MIDDLE SOUTH SERVICES，INC．／日ロX EIDロロ／NEW ORLEANS，LA．7ロIEI／（5ロ4）529－52E2

```
THOMAS W.SCHNATZ,PH, D.,年E
    DIRECTOR
    NUCLEAR ENGINEEAING
```

January 5， 1983

```
Mr. Cecil 0. Thomas, Chief
Standardization and Special
    Projects Branch
Division of Licensing
U. S. Nuclear Regulatory
    Conmission
Washington D. C. }2055
```

SUBJECT：Request Number 2 for Additional Information on RETRAN－． 01
Dear Mr．Thomas：
Attached are the responses to the questions transmitted via your letter of October 15，1982．You should be aware that although your letter refer－ inced EPRI NP－1850－CCM（RETRAN－02 Manual），the questions themselves refer－ inced，through the equation numbers，EPRI CCM－5（RETRAN－01 Manual）．The re－ sponses to the questions，therefore，are based on EPRI CCM－5 and not on EPRI NP－1850－CCM．

Should you have any questions，please give me or Mr．Tom Temple a call at（504）569－4568．

Sincerely，

Thomas W．Schnatz
TWS／TLT／rjm
Cc：Mr．J．Carter
Mr．P Abramson
Mr．G．Perry
Mr．P．Bergeron
Mr．R．Cross
File：041－01
066－31

8301110544

 CDR TOPRP EXIEPRI```
CHAPTER VIII. Numerical Solution Methods
```

(1) Explain the order of the operators on the right hand side of eq. (vilt.1-7).
(1) This question addresses the same item as Question VIII-1 of the NRC Request Number 1 . See the response for that question.
(2) (a) How is the $F_{j}^{n}$ term in the momentum equation, sq. (i:l:1.1-3) derived?
(b) Why are there no cosine factors for the gravity tarm?
(c) Justify the second term. Define Sgn?
(2a) This question addresses the same item as Question VIII-? of the NRC Request Number 1 . See the response for that question.
(2b) This question addresses the same item as Question $\mathrm{V}: 11-2$ of the NRC Request Number 1. See the response for that question.
(2c) This term represents the junction form losses. Sgn( $w_{j}$ ) signifies the sign attached to $\mathrm{Wf}_{\mathrm{f}}$.

# MIDDLE SOUTH SERVICES，INC．／日ロX EIDDロ／NEW GRLEANS，LA．7ロIEI／（5ロ4）529－5252 

```
THGMAS W. SCHNATZ,目H, D,N E
DIREETOR
 NUCLEAR ENGINEERING
```

January 5， 1983

Mr．Cecil 0．Thomas，Chief Standardization and Special

Projects Branch
Division of Licensing
U．S．Nuclear Regulatory
Commission
Washington D．C． 20555
SUBJECT：Request Number 2 for Additional Information on RETRAN－． 01
Dear Mr．Thomas：
Attached are the responses to the questions transmitted via your letter of October 15，1982．You should be aware that although your letter refer－ ended EPRI NP－1850－CCM（RETRAN－02 Manual），the questions themselves refer－ inced，through the equation numbers，EPRI CCM－5（RETRAN－01 Manual）．The re－ sponses to the questions，therefore，are based on EPRI CCM－5 and not on EPRI NP－1850－CCM．

Should you have any questions，please give me or Mr．Tom Temple a call at（504）569－4568．
Sincerely,


Thomas W．Schnatz
TWS／TLT／rjm
CC：Mr．J．Carter
Mr．P Abramson
Mr．G．Perry
Mr．P．Bergeron
Mr．R．Cross
File：041－01
066－31
8301110544
0105
CDR TOPRP EXIEPRI
C
PD
SERVING：MIDOLE SQUTH UTILITIES，INC．• ARKANSAS POWEA \＆LIGHT COMPANV • LOLISIANA POWEA \＆LIGHT CDMPANY • MISSISSIPPI POWER \＆LIGHT CDMPANY • NEW OALEANS PUELIC SERVICE INC．

## CHAPTER VIII, Numerical Solution Methods

(1) Explain the order of the operators on the pight hand side of eq. (vill.1-7).
