm{c} / / f(\mathrm{Rt}))\)

NUMERICAL VALIES AND ANALYTICAL APPROXIMATIONS OF THE BULGINO FACTOF M. I

Eijure 3-1 (a) Bulging factor "m"

Figure 3-1(b) Universal "two parameter design curve"

Figure \(3-2(a)\) General tube deformation (deflection, ovality at the crack tips) as a function of the final crack length (from tables 3-2(a); (b))

Figure \(3-2\) (c) Flaw width (b) as a function of the final crack length (2c) (from tables 3-2(c); (d))

\[
\begin{aligned}
& \text { PROGRAM A } 4 \text { (PREL|M|NARY) } \\
& \text { - FLAW ADJACENT TO THE TUBESHEET } \\
& \text { - FLAW LOCATED IN THE TUBESHEET (length outside TS.) }
\end{aligned}
\]

Figure 3-2(j) Influence of the proximity of tubesheet Increase in burst pressure
\[
A-3-63
\]

(mm)

Figure \(3-3(\mathrm{a})\) Test specimens after bursting

Figure 3-3(b) Burst pressure for axial crack through wall

Figure \({ }^{3-3}(\mathrm{c}) \quad 7 / 8^{\prime \prime}\) tubes perforating axial cracks in typical areas "Burst Criterion"

mpe \(\frac{\mathrm{R}}{\mathrm{t}}\{\mathrm{MPD}\) \}

Figure \(3^{-3}(\mathrm{e})\) Frequency histogram
\begin{tabular}{|c|c|c|c|}
\hline & 00 & FLAW TIP & PROGRAM \\
\hline+ & \(\frac{3}{4}\) & Tangent to TS & \\
\hline \multirow{1}{6}{} & \(\frac{7}{8}\) & Tangent to TS & \\
0 & \(\frac{7}{8}\) & Whthin TS & BELGATOM \\
0 & \(\frac{7 \cdots}{8}\) & Away fram TS & \\
0 & \(\frac{7}{8}\) & Tangent to TS & \begin{tabular}{l}
FRAMATOME \\
BEt 17,
\end{tabular} \\
\hline
\end{tabular}

\section*{THROUGH WALL CIRCUMFERENTIAL CRACKS}

\subsection*{4.1. THEORETICAL MODEL}

The critical size of a circunferential through-wall flaw can be calculated hy the "collanse load" or "net gection stress" theory (as documented by various authors, e.s. (18), assuming a perfectly plastic material.

This can be formalized in a way similar to the axial case, by defining a "shane factor" \(n\).

Tube rupture (unstable circumterential crack propagation) occurs when the local longitudinal stress no reaches a critical value de lflow stress) typical of the material.

The mominal circumferential stress o is galculated by
\[
P \frac{n R_{1}{ }^{2}}{2 n R t}=\frac{P(R-t / 2)^{2}}{2}=\frac{P}{2}(R / t-1)
\]
where \(p_{1} R_{t}, R\) and \(t\) are as defined for the axial case,

The flow stress is also defined by the same expression as for the axial case
\[
o_{t}=0.515(18+\text { UTS })
\]

The "shape factor" n will be derived hereafter in the case of pressure loading for various confiqurations and assumptions
- with or without lateral support (from FDB or TSP)
- with or without friction effects (from the sealing patch used in test specimens)
- With or without consideration of second order effect from the tube thickness to diameter ratio.

\subsection*{4.1.1. Base mode 1}

It is common practice to consider the simple model as defined by Flg. \& 1 (व).

According to the "perfectly plastic" assumption, the stress diatribution in the cracked aection has a birectangular ghape.

No restraint noe friction are assumed and the tube radius is only considered at its mean value (this neglects second order thickness effect and will be referred to as the "thin wall" assumption).

With the signs convention defined in Figure 4-1 (a), the loads to be considered are (moments being taken with respect to x axis).

Pressure : \(\left[\begin{array}{l}F_{p}=-2 \mathrm{n} \mathrm{Kt} \\ \mathrm{M}_{\mathrm{p}}=0\end{array}\right.\)

Reaction load: \(\left[F_{r}=2\left[(\beta-\alpha) O_{r}-(\pi-\beta)\right.\right.\) or \(] R t\) \(=2\) of (2B-a-II)Rt
\(\begin{aligned} M_{r} & =2 \text { (or } \int_{\beta}^{\beta} \begin{array}{l}\text { rcosede }- \text { or } \int_{\alpha}^{n} \begin{array}{l}n \\ r \cos \theta d \theta] R t \\ \beta\end{array} \\ \\ \end{array}=2 \text { or }(2 \sin \beta-\sin \alpha) R^{2} t\end{aligned}\)

Solving the equilibrium equations
\[
\left[\begin{array}{l}
\bar{E}_{p}+\bar{E}_{r}=0 \\
M_{p}+M_{r}=0
\end{array}\right.
\]
yields \(\alpha\) and \(\beta\), rience
```

the shape factor

```
 \(n=0,0=n / 2 /(\operatorname{arc} \cos (\sin \alpha / 2)-a / 3)\)
the neutral axis position
\[
h=R \cos \beta=R \gamma\left[1-\left(\frac{\sin \alpha}{2}\right)^{2}\right]
\]

\subsection*{4.1.2. General "thin wall" model}

This model upgrades the base model by considering both the friction load induced by the sealing patch and the restraining effect of EDB or TSP.

The model and sion convention are defined by Fig. 4-1 (b).
Experimental evidence indicates that a large, well defined coD value must be reached before unstable propacation can be initiated. This requires a large angular deflection at the crackect section which is prevented by the latexal restraint until plasticity is reached in the tube: thus to allow large deflections, the bending moment resulting from the restraint must reach the plastic threshold value
\[
M_{0}=\frac{I}{V} O_{y}=\Pi t R^{2} \sigma_{y}
\]

However the "true" yield strength should be considered, rather than the conventionnal Ys, which corresponds already to a 0.2 \% plastic strain.

