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EXECUTIVE SUMMARY

On February 1,1994, the NRC issued a ConGrmatory Action Letter requiring Commonwealth Edison

Company to take speciGc actions regarding the potential freezing and rupturing of piping in the Unit I

containment at Dresden Nuclear Power Station. One requirement was to evaluate the potential

consequences of a pipe break that results in a lowering of the water in the fuel storage pool, including

an estimate of expected doses to occupational workers and members of the public. This report is a
i

formal analysis of that requirement.

l

The nrst step in the analysis is characterization of the radioactive material (i.e., the spent reactor fuel)

in the Fuel Building. There are 683 irradiated fuel assemblics in the Fuel Building,534 of which are

in channels, and one rod basket containing two complete fuel rods and one 16" section of a rod. I
1

Although 23 of the assemblics are currently in the fuel transfer pool, all assemblics were assumed to

be in the storage pool. Since the storage pool is at a higher elevation than the transfer pool, this
|

assumption produces a conservative radiological and heat up analysis that is bounding for any
i

1

arrangement of the fuel assemblies in the transfer or storage pools. The Assion product inventory used

to calculate heating and radiological dose rates was calculated from the burnup and decay history of

each fuel assembly.

The second step in the analysis is the determination of the temperature and evaporation rate of the

storage pool water, and the expected temperatures of the cladding and at the fuci centerline. The

average heat generation rate is 315 watts / assembly with a peak heat generation rate of 81.1

watts / assembly. The bulk temperature of the pool water remains below 120 F, and the rate at which

the pool water level will drop at the maximum evaporation rate is less than 1/16 inch per hour. Under

the worst case conditions (pani, ally uncovered fuel), the peak temperature inside a fuel pin is less than

270 F, which is far below the temperaarc at which fuel cladding is expected to fail (570"C or

1058 F)<

The Gnal step in the analysis is the evaluation of the potential radiation exposures. The primary

exposure pathway is the direct and scattered radiation from uncovered fuel assemblies. Inside the Fuel

'

!

i

, , _ .- . - -



- . . . ._ . ._ _ _ _ _

SARGENT & LUNDY ii
SIA9n4

'Preliminary Report 3 2-94

|

|

Building dose rates will range from 5 rem /br at the entrance to 800 rem /hr at the pool edge if the

assemblics are completely uncovered. Inside the Unit 2/3 Control Room the dose rate is expected to )
,

be less than i mrem /hr, so uncovering the fuel will not affect the safe operation of Units 2 and 3.

The fuel temperature following loss of water coverage is much lower t)u the vaponzation

temperature of volatile fission products, so no significant additional contamination is expected of

existing defects.

|

The general public may be exposed to direct or scattered radiation from the fuel assemblics, or to

acuvity in an efiluent plume. The calculated dose rate due to scattered radiation at the closest point

on the site boundary is less than 2 mrem /hr. Due to the extensive decay time since removal of the

last of the fuel assemblies from the core, Kr-85 remains as the only source of potential airborne

radioactivity. Although additional fuel cladding fadure is not predicted as a result of the loss of water

coserage, a previous analysis evaluated the consequences of releasing all of the Kr-85 by failing all

the fuel rods. This previous analysis, which was submitted to the NRC by Commonwealth Edison on

April 10.1989, estimated a worst case exposure at the site boundary of 1.7 rads to the skin and 0.016

rads whole body in two hours. Therefore uncoscring the fuel does not present a significant additional

nsk to the general public.

I

,
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Section 1

INTRODUCTION
,

1.1 PURPOSE j

The Unit i Fuel Building at Dresden Nuclear Power Station is used to store spent fuel assemblies

from the Unit I reactor. Under certain conditions,it is possible that the water in the pools containing

this spent fuel may be accidentally drained to the point where the fuel assemblics are exposed. The |
purpose of this report is to summarize the analysm perfonned by Sargent & Lundy to assess certain !

radiological and thermal conditions that would result from uncovered fuel assemblies. The conditions

- assessed are: ,

Radiation Dose Rates The dose rates caused by the radioactive material in the fuel assemblies ;

are calculated in the Fuel Building, the Unit 2/3 control room, and at the closest point on the

site boundam '

Bulk Pool Temocrature The temperature of the water in the pool containing the fuel

assemblics and the resuhing evaporation rate are calculated for normal and partially uncovered

conditions.

Fuct Rod Temperature The temperature of the fuel rod cladding and at the center of the fuel

are calculated for normal and uncovered conditions.
.

Note that this report does not address existing radiological conditions, such as surface contamination '

and activity in the pool water. Further this report does not address the radiological consequences of

radioactivity released into liquid or airborne pathways, The potential airborne exposure from the fuel

assemblics was previously analyzed by conservatively assuming all the gap activity of Kr-85 (30% of

total inventory)in all the assemblics was released simultaneously to the environment [ Reference 1].

