

Department of Energy Washington, D.C. 20545 Docket No. 50-537 HQ:S:82:169

DEC 2 9 1982

Mr. Paul S. Check, Director CRBR Program Office Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, D.C. 20555

Dear Mr. Check:

CONTAINMENT VESSEL/CODE CASE(S) ANALYSIS WORKING MEETING - SUMMARY

This letter transmits a summary of the Containment Vessel/Code Case(s) Analysis Working Meeting held on December 8, 1982. The summary indicates the general trend of the meeting and identifies other relevant information.

Sincerely,

J.E. Stader for

John R. Longenecker Acting Director, Gffice of Breeder Demonstration Projects Office of Nuclear Energy

Enclosure

cc:	Service List
	Standard Distribution
	Licensing Distribution

D001

8301110189 821229 PDR ADOCK 05000537 A PDR Containment Vessel/Code Case(s) Analysis Working Meeting - Summary

A working meeting was held on December 8, 1982 to resolve NRC concerns to the Containment Vessel/ASME Code Case(s) Analysis. The presentations and subsequent discussions responded to NRC concerns in the following areas:

- The 1974 versus 1980 ASME Code Comparison (NRC Question 220.25)
- The Ultimate Capacity of Containment (NRC Question 220.30)
- 3) The NRC Audit Findings
- 4) The Identification of Closed Issues

The presentations highlighted the essential elements of the Applicants responses to the NRC concerns. From subsequent discussions of the presentations and the Applicants' developed responses to the NRC concerns it appeared that the Applicants had closed all of the subject issues. However, the NRC reviewers indicated that some minor clarifications would be needed in the information formally transmitted. See Attachment (1) for a list of closed issues, Attachment (2) for clarifications of formal responses to NRC concerns, Attachment (3) for formal responses to NRC concerns, Attachment (4) for meeting viewgraphs, Attachment (5) for the meeting agenda and Attachment (6) for meeting attendees.

Attachment (1) CR-783:VF:82-598

Responses to NRC Comments on Previous Question Responses

- 1. NRC Question 220.25
 - a) What is the justification for assuming that the external containment pressure (P_E) is 0 for the assessment of containment buckling according to Code Case N-284?

Status: Closed Issue

b) Provide further information on the effect of the equipment access hatch on the margin against buckling. The N-284 buckling evaluation provided by the Applicant as part of the response to NRC Question 220.25 does not adequately address the effect of the equipment access hatch. Describe the methodology used in design including consideration of buckling.

Status: Will provide additional information at FSAR stage, closed issue for SER.

c) Nozzle piping transition. The comparison included in the response to NRC Question 220.25 relies on engineering judgement. Provide numerical comparisons for typical piping penetration.

Status: Closed Issue

- 2. NRC Question 220.30
 - a) The ultimate capacity prediction for the containment should be expanded to include the effect of all discontinuities and the capabilities of all penetration components including seals, doors, etc. Appropriate thermal effects should be included.

Status: Closed Issue

3. NRC Audit Findings (May 1982)

a) Finding (1.C.1.A) - In evaluating the equipment and personnel airlock for seismic loads, an assumption was made that it penetrates containment in a radial direction. To develop the dynamic model for the airlock, only two degrees of freedom were allowed; radial and rotation about a horizonal axis. In addition, with the maximum live load in the extreme end of the airlock, it is fundamental frequency is below the peak of the design response spectrum for that location. To adequately evaluate the airlock the following needs to be done.

A three-degree-of-freedom model needs to be developed that includes the skewed penetration angle effects. The additional degree of freedom should be rotation about the vertical axis.

Status: Closed Issue

b) Finding (1.C.1.B) - Amounts of live load that allow the fundamental frequency to fall on the peak of the design response spectrum should be considered.

Status: Closed Issue

c) Finding (1.C.2) - The seismic lumped mass model includes stiffness coupling terms to simulate the fundamental dome breathing mode. The frequency and mode shape of this mode needs to be confirmed with a more refined model.

Status: Closed Issue

- d) Finding (1.D.3) All significant computer codes used for structural design need to addressed in the PSAR along with verification documentation.
 - Status: Closed Issue, a brief description
 will be incorporated in Appendix A of the
 PSAR. The detailed verifications are
 * included in Attachment (3).

- 2 -

Attachment (2) CR-783:VF:82-598 1. Supplement to: Why was Pe = 0 used in the N-284 analysis.

New question: What would be the effect if Pe = .5 psig instead of Pe = 0.

Response: The buckling safety factor would be reduced less than 10% (see below). This information has been supplied as requested; however, there is no requirement for these loading conditions to be analyzed.

	Pe = 0	Pe = .5 psig
OBE	2.5*	2.4**
SSE	1.9*	***

N-284 SAFETY FACTORS

*See response to 220.25 for calculations

**Same calculations were used for Pe = .5 psig

***Calculation not performed, however, the percentage change is expected to be similar to the OBE calculation.

2. Supplement to: 220.25 Equipment Hatch Buckling

New question: Evaluate the stress in the shell above the equipment hatch and the horizontal stiffener.

Response: The stress in the shell above the equipment hatch and the horizontal stiffener will be analyzed and a qualified summary will be provided in the FSAR.

3. The calculations in Table 3-10 (CRBRP-3, Vol. 2, Rev. 0, Page 3-85) were based on the applicable 1975 ASME Code requirements. As requested by the NRC, the ultimate capacity calculations (Question 220.30) were done in accordance with a later Code Case N-284, although the design criteria remains as those of the 1975 ASME Code.

Using the 1975 code and the CRBRP developed interaction equations, it was determined that the critical failure mode was shell buckling and not the hatch cover. Shell buckling calculations were therefore used to develop Table 3-10.

The recent (220.30) ultimate capacity calculations were performed to the more recent Code Case N-284 and therefore differ slightly. The significant difference is that the hatch buckling becomes more critical than the shell due to the application of the more conservative N-284 criteria.

Results from the new (N-284) analysis are quite close to the previous predictions in Table 3-10; i.e., at 450°F, the N-284 analysis predicts failure of the hatch at 40 psig and the earlier analysis predicts "yielding" of the shell at 39 psig.

Therefore, the most recent calculations performed in response to Question 220.30 are reasonably consistent with the earlier predictions in Table 3-10, and no change to the PSAR is considered necessary.

Attachment 3 CR-783: VF: 82-598

NRC MEETNG DEC. 8, 1982

Pe=0

Question

What is the justification for assuming that the external containment pressure (P_E) is 0 for the assessment of containment buckling according to Code Case N284?

Response

"External pressure" is an expression for a positive pressure measured from outside the containment vessel to inside the containment vessel. There is no known mechanism for actually generating a positive pressure outside the containment; rather, the concern is the potential for generating a negative pressure inside the containment vessel which has the effect of creating a positive differential from outside to inside.

 $P_{\rm E}$ was set equal to zero for the analysis of the critical buckling region (just above the operating floor) using N -284 criteria and PSAR loading combinations for SSE and OBE. This was done because an external pressure condition is not postulated to occur in combination with a seismic event for reasons given below.

The design specification for the CRBRP containment vessel identifies a negative "design pressure" of 0.5 psig. This pressure was conservatively chosen early in the design of the plant to assure that there would be no event which could independently challenge the capability of the vessel to contain a negative pressure. This pressure was not mechanistically derived but is included in the equipment specification and analyzed as a conservative assessment of vessel capability.

The only identified scenario which could cause a measurable negative pressure in the steel containment would be a large sodium fire followed by cool down of the containment atmosphere, without in-leakage of the outside atmosphere. The bounding case of such a scenario is presented as part of the containment building design evaluation in Section 6.2.1.3 of the PSAR.

The pressure in containment, following the large sodium fire discussed in Section 6.2.1.3, would not become negative until the containment atmosphere has cooled down for more than fifty hours. The negative internal pressure attained in the steel containment is limited by operation of the vacuum breakers. The set point of the vacuum breakers is 3.5 inches water gauge (0.13 psig). Therefore, once the pressure inside containment has become negative, it will remain negative only until the vacuum breaker set point is reached. When the vacuum breakers open, the pressure differential across the containment will drop until the low set point on the vacuum breaker valves (1.75 inches water gauge) is reached and the vacuum breakers close. Thus, the set point of the vacuum breakers (3.5 inches water gauge) is a reasonable upper-bound value of the external containment pressure following a large sodium fire.

The pressure relief function of the vacuum breakers is assured by (1) providing redundant separated penetrations with vacuum breakers, (2) sizing each vacuum breaker for adequate inlet flow to ensure that the negative pressure differential in containment would not exceed 3.5 inches water gauge, (3) sizing each vacuum breaker penetration to provide adequate inward flow assuming failure of the vacuum breaker(s) on the other penetration and (4) designing and qualifying the vacuum breaker "valves" to assure that they will open at their design set point during or after any design basis sodium fire inside containment.

Analysis has shown that there is a negligible difference in loads that set $P_E = 0$ and loads that set $P_E = 3.5$ inches water gauge (0.13 psig) as input to the loading combination. Even though the external pressure was selected to be zero for the analysis of the critical buckling region, a reasonable upper-bound value of 3.5 inches water gauge for the external pressure would not significantly affect the outcome of the analysis.

Summary

An external containment pressure condition is not postulated to occur in combination with a seismic event. Nonetheless, selection of a reasonable upper-bound value of 3.5 inches water gauge for the external pressure would not significantly affect the outcome of the critical buckling region analysis using N -284 criteria and PSAR loading combinations for SSE and OBE.

CHICAGO BRIDGE & IRON COMPANY

Location OAK BROOK ENGF.

A DISCUSSION OF HATCH OPENING EFFECTS ON VESSEL BUCKLING

The hatch opening has a diameter of 44'-6", which is approximately 25% of the vessel diameter. The opening has been reinforced by area replacement rules of the ASME Code, Section III, Subsection NE. In addition, a stiffening system around the opening has been provided to maintain continuity of the ring stiffeners. (See attached sketch.)

The local area around this large opening is stiffened by the insert plate, barrel neck and the stiffening system. Unsupported plate areas within the stiffening system are small enough that local plate buckling is not a consideration.

For overall shell buckling analysis, it has been assumed that the buckling strength of the containment vessel is not reduced by the presence of this large opening. This assumption has been justified by assuring that the local vessel stiffness, in both directions, is equal to or more than the stiffness required for the unpenetrated shell. The basic principle of the buckling design of a stiffened shell, such as we have here, is that the stiffeners be capable of carrying all loads in case local panels have buckled and are not capable of carrying any loads. By maintaining the required stiffness continuity of the ring stiffeners, it is assured that overall compressive loads, in both directions, can be carried around the opening, without causing buckling. The stiffening system around the opening, in fact, has a much greater stiffness than that required to maintain continuity. (See Sheets H7.7 and H7.8 of the Design Report)

To assure that stiffening system members do not disproportionately share in carrying loads causing local failure, a frame analysis has been performed around the opening. The results of this frame analysis indicate that individual members of the stiffening system can properly carry their portion of the load. The proximity of the barrel neck, insert plate and the stiffening system result in their acting together. This results in quite large beam and column sections

SUBJECT	MADE BY	RAW	>	B v	5-4331
CRBRP CONTAINMENT VESSEL	0ATE 11/82	11/82	3 H	0HKD 11418	sur 1 of 4

23 87

CHICAGO BRIDGE & IRON COMPANY

Location OAK BROOK ENGR.