Thus
\[
\text { Mo }=k t R^{2} \sigma_{y} \text { where } k \leq \pi
\]

For practical reasons, another parameter will be used
```

K}=k\mathrm{ Ow/2 ot

```

Thus
\[
M_{0}=2 K \in R^{2} O_{t}
\]
with
\[
K \leq \pi O_{y} / 2 \sigma_{z}
\]

The loads to be considered are now

Solving the equilibrium equations
\[
\left[\begin{array}{l}
F_{v}+F_{t}+F_{b}+F_{r}=0 \\
M_{p}+M_{t}+M_{p}+M_{r}=0
\end{array}\right.
\]
yields.
\[
\left[\begin{array}{c}
\mathrm{n} \\
\mathrm{n}=\frac{\mathrm{A} \sin \alpha-x}{2} /\left(\operatorname{arc} \cos \frac{X \alpha}{2}\right) \\
\mathrm{h}=\mathrm{R} \gamma\left[1-\left(\frac{\mathrm{x} \sin \alpha-K}{2}\right)\right. \\
2
\end{array}\right.
\]
\[
A-4-4
\]
\[
\begin{aligned}
& \text { Pressure }\left[\begin{array}{l}
F_{p}=-2 \text { II Rt } 0 \\
M_{p}=0
\end{array}\right. \\
& \text { Friction }\left[\begin{array}{l}
F_{t}=2 \mathrm{f} \alpha \mathrm{R} 1 \mathrm{p} \\
M_{t}=2 \mathrm{f} \sin \alpha R^{2} 1 p
\end{array}\right. \\
& \text { Bending }\left[\begin{array}{l}
F_{b}=0 \\
M_{b}=2 \mathrm{~K} o_{f} R^{2} \text { t }
\end{array}\right.
\end{aligned}
\]
\[
X=1-\frac{2 \mathrm{R} 1}{\mathrm{n}(\mathrm{R}-\mathrm{t/2})^{2}}
\]

As \(X\) is a function of the unknown \(n\), this allows an analytical solution onty tor t \(t\) (X \# + .

The general case can be solved numgrically.

Care fiust be taken to remain within the limits of applicability of thia aronoach. Indeed for large crack langthe, when a annroaches it. the tube may rupture under pure tension, without any significant general deformation.

This correaponds to a tangent location of the neutral axis \((\beta=11)\), \(s 0\) that only the fonce equilithwith neede to be qolued, leading to
\[
n^{s}=\frac{n}{n-a}\left(1-\frac{a-21 R 1}{n(R-t / 2)^{z}}\right)
\]
and
\[
n \geq n^{*}
\]

It should be noted that, for the purely tensile failure mode, the
"thin Kali" amprovimation la not uaeful.

Taking correct dimensions into consideration yields the following eqtat 1 onte
\[
\left[\begin{array}{l}
\Pi\left(R_{2}^{2}-R_{1}^{2}\right) O+\left(R_{2}^{2}-R_{1}^{2}\right) Q_{r}(\pi-a)+2 \alpha f 1 R_{1} p=0 \\
\Pi R_{1}^{2} p=\pi\left(R_{2}^{2}-R_{1}^{2}\right) \sigma
\end{array}\right.
\]
which are solved into
\[
n^{*}=0_{4} / 0=\frac{\pi 1}{\pi-\alpha}\left(1-2 \frac{\alpha \mathrm{I} 1}{\pi R_{1}}\right.
\]

\subsection*{4.1.3. General "thick wall" mode)}

For "thick walled" pipes \((\mathbb{R} / t \ll 10)\), the above approximation would lead to significa it inaccuracy. For the relatively thin-walled sG tubes, no signif cant difference is expected, except maybe when \(\alpha\) is very large (an/a \(K=0\)) because the cesidual bending inertia of the remaining ligament is neglected by the "thin-wall" model.

Whly the principles of the "thick wall" approach will be outlined hereafter.

The "perfectly plastic" assumption is kept for the material behaviour. The friction and restraint effect are taken into account similarly as for the "thin wall" musal

Three different geometries must be considered in the derivation of the reaction load of the cracked section.

The geometries are defined by Fig. \(4-1\) (c) as a function of the neutral axia location.

The corresponding reaction loads are established as follows

Case 1
\[
\begin{aligned}
& \text { Er }=2 \text { or } \int_{\alpha}^{\pi}\left[\begin{array}{l}
h / \operatorname{cose} \\
R_{1} \\
\text { pdp }
\end{array} \quad-\int_{h / \cos \theta}^{R_{2}} p^{3} \rho\right] d \theta \\
& =\sigma_{\alpha}^{r I}\left[\frac{2 h^{2}}{\cos ^{2} \Theta}-\left(R_{2}^{2}+R_{1}^{2}\right)\right] d \theta \\
& =O_{1}\left[-\left(R_{2}^{2}+R_{1}^{2}\right)(\Pi-a)-2 h^{2} \operatorname{tg} \alpha\right]
\end{aligned}
\]
\[
\begin{aligned}
& \text { Mr } \quad 2 \text { or } \int_{a}^{\pi}\left[\int_{R:}^{h / \cos \theta} p^{2} \cos \theta d p \quad \int_{h / \cos \theta}^{R_{2}} p^{2} \cos \theta d p\right] d 6 \\
& \frac{2 \sigma_{1}}{3} \int_{\alpha}^{\pi 1}\left[\frac{2 h^{3}}{\cos ^{2} \theta}-\left(R_{2}^{3}++^{3}\right) \cos \theta\right] d \theta \\
& =\frac{2 O_{1}}{3}\left[\left(R_{1}^{3}+R_{2}^{3}\right) \sin \alpha-2 h^{3}+g \alpha\right]
\end{aligned}
\]

Case 2
\[
\begin{aligned}
& F_{r}=2 \alpha_{1}\left[\int_{\alpha_{2}}^{\beta} \int_{R_{2}}^{R_{2}} p d p d \theta+\int_{\beta}^{\Pi 1}\left[\int_{R_{1}}^{h / \cos \theta} p d p-\int_{h_{2} / \cos \theta}^{R_{2}} p d p\right] d \theta\right] \\
& \left.=\sigma_{t}\left[\left(R_{2}^{2}-R_{i}^{2}\right)(\beta-\alpha)+\int_{\beta-\cos ^{2} \theta}^{11}-R_{1}^{2}-R_{2}^{2}\right) d \theta\right] \\
& =01\left[2 R_{2}^{2} \beta-\left(R_{2}^{3}-R_{1}^{2}\right) \alpha-\left(R_{2}^{3}+R_{1}^{2}\right) \Pi-2 h^{2} \operatorname{tg} \beta\right] \\
& M_{F}=2 Q_{1}\left[\int_{\alpha}^{\alpha} \int_{R_{1}}^{R_{2}} p^{2} \cos \theta d p d \theta+\int_{\beta}^{\pi}\left[\int_{R_{1}}^{h / \cos \theta} \rho^{2} \cos \theta d p \quad \rho_{2}^{R_{2}} p^{2} \cos \theta d \rho\right] d \theta\right] \\
& =2 o_{1}\left[\frac{R_{2}^{3}-R_{1}{ }^{3}}{3} \int_{\alpha}^{\beta} \cos \theta d \theta+\frac{1}{3} \int_{\beta}^{\pi} \frac{2 h^{3}}{\cos ^{3} \theta}-R_{2}^{3}-R_{1}+\frac{\cos \theta}{1} \theta\right] \\
& \frac{2 \text { ot }}{3}\left[2 R_{2}^{3} \sin \beta-\left(R_{2}^{3}-R_{1}^{3}\right) \sin \alpha-2 h^{3}+g \beta\right]
\end{aligned}
\]