The result was offsite exposures well within regulatory limits, so additional analysis is not required in

this report.

1.2 IIACKGROUND

Unit 1 of Dresden Nuclear Power Station operated from 1960 until October 31,'1978, when it was

taken out of service for backfit and decontamination and never restarted. In July of 1986 the Unit I

license was amended to a possess-but-not-operate status. Units 2 and 3 are located adjacent to Unit i

. . . . - - . - .-. -
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.

and are licensed for full power operation. The layout of the Dresden Nuclear Power Station is shown

in Figure 1.

On January 25,1994 a large amount of water was discovered in the Unit I containment. This release

of water resulted from a break in a service water pipe that had froren during recent cold weather.

Since the storage pools in the Unit 1 Fuel Building are connected to the Unit I containment by the

fuel transfer tube and since the tube is metal and full of water, it was determined that the tube was

susceptible to freezing and failure. This could result in a lowering of the water level in the fuel

transfer pool and possibly in the fuel storage pool (if the gates are removed). The limiting break

identified in contamment would lower the water level in the storage pool far enough to uncover the

top three feet of the active fuel region of the fuel assemblies. The NRC was notified on January 27,

1994, and on Februarv 1,1994 issued a confirmatory action letter | Reference 2] requiring, among

other items, an estimate of the consequences of such a break, including an estimate of expected doses

to occupational workers and members of the public. An initial estimate was required within 48 hours

with a formal analysis within 30 days.

S&L was contacted by Commonwealth Edison personnel on Februaq 2,1994 with a request for

assistance in responding to the NRC. Preliminarv dose rates due to the uncovered fuel assemblies

were provided on February 3,1994 [ Reference 3] Subsequently, more detailed analyses of the dose

rates have been performed that confirm the original estimates were conservative. Additionally,

thermal hydraulic analyses requested by Commonwealth Edison have been performed to demonstrate

the worst scenario has been analyzed.

|
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Section 2 t

DESCRIPTION OF Tile FUEL STORAGE POOL

2.1 FUEL BUILDING AND FUEL STORAGE POOL

The Fuel Building for Unit 1 is a rectangular bailding 92'-0" long,57'-0" wide and 48'-0" high located

immediately south of the Unit I containment and cast of the Access Cont;ol Building. Except for the

truck bay and entry way, the floor is a concrete slab on backfill 4'-3" above grade. The walls of the i

building are steel frame with siding, and the roof is made of steci decking with one inch of insulation.

The majority of the fuel assemblics are in the fuel storage pool, which is located in the North-East

corner of the Fuel Building. The storage pool is 20*-0" wide and 29'-0" long and has a depth of '

26'-5" The storage pool is connected to the transfer pool and tube by a four-foot wide gate along the

north edge of the pool. The bottom of the transfer pool, which is 20'-0" wide and 25'-6" long, is 15'- |

7" lower than the storage pool. Under nonnal conditions, the water level is one foot below the Fuel

Building floor, which provides approximately fifteen feet of water shielding above the active region of

the fuel assemblies. Schematics of the Fuel Building and other structures in the vicinity are shown in

Figures 2 ar.d 3.

2.2 FUEL ASSEMBLIES IN TIIE FUEL STORAGE POOL

There are a total of 683 irradiated fuel assemblies in the Fuel Building, with 534 of the assemblics in

channels. Currently 660 of the assemblics are in fuel racks in the storage pool and the remaining 23

are in baskets in the transfer pool. In this analysis, it is assumed that all assemblics are in the fuel

storage pool so that this analysis bounds the situation where the remaining assemblics are moved into i

the storage pool. In addition to the fuel assemblics and fuel racks, there are two complete fuel rods !

and a sixteen inch length of fuel rod in a rod storage basket in the storage pool. These rods make a

negligible contribution to the activity in the storage pool and are not specifically included in this

report.

The assemblies in the Fuel Building are the last core off-load from End of Cycle 11 and the

assemblics discharged at the end of the previous four cycles, so their last burn date ranges from

- . - _ - - - _ _ -.
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October 1973 to October 1978. They range in burnup from 2,940 megawatt days per short t m of

initial hemy metal (MWD /STillM) for the newest fuel assemblies to a maximum of 25,527

MWD /STlHM, with an average bumup of 16,164 MWD /STUIM. They range in initial asc.subly

average enrichment from 1.83% to 2.26% with an average of 2.22%.

2.3 CALCUlXIYD THERMAL AND RADIOIDGICAL PROPERTIES OF Tile FbEL
ASSD1 biles

The fuel assembly composition was determined by multiple rues of the computer code ORIGEN2.