(see Sheets H8.6 and 8.8 of the Design Report), which are more than adequate to safely carry the loads.

To eliminate the possibility of the vertical stiffeners attracting a disproportionate share of the meridional compressive loads, causing panel buckling in the plate immediately above these stiffeners, the portion of the ring stiffener at elevation 856' between the vertical stiffeners is designed as a beam. This stiff beam and the diagonal stiffeners carry the meridional loads into the vertical stiffeners, without any significant "bunching" of the stress lines above the vertical stiffeners.

As a further justification for assumption that an opening the size of the equipment hatch, if properly reinforced, will not deteriorate the buckling capability of the vessel, we refer to a paper entitled "Experimental Study" of the Buckling of Cylindrical Shells With Reinforced Openings". This paper authored by C. D. Miller was presented at the Second Joint ASME/ANS Nuclear Engineering Conference, Portland, Oregon, July 25-28, 1982. Figure 2 of this paper presents the results for Model #1 which had an opening with r/\sqrt{RT} of 6.36 which is identical to that of the hatch opening. This figure indicates that the buckling capability of the cylindrical shell under axial compression was not reduced by the presence of the opening, when the opening was reinforced by area replacement rules. A number of other investigators have demonstrated by tests that for cyninders under ax al compression a reinforced opening could be of fairly large size without deteriorating the buckling dapability of the unpegetrated shell. This is particularly true of fabricated shell. Due to fabricated cylinders sentitivity to imperfections, under axial compression, the knockdown actors from classical buckling values are significant. These knockdown factors would allow for considerable local disturbances and stress concentrations without causing buckling. SEE INSERT A

5U8-EC*	MADE BY KM	RAW		8 v	5-4331
CRBRP CONTAINMENT VESSEL	11/82	11/82	9.6	CHAD	s 2 or 4

31 187

INSERT A

A number of other investigators have demonstrated by tests that for cylinders under axial compression, a reinforced opening could be of fairly large size without deteriorating the critical buckling capability of the shell. This is particularly true for fabricated shells under axial compression where the imperfection knockdow factors from classical buckling values are significant. Effects of the penetration are found to be more significant than imperfections and test results including penetrations are within the scatter of test results of unpenetrated shells. The CRBRP containment shell has been evaluated against ASME Code Case N-284 which' uses knockdown factors established from lower bound test data of fabricated vessels without penetrations. Test results also indicate these knockdown factors will provide lower bound values to test data obtained from vessels * with penetrations.

CHICAGO BRIDGE & IRON COMPANY

Location OAK BROOK ENGR.

In summary, we believe that by providing the extensive amount of stiffening around the hatch opening, local shell buckling is precluded. Also, by providing stiffness continuity of ring stiffeners and conservatively checking members locally as beams and columns to carry the loads around the opening, the buckling capacity of the vessel is not adversely affected.

SUBJECT	KM	RAN		B v	5-4331
CRBRP CONTAINMENT VESSEL	11/82	11/82	3.11	047E	**** 3 or 4

1511-1811

PENE TRADTIONS

CONTAINMENT ULTIMOTE CAPPBILITY

4,

SKEWED RIR LOCK

CHICAGO BRIDGE & IRON COMPANY

Location Oak Brook Engineering

EQUIPMENT PERSONNEL AIRLOCK - NONRADIAL STUDY

This study concerns the analysis of the equipment personnel airlock as a nonradial attachment in order to demonstrate that the containment vessel shell is adequate for these effects. The analysis of the airlock in CBI's Design Report demonstrates that the shell is adequate for the loads of the airlock as analyzed as a radial attachment.

This study demonstrates that the effect of the nonradial analysis of the airlock has an insignificant effect on the containment vessel. The analysis of the stresses in the containment vessel has been performed in the same manner as shown in CBI's Design Report, Section F. The dynamic model, however, was analyzed using CBI program E1724A (SAP IV) and includes the skewed effect.

The results of the analysis shows that the accelerations either were reduced or remained approximately the same as the radial analysis. The loads applied to the containment vessel shell in general showed a reduction for the radial and longitudinal direction and the loads applied in the circumferential direction increased significantly, however the loads applied in the circumferential direction do not control.

The results of the membrane stress analysis of the nonradial loads show that the maximum increase in the vessel stress intensity will be approximately 11%. The maximum stress intensity in the shell will be reduced, however, since the longitudinal (vertical) moment and the radial load have been reduced.

In conclusion, the results of the nonradial analysis shows that the additional skewed effect of the airlock will produce an insignificant effect on the containment vessel and it will actually reduce the stress intensities.

	INTRODUCTION	RAH	RAN		#¥	5-4331
,	CRBRP Containment Vessel	11/82	1/82	RE	DATE	ант A-1 от

00 78

CHICAGO BRIDGE & IRON COMPANY

Location Oak Brook Engineering

EQUIPMENT PERSONNEL AIRLOCK - NONRADIAL STUDY

TABLE OF CONTENTS

PAGE	DESCRIPTION
	INTRODUCTION
A-1 A-2	Introduction Summary
	NONRADIAL MODEL
B-1 B-2	Model Diagram Coupling Effect
	SPECTRAL RESPONSE DATA
C-1 C-2 C-3 C-4 C-5	Spectral Response Curve - OBE Horizontal Spectral Response Curve - SSE Horizontal Spectral Response Curve - OBE Vertical Spectral Response Curve - SSE Vertical Spectral Response Data
	E1724A PROGRAM RESULTS
D-1 D-2 D-3	Combined Loads From SAP IV Accelerations © End of Airlock Accelerations © End of Airlock
	STRESS INTENSITY RESULTS
E-1 E-2 E-3 E-4 E-5 E-6 E-7 E-8 E-9 E-10	Load Factor Determination Unit Loading from E1374 Program Membrane Forces - OBE Membrane Stresses - OBE Membrane Stresses - OBE Membrane Stress Intensicy - OBE Membrane Forces - SSE Membrane Stresses - SSE Membrane Stresses - SSE

TABLE OF CONTENTS	RAH	RAN	>	84	5-4331
CRBRP Containment Vessel	11/82	DATE II/SZ	RE	DATE	5HT OF

GO 787

8

OAK BROOK SPECIAL STRUCTURES DESIGN

Compressons Accelerations

DIRECTION	RECTION OBE		55	E
	RADIAL	NOW - RODAL	RADAL	NON RADIAL.
RADIAL (x)	1.5859	1.599	2.0839	2.159
LONG. (Y)	2.1669	1.989	3.3859	2.829
CiRC (2)	1.079	.803	1.749	1.259

CompAnisons LOADS.

Dipperion	0	BE	SSE			
Understand	RADAL	NOW RADIAL	RADIAL	NON-ROOME		
RADIAL	298K	268 K	364 K	356 K		
VERTICAL SHEAR	40.9 K	83.8 K	73.5 K	127.5K		
ML (TOTAL)	1931 FI-K	1538 FT-K	2822 FT-L	2596 FT-E		
CIRC SHEAR	526	50.7 K	87.7 K	77.6K		
Ma (Jam L)	418 RT-K	776.8 FT-E	730 FT-K	1279 FT-K		
Toksion	-	1001.7 FT-K		1427.4 FF-K		

SUBJECT SUMMARY OF ACCEL/LONDS.	MADE BY	CHKD BY		By	5-4331
00000 0 11	MAM	KAW	- Li	Chkd	- 1004
CRBRP Containment Vessel	11/82	DATE 11/82		Date	SHTOF

OAK BROOK Location SPECIAL STRUCTURES DESIGN CBI SAD IN ANALYSIS OF AILLOCK 139 12" 60" 1052 139.5 30%" 105.4" 302 18 X 26.14 00 150" 150" SUPPORT ELEVATION OF MODEL (REF: SHT F-4.1) 150 군 130 29.21° × 21 رار ۲ 150 PLAN OF MODEL COUPLING. × B 40 } Ke } KD a KD 2 100 -KR RAH RAH CHARGE NO. 5-4331 CHKD BY SUBJECT MODEL DIAGRAM - NON-RADIAL By REV Chkd

DATE

Date

B-1

OF

SHT_

CRBRP Containment Vessel DATE 11/82

OAK BROOK

Location_____

From sheet F-3.2.4 @ 10016 LAdiAL Loor Frontines .001336 rodians

IOOK

ATOTAL= . 1938 INCLES

ML= .31172 x10" (. 00/336)= 4.16510 + WEBS.

FREE Body, OF 1-2

CBI

4

 $\sum_{x=0}^{1} \sum_{x=0}^{1} \sum_{x$

ML

 $\Delta TOTOL = \Delta \phi + \Delta R$ $\Delta \phi = L (.001336RAD) = .0556 in$ $\Delta R = .1938 - .0556 in = .1382 in$ $KR = \frac{100000}{.1382} = .723589 \frac{4}{10}$

SUBJECT COUPLING EFFECT	MADE BY	CHKD BY		Bv	5-2331
access a thirty and	5AH	KAN	E C	Chkd	
CRBRP Containment Vessel	DATE	DATE	a l	Date	SHT OF

•

SPECTRAL RESPONSE CURVE	MADE BY	CHILD BY		BY	 5-4331
CPRPP Containment Vessel	DATE	DATE	1	CHRD	 1
GNDINF GUILdininent Vessei	17.52	11/72	1	DATE	SHT CHI

SPECTRAL RESPONSE CURVE	RAH	PAW !!		5-4331
CODOD Containment Vaccal	DATE	DATE	CHKD	.1.2
CRORP Containment vesser	11/62	11/22-1	DATE	SHT' L' COP

COMPONENT: CONTAINMENT VESSEL

PAGE NO. H-49 E953014

٠

FIGURE 35

SPECTRAL RESPONSE CURVE	RAH RAH	PAW RAW	87	5-4331
CODDD Containment Vessel	DATE	DATE	CHKD	1.2
CRERP CONTAININENT ASSet	11/82	11/10	DATE	SHT COP

REVISION NO. 38 DATE 7/90

COMPONENT: CONTAINSAENT VESSEL

PAGE NO. H-ER E953014

ACCELERATION (C)

STATIAL RESTARE CULVE	MADE BY	PAW BY	> 84	5-4331
CABRP Containment Vessel	DATE	1/82	CHED DATE	 ant C-4 or