(1) This question addresses the same item as Question VI:11-1 of the NRC Request Number 1 . See the response for that question.
(2) (a) How is the F? term in the momentum equation, sq. (V:11,1-9) derived?
(b) Why are there no cosine factors for the gravity tarm?
(c) Justify the second term. Define Sgn?
(2a) This question addresses the same item as Question V11:-2 of the NRC Request Number 1 . See the response for that question.
(2D) This question addresses the same item as Question $V:: 11-2$ of the NRC Request Number 1. See the response for that question.
(2c) This term represents the Junction form losses. Sgn( $x_{f}$ ) signifies the sign attached to Wf .

## RETRAN-01 REVIEW

At the request of the Electric Power Research Institute, Energy Incorporated has reviewed the questions submitted by the U. S. Nuclear Regulatory Commission ${ }^{(1)}$ to the Utility Group for Regula tory Application. The information requested in Reference 1 is associated with the RETRAN-01 Theory Manual (2)

Many questions in Reference 1 are the same as had been posed previously ${ }^{(3)}$ for the RETRAN-02 Theory Manual ${ }^{(4)}$, except that the references (e.g., equation numbers) are for the RETRAN-C1 Manual ${ }^{(2)}$ instead of the RETRAN-02 Manual ${ }^{(4)}$. Since questions of this type have been answered previously ${ }^{(5)}$, the response presented in this enclosure indicates the response to the corresponding question given in Reference 5. In these cases, reference is made to ".... Question I-A of the NRC Request Number 1."

## REFERENCES

(1) Miller, J. R., "Request Number 2 for Additional Information on EPRI NP-1850-CCM", USNRC letter to T. W. Schnatz, UGRA, October 15 , 1982.
(2) Moore, K. V. et al., "RETRAN - A Program for One-Dimensional Transient Thermal-Hydraulic Analysis of Complex Fluid Flow Systems", Vol. I, EPRI CCM-5, December 1978.
(3) Miller, 3. R., "Request Number 1 for Additional Information on EPRI NP-1850-CCM", USNRC letter to T. W. Schnatz, UGRA, March 8, 1982.
(4) MCFadden, J. H. et al., "RETRAN-02 - A Program for Transient Therma 1Hydraulic Analysis of Complex Fluid Flow Systems", Vol. I, EPRI NP. 1850-CCM, May 1981.
(5) hantz T. W., "Request Number 1 for Additional Information on EPRI NP-1850-CCM", UGRA letter to J. R Miller, USNRC, July 30, 1982.

```
CHAPTER 1I. Fluid Oifferential and State Equation
```

(1) Is the sign of the stress term $(\underset{\Psi}{*} \cdot \vec{v})$ of equation (:1.1-20) correct?
(1) This question addresses the same item as Questions 11-1 and II-2 of of the NPC Request Number 1. See the response for those questions.
(2) Are there errors in equation (11.1-25) and equation (11.2-30)?
(2) Equations 11.1-25 and 11.2-30 are correct. There is an error in Eq. 11.1-20 as noted in the response to Question 1.
(3) In RETRAN is cos a of equation (11.2-11) always $\pm 1$ ?
(3) This question addresses the same item as Question II-4 of the NRC Request Number 1. See the response for that question.
(4) Summarize the layout of the two geometrical meshes, the momentum call mesh and the energy/mass mesh and illustrate how the function angle for the vector momentum is defined in the generalized geonetry.
(4) The vector model is not in Rt TRAN-01.
(5) How is $\tilde{A}$ oriented with respect to the channel walls in the macroscopic momentum equation? Reference should be made to equation 4(3) which poses the prob?em of the mass balance equation.
(5) This question addresses the same item as Question II-13b of the NRC Request Number 1 . See the response for that question.
(6) The term $F_{10 c}$ is missing from equation (it:3-5). Why?
(5) Equation It.3-5 is a mass balance equation.