The fuel was modeled as uranium oxide. Less than 100 fuel rods contain mixed oxide fuel. Because

of the small number of mixed oxide rods, modeling the fuel as uranium oude will not have a

significant cliect on the results. The properties ofinterest are described below.

2.3.1 Radionuclide le entodcs

While in the coro, radionuclides are formed by fission, activation of structural materials, and multiplo

neutron absorptions in uranium that goduce actinides and their daughters. Table 1 contains a listing

of the twenty-two major nuclides in the fuel assemblies, which represent more than 99.9% of the

activity, along with the total activity in the 683 fuel assemblies. The activity is dominated by the

fission products Sr-90/Y-90 and Cs-137/Ba-137m, and the actinide Pu 24),

2.3.2 Gamma Radiation Sourte and Encrgy Spectum

ORIGEN2 calculates an eighteen group energy spectrum for gamma rays produced by docay of the

radionuclides in the fuel The total photor production rate as a function of energy for all 683

assemblics is shown in Table 2, Note tha: the spectrum is dominated by the ene:Iy group with a

mean energy of 0.575 McV, which contains the characteristic docay energy (.67 MeV) of

Cs 137/Ba-137m. The other major nuclides are primarily beta emitters and therefore contribute to the

much lower energy groups.

2J.3 'Ibennal IIcat Geocration Rate

ORJOEN2 also calculates tbc heat generated in the (bel due to radioactive decay. For the cotim group

of assemblies, the average heat generation rate is $1.5 watts per assembly. To identify the ruasimum

best generation rate, several high burnup asscriblics were analyad. The assembly with the largest
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heat generation rate was UN0024, which had an initial enrichment of 2.25% and was discharged in

October 1978 with a cumulative burnup of 23,695 MWD /STlHM. The heat generation rate for this

peak assembly is 81.1 watts per assembly.

t

O

:

O
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Section 3

TIIERMAL BEllAVIOR OF Tile FUEL STORAGE POOL

The initial concern following a loss of pool inventory event will be the time available to provide

remedial action. This time will be detennined by a number of factors: the post accident dose rate, the

rate at which the fuct cladding heats up when exposed to air and the rate at which the pool heats up.

This section summarizes the investigations into the factors that afTect the thermal behavior of the pool.

These include the heat up of the exposed fuel and the heat up of the pool which, includes an

investigation of the rate of evaporation at the pool surface and the potential for boiling of the pool

when the fuel is completely submerged at normal water level and when partially submerged at a

lowered water level.

3.1 POOL WATER TEMPERATURE
.

The purpose of this investigation is to confirm that pool boiling will not occur following the

postulated event that the pool level is reduced to El. 502'-0", which causcs the top three feet of the

active region of the fuel to be exposed in the fuel storage pool.

A thermal hydraulic model of the pool was constructed that performs an energy balance on the pool

boundaries. The heat addition from the decay heat in the fuel is compared with the heat loss to the

pool boundaries through con *.cction, conduction and evaporation. The excess energy causes the pool

temperature to rise.

The rate of heat addition from the fuel is 51.5 watts per assembly, as discussed in Section 2. The

evaporation at the surface is detennined using the " Carrier Equation" from Reference 4. Convection

at the pool surface is determined from Reference s. The remaining heat loss is by convection and

conduction through the pool boundaries. The model is benchmarked for the single data point

available, a steady-state pool temperature of 85 F with an air temperature of 10*F inside the building

and -5 F outside the building. With this model and a design basis summer air temperature of 95*F,

the predicted pool temperature is 119.5 F and the inside air temperature is 106 F.

. - . - - _ . . . .
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The model is then used to estimate the effects of the rapid reduction of the pool water level to

El. 502*-0" In this simulation. the pool temperature is initialized at the summer condition, the pool

wall surface area is reduced to be consistent with the pool level and the heat added from the fuel is

reduced so that only the submerged fuel is communicating with the pool,
i

The results of the simulation are:

The pool temperature rises to 120*F at 500 hours.-

The predicted rate of evaporation at the pool surface is 70 pounds per hour.-

The rate at which the pool level is falling due to evaporation is one foot in 500 hours.-

,

3.2 EVAPORATION RATE

A signincant heat and mass transfer mechanism, evaporation, operates at the pool surface. This

phenomenon provides a substantial portio' of the cooling required by the pool to maintain a constant

temperature for the pool water. Unfortunately, the penalty for this benefit is the reduction in the pool

water inventory that results from the evaporation. As a means of assessing the significance of the ;
;

cooling and mass transfer that takes place at the pool surface, a parametric study was performed to

define the limits of the phenomena that take place at the pool surface.