RESP	onse Spectra	EL 820'			
OBI	E HOR DONT	IAL .	356	HOKIDO	WIAC.
FREQ.	ACCEL 45	ACCEL "Mysec"	FRED.	ACTEL GS	ACCEL "150
1.0	. 45	174	1.0	.7	211
2.2	.94	363	2.3	1.55	599
2.7	.94	363	2.6	1.55	544
3.0	1.15	444	2.9	1.8	696
3.8	1.4	541	4.0	2.53	978
4.4	1.8	696	6.3	2.53	478
6.0	1.8	696	6.6	2.4	927
6.5	1.95	-53	9.2	2.4	927
9.2	1.95	75 3	14.	1.25	-83
14.0	.90	348	24.	.75	290
40.0	.35	135	50.	.53	202
0000	.35	135	10000	.53	245

OBE VERTICAL

SSE VERTCAL

FEED.	Accel tis	ACCEL "SEZ	FRED.	Accel.45	ACCEL "Secz
1.0	.25	97	1.0	.00	193
2.2	. 38	147	2.1	1.0	386
2.6	, 38	147	2.6	1.0	386
3.0	. 79	305	3.0	1.33	514
4.0	. 79	305	4.0	1.33	514
4.6	. 90	348	4,2	1.35	522
6.2	. 90	348	6,0	1.35	522
7.0	1.05	406	7.0	1.58	611
10.0	1.05	406	10.0	1.58	611
11.5	.81	313	12.0	1.20	469
18.0	,81	512	18.5	1.20	469
24.0	.70	270	20.0	1.15	388
30.0	.50	193	25.0	1.15	333
46.0	.25	97	35.0	.65	251
10000	.25	97	50.0	.45	174
			10 000	.45	179

MADE BY MAH DATE	CHKD BY RAW DATE	REV	Bv		5-4331		
			Chkd Date		SHT_C.5		
	MADE BY	MADE BY CHKD BY RAH RAW DATE DATE 11/8 2 11/82	MADE BY CHKO BY HAH RAW > DATE DATE 1/6 2 1/82	MADE BY CHKD BY HAH RAW DATE DATE DATE 1//G Z 0//9Z Date	MADE BY CHKD BY HAH RAW SW Chkd DATE DATE W Chkd		

DAF FOOT

COMBINED LOADS FROM SAP IV CONC. LL. CEND. MODE FREQUENCIES. f1= 2.95 H& f2= 4.04 Hz f3= 2.52 Hz

OBE

CBI

DIRECTION	PRIPS	VL KIPS	VC K.PS	ML FT. KIPS	MC FT-KIPS	MT FT-Kips
RADIAL	226-1	53.6	13.3	1278.3	356.4	829,9
CIRC.	13.3	2.9	35.8	10.3	389.3	45.9
LONG.	28.3	27. 3	1.6	249.1	31.1	125.9
TOTAL	267.7	83.8	50.7	1537.7	776.8	1001.7

SSE

DIRECTION	PPS	VL KPS	UC KIPS	ML FT-K-PS	Mc Fi-KiPs	MT FT-KIPS
RADIAL	291,4	74.4	20.2	2013.5	584.2	1153.3
CIRC.	20,2	4.5	54.8	166.8	641.8	69.8
LONG.	44.3	48.6	2.6	415.5	52.7	204.3
TOTAL	355.9	1275	77.6	2 595.8	1278.7	1427.4

CRRRP (COMBINED LOADS	MADE BY	CHKD BY	-	8¥	CHARGE NO.
		- AH	KAW	2	Chlid	5-4521
CODDD	Containment Vessel	DATE	DATE	a l	CINC	D 1
CKRKL	Containment vesse!	11/52	11/82	1	Date	SHTOF

OAR ELGAT

.

(RESULTS OBTAINSED FROM PEM EI724A) Accel (GS) = (Spectral Displacement) (2 Tf)	ACCELERATI	ONS	ØE	ND	OF	Loc	K (NODE	1)
2010	(RESULTS Accel (GS)	OBTA	NED (SPEC	FRO	Die	Pam	E172	4A))(2π	f.)2

					PEORAL	NENT S	Acc	onus G			
VENT	DIRECTION	MODE	FREQUER	x	Y	2	×	Y	Z		
	RADIAL	1	2.95	. 1926	.0228	3123	.1713	.0203	2777		
		2	4.04	.2446	. 6071	-1109	.4 079	1.012	,1849		
		3	7.52	. 1987	2242	.0433	1.1430	- 1. 2954	.2502		
41		1	2.95	.0109	.0129	0177	.0097	,0115	-,0157		
080	LONG.	2	4.04	.0498	.1237	. 0226	. 0830	.2063	.0377		
		3	7.52	.0214	0243	.0047	.1236	-,1404	.0272		
	CIRC.	1	2.95	.2252	.0267	-, 3651	.2002	, 0237	3246		
		2	4.04	.0178	.0441	.0081	.0297	,0735	.0135		
		3	7.52	.0073	008	.0016	.0422	.0462	.0012		
		1	2.95	.3176	.0376	-,5149	.2824	.0334	1578		
		RADIAL	2	4.04	.3950	.9805	.1792	.6587	1.6351	. 2988	
		3	7.52	.2438	2760	.0533	1.4086	-1.5947	, 30 80		
SE		1	2.95	,0191	.0023	0309	.0170	.0020	0275		
ŝ	LONG.	2	4.04	.0834	.2071	.0379	./391	.3454	,0632		
		3	7.52	.0322 6	0365	,0071	.1864	.2109	.0410		
		1	2.95	.3713	.0440	- 6021	.3301	.0391	5353		
	Circ.	2	4.04	.0287	,0712	, 0130	.0479	. 1187	,0217		
		3	7.52	.0089	0/02	,0019	.0514	0589	.0109		
BJE	CT ComisiNE	O Acc	EL.	MA	ADE BY C	CHKD BY	> 8y		CHARGE	N	
RB	RP Contain	ment V	lessel		DATE	DATE	Chkd		- D-2	_	

GO 64 REV 4-73

CBI

OAK BROOK

ACCELERIATIONS @ END OF LOCK

SRSS	OF	MODAL	ACCE	E CATIO	NS. R	ESULTS
¢	BBB	RADIAL LONG CIRC. To	TAL	× 1.23 .15 .21 .459	¥ 1.64 .25 .09	- 42 . 05 . 33 . 80
53	E	RADIAL LONG. CIRC. Toi	AL	× 1.58 .23 .34 2.15	Y 2.28 .40 .14 2.82	2 .63 .08 .54 1.25

SUBJECT ACCELERATION SUMMARY	MADE BY	CHKDBY		8v	5-4331
2220 Containment Vessal	DATE	DATE	REV	Chkd	
CADAF CUITAININEIT VESSEI	UATE		1	Date	SHT_0-3 OF

GO 64 REV 4-73

1

CAK BOOM

LOAD FACTOR DETERMINATION:

CBI

PROGRAM 61374 WAS generated using a look Redial load and 100 FI-12 moments. The actual forces and moments will be to forfor the results from E1374.

For Concennications Live lovel.

「 日 」 第

* * *

SSE: RADIAL LOAD: 2= 355.9 Kips :: <u>FARTOR = 3.56</u> Long Abnont, ML Due to Seiemic= 2595.8 FT-K Due to LL+DL = <u>331.7</u> (174.4 x ²²⁶) 29 27.5 FI-K : FARTOR = 17

Circ Mement, Me = 1278.7 FLC := FACTOR= 12.79

OBE: RADIAL LOAD: P= 267,7 K/PS :, FACTOR = 2.62 Long, Mamon t, Mr Due to Seismic = 1537,7 FF-K Due to DL+LL = <u>331,7</u> 1869.4 FT-K ; FACTOR = 18.69

Circ. Moment, He= 776, 3FFK . : FRETOR = 7.77

SUBJECT AN FANTORE DETERMINATIONS	MADE BY	CHKD BY		By	5-4331
U Dal Ocatain mont Vocad	MAN	RAW	REV	Chkd	I
CRBRP Containment Vessel	11/42	11/82		Date	SHTOF

OAK BROOK

LOADS AND MOMENTS

UNRESTRAINED CASE

CONDITION	Ng (+ /10)	No (s/in)	Ma (1N.#/IN)	Mg (IN-T/IN)
AT EDGE OF				<u></u>
AIRLOCK ATT.				
RADIAL	3680	3767	2.24	
LONG	378	975	2146	3310
CIRC	634	224	428	319
		374	496	1159
AT 0.5 FT FROM				
AIR LOCK ATT.				
RADIAL	2914			
LONG	2.47	2711	1951	2192
CIRC	241	567	194	159
	484	381	322	800
AT EDGE OF				000
INSERT D				
BADIAL				
LONG	2497	2342	1767	1700
Cung	207	462	135	1722
Since .	404	368	290	120
				632

MADE BY	CHKD BY	,	By	SCHARGE NO.
DATE	DATE	RE	Child	-4331
1 4/92	4/82		Dete	SHT - 5.5
	MADE BY MAT OATE 4/92	MADE BY CHED BY MAT DAG DATE DATE 4/92 4/82	MADE BY CHED BY DATE DAG > 0ATE DATE 4/92 4/82	MADE BY CHED BY DATE DAG > Ched DATE DATE Ched A/22 A/82 Date

SUBJECT UNIT LOADING FROM EF372 Rom	MADE BY	CHKD BY		By	5-4981
CRBRP Containment Vessel	DATE	DATE	REV	Chied	E-2

MEMBRANE FORCES - UNRESTRAINED CASE

W/CONCENTERTED LL - DIBE

LOADING	LOAD	NO	NG	Neo Mir
@ Edge of Arber ottack To: 86.5"	Sec. 1	14.55		
RADIAL	2.68	9862	10199	0
LowG.	18.69	7065	17288	187
Circ.	7.77	4942	2906	950
Toisicn.	-	-	-	256
Q STRT FIOM				
RADIAL	2.68	7810	7265	0
LONG	18.69	4616	10597	149
Circ.	7.77	3761	2960	757
TOILSION	-	-	-	162
E EDGE OF				
INSERT R 10= 123,5		1		
KADIAC	2.68	6692	6211	0
Lonicy.	18.6	5567	8000	151
Circ	7.77	5/37	2837	000
101csion	-	-	-	125

NOTE: NOS = Vitro for Cire. Locations VL=DL+LL+ Seismic Not = VC/TTro for Long. locations Ve= Seismic

NOO = ME/2T To for Torsion

SUBJECT DRE-MEMERANE FORCES	MADE BY	CHKD BY		By	SHADGENS 1
	Ann.	KAN	2	Chkd	- 1004
CORDD Containment Veccal	DATE	DATE	æ	CIIRO	 5-3
CUDUL CONTAININENT A62261	11/52	11/82	1	Date	SHTOF

MEMBRANE STRESS INTENSITIES IN SMELL DUE TO AIRLOCK LOADS. - UNRESTRAINED CASE . ONE LOADS. -

I & Airlock TO BARREL JUNCTION += 3"

1.5 Meriam of Avilcer.

	NO	NG	NES
RAD	986=	10149	0
Long	7065	17288	187
TOKS,	-	-	256
	16927.0	27437	143

 $\delta \phi = 5642 psi$ $\delta \phi = 9146 psi$ $\delta \phi = 148 psi$ $5_1 = 9152 psi$ $5_2 = 5636 psi$ $5_3 = 0$ $5.I. = /51 - 5_3 / = 9152 psi$