(7) is there a typographical error in equation (:1:.3-17)?
(7) Yes, the equation should be

$$
\begin{align*}
& \frac{1}{A_{k}} \frac{d}{d t} \int_{1 / 2} \rho v d v v_{k}+\frac{1}{A_{k+1}} \frac{d}{d t} \int_{1 / 2}^{\rho v} v_{k+1} d v=\dot{\rho}_{k} v_{k}^{2}-\dot{\rho}_{k+1} v_{k+1}^{2}+p_{k}=\rho_{k+1} \\
& \quad-\frac{1}{A_{k}} F_{w, i}-\frac{1}{A_{k+1}} F_{w, i+1}-\frac{1}{A_{k}} \dot{M}_{1 / 2} v_{k}\left(g_{2,1}\right)-\frac{1}{A_{k+1}} \dot{A}_{1 / 2} v_{k+1}\left(g_{z, k+1}\right) \\
& \quad+\rho_{i}^{+}\left(v_{i}^{+}\right)^{2}-p_{i}^{-}\left(v_{i}^{-}\right)^{2}+p_{i}^{+}-p_{i} . \tag{11.3-17}
\end{align*}
$$

(3) Is the sign of the next to the last term in the riģt-hand side of equa+ion (11.3-13) correct?
(3) Yes, it is correct.
(9) (a) In the variabie channel area momentum balance equation, equation (11.3-23), the $F_{w, i+1}$ term needs to be corrected.
(b) Is there a typographical error in the last term of the right hand side.
(9) a) Yes, this term should be preceded by a " -" sign.
b) Yes, the equation should be

$$
\begin{aligned}
& \left(\frac{1}{2} \frac{L_{k}}{\dot{H}_{k}}+\frac{1}{2} \frac{L_{k+1}}{A_{k+1}}\right) \frac{d w_{i}}{d t}=\frac{\bar{w}_{k}^{2}}{\rho_{k}^{2}{ }_{k}^{2}}-\frac{\dot{w}_{k+1}^{2}}{\partial_{k+1} A_{k+1}^{2}}+p_{k}-p_{k+1}-\frac{1}{A_{k}} F_{w, i} \\
& \left.-\frac{1}{A_{k}} F_{w, i+1}-\frac{1}{A_{k}} \bar{M}_{1 / 2} v_{k}\left|G_{z, k}\right|-\frac{1}{A_{k+i}} \dot{M}_{1 / 2} v_{k+1} \right\rvert\, g_{z, k+1} \\
& -\frac{1}{2} \frac{w_{i}^{2}}{P_{i}}\left[\frac{1}{A_{k+1}^{2}} \cdot \frac{1}{A_{k}^{2}}\right] \cdot \frac{1}{2}\left|W_{i}\right| W_{i} \frac{e_{i}^{*}}{P_{i} A_{i}^{2}}
\end{aligned}
$$

(10) Show how equation (: $1.3-29 b$ ) is derived. Why is it correct to assume that the flow is isentropic? How is it reincorporated into the final flow equation? There are typographical errors in 33.3.2. Correct.
(10) The compressible f?ow with area change model discussed in Section III.3.2 of volume 1 is used only when the sonic choking model is allowed. This model was a carryover from the RELAP4 codes. The option was seldom specified, and when the model was used, it frequently caused difficulties (see Section III.3.1 of the RETRAN-01 Application Manual, EPRI NP-2175). This model was not included in RETRAN-02.

## Chapter II (contr)

(11) Are there typographical errors in equation (11.3-30)?
(11) Yes, the equation should be

$$
\frac{d}{d t} \int_{V_{k}} \rho(e+\phi) d V=-\sum_{i}\left[\rho u v+\frac{1}{2} \rho v^{3}+\rho \varphi v+\rho v\right]_{i} A_{i} \cos \alpha_{1}+Q_{w, k} n_{p, k}
$$

(12) in equation (:1.3-36), is there a typographical error in the second tarn of the right hand side?