Case 3
\[
\begin{aligned}
& E_{r}=2 \alpha_{f}\left[\int_{\alpha}^{\beta_{2}} \int_{R_{1}}^{R_{2}} p d p d \theta+\int_{B_{2}}^{h_{1}}\left[\int_{R_{1}}^{h_{1} \cos \theta} p d p-\int_{h / \cos \theta}^{R_{2}} \quad \text { adp }\right] d \theta-\int_{\beta_{1}}^{\pi} \int_{R_{1}}^{R_{2}} p d p d \theta\right] \\
& =\text { or }\left[\left(R_{2} 2-R_{1}{ }^{2}\right)\left(B_{1}+B_{2}-\alpha-n\right)+\int_{B_{2}}^{\beta_{1}}\left(\frac{2 h^{2}}{\cos ^{2} \theta}-R_{1}{ }^{2}-R_{2}{ }^{2}\right) d \theta\right] \\
& =\text { or }\left[2\left(R_{2}^{2} B_{2}-R_{1}^{2} B_{1}\right)-\left(R_{2}^{2}-R_{1}^{2}\right)(\alpha+\pi)\right. \\
& \left.+2 n^{2}\left(\operatorname{tg} \beta_{1}-\operatorname{tg} \beta_{2}\right)\right] \\
& M_{c}=2 o_{t}\left[\int _ { \alpha } ^ { \beta _ { 2 } } \int _ { R _ { 1 } } ^ { R _ { 2 } } p ^ { 2 } \operatorname { c o s } \theta d p d \theta \cdot \int _ { \beta _ { 2 } } ^ { \beta _ { 1 } } \left[\int_{R_{1}}^{h / \cos \theta} \begin{array}{l}
\left.p^{2} \cos \theta d p-\int_{h / \cos \theta}^{R_{2}} p^{2} \cos \theta d p\right] d \theta \\
d
\end{array}\right.\right. \\
& \left.-\int_{B_{1}}^{\pi} \int_{R_{1}}^{R_{2}} p^{2} \cos \theta d p d \theta\right] \\
& =2 \text { or }\left[\frac{R_{2}{ }^{3}-R_{1}{ }^{3}}{3} \text { }, \int_{\alpha}^{\beta_{2}} \cos \theta d \theta-\int_{B_{1}}^{\pi} \cos \theta d \theta\right) . \\
& \left.\frac{1}{3} \int_{B_{2}}^{B_{1}}\left(\frac{2 h^{3}}{\cos ^{3} \theta}-R_{2}{ }^{3}-R_{1}{ }^{3}\right) \cos \theta d \theta\right] \\
& =\frac{2 \sigma_{4}}{3}\left[2\left(R_{2}^{3} \sin \beta_{2}-R_{1}{ }^{3} \sin \beta_{1}\right)-\left(R_{2} 3-R_{1} 3\right) \sin \alpha\right. \\
& \left.-2 h^{3}\left(\operatorname{tg} \beta_{1}-\operatorname{tg} \beta_{2}\right)\right]
\end{aligned}
\]

From here on the equilibrium equations a \(n\) be established as before and solved numerically \(c o\) yield \(n\) and \(h\).

Again, \(n\) is cmly valid if
\[
n \geq n^{*}=\frac{\pi}{n-a}\left(1-2 \frac{\alpha f 1}{n R_{1}}\right.
\]

Numerical results are given in Tables \(4-1\) (a) to \(4-1\) (g) for \(7 / 8^{\prime \prime}\) OD tubes and in Tables \(4-1\) (\(h\)) to \(4-1(n)\) for \(3 / 4^{n}\) on tubes. Table 41 (p) also comparea selected results by the "thin wall" and "thick wall" models. It can be verified that the difference is negligible eveent for the largest \(a\) valued.

\subsection*{4.2. EXPERIMENTAL PROFRAMS AND TESI RESULTS}

\subsection*{4.2.1. Objectives}

The experimental program, relative to circumferential through wall cracks, was conducted by BELGATOM in 3 phases with the following apecific objectives

> program Cd : validation of general theory (base model) for unsuppor ed tubes. This phase was simultaneous to phace 2 of the axial crack program completed in 1983 .
> program c2 : preliminary investigation of the effect of lateral support completed in 1987 .
> program e3 : validation of the general analytical model for both supporte. and unsupported tubes completed in 1989 .

\subsection*{4.2.2. Program Cl and test resultg}

This program involved only a preliminary investigation on \(43^{\prime \prime}\) OD tegt gnecimens, each being provided with 2 EDM through wall circumferential flaws (test-pieces \(\mathbb{N}^{\circ}, 9 ; 10 ; 11 ; 12\) in Table 2-2(b)).

The external on langth of defects wovered the range from 15 to 31 mm , corresponding to an angle opening 2 a of 90 through 186 deg. However, the lower value (2 flaws) did not allow circumferential failure (the hoop stress prevailing over the cracked section axial stress) ; test reaults from the remaining 6 flaws are liated in Tables \(4-2\) (a) and 4 2 (b) and illustrated by Fig. 4-2 (a).

\subsection*{4.2.3. Program C2 and test results}

This program was limited to a preliminary investigation of the beneficial effect (increase of ctitical pressure or critical length) provided by lateral restraint.

More specifically, the program was aimed at cross-checking some experimental results presented by WESTINGHOUSE on the effect of an offset of the Elow distribution baffle FDB (see Fig. 4-2 (b)); these results were showing a steep decrease of burst pressure as the result of + lateral offset of the EDB, which BELGATOM considered to be incongistent with the "secondary" loading type (imposed displacement).