2. e & Election of Airlock

	Nø	Ne	Noe	
RAD	9862	10149	0	
CIC	4942	2906	950	
TORS	-		256	
	14804	13055	1206	
To=	4935psi	Jo = 4352psi	Coo - 40	2 poi
S1 =	5140051	Sz= 4147psi	53=0	
S.I	.= /51-5	3/= 5140 psi		

IC .S FRT From Anlock t= 3"

I.C MeriDiAN of Airleer

RAD LONG TORS	110 7810 4616	N/8 7265 10547		Neo 144 162 311	
SUBJECT OBE- MEMPRIMUE SIGESSES	MADE BY	CHKD BY		By	5-4331
PUPPP Containment Versel	DATE	DATE	REV	Chkd	E.A
CREAT CONtaument vesser	1/82	11/82		Date	SHT OF

CRI			Location	
50= 4112 psi 50-	5959P	si Ti	w = 104 psi	
S1= 5960 psi 52	= 4136 p	si 53	= 0 ps /	
S.I. = / S S3/=	5960 p	si		
2. @ & ELEUDTION? (AD 78) CIC 370 TORS - 1157 Tor 3857 poi	0F A.	10000 205 960 	<u>×05</u> 0 757 <u>162</u> 919 500 = = = = = = = = = = = = = = = = = =	57
51= 0012 poi	Sz - 3	zs3psi	53=0	
5. I = /51.	53/= 40	12 101		
11 @ EDGE OF MSEL/ 1=1. 1. @ Meridian 0. LAD 66 LONG 38 TORS 103 Ja= 6035 Si= 8546	4 Airloo 4 Airloo 4 4 4 4 4 4 4 6 9 8 6 9 8 6 1 6 9 8 6 1 6 9 8 6 1 7 4 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	× 277 6 635 13 	25 38 δ00 = 250 53 = 0ps/	PSI SI=/51-52/=8546p
2. E ELELAT RAD Cire Toks	NO of 1 NO 1 1692 1 13139 1 13139 1	Airlock Ne 277 2859	NOS 0 665 125 790	
Ga = 5618,	osi Do.	= 52210	i Upe = 4	SIPSI
51= 5912 p	oi Sz	= 4927p	51 53=0	51 = /si-s= 1 = 5912 p
SUBJECT CALE - MEDIALNANE SINCESES	RAH RAH	CHKD BY	> Sy	5-4331
CKBKP Containment Vessel	DATE	DATE	Date	SHTOF

GO 64 REV 4-73

COMBINED MEMBRANE S. I. - UNRESTRAINED CASE -DRE LOADS

and a strange of		0			
LOCATION	STRESS INTENSITY FROM ALL LOADS	SHELL MEMBRANE STRESS INTENSINY	TOTAL STRESS INITENSITY	PREVIOUS TOTAL SI. (SHT F.S.72)	0%
A t=3"	9152 poi	4239 051	13386Ai	14854 001	-//
B += 3"	5960 psi	4234 psi	10194 001	11104 051	-9
C t=1.75 "	8546 psi	7258 poi	15809psi	17065051	-9
+==="	5 140 psi	3240 psi	8380951	7638AS1	+9
e t= 1,75"	5912 PS1	ssss psi	11467 psi	10666 psi	+8
F 1=3"	9152 001	5581 851	1472385:	16201933	-10
t=3"	5960 psi	5581P31	11541951	12 451 PS1	- 8
H = 1.75"	8546psi	9567831	18113 psi	19371 psi	-7

SUBJECT OBE MEMBIUNE S.I.	MADE BY	CHKDBY		Bv	5-4331
00000 0 11	744	KAW .	BEV	Chkd	
CRBRP Containment Vessel	1/32	1/82		Date	SHTOF

CAT Part

.

MEMBLANE FORMES - UNICESSILA VES TALE

N/AUNERPELIES 11 - 55E

LOADING CONDITION	LOAD FACTOR	NC Slir	NO #11.7	Nee Fire
© Edge of Arber offich To: 86.5" RADIAL LONG. C.TC. TOISSICN.	3.56 29.28 12.79	13101 11068 8134	13482 23084 4763	0 286 1111 364
2 SILT From Aulock att. 10=1086 RADIAL LONG CITC. TOILSICN	3.56 29.28 12.79	10374 7232 6190	4651 16602 4873	0 227 885 231
E EDGE OF INSERT R 10= 123.5" RADIAL LONGT. CITC TORSION.	3.56 29.28 12.79	8889 6061 5167	8338 13527 4707	0 200 778 179

NOTE: NOO: VITTO for Cire. Locations VL=DU-LLTSeignic Not = VC/TTO for Long, locations VE=Seisnic Non = ME for Torsion

RAH RAH 5-4331 CHKD BY SUBJECT SEE MEMBRIAND FORCES By. PAW > -E 0++3 E.7 ____ DATE DATE CRBRP Containment Vessel

Location______CECUL STRUCTLALS | La. 30

			Location	SBCLLD STRUCT: And I Lo.
MEMBRANE STILESS IN SHELL DUE - UNRESTRAINED	INTENS. TO AIR CASE	LOCK LOA SSE LO	ADS-	
I C. A. MOCL TO PACKEL JUNE 1. O MERICIAN RAD 13 LONKY 110 TO125 24	0 F Ai 0 F Ai 101 100 101 100 101 100 100 10	+= 3" 1100K-1 NO 13482 1084 10566 6	0 286 364 50	
δΦ= 8057 05 51= 1353/ 0 5.I. = /51-1	50 52 = 51 52 = 531= 13.	13522 31 13531 PSC 531 PSC	53=0	17151
2. C & ELEWATION RAD CIRC TORS	NO OF 1 13/01 8/34	13482 4783	NOD 0 1111 364 1975	
50= 7078P= 51= 7281P3	1 52=	6088ps	5000 5000 51 5000 5. I= /SI	442psi 0 -531= 7281psi
II C .STRT FROM Dillock 1. C Meridian of RAD	F Airlo	Ne 9651	NES	
LONG. TO125	723/	16 60 2	227 231 458	
50= 5869 51= 8757 P	ры Бе 51 52	= 8751 PSI	53 =	0 is pol
5.I. = /51	- 58/=	8759 PS1		
SUBJECT SSE MEMPADNE SILLESSES	MADE BY	CHKD BY	By	5-433
the set whet compared the set and a set of set of the set of t		the second second second second second	Chlet	A competence of the second sec

Location_EFECIAL STRUCTURES DESIGN

CBI 2. & & Elevation of Anlock NO NOU NO RAD 10374 9651 0 865 Circ 6190 4873 231 TORS. 14524 16569 1116 00= 5521 psi 0= 4841psi 000= 372 psi SI=5685951 Sz= 4677951 Sz= 0 poi 5, I, = /SI-33/= 5685 psi TI & EDGE of WSEIZT t= 1.75" 1. @ MERYDIAN OF AIllock No Nos NO RAD 0 8889 8338 200 6061 13527 LONG 179 TORS, 15294 .22521 379 00= 8543 Di Do= 12494 psi De= 217psi SI= 12506 psi S2: 8531 psi S3= 0pol 5. I. =/si-ss/= 12506 psi 2. @ & Elevation of Aillock Néo NO No RAD 8889 8338 0 770 CIC. 4707 5167 TORS. 957 14056 13015 Jo= 8032psi J== 7454psi Joe= 547psi SI= 8367951 Sz= 7124951 53=0 5, 1. = /51-53 = 8362001

SUBJECT SSE MEINMEANE STUBIES	MADE BY	CHKC BY	8y	5-4331
CKBRP Containment Vessel	DATE	DATE	Chkd Date	SHTOF

GO 64 REV 4-73

COMBINED MIEMBRANE S. I. - UNRESTRANVED CASE -SSE LOADS.

		0			
LOCATION	STRESS INTENSIY From A/L LOADS	SHELL MEMORANE STRESS INTENSITY	TOTAL STREESS MILLARTY	PREVIOUS TOTAL SI. (SHT F-S.2)	4%
A t=3"	13531	4739 Pol	18270	19206 psi	-5
B += 3"	8759	4739 FSi	13 498	14080051	-4_
C +=1.25*	12506	8124 051	20630	21450 poi	-4
D +=3"	7281051	3309 PSI	11090051	9969931	+11
e t=1.75°	8362 p51	6530 pol	14892 psi	13607 851	+9
f=3"	13521	SSBIPOL	19112	20048951	-5
t=3"	8759	5581951	14340	14 9 22 FSI	-4
t = 1.75"	1250	9567 PSI	2 2073	2 289 3/41	- 4

NOTES : @ REF SHT F-5.21

SUBJECT	SSE MEMOLANE S.I.	MADE BY	CHKD BY	By	5-4331
00000	0	744	KAW	W Chkd	E-10
CKBKP	Containment Vessel	IIIO .	11/22	0	leur ne

AIR LOCK LIVE LOAD

CHICAGO BRIDGE & IRON COMPANY

Location OAK BROOK ENGR.

EQUIPMENT/PERSONNEL AIRLOCK LIVE LOAD

Section F, "Equipment/Personnel Airlock Effects on the Shell" of the containment vessel design report develops the frequency and accelerations of the airlock and the airlock's effects on the shell, moments and forces. The dynamic analysis in Section F considers the full live load (40k) at the end of the airlock as encompassing the worst condition. During a recent NRC Design Review, the location and magnitude of the live load became a concern of the reviewers. The reviewers felt that if the live load was reduced or relocated away from the end of the airlock, the frequency of the airlock may increase enough to result in an increased acceleration and an increased load on the shell. The final result being that the "worst condition" may not have been used for design.

In response to the stated concerns of the reviewers, the dynamic analysis in Section F was reexamined and we offer the following explanation to the reviewers in response to their concern.

If the live load magnitude is reduced from 40^k and/or the live load is moved toward the center of the airlock, the following anticipated effects would occur.

- The center of gravity of the airlock would move toward the center of the airlock. This would reduce the moment arm distance. With a reduced moment arm, the circumferential moment and the longitudinal moment would be reduced significantly whether or not the live load itself was reduced.
- 2. The frequency of the airlock would increase but would remain approximately within a 10% range. A higher frequency would result in a slightly higher first mode spectral acceleration. However, the final airlock accelerations would only change an insignificant amount. This insignifigant change in acceleration would not be greater than the significant reduction which would occur from Item #1.

3. The force or moment on the shell will decrease.

GO

	SUBJECT	RAW RAW	RAH RAH	>	87	5-4331
787	CORDO CONTA INMENT VESSEL	DATE	DATE	AE	CHKD	
	CRORF CONTAINMENT VESSEL	11/82	11/82		DATE	SHT OF

CHICAGO BRIDGE & IRON COMPANY

Location OAK BROOK ENGR.

A detailed listing of the anticipated effects are listed on pages Our examination of the effects of a reduced or relocated live load reveal that the accelerations will either remain the same or will decrease and the radial force and moments on the shell will decrease.