(12) Yes, the equation should be

$$
\begin{align*}
\frac{d U_{k}}{t}= & -\frac{1}{2} \frac{L_{k}}{A_{k}} \frac{d}{d t}\left(\frac{\tilde{\dot{w}}_{k}^{2}}{\bar{\rho}_{k}}\right)-\sum_{i} v_{i}\left[h_{i}+\frac{1}{2} v_{i}^{2}+g\left(z_{i}-\dot{z}_{k}\right)\right]  \tag{II.3-36}\\
& +Q_{w, k}-\dot{w}_{p} .
\end{align*}
$$

## CHAPTER III. Constitutive Models

(1) The derivation of the mass balance, eq. (:11.1-62) as presented in eqs. (III.1-56) - (IIt.1-61) is incorrect as the $1-0$ equations used cannot describe a 3-0 situation with transverse junctions. A similar comment apolies to the derivation for eq. (111.1-ô7). Discuss.
(1) This question addresses the same item as Question III-2 of the NRC Request Number 1. See the response for that question.
(2) Why do the production terms in eqs. (111.1-66) and (111.1-67) involve $m$ 's?
(2) This question addresses the same item as Question 111-3 of the NRC Request Number 1 . See the response for that question.
(3) The meaning of $\phi$, in eq. (1:1.1-67) is inconsistent with its meaning in eq. (111. $1-69$ ). Why is it that in eq. (11:.:-67) it is used as an area fraction while in eq. (111.1-69) it is used as a mass fraction?
(3) This question addresses the same item as Ouestion IIt-4 of the NRC Request Number 1 . See the response for that question.

## Chapter III (cont d)

(4) How and where is $\dot{M}$ in eq. (111.1-65) for the total steam mass balance determined?
(4) This question addresses the same item as Question 111 -5 of the NRC Request Number 1 . See the response for that question.
(5) How are the inlet junction qualities in eq. (:1:.i-73) determined?
(5) This question addresses the same item as Question 1II-6 of the NRC Request Number 1 . See the response for that question.
(6) There are errors in eqs. (111.1-79) to (1:11.1-80), eqs. (1:1.1-82) to (111.1-85), en. (111.1-87) and eq. (111.1-89). Correct.
(6) This question addresses the same item as Question 111 -7 of the NRC Request Number 1 . See the response for that question.
(7) Will RETRAM automatically switch between homogeneous and separated models during a transient?
(7) This question addresses the same item as Question :11-8 of the NRC Request Number 1 . See the response for that question.
(3) How are the control rolume momentum and energy balanca equations derived in Chapter 2 used in conjunction with the phase separation model?
(8) This question addresses the same ftem as Question :II-9 of the NRC Request Number 1 . See the response for that question.
(9) Equation (:1:.2-37) of the junction enthalpy model assumes that volume average properties are equal to volume centar properties. is the same assumption made for all the thermal/hydratilc macroscoptc beiance equations?
(9) This question addresses the same item as Question 1II-10 of the NRC Request Number 1 . See the response for that question.
(:0) Why coes the $w_{i}$ term in eqs. (1:1:2-37) and (:1:1.2-38) use $A_{k}$ instead of $A_{i}$ ?
(10) This question addresses the same item as Question 111-11 of the NRC Request Nunber 1. See the response for that question.
(11) is not the sign of the $Z_{i}$ term in eq. (111.2-51) incorrect?
(11) This question addresses the same fitem as Question :111-12 of the NRC Request Number 1. See the response for that question.

## Chapter III (cont'd)

(12) Coes eq. (:1!.2-42) imply constant pressure?
(a) Why is eq. (1:1.2-51) used for junction enthalpy instaad of eq. (111.2-49)?
(b) What is the physical interpretation of ths in the steady state Bernoulli equation, eq. (111.2-38), when no heat or work is added?
(c) Can the enthalpy transport model be used with pump volumes? if so, justify.
(12) This question addresses the same item as Question [11-13 of the NRC Request Number 1 . See the response for that question.
a), b), c) This question addresses the same item as Question 1I1-14 of the NRC Request Number 1. See the response for that question.