i

The " Carrier Equation", Reference 4, was used to evaluate the heat and mass transport through the

pool's surface. Ambient air conditions of 35 F,50 F and 100 F were considered in an attempt to

bound the range of temperatures within the fuel storage building. Commonwealth Edison personnel

indicated that the only data relating to pool temperature was a recent measurement performed when
'

the air temperature was approximately 10*F. The pool temperature was measured at 85 F, For sake

of conservatism, this study investigated the effect of pool temperatures of 85'F,100 F and 120*F on 1

the evaporation rate. A significant contributor to the rate of evaporation is the velocity of air moving

over the pool. The Fuel Building has a high volume air moving device located above the pool, which

was assumed to be operating to maximize evaporation. A velocity of 50 feet per minute was

determined to be adequate to account for the effects of air movement in the Fuel Building. The

remaining parameter in the study was the relative humidity of the air This was varied from 19% to >

100% as a means of demonstrating the effect on the evaporation rate.

,

k

< - . , , ,- .,,,c w - - -
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The maximum evaporation rate occurs at the maximum pool temperature (120 FL minimum air

temperature (35 F) and maximum air velocity (50 fpm). For these conditions, rate of evaporation is

approximately 400 pounds per hour. The corresponding rate of pool level reduction is approximately

1/16-inch per hour. The expected rates of evaporation in the winter and summer are 124.3 and 33.7

pounds per hour, respectively. This rate of c3aporation corresponds to a rate of pool level decrease of j

iess than 1 inch per day. j
|

|
,

From this study, we conclude that the rate of loss of pool inventory due to evaporation is small and j
'

therefore, rapid responses after an accident are not required to provide additional pool inventory to

offset the clTects of evaporation at the pool's surface.

3.3 CALCULATED FUEL ASSEMBLY TEMPERATURES ;

3.3.1 Current Fuct Temperatures
,

- The current fuel cladding and fuel centerline temperature were cieutated using the S&L computer

program FPT/L. The program evaluates the localized temperatures in the spent fuel pool based on
i

natural convection induced now through the fuel cells. Cross flow is ignored. The analysis was

performed based on a bulk pool temperature of 85 F and resulted in a fuel cladding and fuel :

centerline temperature of 86.8 F and 86.9 F, respectively.

3.3.2 Fuel Temperature for Partially Covered Rod

A hand calculation was perfonned in order to compute the fuel temperatures for the condition with the

top 3-foot section of the fuel rod exposed to air. The analysis detennined the thermally induced air

flow for an assumed ambient air temperature of 120 F. The incoming air temperature is assumed to

be represented by the average of the ambient temperature and the temperature of the air exiting the |

Gow channel between the fuel rods. The calculated fuel cladding and fuel centerline temperature for

this case are 265.6 F and 265.7 F, respectively. The results are applicable for ambient air conditions

ranging from X5'F to 120 F.
't

3.3.3 Fuel Temperature for Completely Uncoscred Rod

The fuel cladding and fuel centerline temperatures were calculated using the S&L computer program

FPT/L for the condition where the fuel pool is assumed to be completely drained. The program

,

t

'
-.
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calculates the localized temperatures within the channels surrounding the fuel cells. Cross now is

ignored. The fuel is, therefore, only cooled by thermally induced air flow entering at the bottom

plenum and exiting at the top of the fuel cell. The analysis was performed based on a bulk air

temperature of 120 F cntering the channel, and iesulted in a fuel cladding and fuel centerline

temperature of 225.0 F and 225.1 F, respectively.
.

3.3.4 Summary

The fuel centerline temperature is higher when the rod is partially uncovered and cooled by air rather

than when the entire rod is uncovered and cooled by air. In the partially uncovered case, the air How

rate is smaller; and the incoming air temperature is higher, since the ambient air is assumed to mix

with the hot air exiting at the top of the assembly. When the upper 3 feet of the rod is exposed to air,

approximately 1/3 of the heat generated in the entire rod is removed by air, and the other 2/3 of the

heat generated in the lower portion of the rod is removed by water. The exit air temperature depends

on the incoming air temperature and the air temperature rise. The air temperature rise is proportional

to the heat now to the air and inversely proportional to the air flow rate. Therefore, when the

panially uncovered rod is cooled by air, the maximum air temperature which occurs at the flow

chani cl exit (264 F vs. 207 F) is higher due to higher temperature of the incoming air (192*F vs.

120 F). This occurs even though the air temperature rise is higher in the case where the entire rod is

uncovered. The air temperature rise is 72"F vs. 87 F while the difference ~in air inlet temperature

between the two cases is 72 F.

The maximum fuel centerline temperature and the maximum cladding temperature are calculated based

on the local peak heat rate, which is identical in both cases, and the maximum air temperature.