Eight tost specimens of \(3 / 4^{\prime \prime}\) OD tubing were pressure bursted under the following conditions

1 without flaw
2 Without lateral restraint \(\{2 \alpha=105\) and 180 deg . of arc)
I with centered lateral restraint (105 deg, of arc)
4 with offset lateral restraint (10 and \(20 \mathrm{~mm}, 105\) and 180 deg. of arc).

The test specimens and testing conditions are further defined in Table 4-2 (c) which also reports the corresponding test results.

The results are also summarized in Fig. 4-2 (c) for comparison to the initial data reported by WESTINGHOUSE. This confirms that an FDB offset does not significantly reduce the beneficial effect of lateral restraint, especially for the larger crack sizes. The large discrepancy with the \(h\) results was explained later on when the associated testing conditions were learned ; no reinforcing patch was used by \(W\) and the reported pressures referred to extrusion of the plastic bladder (without any crack propagation). When a lateral FDB offset is imposed, the flaw mouth is opened even before pressure is applied, so that the "extrusion pressure" is very much lowered while the effective "burst pressure" is not signiticantly affected; thus, the W resulty were so overly conservative as to become useless and even misleading.

For some tests of the phase 2 BELGATOM program, the tube deformations and displacements were also documented as illustrated by Fiqures \(4-2\) (c) to 4-2 (h).

The latter Flgure shows that unstable propagation occurs when the axial extension reaches ahout 1.0 mm in length; mogt of this measured extension corresponds to the plastic deformation of the ligament in the eracked section. This explains why the observed constant value is closer to the oritical CoD measured at both ends of the crack.

\subsection*{4.2.4. Erogram C3 and test results}

Program C3 was initiated by BELGATOM in 1988 as a consequence of some renorted ocourences of circumferential cracking in the tube roll transition area of plants outside Belgium.

This was an incentive to provide less conservative and well documented plugqing limits that could be applied to the Belgian plants in case of similar occurences.

Prograin C3 consists of two subsets of test specimens
the first subset, aimed at the Belgian ateam generators of more immediate concern, used \(7 / 8^{\prime \prime}\) or tubing and investiga'ed a range of crack lengths
- from 120 to 240 degrees of arc, in the unsupported condition
- Irom 180 to 300 degrees of arc, in the supported condition.
the second subset, aimed at extrapolating the first results to the case of \(3 / 4^{n}\) OD tubing, investigated thoroughly a smaller range of crack lengths of direct interest for the establishinent of tube plugging limits, i.e.,
. 165 degrees of arc. in the unsupported candition . 270 and 300 degrees of arc, in the supported condition.

The first ssbet included 25 specimens. Simulation of lateral support was generallv aimed at the combination of Flow Distribution Baffle EDB and first Tube support Plate ISP. A few cases of support by TSP only were also considered. All tests were conducted with no imposac offget from the restraintsy plates. Even the unrestrained specimens were
```

tested within a simulated tubeshent, the circumferential flaw being
located 6 mm outside the constraining collar.
The test specimens and testing conditions are further defined in Table
4-2 (d), which regorts the oorragmonding rast ragultg ag wall.

```

These inelude
```

The burst pressure po, in the }150\mathrm{ to }600\mathrm{ bar range.
The masimum value of tabe lateral deflection, which was
contin rously reconded during pressurization.
The Crack Qpening Displacement CoD, measured by the flaw
width increase (average of both ends) on the failed
specimens.
A short description of the tailure mode fextent of
circumferential propagation).

```

The experimentally derived "shape facte" \(n=\) deto is a:so listed for Iurther compariaon to the - retical approach.

In some capes, the full profile (lateral deflection) of the leformed test snecimens has also hean documented an example io yilustrate 4 by Fig. 4-2 (i). Fig. 4-2 (i) illustrates the burst bebaviour based on video recording.

The second subset includes 17 specimens of \(3 / 4^{\prime \prime}\) OD, of w'ilch only 3 wele tested in the unsupported condition (single value of 165 dearees of arg, selected close to the critical crack size under accidental conditions).

The remaining 14 specimens were tested under a variety of lateral restraint confiqurations. fully representative of model 54 sieam generator geametry.

Flow Distribution Baffle only \&FDB located at 150 mm from tubesheet)
- Tube Support plate only (TSP located at 900 mm from tubesheet)

Combined FDB and TSP.

The effect of a plate offset, in the 10 to 20 ram range, was also investigated for the FDB configuration.

All of these conditions were tested for 2 crack lengths 1270 and 300 legrees of arc, selected in the range of the oritical sizes under accidental conditions.

As for the first subset, all specimens were tested within a simulat d tubesheet, the circumferential flaw being located 6 mm away from the constraining collar.

The test specimens and testing conditions are further defined in Table 4-2 (e), which also reports the corresponding tegt resultg as well

These include
- the burst pressure pe, in the 300 to 600 bar range.
- the maximum value of the lateral load on the restraining plate which was continuously recorded during pressurization; the corresponding moment, at the cracked section, is also reported for comparison with the theoretical approach.
the crack opening displacement COD, measured by the flaw width increase (average of both ends) on the failed specimens.
- a short description of the fallure mechanism with the total. amount of circumferential riopagation.

The experimentally derived "shape factor" \(n=0, / 0\) is also listed for furthar comparison to the theoretical approach.

Fig. 4-2 (k) illustrates a typical record of pressure and load time history for the specimen \(N^{\circ}, 20\).

In a few cases, the full profile (lateral deflection) rf the deformed tegt apecimang has also been iocumented.

\subsection*{4.3. DISCUSSION OF RESULTS}

\subsection*{4.3.1. Phenomenology}

\subsection*{4.3.1.1. Fallure mode}

For all burat tegts (a total of 51 flaws), the reported critical pressure corresponds to unstable propagation: at this pressure, there is an instansanans crack extension at both ends of the initial flaw franging from crack initiation, a fraction of mm long, to full circumferential severancel. Crack arrest, when present, resulta from the quick pressure drop \(C^{*}\) the unconpressible pressurizing medium: th2q woul: never be expected from hot water or gas pressurization.

In eakes of small flaws, typically 105 degrees of arc, the general swelliig of the tube under the verv high burst pressure may lead to a prevalifng axial crack failure initiated at one of the circumferential flaw enis (resulting in a "flap behaviour").