(13) (a) Can RETRAN-01 be used as a blowdown and refill code?
(b) Can fts heat transfer model be extended to the reflood analysis?
(13) This question addresses the same item as Question $1: 1$-15 of the NRC Request Number 1 . See the response for that question.
(:4) (a) Why was the Baroczy model implemented as

$$
\phi_{t p}^{2}=1.0+\left[\phi_{t p, G=10^{6}}^{2}-1.0\right] F_{G}
$$

- when the original Baroczy model is
(b) Has the value of the function $F_{G}$ already been corrected in the Tables 111.1-1 to 111.1-5 to account for the change in the 3aroczy model?

14) This question addresses the same item as Quastion I:1-: 6 of the NRC Request Number 1 . See the response for that question.
(15) The Berenson heat transfer ccefficient and heat flux at the minimum film boiling are

$$
n_{g, \min }=0.425\left[\frac{k_{g f}^{3} \rho_{g f}\left(\rho_{1_{s}}-o_{g s}\right) g \Delta h_{f}}{u_{g f}\left(T_{w, \min }-T_{s a t}\right) \sqrt{\frac{g_{g^{g}}}{g \rho_{q_{s}}-o_{g s}}}}\right]^{1 / 4}
$$

where the subscript gf denotes the value of the vapor properties at the vapor film evaluated at the average temperature of the hot surface and the saturated liquid. Why are all vapor propertise in eqs. ( $111.2-16$ ), the equivalent RETRAN equations for the Bereson heat transfer coefficient and heat flux, evaluated at the saturated condf tion?
':5) This question addresses the same ftem as Question $111-17$ of the NRC Request Number 1 . See the response for that question.

## Chapter III (cont C)

(15) (a) Justify the use of the Berenson minimum temperature correlation in the case of turbulent boiling on oxidized surfacas under high pressure conditions.
(b) is the Berenson minimum temperature correlation limited to pool bofling situations? if not, elaborate.
(c) According to Table $11: .3-1$, the Eerenson film correlation is utilized as one of the heat transfer modes in the forced convection option. Explain why this appilication in the forced convection zone is an appropriata one.
(15) This question addresses the same item as Question 111-18 of the NKC Request Number 1 . See the response for that question.
(17) The Groeneveld corralation as described by eq. (111.2-28) is used without Slaughterbeck's modifications.* Discuss the accuracy of the correlation without these modifications.
(17) This question addresses the same ftem as Question 111-19 of the NRC Request Number 1 . See the response for that question.
(1S) The Bromley corrgiation is

$$
n_{c}=0.62 \mathrm{k}_{g f}^{3}\left[\frac{\Delta h_{f} o_{g f} g\left(a_{n}-p_{v}\right)}{u_{g f}-v_{s a t} u_{r}}\right]^{1 / 4}
$$

where the subscript $g f$ indicatas evaluation of vapor properties at the average tamperature of the hot surface and the saturatac 1fquid. Why are all vapor properties in eq. (:1:.2-31), the RETRAN equation for the 3romiey correlation, evaluatad at the saturated conditions?
18) The 3romley correlation is not used in IETRAN-01.
(12) Explafn why heat transfer correlations such as Sengler and Addams [cf eq. (11:1,2-12a)], Guerrier and Tatty [cf eq. (11:,2-13a)] and Shrock and Grossman [cf eq. (:1:.2-14)] should be used in preferanca to Chen's correlation.**
(19) This question addresses the same ftem as Question $1111-21$ of the NRC Request Number 1 . See the response for that question.
(20) (a) Can the use of the Dougall and Rohsenow correlation je extences to the pressure range of interest to LWR safety analysis? Justify.
(b) Can the correlation be applied in the dry wall mist flow regine where the flow is not in themodynamic equilibrium?
(20) This question addresses the same item as Question $111-22$ of the NRC Request Number 1 . See the response for that question.
(2:) Discuss the adequacy of the Bennet flow regime map, oresented in Fig. $111.2-2$, to calculate vold fractions using the RETRAN dynamic slip model. In particular eiaborate on the boundaries betiween the various flow regimes.