Therefore, these maximum temperatures are also higher when the partially uncovered rod is cooled by

air.
!

O
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Section 4 j

RADIOLOGICAL ENVIRONMENT I

|

4.1 EXPOSURE PATilWAYS :

4.1.1 Direct and Scattered Radiation |

The radioactive material contained in the fuel assemblics is a fixed radiation source that is normally

shicided by about fifteen feet of water in the pool to the extent that the dose rate is far below

background in accessible areas of the Fuel Building and outside the Fuel Building. When the water is

lowered, the shiciding is removed and significant radiation field is created in and around the Fuel

Building. The radiation field has two components. The first component is direct radiation, which is i

the radiation that travels in a direct line from the source to the dose point. Due to the depth of the

fuel storage pool, the only areas affected by direct radiation are immediately above and very close to j

the edge of the fuel storage pool. The other component of the radiation field is scattered radiation,

which is that radiation that undergoes one or more scatters before reaching the dose point. The

primary volume in which scattering will take place is the large cloud of air above the fuel building,

which means scattered radiation may affect any area of the plant site.

.

4.1.2 Effluent Pathways

The fuel assemblics contain a significant amount of the radioactive noble gas nuclide Kr-85. The

effect of releasing this activity was previously analyzed [ Reference 1] by assuming all the fuel pins in

all the assemblies in the Fuel Building fail. Since the Kr-85 activity used in that study (1.4x10' Ci)is

larger than shown in Table 1, Reference 1 is considered the controlling analysis for the effluent

pathway.

4.1.3 Contamination

A number of the fuel rods in the fuel storage pool have defects that allow fission products to enter the

fuel pool water. Uncovering the fuel assemblies has the potential for releasing the fission products

.

directly to the air where they may plate out on and contaminate building surfaces. This will occur if a
,

fission product that is normally not gaseous is heated enough to evaporate and then condense on

cooler surfaces. However, with the exception of the noble gas radionuclide Kr-85, the temperatures
!

|
,

|
<



_ _ _ _ ___ .

SARGENT & LUNDY 11

SI 49N
Preliminary Report 3-2-94

resulting from this accident are not high enough to cause this to occur. Cs-137, the dominant fission ,

product in the fuel, is liquid at 85* F, the normal temperature of the fuel in the storage pool.

However, it does not craporate until it reaches more than 500 F, much higher than the worst case

calculated here. In addition, since there is considerable stable iodine in the fuel, it is anticipated that

the majority of the Cesium will combine with lodine to form Csi, which is very soluble but does not

melt until it reaches 1000* F. Therefore it is not anticipated that uncovering the fuel will result in

increased contamination from activity in the fuel assemblies.

4.2 CALCULATED RADIATION DOSE RATES

4.2.1 Direct Radiation

The dose rates due to direct radiation were calculated using the computer code ISOSHLD-PC, which

utilizes the point kernel transport method with infinite media buildup factors for fixed source-shield-

dose point configurations. The source was modeled as a homegeneous rectangular solid with various

depths of water, starting with an empty pool. The total activity and mass for 683 fuel assemblies and

534 channels were placed in the source. This accounts for the worst case arrangement of the fuel

assemblics in the storage and transfer pools. If the channels are removed from the pool, there will be

a reduction in mass of the source of less than 10%, which will reduce the self shielding of the source

and slightly increase the dose rate. This increase is well within the conservatism of the ISOSHLD-PC

infinite media buildup model, which tends to overestimate dose rates by 20-30%.

Dose rates were calculated at the top of the fuel assemblics or surface of the pool of water, and at

floor elevation along the edge of the pool. The results are shown in Table 3. At the edge of the pool

the dose rate with the pool empty is 800 rem /hr, which drops to 500 remihr when the pool is filled to

the top of the active region of the fuel. The dose rate then drops rapidly with water level, so that with
<

six feet over the active region of the fuel the dose rate is less than 1 mrem /hr.

4.2.2 Scattered Radiation

The dose rates caused by scattered radiation at specific locations on the site were calculated using the

Monte Carlo code MCNP-4A. In addition to scattering in the air, the roof of the Fuel Building and

the spherical shcIl of the Unit I containment were modeled as potential scattering surfaces. The
1

source was modeled as a rectangular surface source with an energy dependent cosine flux distribution -

|

.- . -.
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calculated using the discrete ordinates computer code ANISN. Four specific locations were analyzed

(see Figures 2 and 3), which had the following dose rates for the pool with no water:

Inside the Fuel Building

Two locations inside the Fuel Building were analyzed: the pool access area, which is near the pool but

out of direct line of sight with the fuel, and the building entrance. The dose rates were 12 rem /hr and

3 rem /hr at those locations, indicating that the entire Fuel Building would be a very high radiation

area if the fuel assemblies are uncovered.