Stable rack growth was generally not observed, as evidenced by visual examination and/or video recording of the flaw behaviour during pressure build-up.
final examination of either
- the non tailed flaw for those samples containing two identical defects
- the non tailed flaw when the test was arrested through leakage (usually with extrusion of the reinforcing patch) at a pressure cloge to the expected burst value.

However a small amount of stable crack initiation was occasionally reported.

Fracture appearance was typically ductile, with \(45^{\circ}\) shear lips and significant wall thinning, as for the axial case.

\subsection*{4.3.1.2. Plastic deformations}

Local plastic deformations are observed before unstability is reached, but to a lesser extent than for the axial case.

The most typical feature is the blunting of the flaw tips, or crack opening Displacement con, incraasing un to a fairly conatant failure value of about 1 mm for EDM flaws (no testing was performed with sharper corrosion or fatigue cracks).

\section*{4,3.1,3. Sealing patch behaviour}

At the burst pressure, leaktightness is lost through perforation of the plastic bladder and the metal patch (1 or 2 shims) may either stay intact in place or be extruded, without any tearing, through the opening flaw tear along the crack in the ofrcumferential direction teat in a mixed mode of axial and circumferential components with occasional ejection of a small detached part.

The first behaviour is usually associated with the lower burst pressures (tvpically less than 300 bar).

The sealing patch behaviour cleariy intluences the burst pressure value, especially for the case of the longest flaws. The influence of the corresponding friction load can be taken into account in the analytical model and is further discussed in Section 4.3 .2 . hereafter.
4.3.1.4. Effect of loading path

In cases where a test was interrupted by full unloading at a pressure level elage ta tha expertad failure value, additional failure appeared to be premature (bursting at a pressure equal to or lower than the initial one).

This oligocyclic plastic fatigue process may have reduced somewhat the renorted burst pressures and contributes some conservatism to the experimental program, as already commented for the axial case.

\subsection*{4.3.1.5. Load on lateral reatraint}

Loads measured on the restraining plates FDB or TSP are a quasi linear function of oresmure until plastic deformation is reached in the full (uncracked) tube section isee Fig. 4-3 (a)).

\subsection*{4.3.2. Model validation with and without lateral restraint}

All experimentally derived values of the "shape factor" \(n=0\) /o were blotted as a function of the angular crack length (Fiq. 4-3 (b)) and zompared with the predicted model values as discussed under section 4. 1 .

The friction factor \(f\) was assumed to lie in the 0.1 to 0.2 range.

For the supported configurations (lateral restraint from simulated FDB and/or TSP), an appropriate value of the \(K\) parameter was selected according to the following procedure.

For a \(3 / 4^{\prime \prime}\) tube \(O D\), the section modulus is
\[
\frac{I}{v}=\frac{R_{2} 4-R_{1} 4}{4 R_{8}}=83.210^{-9} \mathrm{~m}^{3}
\]
where \(R_{2}\) and \(R_{1}\) denote respectively outside and inside radius of the tube.

For subset 2 of program C3, the only part where the restraining load was measured and documented, the yield strength is 346 MPa , leading to
```

I
(-) Oy = 29 Nm

```
and a \(K\) value may be defined by
 \(K=\frac{o_{y} M_{0}}{2 \text { ot }_{29}^{29}}=0.01065 \mathrm{M}_{0}\)
where \(M_{0}\) is the measured value of the restraining bending moment.

Average measurements yield
\(M_{0}=73 \mathrm{Nm}\) for \(F D B\) support
54 Nm for TSP support
With colresponding \(k\) values of 0.78 and 0.58 , respectively.

This led to the selection of \(K=0.6\) which is shown by Fig. \(4-3\) (b) to compare fairly well with the full set of experimental data.

Thus \(K=0.6\) cit: be considered as a practically lower bound value which ean he used (with \(f=0\)) in theoretical analvges.

Table 4-1 (a)
NET SECTION STREWG THTCK WATL MODEL FOR \(7 / 8^{\circ}\) OD

CIRCUMEERENTIAL CRACK - NEUTRAL AXIS aHd SHABL FACTUR FOR K \(=0\)

Table 4-1 (b)
NET SECTION STRESS - THICK WALL MODEL FOR 7/8" OD

CIRCUMFERENTIAL CRACK - NEUTRAL AXIS and SHAPE FACTOR FOR K \(=.5\)

Table 4-1 (c)
NET SECTION STRESS THICK WALL MODEL EOR \(/ / 8^{\prime \prime}\) OD

CIRCUMFERENTIAL CRACK - NEUTRAL AXIS and SHAPE FACTOR FOR K = . 6

Table 4-1 (d)
NET SECTION STRESS TIICK WAIL MODEL FOR 7/8" OD

CIRCUMFERENTIAL CRACK - NEUTRAL AXIS and SHAPE FACTOR FOR K = . 7

Table 4-1 (e)
NET SECTION STREAS TTtCK WATL MODEL HOR \(/ / 8^{\circ}\) OD

CIRCUMEERENTIAL CRACK - NEUTRAL AXIS and SHAPE FACTOR FOR K \(=.8\)

Table 4-1 (f)
NET SECTION STRESS THTCK WALT MODEL FOR 7/8"OD

CIRCUMFERENTIAL CRACK - NEUTRAL AXIS and SHAPE FACTOR FOR K = . 9

Table 4-1 (q)
NET SECTION STRESE THICK NALL MODEL FOR 7/8" OD

CIRCUMFERENTIAL CRACK - NEUTRAL AXIS and SHAPE FACTOR FOR K \(=1\)

Table 4-1 (h)
NET SECTION STRESS - THICK WALL MODEL FOR \(3 / 4^{\prime \prime}\) OD

CIRCUMFERENTIAL. CRACK - NEUTRAL AXIS and SHAPE FACIOR FOR K \(=0\)

Table 4 (i)
NET SECTION STRETS THTCK WAC, MODEL, FOR 3/4" OD

CTRCUMFERENTIAL CRACK - NEUTRAL AXIS and SHAPE FACTOR FOR K = . 5

Table 4-1 (j)
NET SECTION STRESS THTCK WALL MODEL. FOR 3/4" OD
C. REF FERENTIAL CRACK - NEUTRAL AXIS and SHAPE FACTOR FOR K \(=.5\)

Table 4-1 (k)
NET SECTION STREAS THICK WAL MODEL FOR 3/4"OD

CIRCUMEERENTIAL CRACK - NEUTRAL AXIS and SHAPE FACIOR FOR K \(=, 7\)

\[
A-4-28
\]