(21) There is no slip nodel in RETRAN-01. The Bennett flow regime map is used in confunction with Beattie two-phase friction multipliers. The adequacy of the map is discussed in the response for Question III-23 of NRC Request Number 1.

## Chapter :II (cont'd)

(22) Justify the statement made on pp. 111-30 that the Bennet map is belfeved to be more independent of pressure if the thermodynamic quality is convertad to the homogeneous volume fraction when the relationship between quality, $x$ and the homogeneous volume fraction $a$ is
$a=\frac{x / 0_{g s}}{\left(1-x / / \rho_{g_{s}}+x / \rho_{g s}\right.}$
and $q_{3}, \mathrm{eg}_{3}$ are functions of pressure.
(22) The scatement appears on page :11-13 of the RETRAN-01 manual. This question addresses the same iten as Question $11-24$ of the MRC Request Number 1 . See the response for that question.

## CHAPTER V. Power Generation

(1) Eqs. (V.1-1) and (Y.1-2) are missing factors of $\pi$ and $v$. Correct.
(i) Yes, the equations should be

$$
\begin{align*}
& \frac{1}{v(u)} \frac{\partial q(\vec{r}, u, \bar{\Omega}, t)}{\partial t}=s(\bar{r}, u, \bar{\Omega}, t) \\
& +\int_{u^{\prime}} d u^{\prime} \int_{\dot{\Omega}^{\prime}} d \tilde{\Omega}^{\prime} \Sigma_{s}\left(\dot{r}, u^{\prime}, t\right) \frac{\eta_{s}}{2 \pi}\left(u, \mu_{0} \mid u^{\prime}, \dot{\Omega}^{\prime}\right) \theta\left(\bar{r}, u^{\prime}, \bar{\Omega}^{\prime}, t\right) \\
& +\int_{u^{\prime}} d u^{\prime} \int_{\tilde{h}^{\prime}} a^{\prime} \bar{\Omega}^{\prime} \frac{n_{p}(u)}{4 T} \nu\left(u^{\prime}\right)(1-\beta) \bar{z}_{f}\left(\bar{r}, u^{\prime}, t\right) \varphi\left(\dot{r}, u^{\prime}, \dot{\Omega}, t\right) \\
& \left.=\Sigma_{i} \lambda_{i} \frac{n_{i}(u)}{4} c_{i}(\vec{r}, t)-z_{t}(\vec{r}, u, t) \varphi(\vec{r}, u, \bar{\Omega}, t)-\lambda, \vec{k}, \overrightarrow{(\vec{r}}, u, \bar{\Omega}, t\right) \\
& \frac{x(\dot{r}, t)}{\partial t}=\int_{u^{\prime}} d u^{\prime} \int_{\tilde{\Omega}} \omega^{\prime} \dot{\Omega}^{\prime} \Sigma_{f}\left(\bar{r}, u^{\prime}, t\right) \nu\left(u^{\prime}\right) \beta_{i} \phi\left(\bar{r}, u^{\prime}, \overline{\hat{h}} t\right)-\lambda_{i} G_{i}(\dot{r}, t) \tag{V,1-2}
\end{align*}
$$

## Chapter $V$ (cont' ${ }^{\text {d }}$ )

(2) Why are there no $\pi$ 's in the adjoint equation, eq. (V.1-4)?
(i) Yes, the equation should be

$$
\begin{aligned}
& \int_{u^{\prime}} d u^{\prime} \int_{\tilde{\Omega}}{\dot{\mathbb{G}} \bar{i}^{\prime}}^{\Sigma_{s c}}(\bar{r}, u) \frac{h_{s c}}{2 \pi}\left(u^{\prime}, u_{0} \mid u, \vec{n}\right) \phi_{c}^{\star}\left(\bar{r}, u^{\prime}, \hat{\Omega}^{\prime}\right) \\
& +\int_{u^{\prime}} d u^{\prime} \int_{\bar{\Omega}} \dot{\Phi}^{\prime} \frac{h_{c}\left(u^{\prime}\right)}{4 \pi} v_{c}(v) \Sigma_{f c}(\dot{r}, u) \phi_{c}^{*}\left(\dot{r}, u^{\prime}, \tilde{\Omega}^{\prime}\right)
\end{aligned}
$$

(3) There are $v^{\prime}$ s and "'" missing in eqs. (V.1-6) , (V.1-8) and (V.110). Carrect.