LIVE LOAD IN AIRLOCK

Max. LL 40^k Assumed at End of Lock Result

MI

GO

 $\begin{array}{rcl} \hline RADIAL & - & f_1 = 3.42 \ \text{cps} & \text{left of peak spectral acceleration} \\ f_2 = & 6.96 & \text{on the peak spectral acceleration} \\ \hline Acceleration & 1.585 & 2.083 \ \text{g} \\ \hline Rotation & 0.00897 \ (\text{Radians}) & 0.0127 \ (\text{Radians}) \\ \hline F & 277^k & 364^k \end{array}$

2317 ^{1-k}

<u>VERT. EQ</u> - $f_1 = 3.74$ cps left of peak $f_2 = 126.14$

	OBE	SSE
Acceleration	2.166 g	3.385 g
ML	2981-k	505 l-k

1633¹-k

<u>CIRC EQ</u> - $f_1 = 2.74$ cps left of peak $f_2 = 126.14$

	OBE	SSE
Acceleration	1.07 g	1.74 g
M	418 ^{1-k}	7301-k

SUBJECT	RAW	RAH RAH	>	8 Y	5-4331
 CRBRP CONTAINMENT VESSEL	11/82	DATE II/82	3 1	DATE	

CHICAGO BRIDGE & IBON COMPANY

Location OAK BROOK ENGR.

- I. Liveload <40^k at End of Lock
 - A. Anticipated Results (Radial)
 - 1. Frequency will increase slightly, still approximately within 10%.
 - Note: a. Response spectra curve is adjusted 10%.
 - b. CBI uses a 10% adjusted factor frequency +10% to arrive at maximum spectral acceleration.
 - c. First mode frequency gives higher spectral acceleration. However, the second mode frequency will remain on peak. The second mode frequency has a high participation factor
 - 2. Location of C.G. will change.
 - 3. Acceleration of lock will change insignificantly.
 - 4. Radial force on shell will go down (less mass).
 - 5. Summary
 - a. Acceleration unchanged.
 - b. Load on shell less.
 - B. Anticipated Results (Long. Eq.)
 - 1. C.G. of lock will be closer to shell.
 - 2. Frequency will go up slightly, approximately within 10% range.
 - Note: a. Response Spectra curve is adjusted 10%.
 - b. CBI uses a 10% adjusted factor f +10% to arrive at maximum spectral acceleration.
 - 3. First mode spectral acceleration will go up slightly.
 - 4. Acceleration of system changes insignificantly. C.G. closer to shell
 - 5. My decreases. C.G. closer to shell + less mass.
 - 6. Summary
 - a. Acceleration changes insignificantly.
 - b. Moment on shell will decrease.
 - C. Anticipated Results (Circ Eq.)
 - 1. C.G. of lock will be closer to shell.
 - 2. Frequency will go up slightly, approximately within a 10% range.
 - Note: a. Response spectra curve is adjusted 10%.
 - b. CBI uses a 10% adjusted factor f +10% to arrive at a

ing x ruium	spectral	accele	gration.
and the second			

	SUBJECT	RAW RAW	RAH RAH	>	87	 5-4331	1
787	CODDD CONTAINMENT VESCEL	DATE	DATE	12	CHRD	 	1
	CRORP CONTAINMENT VESSEL	11/82	1/82		DATE	SHT OF	1

GO

CHICAGO BRIDGE & IRON COMPANY

Location OAK BROOK ENGR.

- 3. First mode spectral acceleration will increase slightly.
- 4. Acceleration of system changes insignificantly.
- 5. Mc decreases, C.G. closer to shell + less mass.
- 6. Summary
 - a. Accelerations remain the same.
 - b. Moment on shell decreases.
- II. Liveload = 40^{k} Located Away From End
 - A. Anticipated Results (Radial)
 - 1. Frequency will increase slightly, still approximately within 10%.
 - Note: a. Response spectra curve is adjusted 10%.
 - CBI uses a 10% adjusted factor frequency <u>+10%</u> to arrive at maximum spectral acceleration.
 - c. First mode frequency gives a higher spectral acceleration However, the second mode frequency will remain on the peak. The second mode frequency has a high participation factor.

2. Acceleration of lock will change only insignificantly.

- 3. Radial force on shell will decrease slightly.
- 4. Summary
 - a. Accelerations change insignificantly.
 - b. Load on shell less.
- B. Anticipated Results (Long. Eq.)
 - 1. C.G. of lock will be closer to shell.
 - 2. Frequency will go up slightly, approximately within 10% range.
 - Note: a. Response spectra curve is adjusted 10%.
 - b. CBI uses a 10% adjusted factor f ±10% to arrive at maximum spectral acceleration.
 - 3. First mode spectral acceleration will go up slightly.
 - 4. Acceleration of system changes insignificantly.
 - 5. ML decreases. C.G. closer to shell.
 - 6. Summary

GO

a. Accelerations change insignificantly.

b. Moment on shell will decrease.

	5UBJECT	RAW	RAH RAH	>		 5-433	CE NO.
		DATE	DATE	1 2	CHRD		
• •	CRBRP CONTAINMENT VESSEL	11/82	11/82		DATE	SHT	0

CHICAGO BRIDGE & IRON COMPANY

Location OAK BROOK ENGR.

C. Anticipated Results (Circ. Eq.)

- 1. C.G. of lock will be closer to shell.
- Frequency will go up slightly, approximately within a 10% range. Note: a. Response spectra curve is adjusted 10%.
 - b. CBI uses a 10% adjusted factor f ±10% to arrive at a maximum spectral acceleration.
- 3. First mode spectral acceleration will increase slightly.
- 4. Acceleration of system changes insignificantly.
- 5. Mc decreases, C.G. closer to shell.
- 6. Summary
 - a. Accelerations remain approximately the same.
 - b. Moment on shell decreases.

	SUBJECT	RAW	RAU BY		87	CHARGE ND. 5-4331
GO 787	CRBRP CONTAINMENT VESSEL	11/82	NATE 11/82	a	CHKD DATE	3HT OF

11/30/82

To: R.E. Gale (W-OR) FROM: D.L. Coroneos (W-WM)

RE: Equip. Airlock Fry. Variation with Load Mag. & Loc.

Please hind attached a table of freq. variations. A complete SARD will follow by mail. Note that if the ±10% criteria is required also for the <u>New</u> frequencies, the (Ag's)% max is 15.6%; otherwise, the (Ag's)% max is 5%

WESTINGHOUSE ADVANCED REACTORS DIVISION CALCULATION SHEET COMPONENT CRBRP Containa vent Verchans NO SUBJECT MURPOSE Equip Aicket Free, Vaciation will Load May & Love. DATE 11/23/12 MEPARED BY: D. T. Grances Freq Variation with IL May. & Loc. LL (TOTAL) = 43, 600165 -11-21,700- 11=4,340 w,* w, * ·w,* N × k= 3/17220 /2=, 167 5 2.10 k= 3172x10 1= 3172×10 3.962 26.12959 2.743 4.172 3.738 4.007 23.64106 4.183 3.815 2.799 10 4.048 4.192 3.888 2.853 20 21.15253 4.200 18.66399 3.997 4.087 2903 30 1617546 2.949 4.208 40 4.020 4.121 50 4.214 1368693 4.076 4.152 2.991 11.19840 - 60 4.125 3.027 4.220 4.177 4.198 4.166 4.224 8.70987-3.057 70 4.197 4.214 6.22/33 3.079 4.227 80 4.218 3.095 4.224 4.229 3.73280 90 3.103 4.2296 1.24627 4.229 4:230+ 100 4.230+ 4230+ 3.104-4.2304 105 0.0 N.I.-1% - 13.162 13.162 13.161 13.161 D The limit value is 1/k/m. for m= 4,412,091.8: for k= .31172 \$10" for k= .1678 1 10" W, = 3.1038008 Hz * W2 for all cases is above ZPA. PAGE ____ OF _3

WESTINGHOUSE ADVANCE REACTORS DIVISION CALCULATION SHEET COMPONENT CLBRP Containment Verschars NO. SYSTEM. SUBJECT MURPOSE Equip Airlant Free Variation with Land May & Los REV. NO_ PREPARED BY: D. 1. Corpecus 11/2 DATE OBE SSA Eguete 836' 9111 8211 8161 ER 6.7 1.9 22 2.04 647 New 07 1.29 1.06 do the 1.9 1.98 1.27 1.06 3.03% 0% 0% 1% 1.57% Table SSE-Equate OBE 8361 ... -8+61 ---81% -- 8361 1.35 32 1.98 2.21 00 7.76 [3 Howthey dift 1.98 1.9 1.05 1.27 4.2% 11.6% A% 9.4% 6.3% Table (Lg c)% Due to Free Chy Circumferential k=0.1678×10" ** Ref. 1, Pg. F-45 * Response Cureves Herein [] P. F-4.3.1 [2] P. F-4.3.2 3) P. F-4.3.3 3) P. F-4.3.4 OF 3 Z PAGE \$212-1

WESTINGHOUSE ADVANCE REACTORS DIVISION CALCULATION SHEET COMPONENT CLBRP Containant Veridars NO ... SUBJECT/PURPOSE Equip Priclast Freq Variation with Leed May & Lee. REV. NO_ DATE_11/2 5/32 PREPARED BY: D. J. Correcos Egu SSE OBE 836' 816-836' 816' 1.32 TU 1.37 [1] .78501 . 840[1] Ner 012" 1.32 -1.37 -80-.77 0% 1% 5% 0% 1.9% Table SSE - 085-Egonte 816' 836' 836' 816' 1.38[1] 0.925 31 0.87551 1.3651 Nor Hoz 01 1.37 0.77 0.8 1.32 1%-15.6% 0.7% 13.6%-3% Table (Ag's) % Due to Free Chg. Longi tudinal Moment K= 31172 ×10 +* Ref. 1, B. F. 4.4.3 Response Curves Used in Rel 2 [1] Ps. H-69 Fry. 35 [2] Ps. H-61, Fry. 47 3 _OF_3 PAGE ____

8212-1

"VESSEL HERD "DOME BREATHING

CHICAGO BRIDGE & IRON COMPANY

Location Oak Brook Engineering

TOP HEAD STIFFNESS VERIFICATION

To account for the vertical "dome breathing" mode of the steel containment vessel top head, a stiffness matrix coupling the mass points in the dome was developed. This stiffness matrix is described in subsection 5 of the Section E, Seismic, of the Containment Vessel Design Report. The purpose of this study is to compare the frequency and mode shape of this method with a more refined model.

A dynamic shells of revolution model was chosen to provide this confirmation. The shell model used for this comparison is shown on sheet 2.

Subsection 5 of Section E provides a complete stiffness matrix for a vertical model as shown on sheet EA-5.19 of Section E. The frequency and mode shape was not provided in subsection 5. Therefore, a lumped mass model analysis with the stiffness matrix shown on Sheet EA-5.19 was developed. An additional mass point was added 60 inches above the base to facilitate the analysis. This additional mass point does not effect the top head stiffness matrix.