Table 4-1 (1)
NET HECPION STRESS THTCK WALL MODEL FOR \(3 / 4^{\prime \prime}\) OD

CIRCUMFERENTIAL CRACK - NEUTRAL AXIS and SHAPE FACTOR FOR K \(\% .8\)

Table 4-1 (m)
NET SECTION STRESA THTCK WALL MODEL, FOR \(3 / 4^{*}\) OD

CIRCUMFERENTIAL CRACK - NEUTRAL AXIS and SHAPE FACTOR FOR K \(=.9\)

IMAGE EVALUATION TEST TARGET (MT-3)

Table 4-1 (n)
NET SECTION STRESS - THICK WALL MODEL FOR 3/4" OD

CIRCUMFERENTIAL CRACK - NEUTRAL AXIS and SHAPE FACTOR FOR \(K=1\)

Table 4-1 (p)
CIRCUMFDRENTIAL THROUGH WALL CRACKS IN 7/8* OD TUBE CA\&CULATEF VALUES OE \(a / 0,=1 / n\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(2 \times\)} & \(f=0\) & 0 & 0 & 0 & 0 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\
\hline & \(k=0\) & 0.6 & 0.7 & 0.8 & 0.9 & 0 & 0.6 & 0.7 & 0.8 & 0.9 & 0 & 0.5 & 0.7 & 0.8 & 0.9 \\
\hline 120 & 0.382
0.381 & 0.583
0.581 & \multicolumn{3}{|l|}{AXIAL FAILIRE} & 0.422
0.422 & \multicolumn{4}{|l|}{AXLAL FAULIRE} & \[
\begin{aligned}
& 0.464 \\
& 0.472
\end{aligned}
\] & \multicolumn{4}{|l|}{AXTAL,} \\
\hline 150 & 0.263
0.262 & 0.468
0.466 & 0.500
0.498 & 0.532
0.530 & 0.562
0.562 & \(0.29 \%\)
0.296 & 0.520
0.524 & 0.556
0.560 & 0.591
0.595 & & 0.334
0.341 & 0.506
0.597 & \multicolumn{3}{|l|}{FAItLes} \\
\hline \multirow[t]{2}{*}{180} & 0.167 & 0.373 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.405 \\
& 0.404
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.437 \\
& 0.436
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.469 \\
& 0.468
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.192 \\
& 0.191
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.421 \\
& 0.424
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.458 \\
& 0.461
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.493 \\
& 0.498
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.528 \\
& 0.534
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.220 \\
& 0.225
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.484 \\
& 0.495
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.525 \\
& 0.537
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.565 \\
& 0.580
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.582 \\
& 0.582
\end{aligned}
\]} \\
\hline & 0.166 & 0.371 & & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{210} & \multirow[t]{2}{*}{c.0.0\%} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.301 \\
& 0.299
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.333 \\
& 0.331
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.365 \\
& 0.363
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.394 \\
& 0.395
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.111 \\
& 0.111
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.344 \\
& 0.346
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.381 \\
& 0.383
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.417 \\
& 0.420
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.454 \\
& 0.457
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.130 \\
& 0.133
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.401 \\
& 0.410
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.400 \\
& 0.454
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|l}
0.484 \\
0.498
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.500 \\
& 0.500
\end{aligned}
\]} \\
\hline & & & & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{240} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.049 \\
& 0.048
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.250 \\
& 0.248
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.281 \\
& 0.280
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.311 \\
& 0.312
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.333 \\
& 0.333
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.059 \\
& 0.056
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.289 \\
& 0.289
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.324 \\
& 0.327
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.359 \\
& 0.364
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.368 \\
& 0.378
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.067 \\
& 0.068
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.339 \\
& 0.347
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.381 \\
& 0.391
\end{aligned}
\]} & \multirow[t]{2}{*}{0.411
0.417} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.411 \\
& 0.411
\end{aligned}
\]} \\
\hline & & & & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{270} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.021 \\
& 0.019
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.215 \\
& 0.215
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.250 \\
& 0.247
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.250 \\
& 0.250
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.250 \\
& 0.250
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.024 \\
& 0.023
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.251 \\
& 0.253
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.280 \\
& 0.282
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.280 \\
& 0.280
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.280 \\
& 0.290
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.029 \\
& 0.028
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.296 \\
& 0.306
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.318 \\
& 0.318
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.318 \\
& 0.318
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.318 \\
& 0.318
\end{aligned}
\]} \\
\hline & & & & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{300} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.007 \\
& 0.005
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.165 \\
& 0.166
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.166 \\
& 0.166
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.166 \\
& 0.166
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.166 \\
& 0.166
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.009 \\
& 0.006
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.189 \\
& 0.189
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.189 \\
& 0.189
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.189 \\
& 0.189
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
0.189 \\
0.189
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.010 \\
& 0.008
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.218 \\
& 0.218
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.218 \\
& 0.218
\end{aligned}
\]} & \multirow[t]{2}{*}{0.218
0.218} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.218 \\
& 0.218
\end{aligned}
\]} \\
\hline & & & & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{330} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.002 \\
& 0.000
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.083 \\
& 0.083
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|l|l}
0.083 \\
0.083
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.083 \\
& 0.083
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.083 \\
& 0.083
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.003 \\
& 0.000
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.096 \\
& 0.096
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.096 \\
& 0.096
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.096 \\
& 0.096
\end{aligned}
\]} & \multirow[t]{2}{*}{0.006} & \multirow[t]{2}{*}{0.003
0.001} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.113 \\
& 4.112
\end{aligned}
\]} & 0.113 & 0.113 & \multirow[t]{2}{*}{0.113
0.113} \\
\hline & & & & & & & & & & & & & 0.113 & 0.113 & \\
\hline
\end{tabular}
Fipures within boldlines corresmond to tensile faliz.