(3) Yes, the equations should be
$\bar{\beta}_{i}(t)=\frac{1}{F(t)} \int d u \int \omega \overline{\tilde{n}} \int d^{3} r \int d u^{\prime} \int d \bar{n}^{\prime} \boldsymbol{\nu}\left(u^{\prime}\right) \beta_{i} \frac{h(u)}{4} \Sigma_{f}\left(\bar{r}, u^{\prime}, t\right) o_{c}^{\star}(\bar{r}, u, \eta) \phi\left(\bar{r}, u^{\prime}, \ldots, t\right)$
$\dot{\beta}(t)=\Sigma_{1} \overline{\beta(t)}=\frac{1}{\tilde{p}(t)} \int d u \int \dot{d} \tilde{\tilde{n}} \int d^{3} r \int d u^{\prime} \int d \dot{Q}^{\prime}\left\{n_{t}(u)-(1-\beta) n_{p}(u)\right\}^{*}$

$$
\begin{equation*}
\boldsymbol{\lambda}\left(u^{\prime}\right) \Sigma_{\mathrm{f}}\left(\vec{r}, u^{\prime}, t\right) 0_{c}^{*}(\bar{r}, u, \overline{2}) \phi(\bar{r}, u, \bar{a}, t) \tag{V.1-10}
\end{equation*}
$$

```
Chapter V (cont'd)
```

(4) Define vused in eq. $(V, 1-i 2)$.
(4) The v terms used in Equation $V, 1-12$ should be greek mu's, which have been defined.
(5) Where is $\mathrm{G}(\mathrm{t})$ used in eq. $(\mathrm{V}, 1-14)$ deffned?
(5) Equation V.1-14 does not contain $G(t)$ but does contain $G(t)$ which is the delayed neutron precursor concentration. Equation V,1-14 is the defining fifferantial equation for $G_{1}(t)$.

## CHAPTER vi. Systam tomtorent Models

(1) Is the statarant $N=W$ in the nomenclatare of Page iI-1 a typographical error?
i) No, it is rost a typographical errer, and $N=\omega$.
(2) Should tie tem $M(\bar{a})$ be $N(\bar{i})$ in the ontion Y...1-1?

> (2) Yes,
(3) Should o be replaced by i in equatior VI.A-j?
(3) Yes.
(4) What is the accuracy af the difference curves/head mulitplier procedure used for the two-i, iase purp medel?
4) This question addrisses the same ftem as Question VI-1 of the NRC Request Number 1. See the cesponse for that question.

The Semiscale test data are described in ANCR-1165, Aarojet Nuclear Company, 1974.

## Chapter VI (cont'd)

(5) What is the error involved in using "steady state" characteristics in the pump formuiation presented during transient situations?
(5) This question addresses the same ftem as Question VI-2 of the NRC Request Number 1 . See the response for that question.

The momentum effect associated with angular acceleration is neglected. For the flow conditions of operational transients, this effect is negligible.
(5) In the equation VI.1-b, how are the $1^{\text {th }}$ coefficient of friction torque, ( $\left.T_{f r}\right)_{i}$ obtained? Are they build-in values?
(6) These coefficients must be identified for the machine in question. One inethod is to obtain a fit to $T_{f r}$ from pump coastdown data.
(7) Should the equation V1.1-10 be expressed as follows: T $=\mathrm{Thr}_{\mathrm{hr}}+\mathrm{Tf}_{\mathrm{fr}}$ - $T_{m}$ ?
(7) No, it is correct as printed.