A comparison of the results of the two methods is shown on sheet 7. The plotted mode shapes are in very close agreement and the frequencies are within 10%. In conclusion, the dynamic shell of revolution analysis compares favorably with the vertical "dome breathing" mode provided in the containment design report.

	SUBJECT	RAW	CHKD BY	>	BY	5-4331
ş.,		11/82	DATE	14	DATE	s= 1 2ª

30.78

Q0 64 REV 4-73

١

7 48657" R=1206" 9) EL 1899.60" FEL 1797.09" SPHERKAL DOME ARC = 500 8" t= 13/16 805.41 FEL 1591 24" 381.1 987.7" 3.8 156.21* 1086.3" EL 1385.33" P EL 1190.70" 1.333-1 ELLIPSOIDA 7.4 197.9 6 EL 996" 7.60 0 t=11/4 t FEL 720" F 3 EL 693.6" 125. EL 480" t= 13/4 6 EL 240" R=1116" FEL 60" FEL 0" (EL 816'-0)

GEOMETRY OF VESSEL FOR WHICH STIFFNESS MATRIX IS DETERMINED

	AUD JEGT	MADE BY		97	5-4331	
	COOD Containment Voca	OL UATE	Date I	CHRO		1
1	CRBRP Containment Vess	51 . e2	1.121	OATE	SHT 3 OF	l

	4			
	ſ		2	
1		-	-	

4,	u,	и,	u,	u,	n,	3	u,	' 'i	u,
0	0	0	0	0	0	.0	0	Leesnoz-	6-1904 x 10
0	. 0	0	0	. 0	- 0	0	-1.5491×103	3-4- teo	-2 0655007
0	0	0	0	0	0	1.011 JE45 1-	30182410°	10116451-	0
Ö	o'	0	0.	0	1.3069 101	"Ond869.5	-L547 1103	0	Ó
-1.6861+10*	y 01 5291 6-	-1 Chistion	-4.3K8101	-2.7754rb	ON FAN	-1. 34611 D	0	01	0
-9.63 1.105	-4.74(8)+104	-1.03234.07	-3.4 BGr D1	SURVERSIN'S	5.71971b ⁸	0	0	0	0
-1.6778+10*	-51845404	-1.4695110 ⁷	9.8263407	Querte-	-4.3K.B×107	0	0	0	0
-13660119-	-01-41221-	5.4773= 107	-1455410T	-1.0329*107	-200154101	0	0	- 0	0
-1.77431 10	1.85634107	*011 1225-	-5.1848×10	-4.7148+10+	-9.16751J04	0	0	- 0-	0
1.0752×10*	-1.7763+ 104	-1.3660 10h	-L0778x 104	-9.69/11/05	-1 8381×10+	0	0	0	
				11			2		

Copier From Sal EA -5-19 of Cal Design Redalt

UBJECT	MADE BY	CHKOBY	EV 1	By	RAH	CHARGE NO	
and the second	DAM	- hart - and		Parket	6		
CRRRP Containment Vaccal	DATE	DATE	1 15	United			
ouplu containment A6226	3134	1 1 Mar 1		Charter	Sec. 1	5WT 4 04	

COMMERE STIFFNESS MATRIX FOR *

OAK BROOK Location_

SHT_5_OF.

1	
0	
6	
Concession in which the	and the second se

MASS POINTS

CRBRP Containment Vessel	DATE	DATE	2 Chkd		eur 5	05
SUBJECT MUSS POINTS	AH SAH	CHKD BY	> 8v			AGE NO
	1					
	130	HO DRILY	D= 2306 273355	1 685	M= 5969	26.4
		-			N011	
x== 27 (120 ((51.26) (1875) (1210)	= 13081	665		Ng = 130	B/1 -55	Ma 338.5
16 - 27 (1206)(154.18), 1.8	20)- 2734	22, -07		W81 37	3453 265	Mg= 1018.3
	- 1- 704					
1-= 1~(1206)(205.85)(18-5)(.28	3 0) = 5:5	313 -02		W7 525	5313 65	Ma= /359.5
27 (1206)(102.45) (1.875)(, 293 @) = 1	20266916	•			
NL= 27 (987.9) (110.15) (1.25) (29	3) = _4	1378 Lb:		NG= 50	5047 -55	ML= /307.1
WS = 27(1086.3)(209.1)(1.25)(28	36) = 50	5941 665		1/52 50	05941665.	M5: 1209.4
27(116-46.65)(183.315)(.283.0) 27(116.875)(98.95)(1.25 (223.0)	= 349304	1 Lbs				
W4= 27(116.875)(138)(1.75)(153)	(.) = 480	627 665		N4 = 10	76090 100	M+= 2784.
W3 = 27 (116.875)(258) (175) (2836 27 (116 - 45.29)(173.25) (2836))= 898	563 Lbs		W3= 12	29108	M3= 3180.9
277(11/6-32.147)(72)(.2936)	= /5905	3 65				
W2 = 27(116.875) (240) (1.75) (.2836)= 8358	572 165		W2.9	74925 105	Mz= 7523.1
27(116-32.167)(72)(.2836)	= 13905	3 46s				
WI = 27 (116.875) (240) (1.75)(28)	36) = 3	35872 4	45	W. 9	14925165	M1= 2523.1
Woz 2 T(116, 375) (120) (1.75) (.283)	•) = •	117936 6	5	Wo =	4:7936 16:	M. 1081.6

DATE

DATE

Date

and the second data	different services	_	_	and the second se
064	6 F	v.	4.7	1

U,	74	BRI	A.10	
SPECIAL S	TRU	CTU	RES	DESIGN

6	
	a

COMPLETE MASS MATE & FOR VERTICAL VESSEL

.

Γ	1			(6. S			٦	
338.5	0	0	0	0	0	0	0	0	0	19
1	1018.3	0	0	0	0	υ	0	0	0	Mg
		1359.5	0	0	0	0	0	0	0	M7
			13021	0	0	0	0	0	0	ML
	1			1309.4	0	0	D	0	0	Ms
1					27844	0	0	0	0	M
	SYMME	TRICAL				3 180.9	0	0	0	Ma
							25 23.1	U	0	M 2
								2523.1	0	м,
	1	1.1.1.1	(* 245) (* A			12.20	1.1.1		1081.6	Mo

SUBJECT MASS MATELY	MADE BY	CHKD BY	> By	CHARGE NO.
CRBRP Containment Vessel	DATE	DATE	Date	SHTOF

GO 64 REV 4-73

GO 64 REV 4-73

.

COMPLTER PROGRAM KERIFICATION,

NRC Regulations

The intent and requirements of Appendix J to 10 CFR Part 50, "Primary Reactor Containment Leakage Testing for Water-Cooled Power Reactors", will be complied with, as applicable. A listing of exceptions to 10CFR50 Appendix J is provided in Section 6.2.1.4.

3.8.2.2.4 Appltcable CRBRP General Design Criteria (GDC)

The applicable CRBRP GDC are listed below.

Criterion 1:	Quality Standards and Records.
Criterion 2:	Design Bases for Protection.
Criterion 3:	Fire Protection.
Criterion 3.a	Protection Against Sodium Reactions.
Criterion 4:5 CEITELION 14: Criterion 50:41	Environmental and Missile Design Bases. Containment Design Bases. Containment Building Structure Design Bases.
Criterion 51:42	Fracture Prevention of Reactor Containment Boundary
Criterion 52:43	Capability for Containment Leakage Rate Testing.
Criterion 52:44	Provisions for Containment Testing and Inspection.
Criterion 34: +5	Piping Systems Penetrating Containment.
Criterion 35AL	Reactor Coolant Boundary Penetrating Containment.
Criterion 36:47	Reactor Containment Isolation.
Criterion 57:48	Closed Systems Penetrating Containment.
Criterion 58-49	Curewur Containment Atmosphere Control.
Criterion 58.5:	Inspection of Containment Atmosphere Control Systems.
Criterion 58.2	Testing of Containment Atmosphere Control Systems.

Criterion 74:56 Monitoring Radioactivity Releases.

3.8-4

Hay 5 3 38 - AM

Amend. 15 Apr. 1976 GOL 2.8. 2.2.4

Location_

CHICAGO BRIDGE + IRON COMPANY COMPUTER PROGRAM VERIFICATION FOR CRBRP CONTAINMENT VESSEL CBI CONTRACT 5-4331

SUBJECT MADE BY CHKD BY By Chkd	MADE BY	CHKD BY	By	CHARGE NO.
	3-4-321			
in the second	11/52		Dete	SHT

CBI

The	foll	owing	10.40	a list of the program numbers and titles use the containment vessel:
	1.)	655	,	Analysis of Ring-Stiffened Cylindrical Shells
	2)	277	•	Nozzle Reinforcing Area Check
	3.)	181	,	General Shell of Revolution
	4.)	907	,	T/R hatro and Geometry for Elliptical Head
	5.)	1017	,	Modal Analysis of Structures Using the Eigenvalue Technique
	6.)	1521	•	Stress Intensities at Loaded Altachments; Gylinder and Spheres
	7.)	1036	•	Maximum Stress Intensities in Jumbo Insert Plate
	8.)	1374	,	Shell of Revolution - Dynamics Arogram
	9.)	1392	•	Ape Stresses Due to External Loads and Shell Str for Nuclear Containment Vessels
	10.)	- 1010	-	
	LII)	1671	•	Ateprocessor for Atograms 772, 1056, and 139
	IZ.)	1691	,	Three Dimensional Space Frame and Trass Analysis
	13.)	1873	,	Structural Analysis for Arsonnel Lock Bulkhend, D Hime, and Litching Device

SE DO

DATE

Date

SHT_L_OF_

Location_

Verfication

CBI

Location_

CRI Aragram 655

This program calculates volues of shear, moment, thrust, radial deflection, tongential deflection, angular deflection and shear at desired points of a calinder or ring. Values derived are based on bending moment loads, tongential loads, and radial loads which are in the plane of the stiffener ring.

And hor :	J.S Endicott	
ades tersons :	4TT and 7181	лù,
Limitations :	an pones 1-2 and	1-2

SUBJECT	Computer Program	MADE BY	CHKD BY	By	CHARGE NO.
	W. L. t.	DATE	DATE	Ched	04221
				a Criko	1-1
NOTIONTIN		1115 32	11/82	Date	SHT OF

GO 64 REV 4-73

INTRODUCTION

This program is a complete revision of Program 655. Program 655 had some deficiencies in the manner of programming. These are as follows:

 Only finds displacements and forces on the loaded ring and the two adjacent rings (3 rings total). If more than one ring is loaded erroneous results will be obtained.

2. Has option of using partial structure.

These were changed in the revision to:

- Displacements and forces are found on all rings, loaded or unloaded.
- 2. No partial structure is used in the solution.
- Option: Displacements, forces, and stresses may be calculated for one portion of consecutive bays.