Table 4-2 (a)
PROGRAM CI
TUBE DIAMETER : \(3 / 4^{\prime \prime}\) (HEAT 9866) M3 UNSUPPORTED GEOMETRY

* The "shape factor" is calculated by \(n=\) of \(/ 0\)
 \(\left[\sigma_{t}=0.515(Y S-\right.\) UTS \()=0.515(425+730)=595 \mathrm{MPa}\)

Table 4-2 (b)
PROGRAM C1
MEASUREMENTS OF : C.O.D. (\(\delta\)) ; SLIT OPENING (b) AND BULGING (mas) VERSUS INTERNAL PRESSURE (circumerential through wall flavs)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Material Index} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Test-piece } \\
& \text { Number } \\
& \text { and type }
\end{aligned}
\]} & \multirow[t]{2}{*}{Slit
length length
(国南)} & \multirow[t]{2}{*}{Sealing system} & P & \(\delta\) & b & Dmax & \multirow{2}{*}{\(\mathrm{p} / \mathrm{Pmax}\)} \\
\hline & & & & bar & mitil & 10 m & m & \\
\hline \multirow[t]{6}{*}{M3} & \multirow[t]{2}{*}{10} & 31 & 12
12
12
12 & \[
\begin{aligned}
& 290 \\
& 330 \\
& 380 \\
& 385
\end{aligned}
\] & \[
\begin{array}{r}
.05 \\
.10 \\
.30 \\
1.0
\end{array}
\] & \[
\begin{array}{r}
.50 \\
.75 \\
1.2 \\
3.2
\end{array}
\] & 19.3 & \[
\begin{aligned}
& 0.75 \\
& 0.86 \\
& 0.99 \\
& 1
\end{aligned}
\] \\
\hline & & 30 & 12
12
12
12
12 & \[
\begin{aligned}
& 290 \\
& 330 \\
& 380 \\
& 385 \\
& 442
\end{aligned}
\] & \[
\begin{aligned}
& .05 \\
& .10 \\
& .15 \\
& .30 \\
& .8
\end{aligned}
\] & \[
\begin{array}{r}
.45 \\
.50 \\
.80 \\
1.10 \\
2.10
\end{array}
\] & 19.15 & \[
\begin{aligned}
& 0.65 \\
& 0.75 \\
& 0.86 \\
& 0.87 \\
& 1
\end{aligned}
\] \\
\hline & \multirow[t]{2}{*}{11} & 21.5 & 7
7
7
11
11
11
11 & \[
\begin{aligned}
& 373 \\
& 425 \\
& 465 \\
& 475 \\
& 507 \\
& 550 \\
& 565
\end{aligned}
\] & \[
\begin{aligned}
& .05 \\
& .10 \\
& .15 \\
& .20 \\
& .25 \\
& .75 \\
& .8
\end{aligned}
\] & \[
\begin{aligned}
& .50 \\
& .65 \\
& .70 \\
& .75 \\
& .80 \\
& 1.8 \\
& 4.8
\end{aligned}
\] & 19.1
19.2
19.2
19.2
19.3
19.9
20.4 & \[
\begin{aligned}
& 0.66 \\
& 0.75 \\
& 0.82 \\
& 0.84 \\
& 0.90 \\
& 0.97 \\
& 1
\end{aligned}
\] \\
\hline & & 20 & \[
\begin{array}{r}
7 \\
7 \\
7 \\
11 \\
11 \\
11 \\
11 \\
11
\end{array}
\] & \[
\begin{aligned}
& 373 \\
& 425 \\
& 465 \\
& 475 \\
& 507 \\
& 550 \\
& 565 \\
& 612
\end{aligned}
\] & \[
\begin{array}{r}
.05 \\
.05 \\
.10 \\
.10 \\
.15 \\
.20 \\
.45 \\
1.0
\end{array}
\] & \[
\begin{aligned}
& .45 \\
& .50 \\
& .55 \\
& .55 \\
& .55 \\
& .75 \\
& 1.3 \\
& 2.5
\end{aligned}
\] & 19.1
19.2
19.2
19.2
19.2
19.5
19.7
20.6 & \[
\begin{aligned}
& 0.61 \\
& 0.69 \\
& 0.76 \\
& 0.78 \\
& 0.83 \\
& 0.90 \\
& 0.92 \\
& 1
\end{aligned}
\] \\
\hline & 28 & 23 & 12
12
12 & \[
\begin{array}{r}
427 \\
500 \\
548
\end{array}
\] & .05
.15
.75 & .60
.80
1.8 & 19.7 & \[
\begin{aligned}
& 0.75 \\
& 0.87 \\
& 0.96
\end{aligned}
\] \\
\hline & & 23 & 12
12
12
12 & 427
500
548
572 & .05
.10
.25
.9 & .45
.55
.90
5.6 & & \[
\begin{aligned}
& 0.75 \\
& 0.87 \\
& 0.96 \\
& 1
\end{aligned}
\] \\
\hline
\end{tabular}

Table 4-2 (c)
PROGRAM C2
Tube diameter: \(3 / 4^{\prime \prime}\) (*)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Test } \\
\#
\end{gathered}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
Crack length \\
2 a (deg.)
\end{tabular}} & \multirow[t]{2}{*}{FDB support.} & offset & Pe & \multirow[t]{2}{*}{Failure mode} \\
\hline & & & (mm) & bar & \\
\hline 1 & - & X & 0 & \(>660\) & no failure flarge bulging) \\
\hline 2 & 180 & - & - & 240 & propagation (4 mm) \\
\hline 3 & 180 & X & 0 & 520 & propagation (2 mm) \\
\hline 4 & 180 & X & 10 & \(>480\) & \[
\left(\begin{array}{l}
\text { leakage }(\mathrm{COD}= \\
1.6-0.55= \\
1.05 \mathrm{~mm})
\end{array}\right.
\] \\
\hline 5 & 105 & X & 10 & 620 & axial crack (17mm) \\
\hline 6 & 180 & X & 20 & 490 & propagation (2 mm) \\
\hline 7 & 105 & & & 555 & axial crack (19mm) \\
\hline 8 & 105 & X & 20 & 585 & axial crack (18mm) \\
\hline
\end{tabular}
(*) undocumented origin

Table 4-2(d)
PROGRAM C3
TUBE DIAMETER \(7 / 8^{*}\)
(TEST PERFORMED WITH 1 SHIA OE 0.13 mm , EXCEPT AS NOTED)

* ph "shape factor" is calculated by \(n=\sigma_{e} / \sigma\)
vith \(\mathrm{T}^{0 \mathrm{f}}=0.515 \quad(\mathrm{YS}+\) UTS \() \quad \begin{array}{ll}=0.515(276+655) & =480 \mathrm{MPa} \text { for } \mathrm{Mr} .1 \text { to } 15 \text { (heat 71383) } \\ =0.515(292+701) & =510 \mathrm{MPa} \text { for Mr. } 22 \text { to } 32 \text { (heat 71692) }\end{array}\) \(L_{a}=\mathrm{p} / 2(2 / t-1)=3.62 \mathrm{p}\)