Unit 2/3 Control Room

The calculated dose rate at the closest point in the Unit 2/3 Control Room, without considering any

intervening shield walls, is less than 200 mrem /hr. The control room has between l'-6" and 3'-0" of

concrete shielding in the walls and slabs that surround it. This concrete provides a protection factor ,

4 4that ranges from $x10 to 2x10 for gamma radiation with an energy of 0.5 MeV, which is the

dominant energy of the scattered radiation. This reduces the dose rate inside the control room to

I mremihr, regardless of the direction of the scattered radiation.

'Site Boundmy

The closest point on the site boundary is a berm on the discharge canal about 451 meters from the

center of the fuel storage pool. The calculated dose rate at this point is less than 2 mremihr.

;

I

O ,
:

I

I

i

- , , - , - - - - - - - - --- - -



. __

,

SARGENT & LUNDY 13

SI 49N
Preliminary Report 3-2-94

Section 5

REFERENCES

1. " Determination of the Potential Radiological Consequences from a Fuel Handling Accident at

the Dresden Nuclear Power Station Unit 1," TLG Engineering, Inc., Document C04-22-002,

March,1989

2. Letter from W.L Axelson, USNRC to M. J. Wallace, Commonwealth Edison Company,

Subject: CONFIRM ATORY ACTION LETTER (CAL) Rill,94-001 FOR DRESDEN 1, dated

February 1,1994

3. "Offsite and Fuci Bldg Dose Rates from Uncovered Spent Fuel," Sargent & Lundy Calculation

ATD-0361, Rev. O, Dresden NucIcar Power Station, Unit 1, Proj. No. 09389-009

4. ASHRAE 1987 Handbook of Fundamental 1, Chapter 20

5. Brown, A.I., and Marco, S M., Introduction to Heat Transfer,2nd Ed., McGraw-Hill 1951

O

. .- -.



. . _ _ -

|
i

SARGENT & LUNDY 14

SIA 964
Preliminary Report 3-2-94

Table 1. Dresden Unit 1 Fuel Pool Radioactive Insentory
,

Isotope Activity (Ci)

H-3 1.374 E+04

Fe-55 1.734 E+03

Co-60 2.161 E+04

Ni-63 6.238E+03

Kr-85 1.172E+05

Sr-90 1811E+06

Y-90 1.812E+06

Sb-125 1.187E+04

Tc-125m 2 894E+03

Cs-134 1.838 E+04

Cs-137 2.650E+06

Ba-137m 2.507E+06

O Pm-147 8.550E+04

Sm-151 1.809E+04

Eu-l54 7.008E+04

Eu-l55 2.006E+04

Pu-238 6.836E+04

Pu-239 1.815 E+04

Pu-240 2.068E+04

Pu-241 3.013E+06
'

Am-241 1.285 E+05

Cm-244 2.633 E+04

Total 1.244E+07 i

i

O

!
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,

Table 2. Dresden Unit i Fuel Pool Photon Source Strength

Energy Group .\ican Energy (MeV) Photons /sec

1 0.010 5.881E+16

2 0.025 1.206E+16

3 0.038 1.443E+16
4 0.058 1.261E+ 16

5 0.085 6.568E+ 15

6 0.125 5.222E+15

7 0.225 5.466E+15

8 0.375 2.405 E+ 15

9 0.575 9.800E+16

10 0.850 2.192 E+15

11 1.250 3.126E+15

12 1.750 5.009E+13

13 2.250 3.602E+10

14 2.750 1.193 E+10

15 3.500 7.287E+08

16 5.000 1.669E+08

17 7.000 1.923 E+07
'

18 9.500 2.208E+06

Total 2.209E+17

i

O
,

.1
i

|
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Table 3. Pool Edge and Water Surface Dose Rates

Water Water Depth Surface Center Pool Edge
Elevation to top of actisc Dose Ratc** Dose Rate

zone clev. 521'-3"

feet feet mrem / hour mrem / hour

<496 <-9 5.875E+6' 7.974 E+5

505 0 3.8 85 E+6' 5.290E+5

506 1 1.039 E+5 3.529E+4

507 2 6.527E+3 2.659E+3

508 3 5.738E+2 2.524E+2

509 4 6307E+1 2.890E+1

510 5 7.943 E+0 3.737E+0

511 6 1.084 E+0 5.184E 1

This dose point is 1.1 feet above the active zone.*

** These dose points are 0.1 feet above water surface, except elev. <496 and 505.

O

-. _



_ . _ _ . . ..~ .. _.. ..-.~.. .... - ~ .. -

. . . _ . - - . _ -

SARGENT & LUNDY 20
S u 904

g Prtilminary Report 3-2 94

U

ATTACIIMEh"13

1. ' Unit 1 Fuel Pool Raliological Source Term and liest Generation Rate," Sargent & Lundy ,

Calculation ATD-0364, Revision 0, Dresden Nuclear Power Station, Unit 1. Proj. No.