(3) is there a typographical errar in the first term on the right-hand side of equation $V: .2-5$ ? Should it be as follows:

$$
\frac{A}{i} \int_{0}^{t} P(-1) e^{\frac{k}{T} t} d t ?
$$

(8) yes.
(9) Is there a typographical error in the second tern in the right-hand side of equation V1.2-6? Should it be as follows:

$$
\frac{A P(t)}{K}\left(1=e^{-\frac{K}{T} t}\right) ?
$$

(9) Yes.
(10) Should the first term on the right hand side of squation V1,2-7 be ${ }^{0} 0$ instead of a?
(10) ies.
(11) Oiscuss how valves are included in the momentum balance equations with emphasis on the numberical scheme involved.
(11) This question addresses the same ftem as question Vi-i4 of the NRG Request Number 1. See the response for that question.
(12) What is the physical interpretation of eq. V1.3-4?
(12) This question addresses the same ftam as question VI-15 of the NRC, Request Number 1 . See the response for that question.

```
CHAPTER VII. Operational Transiont Models
```

(1) is the 1 ag compensation formula for $y_{i}$ in Table Vil.1-1 correct? Justify.
(1) This question addresses the sane item as Question V:I-1 of the NRC Request Number 1 . See the response for that question.
(2) Illustrate the use of the transport delay model w th at end alt pessible combination of flow directions.
(2) This question addresses the same item as Question VII-2 of the NRC Request Number 1 . See the response for that question.
(3) Why are there no condensate terms in the energy equations, eq. (vil.3-3) and eq. (VI1.3-4)?
(3) This question addresses the same item as Question VI-16a of the NRC Request Number 1 . See the response for that question.
(4) Snow how ( $\dot{M}_{g}$ ) of eq. $(11:, 1-65)$ used in the determination of that flashing mass flux, eq. (VI:,3-a) is related to the primary variable $\left[p, M_{1}, M_{2}, U_{1}, U_{2}\right]^{\dagger}$ of the pressurizer model?
(1) This question addresses the same item as Question $11-17$ of the NRC Request Number 1 . See the response for that question.
(5) How are the momentum salance equations of Chapter 2 ccupled to the pressurizer mass/energy equations?
(5)

This question adaresses the same item as question VI-18 of the NRC Request Number 1 . See the response for that question.
(6) Present the aass and arergy balance equation when the first soray option is chosen; spray in the vapor region.
(6) This question aodrasses the same item as question VI-19 of the NRC Request llumber 1 . See the response for that question.
(7) Discuss the numerical benavior of the pressurizer model solution when the pressure is used for the convergence critaris.
(1) The pressure is the unknown and must be found itaratively, From this requirement, the pressure convergence criteria follow directly.

The pressure solution method used in 2ETRAN-01 did not result in a converged solution for some 1 imiting cases. The pressurn search has been tmproved in RETRAN-02, with pressure still used in the convergence criteria.
(8) Discuss step 3 of the solution technicue in detail, in particular, the linear equations for each region. is the term $\left.\frac{\partial r}{\partial p}\right|_{h}$ a typographical error?
(3) The term is a typographical arror and should be the partial of the specific volume. The method for finding the prossurfzer pressure has been modified in RETRAN-02.
(9) What is done when the pressurizer completely fills or completaly empties?
i9) This question addresses the same item as Question VI-22 of the NRC Request Number 1 . See the response for that question.
(10) Show how the phase separation mocel described in Chapter III is used in conjunction with the pressurizer model.
(10) This question addresses the same item as Question VI-23 of the NRC Request Number 1 . See the response for that question.
(11) How is the engineering enthalpy rise factor computar and how is it used?
(11) This question addresses the same item as Question VII-3 of the NRC Request Number 1 . See the response for that question.
(12) How is the complete transient energy equation option activated when eq. (VII.4-3) is fnadequate for a hot channe! calculation? Discuss the option.
(12) This question addresses the same itam as Question VII - 4 of the NRC Request Number 1. See the response for that question.
(13) There is a typographicai er-or on Page Vit-24. VI:.5-8 shou: 1 be replaced by V:I.4-5.

```
(:3) Yes.
```