PROCRAK \(\mathrm{C3}\)
TUBE DIAMETER 3/4" (HEAT 70699)
(TEST PERFORMED WITE 1 SHIM OF 0.13 man, EXCEPT AS NOTED)

* The "shape factor" is calculated by \(n=\sigma_{t} / \sigma\) with \(\quad a=p / 2(R / t-1)=3.62 p\)
\(a=p / 2(R / t-1)=3.62 p\)
\(a f=0.515(Y S+U T S)=0.515(346+740)=560 \mathrm{MPa}\)

FIG \(4.1(a)\)

Figure \(4-1(\mathrm{~b})\) Net section stress - thin wall model

Figure 4-1 (c) Net section stress - thick wall model
\[
\text { PROGRAM C. } 1
\]

Figure 4-2(a) Circumferential through wall flaws Inconel \(3 / 4^{\prime \prime} O D\)
\[
A-4-40
\]

Figure 4-2(b) Bending stresses in tube roll transition region due to tubesheet - FDB alignment offset (ठ)
(NOTE : DIMENSIONS EXAGGERATED FOR CLARITY OF ILLUSTRATION)

Figure 4-2(c) Circumferential through wall flaws Inconel \(3 / 4^{\prime \prime}\) OD

\section*{PROGRAM C. 2}

Figure 4-2 (d) Unflawed test specimen Inconel 3/4" OD

2.1 Effect of increased pressure.

3.) Effeci of further pressure increase

\(P=P_{c}\)
4) Dressure ceaches critical value

Figure \(4-2(f)\) Schematic illustration of infiuence of a FDB offset on the burst of a tube with \(105^{\circ}\) circ. crack

Figure \(4-2(\mathrm{~h})\) Burst testing with FDB

\section*{PROGRAM C. 3 (Subset 1.)}

Figure 4-2 (j) Program C3 (gubset 1) - pictures from video recording

PROGRAM C3.(Subset 2.)
TEST SPECIMEN No. 20

Figure \(4-2(k)\) Circumferential through wall flaws. Typical record of pressure and load - Time history

\section*{PROGRAM C3.(Subset 2.) TEST SPECIMEN No. 20.}

Figure \(4-3(4)\) Circumferential through wall flaws. Lateral restraint load as a function of pressure

Figure 4-3(b) Circumferential through wall cracks wich and without lateral restraint, Shape factor \(n\)

\section*{Section 5}

\section*{REFERENCES}
1. Goodier J.N. and Field, F.A.

American Inst. Mining Met, ancl Petrol Eng. "Eracture of Solids" 1963 Wiley, New York
2. Burdekin F.M. and Stone, D.E.W.
J. Strain Anal. 1,145 (1966)
3. Fol as E.S.
"The Stresses in a Cylindrical Shell Containing an Axial Crack" ARL 64-174, Aerospace Research Laboratories (Oct. 1964)
4. Krenk S.
"Influence of Transverse Shear on an Axial Crack in a
Cylindrical Shell"
Int. J. of Fracture 14, No 2 (1978)
5. Klefner J.F.. Maxey W.A., Eiber R.J. and Duffy A.R. "Failure Stress Levels of Flaws in Pressurized Cylinders ASTM STP 536
6. Schulze H.D., Togler G, and Bodmann E.
"Fracture Mechanics Analysis on the Initiation and Propagation of Circumferential and Longitudinal Cracks in Straight Pipes and Pipe Bends*
Nuc1. Eng, and Design 58 (1980)
7. Erdogan F.
"Ductile Fracture Theories for Pressurized Plpes and Containers" Int. J. Pres. Ves. \& Piping 4 (1976)
8. Eiber R.J., Maxey W.A., Duffy A.R. and Atterbury I.J. "Investigation of the Initiation and Extent of Ductile pipe Rupture"
Battelle Memorial Institute Report BMI ~ 1866 (1969)
9. Largson H. and Bernard J.
"Eracture of Longitudinally Cracked Ductile Iubes"
Int. J. Pres. Ves. \& Piping, 6 (1978)
10. 2iebig \(H\). and Fortmann F.
"Eracture Behaviour of Ferritic and Austenitic steel Pipes"
2nd Int. Conf. SMIRT, Berlin, 1973 (paper F 4/8)
```

11. Connors D.C. and Darlaston B,J.L.
"Factor's of the Fail Safe Approach to Pressure Vessel
Assessment" in I. Mech. E. Conference Publications 1978-10
"Tolerance of Flaws in Pressurized Components" (paper C 101)
12. Roark R.J. and Young W.
"Formulas for Stress and Strain" (fifth ed.)
13. P. Hernalsteen
"Evaluation of Critical Lengths for Ihrough Thickness Axial
Cracks in Steam Generator Tubing"
6th Int, Conf. SMIRT, Paris, }1981\mathrm{ (paper F 7/6)
14. P. Hernalsteen
"Evaluation of Critical Sizes for Defects in Small Diameter
Tubing"
7th Int. Conf. SMIRT, Chicago, 1983 (paper G/E 4/3)
15. J.P. Hutin
"EDF Steam Generator Surveillance and Maintenance"
EPRI Workshop on PWSCC remedial measures, Clearwater (February
1989)
16. Henry B., Bernard J. and Gieb Ph.
"Fatique Crack Growth in Austenitic Stainless Steel Structures"
znd Int. Conf. SMIRT, Berlin, 1973 (paper E 4/7)
17. Cochet
"Applicetion of the Leak before Break Concept to Steam Generator
Tubes"
NUCSAFE 88, Avignon (October 1988)
18. C. Ruiz and R.J.S. Corian
"Practical Application of Extremal Eldstic. Ideally Plastic
Solutions for the Assessment of the Severity of Cracks"
Int. J. Pres, Ves. \& Piping 10 (1982)
```
```


[^0]:    
    
    
    
    
    

[^1]:    N. B. : $10 \mathrm{deg}=1.72 \mathrm{~mm}$ (nominal geometry) as measured
    $=1.75 \mathrm{~mm}$ (unfavourable geometry)
    inner side

[^2]:    * Secondary sample analyses are performed at room temperature and atmosephemie mpedetra. Therefore leak pates in kath amd in i/h oan be considered as equivalent