09389-09 (56 pages)

2. " Direct Dose Rate at the Edge of the Fuel Storage Pool," Sargent & Lundy Calculation

ATD-0365, Revision 0, Dresden Nuclear Power Station, Unil I, Proj. No. 09389-09 (23 pages),.

3. " Scattered Dose Rates from the Fuel Storage Pool," Sargent & Lundy Calculation ATD-0366,

Revision 0, Dresden Nuclear Power Station, Unit 1, Proj. No. 09389-09 (33 pages)

4. " Fuel Pool Temperature and Evaporation Rate," Sargent & Lundy Calculatian ATD 0367,

Revision 0, Dresden Nuclear Power Station, Unit 1, Proj. No. 09389-09 (47 pages)

5. "Cindding and Fuel Centerlino Temperature of a Putially Uncesered Spent Fuel Rod," Sargent

& Lundy Calculation ATD-0370, Revision 0, Dresden Nuclear Power Station, Unit 1, Proj.

(] No. 09389-09 (16 pages)

6. " Cladding and Fuel Centerline Temperature of a Water Cooled and Air Cooled Spent Fuel

Rod," Sargent & Lundy Calculation ATD-0371, Revision 0, Dresden Nuclear Power Station,

Unit 1, Proj. No. 09389-09 (22 pages)

|

1

6



ATTACIMIENT B

CAL Item 3 Contamination Estimates.

|
1

!
|

I

|

|

|

I

i
usum:30nmixw4030301ja - 14 - i

l

l

l



.

I.

!
D-1 Fuel Service Building |

Revised Surface & Airbome Contarnination Calculations

Scope:

The NRC has requested that Dresden Station calculate the estimated surface
contamination levels in the Fuel Service Building if the fuel pool were to lose water

,

level down to the 502' elevation. An estimate of the airbome contamination levels due
to the surface contamination is included.

As part of a Unit-1 fuel pool clean-up campaign started late in 1993, CECO contracted
Scientech, Inc. to conduct sampling and characterization of the materials in the fuel
pool in accordance with 10 CFR 61. This report, dated October 13,1993, was used to
evaluate the contamination levels that might be present. The report is available for
review.

Scientech vacuumed two fuel pool sludge samples as part of their sampling regimen.
The total surface area over which these samples were taken is unknown, therefore
these samples were not used for this evaluation. Scientech obtained surface samples
on several components in the storage pool, including a fuel element flow channel.
These samples should be representative of the activity deposited on other fuel
elements, and the flow channel results were used for this repo:t. The 1,urface area of
the samples ranged from 50 to 100 cm' To be conservative, it was assumed that

2each sample was taken over a 50 cm area.

A report entitled "Resuspension Factors and Probabilities of Intake of Material in
Process" by Alan Brodsky (Health Physics Vol. 39) was reviewed in an effort to
calculate the potential airbome radionuclide concentration (s) in the Fuel Service
Building should the fuel become uncovered. Resuspension factors may vary from
1.0 E -13 m" to 1.0 E -03 m", and are dependant on many factors. Under conditions
of light work and moderate area ventilation, a resuspension factor of 1.0 E -06 m" is
reasonable and conservative. After conversion to more useful units, this corresponds
to a resuspension factor of 1.0 E -08 cm"

For the purposes of this estimation, we will assume a resuspension factor that is ten
times more Fmiting. A factor of 1.0 E -07 cm" will be used.

1 of 3
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Assumptions:

1. Each surface contamination sample was taken over a 50 cm area.2

2. The flow channel surface activity is representative of the activity that is
daposited on the other fuel assemblies and the fuel racks.

3. Fission oroduct decay gases and spread of radioactivity due to a postulated
release of gases from exposed fuel assemblies were not considered in this
estimation.

4. Heat up of the exposed fuel and remaining fuel pool water is negligible.
5. Building ventilation was not running, and would remain off.
6. A resuspension factor of 1.0 E -07 cm" is appropriate.

Surface Contamination: !