Additions and limitations are as follows:

- Ring geometry is read in to obtain the stresses in the ring and shell. Program has option whether or not to calculate stresses.
- Loads are printed out in single table, not at the ring before the loaded ring.
- Displacements, forces, and stresses may be printed out at the points of loading. This is optional.
- Total number of load points (if printed out) plus number of increments must be ≤145. Maximum of 99 for each type of load.

1-2

tore

Additions and limitations (continued)

- 5. This is a finite element program with very simple elements. These elements are:
 - a. Ring element which only bends in its own plane.
 - b. Cylindrical membrane element with constant shear (one element between rings).

Therefore, since there is only one very simple element between rings, the rings must be close together, etc.

3753

-

DISCUSSION OF THEORY

This program is a result of the Technical Note NACA 1219, "Stress Analysis by Recurrence Formula of Reinforced Circular Cylinders Under Lateral Loads" by John E. Duberg and Joseph Kempner.

This paper contains the development of a general recurrence formula suitable for the stress analysis of cylinders that may be nonuniform in construction, arbitrarily supported at the boundaries, and arbitrarily loaded in the planes of the reinforcing rings. The development is based upon the maintenance of continuity of deformation between the rings and shell. In any particular problem the recurrence formula together with appropriate boundary equations are used to obtain sets of simultaneous linear equations for the corrections to the stresses given by the elementary theory.

In the development of the recurrence formula that can be used to obtain the desired stress corrections, several simplifying assumptions are made: that part of the sheet area which is considered to resist normal stresses is added to the stringer area and the combination is uniformly distributed about the periphery of the cylinder. This resulting combination is an effective sheet thickness that resists normal stresses. The actual sheet area is considered capable of supporting only shear stresses. It then follows that within a bay the shear stresses vary in the circumferential direction but are constant in the longitudinal direction. Inextensional deformation of rings and object is also assumed, and Poisson's ratio is considered to be zero.

The elementary theory of ring analysis used herein is from "Formulas For Stress and Strain," by Raymond J. Roark, McGraw-Hill Book Co., Inc., New York, N.Y., 1954.

FORM OF EQUATIONS

From "Theory of Elastic Stability" by Timoshenko and Gere, page 279, comes the expression for the differential equation for the deflection of a ring.

$$M = \frac{EI}{R^2} \left[\frac{d^2 w}{d \phi^2} + w \right]$$

where

- M = bending moment
- E = modulus of elasticity
- I = moment of inertia
- R = radius
- w = radial deflection (positive inward)
- \$ = angular location of point on center line from reference

Furthermore, from the equilibrium equations, compatibility equations, and constitutive equations the following expressions are found:

$$\frac{dv}{d\phi} - w = 0$$

$$Q = \frac{dM}{Rd\phi} \qquad F = -\frac{dQ}{d\phi}$$

$$\theta = \frac{1}{R} \left(\frac{dw}{d\phi} + v\right)$$

$$M = -\frac{EI}{R} \quad \frac{d\theta}{d\phi}$$

where

- v = tangential displacement (positive clockwise)
- Q = shear force
- 8 = rotation
- F = axial force

1-5

Con the
Sign convention

q = shear flow

P = radial load
T = tangential load

M_c = concentrated moment

Therefore, the forces and displacements are as follows:

b_i,n = b_t,in + b_m,in i.e. the sum of the tangential load and concentrated moment effects.

For the shell:

.

$$q_{i}(\phi) = q_{e} + \sum_{n=2}^{n_{max}} \left[a_{in} \sin n\phi + b_{in} \cos n\phi \right]$$

For the ring:

.

$$w_{i}(\phi) = w_{e} + \frac{R^{4}}{EI_{i}} \sum_{n=2}^{n_{max}} \frac{1}{n(n^{2}-1)^{2}} \left[\left(a_{i,n}^{-a_{i-1,n}} \right) \cos n\phi - \left(b_{i,n}^{-b_{i-1,n}} \right) \sin n\phi \right]$$

$$v_{i}(\phi) = v_{e} + \frac{R^{4}}{EI_{i}} \sum_{n=2}^{n} \frac{1}{n^{2}(n^{2}-1)^{2}} \left[\left(a_{i,n}-a_{i-1,n}\right) \sin n\phi + \left(b_{i,n}-b_{i-1,n}\right) \cos n\phi \right]$$

$$M_{i}(\phi) = M_{e} + R^{2} \sum_{n=2}^{n_{max}} \frac{1}{n(n^{2}-1)} \left[\left(a_{i,n} - a_{i-1,n}\right) \cos n\phi - \left(b_{i,n} - b_{i-1,n}\right) \sin n\phi \right]$$

$$S_{i}(\phi) = Q_{e} + R \sum_{n=2}^{max} \frac{1}{n^{2}-1} \left[-\left(a_{i,n}-a_{i-1,n}\right) \sin n\phi - \left(b_{i,n}-b_{i-1,n}\right) \cos n\phi \right]$$

$$F_{i}(\phi) = F_{e} + R \sum_{n=2}^{n} \frac{n}{n^{2}-1} \left[\left(a_{i,n} - a_{i-1,n}\right) \cos n\phi - \left(b_{i,n} - b_{i-1,n}\right) \sin n\phi \right]$$

$$\theta(\phi) = \theta_{e} + \frac{R^{3}}{EI_{i}} \sum_{n=2}^{n_{max}} \frac{1}{n^{2}(n^{2}-1)} \left[-(a_{i,n}-a_{i-1,n}) \sin n\phi - (b_{i,n}-b_{i-1,n}) \cos n\phi \right]$$

The subscript \underline{e} refers to the elementary solutions.

1-7

0,75

Location_ ELEMENTARY SOLUTIONS FOR RADIAL LODO $M = \frac{PR}{2\pi} \left[\frac{\cos \phi}{2} - (\pi - \phi) \sin \phi + 1 \right]$ $F = -\frac{\rho}{2\pi} \left[\frac{3 \cos \rho}{2} + (\pi - \phi) \sin \phi \right]$

CHICAGO BRIDGE & IRON COMPANY

1-8

- $Q = \frac{p}{2\pi} \int \frac{2in 0}{2} \cdot (\pi \cdot \phi) \cos \phi$
- Q - PR² [30m d (π-d)(1-con d]

$$W = -\frac{PR^{3}}{2\pi E T} \left[1 - (\overline{T-\phi}) an \phi + \cos \phi \left\{ \frac{\phi}{\phi} (\overline{T-\phi}) - (\overline{$$

$$I = \frac{\rho R^{3}}{2\pi \varepsilon} \left[(\pi - \phi)(I - con\phi) - Im \phi \left\{ \frac{\phi}{2} (\pi - \frac{\phi}{2}) - \left(\frac{\pi}{2} - \frac{H}{2}\right) \right\} \right]$$

$$q = -\frac{p}{\pi R} \sin \phi$$

· Port MACL L FAR ? e . . DAT CAT 6-73 ****

GO 64

.....

$$E_{LEMENTARY} = Sources For TANGENTIAL LORG
M = -\frac{TR}{2\pi} \left[\frac{3}{2} \frac{\sin \alpha}{2} - (\pi - \alpha)(1 - \cos \alpha) \right]$$

$$F = -\frac{TR}{2\pi} \left[-\frac{\sin \alpha}{2} + (\pi - \beta) \cos \beta \right]$$

$$Q = -\frac{T}{2\pi} \left[-\frac{\cos \alpha}{2} - (\pi - \alpha) \sin \beta + 1 \right]$$

$$Q = -\frac{TR^{2}}{2\pi E^{\frac{1}{2}}} \left[\frac{5}{2} (1 - \cos \beta) + (\pi - \beta) \sin \beta - \beta (\pi - \frac{\alpha}{2}) + \frac{\pi^{2}}{3} - \frac{7}{2} \right]$$

$$W = -\frac{TR^{3}}{2\pi E^{\frac{1}{2}}} \left[\frac{\phi}{2} (\pi - \frac{\alpha}{2}) \sin \beta - (\pi - \alpha)(1 - \cos \beta) + \cos \beta (\frac{11}{8} - \frac{\pi^{2}}{6}) \right]$$

$$V = -\frac{TR^{2}}{2\pi E^{\frac{1}{2}}} \left[\phi (\pi - \frac{\alpha}{2}) (1 + \frac{\cos \beta}{2}) - \frac{3}{2} (\pi - \alpha) \sin \beta - \frac{3}{2} (1 - \cos \beta) + \frac{3}{2\pi E^{\frac{1}{2}}} \left[\frac{\phi}{2} (\pi - \frac{\alpha}{2}) (1 + \frac{\cos \beta}{2}) - \frac{\pi^{2}}{2} + \frac{\pi}{2} \right]$$

$$Q = -\frac{TR^{2}}{\pi R} \left[\frac{1}{2} + \cos \beta \right]$$

1-9

	5 G B (F C 7	MARE OF ICHAD DE	1.	P	54331
		6-73	11		s. And and St.
6413					

Location_____

$$FLEMENTARY Solutions For Concentrate Moment
M = $\frac{M_c}{2\pi} \left[\pi - \vartheta - 2 \sin \vartheta \right]$

$$F = -\frac{M_c}{\pi R} \sin \vartheta$$

$$Q = -\frac{M_c}{2\pi R} \left[1 + 2 \cos \vartheta \right]$$

$$\Theta = -\frac{M_c}{2\pi E \pi} \left[-2(1 - \cos \vartheta) + \vartheta \left(\pi - \frac{\vartheta}{2}\right) + 2 - \frac{\pi^2}{3} \right]$$

$$W = -\frac{M_c}{2\pi E \pi} \left[(\pi - \vartheta)(1 - \cos \vartheta) - \frac{3}{3} \sin \vartheta \right]$$

$$V = -\frac{M_c}{2\pi E \pi} \left[1 - \cos \vartheta + (\pi - \vartheta) \sin \vartheta - \vartheta \left(\pi - \frac{\vartheta}{3}\right) - \frac{3}{2} \cos \vartheta - \left(7 - \frac{\pi^2}{3}\right) \right]$$

$$Q = -\frac{M_c}{2\pi R^2} \left[1 - \cos \vartheta + (\pi - \vartheta) \sin \vartheta - \vartheta \left(\pi - \frac{\vartheta}{3}\right) - \frac{3}{2} \cos \vartheta - \left(7 - \frac{\pi^2}{3}\right) \right]$$$$

.