Smears on the fuel pool water line averaged:
21.3 million dpm/100cm Beta / Gamma radioactivity

2780 dpm/100cm Alpha radioactivity

A back-calculation of the fuel surface contamination levels indicates the potential for:
25.9 million dpm/100cm Beta / Gamma radioactivity

21,000 dpm/100cm Alpha radioactivity
( on exposed fuel surfaces )

Surface contamination plate-out due to airborne radioactivity is generally quite smallin
magnitude, and is usually seen only in extremely dusty conditions. These conditions
are not expected in this scenario. Surface contamination (due to airborne radioactivity
plate-out only) should be in the area of:

21K dpm/100cm Beta / Gamma radioactivity
2< 1 dpm/100cm Alpha radioactivity

With the above assumptions, it is expected that there will be little additional spread of
surface contamination outside of the recessed fuel pool areas. Attempts to correct j
problems and to re-fill the pool (s) could cause cross contamination, in some areas, of
up to the above listed levels for the fuel pool water-line. Aggressively spraying water
directly onto exposed fuel and fuel rack surfaces could result in the spread of
significant levels of additional contamination.

;
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Airbome Radioactivity:

Radioriuclide concentrations are given in Table 7.6 of the Scientech report. The
attached spreadsheet was used to estimate airborne radioactivity based upon the

;

previous'y mentioned resuspension factor. DAC values were also calculated, and are
provided.

To summarize, airbome radioactivity could be present at levels of:

Beta / Gamma 2.67 E -09 uCi/cc gross activity or a total of 0.29 DACs
,

Alpha 4.70 E -13 uCi/mi gross activity or a total of 0.15 DACs

it is important to note that these figures are for long term steady state conditions, and
are for ger.eral areas of the Fuel Service Building. Aggressive work on highly
contaminated surfaces could cause a localized high airbome radioactivity condition.

.

I

4

Prepared by: ' b u w /b % 2tT,w < lei
Harry Ansgnostopoulod
ALARA Planner
Dresden Station
02/16/94
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D.1 Fuel Building Postulated Airborne Co2centrations 2/16/94 9:17 AM

l
|
|

Radionuclide Sample Activity Calculated Activity Calculated Airborne OAC value Number of DACs
|

Beta l 0amma (ucil50 cm2 | ( util em2 ) (vCiIcc i (ucileci

Co 60 1.22E + 00 2.44E 02 2.44E49 1.00E48 0.244

Sr89 1.74E44 3.48E 06 3.48E 13 6.00E-08 0,0000058

Sr-90 3.51E 63 7.02E 05 7.02E 12 2.00E49 0.00351

Cs134 2.97E44 5.94 E-06 5.94E.13 4.00E-08 0.00001485

Cs 137 1.08E 01 2.16E-03 2.16E 10 6.00E48 0.0036

Pu 241 1.80E-03 3.60E45 3.60E 12 1.00E 10 0.038

Gross Totals !$ # $k IIf' NN 2.67E42 2.67E-09 fhEN 0.29

Radionuclide Samp!e Actuity Calculated Activity Calculated Airborne OAC value Number of DACs

A!cha ( uCi150 cm21 ( uCiI em21 (vCiIec | (uCilce l

Pu 238 5.63E45 1.13E 06 1.13E 13 3.00E 12 0.04

Pu-239 5.78E45 1.16E 06 1.16E.13 3.00E 12 0.04

Am-241 1.08E44 2.16E 06 2.16E 13 3.00E-12 0.07

Cm 244 1.31E-05 2.62E 07 2.32E.14 5.00E-12 0.01

Oross Totals [,. I 4.70E-06 4.70E 13 b[ Ih 0.15

Calcula ted airborno radioactivity is based upon a resuspension factor of 1.0 E -07 cnr 1

|

|

|

Based upon postulatedloss of fuelpool water level

|
!

!
4
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k
Table 7.6

i

|x

!
Unit # 1, Flow Channel Sample Activity Concentrations

NUCLIDE BULK SAMPLE SURFACE SAMPLE
CONCENTRATION ACTIVITY UNCERTAINTY ACTIVITY UNCERTAINTY

#23417 #23418

C-14 <3.0E-06

Fe-55 5.15E-02 10 %

Ni-59 1.07E-01 16 %

Co-60 1.06E+00 10 % 1.22E+00 10 %

! Ni-63 6.73E+00 10 %u_a

Sr-89 1.74E-04 43 %

Sr-90 3.51E-03 10 %
-

c, Nb-94 <1.2E-05

Tc-99 <8.7E-06

[l Sb-125 9.83E-03 16 %L.J
Cs-134 1.87E-04 38 % 2.97E-04 21 %, . ,

L_) Cs-137 4.98E-02 10 % 1.08E-01 10 %

Pu-238 5.63E-05 10 %8
Pu-239 5.78E-05 10 %

An-241 1.08E-04 10 %

Pu-241 1.80E-03 35 %

C=-242 <4.2E-07

Cm-244 1.31E-05 10 %8 Gross Alpha 6.88E-04 14 % 2.39E-04 27 %

8
g 22
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MAP OF.THE DRESDEN STATION UNIT 1

SPENT FUEL STORAGE POOL (SFSP)' TRANSFER BASKETS ~
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