1-10

	JBJECT	MACE IN	CHEC DY		0.4	54531
5.10		DATE	6 -73	1.4	CH-31	34

COMPUTER INPUT DATA SHEET

COMPU	ook ITER OPERAT Est. No.	TIONS	RET	JRN TO	19404			ICOCATION.
Printout nee	ted by:	IDATE: Input Date for	ANALYS	S OF A S	T.FFENED	CYLINDER	WITH COM	TOR LOCATION
Programmer			LOADS	IN PLANE	OF RIN	G TREF NAG	A 1219)	
CONTRACT O	•			TION				DATE
		1,114	17 TO TAL -			YQ 10		
Description	E YOUNGS MODULUS	G SHE AR MODULUS	RADIUS	NO. OF BAYS	FOURIER TERMS(1)	EDGE CODI O:FREE@ X: -1:FIXED@ X	L O:	NONE STRESSES

and compared price with an end of	particular in the second of the second	and the second se		spectrum and the subscription of	produce and the second state of the	and resident and the second	
Description	NUMBER	START	FINISH	START	FINISH	DATA	
	OF ANGLE	ANGLE	ANGLE	BAY	BAY	SHEET	
	INCREMENTS					REVISION	
	(2)			(3)	(3)		
Units	(145 MAX)	DEG.	DEG.				

steil) As rearred for sonvirgence. Eta 10 normally sufficient.

(2) On Values at loads only For mox values .Ns islues at loads and increments see (3) next page "MeVolues of increases any

(3) START BAY & PRINCES BUDGES WITH THIS BAY F. Nich BAY's Printeds ends & th this bay

Description Units	I RING - SHELL IN4	BAY LENGTH L.	T	T' (2) IN	AREA RING - SHELL(4) IN ²	C, (4) IN	C2 (4) IN	VEB AREA (4) IN ²	CODE
Date									
								+	
									1
									1
									-
								-	
		1							
		1							
								-	
-								1	

Note (1) One card for each bay.

- (2) Longitudinal stiffeners may be used, but must be smeared out around circumference.
- (3) Example of load code: 012009
 O1 Moment load
 20 Tangential load
 O9 Recial load
 (if printed out) + no of increments ≤ 145
 (4) May be filled with zeros if stress code is 0.

Max. of 99 for each type of load

Description	LOAD	ANGLE	LOAD	ANGLE	LOAD	ANGLE	LOAD	ANGLE	LOAD	ANGLE
Units	KIPS OR	DEG.								
Date										
				1941 - 14						
										1
			a diline				-			
							TRUCK I			
			11.000							
1										
	1									
	1			1						
	1			-						
				1						
	1									
	1									
				1	-					-
				1						1
				1						1
										1
-								1		

Notes (1) Enter all moment loads and angles for first loaded ring, then start new card for all tangential loads and angles, start another new card for all radial loads and angles. —Repeat for each loaded ring -Omit cards for rings without loads.

*

Location OAK BROOK ENGR.

VERIFICATION OF PROGRAM 655

Two studies have been performed to verify the results obtained from Program 655. First, the results of Program 655 were compared to the results of Program 781, "Shells in Revolution". Second, to verify that ten harmonics were sufficient, comparisions of stress results were made using a varying number of harmonics.

The models used for Program 655 are shown on Sheets Both models consist of a stiffened shell with the top head modeled as an extension of the shell rising to 1/3 the elevation of the head. In Model 1 an ASME Code stiffener is modeled at elevation 924.1', while Model 2 is fixed at that elevation. Results from Model 1 were used in Section J of the Design Report. The model used for Program 781 is shown on Sheet A-4-16.

To reduce the number of harmonics required for Program 781, loads were applied over 30° of the circumference. In Program 781, a uniform distributed load was applied over 30° using harmonics. In Program 655, 21 equal concentrated loads were spread over the 30°. Sheets thru thru the show comparisions of inside and outside hoop stresses due to applied radial and tangential loads. In the case of the inside stresses due to an applied radial load (Sheet the inside stresses significant difference in Programs 655 and 781 results. A correction factor of 30% will be used to correlate the inside stresses of Program 655 with those of Program 781. CowT. P/4a

1-74 Sheets thru thru show comparisons of Program 655 stress results using a varying number of harmonics. The results show that convergence of the recurrence formula has occured using ten harmonics. 4-14

	TO BUBCY	SCB	RAW	*	84	 5-4331
••		18778	10/78	ä	DATE	****

GO 787

CB&I's analysis uses the peak values only. Therefore, variation at other locations need not be addressed. The plots of the inside and outside stresses caused by a tangential load (see Pages 1-21 and 1-22) also indicate a significant difference. However, the program 655 analysis predicted higher stress values, so no adjustment was required.

		R .
A	÷	
1.	ъ	1.1
-		~

SUBJECT	MADE BY	CHKD BY		Bv	CHARGE NO.
	DATE	DATE	RE	Chad	2-4221
	6/13/18	6/78		Date	SHTOF

14.44

.

GOAL REVA.71

GO 64 REV 4-73

3

Q.,

__ OF__

SHT_

....

.

a di

GO 64 REV 4-73

1

Location_

ĊBI

EW SEE SEISMIC LOAD W/TROLLEY & MIDSPAN

1

MAXIMUM ATA RING STRESSES (PSI)

	DIRECT	OUTSIDE	INISIDE	SHERR
	STREUS	STREES	STREES	STRESS
PROGRAM 655				
USINGG	-434	-809	940	366
HARMONICS		2 : 김 가슴 바람을		
PROGRAM 655				
Weins 9	-467	-821	879	354
HARMONICS				
PROVERT USS				
USING 10	- 476	- 826	865	352
HARMONICS				
	MAXIMUM	3RD RING STRESSE:	(PSI)	
	DIRECT	OUTSIDE	INSIDE	SHEAR
	STRESS	STRESS	STRESS	STRESS
Prouran 655				
Us wer 6	-136	- 549	- 914	426
HARMONICS				
PROGRAM 655				
US.24 9	-172	- 561	- 742	414
HARMODICS				
PADGALIN 055				
U= 10	-185	- 567	-724	411
HARMONICS				

					1-74
SUBJECT	MADE BY	CHKD BY		Bv	CHARGE NO
	566	DATE	HE -	Chkd	
	6.1.73	10/18		Date	SHTOF
			_		the second s

GO 64 REV 4-73

Location_

WITHOLLEY (QUARTER SPAN

í

	MAXIMUM 4T	" RING STRESSES	(PSI)	
	DIRECT	STRESS	INS IDE STRESS	SHEAR STRESS
PROGRAM 655 USING 6 HARMONICS	- 1474	- 1340	- 1797	-247
PROGRAM 655 USING 8 HARMONICS	- 1997	- 1347	- 1841	- 251
PROGRAM 655 USING 10 HARMONICS	- 1496	-1346	-1840	-251
	MAXIMUN	A 3RD RING S	STRESSES (PSI)	
	DIRECT	STRess	STRESS	SHEAR STRESS
PROLINA 655 USING 6 HARMONICS	1384	1485	1354	286
PROGRAM 655 USING B MPRMONILS	1405	1492	1397	285
PROGRAM USS USING D HARMONICS	1404	1492	1395	285

					1-25
SUBJECT	MADE BY	CHKD BY		By	CHARGE NO.
	DATE	DATE		Chkd	2-4531
			1 a		
	6-7-13	8701	1	Date	SHT OF
Q0 64 REV 4-73	the second se		-	and the second second	

CBI

Location____

.

_	300 TON	C MIDSPAN		
	MAXIMUM	ATH RING STRESSES	(755)	
	DIRECT	OUTSIDE STRESS	INSIDE STRESS	SHEAR
PROGRIM 655 USING 6 HARMODICS	- 1075	- 1289	- 958	- 191
PROGRAM 655 JEING 10 HARMONICS	-1085	- 129 3	- 878	- 182

MAXIMUM BED RING STRESSES (PSI)

	DIRECT	OUTSIDE STRESS	INSIDE STRESS	SHEAR STRESS
PROWRAM 655 USING 6 HARMONICS	1167	1263	1126	254
PED 655	1180	1267	1151	251

		2	
- ٦	-	1	Ι.
- 4		£.,	LB

SUBJECT	MADE BY	CHKD BY		By	CHARGE NO.	
	DIE	CATE	REV	Chkd	5.4331	
	6.3.18	10/78		Date	SHT OF	

GO 64 REV 4-73

CBI Program 772

This program calculates the nozzle reinforcing area available in shell, reinforcement, and nozzle wall and compares it to the area required by ASME Section VIII and/or Section III. Nozzle may have pressure or vacuum application.

Location.

Formulas and geometry used are as follow:

CBI

CBI

100% hrea Regd = $(\frac{10}{2} + CA)$ trs PL= parallel limit = maximum of: $(\frac{10}{2} + CA) - tn + CA$ ar $(t_s + t_n - 2CA) - tn + CA$ Area anablable in shell - PL $(t_s - trs - CA)$ Area anablable in renforcing - WR $(t_eX 1/s)$, if WR - PL otherwise use PL INL = inside normal limit = 2.5 $(t_n - CA)$ Area anablable in inside projection = INL $(t_n - 2CA)(n/s)$ ONL - outside normal limit - minimum of: $2.5(t_s - CA)$ ar $2.5(t_n - CA) + t_e$ Area available in notzele neck = $(0NL + t_s - t_n - CA)(n/s)$ Area available in metal = 0, for full fusion notzele neck - to-shell webal

Location

UBJECT	Computer	Program	MADE BY	CHKD BY	1	By	CHARGE NO.
	Company	incaran	OLI	KAN	REV	Chkd	16040
Verification		WESTSZ	WI82	-	Date	SHT_C-C OF	
O 64 REVA	-73					Ann	

Total area available = sum of individual area availables

*

2/3	Area Read · 2/3 (100 To Area Read)
	PL = parallel limit = minimum of :
	0.5 V Rms (ts - CA) - tn + CA
	$OR\left(\frac{10}{2}+CR\right)-t_{n}+CR$
Area	available in shell = PL (ts - trs - CA)
Area	anallable in reinforcing = WR(tex 1/2), if WR - PL otherwise use PL
Area	avoilable in inside projection = same as 100% Area Regd
	tes = minimum ot :
	te
	or $1.5(t_s - CA)$
	ONL - outside normal limit · maximum of :
	0.5 NRmn (tn - CA) + tes
	or 2.5 (tn - CA) + tes
Area	anailable in nozzle neck = (ONL + ts - trs - CAX tn - tm - CAX "1s)
Area	anailable in weld metal = same as 100%. Area Read
Total	area available = sum of individual area availables
- 0	

 SUBJECT
 Computer
 Acgram
 MADE BY GLN
 CHKD BY RAH
 By
 CHARGE NO.

 Ventication
 Date
 Date
 Date
 SHT 2-3 OF_____

GO 64 REV 4-73

CE

Location_

Sample Achlem :

= 01	" 50.01	Rms	=	100 "
CA =	0.125 *	0P	2	10*
trs"	0.438 *	IP		5"
ts=	1.0 "	WR :	:	8"
te=	0.5	"/s =		0.86
t.=	0.365 "	r/5		1.0
SL =	0			
tm=	0.740			

Calculate Rmn, 100% Area Read, 43 Area Read, and areas available and compose with computer values.

 $R_{mn} = \frac{10.02}{2} + 0.125 + \frac{0.565 - 0.125}{2} = 5.255" re computer's 5.255"$ $100.7_{0} \text{ Area Regd} = \left(\frac{10.02}{2} + 0.125\right) (0.432) = 2.249 \text{ in}^{2} \text{ re computer's } 2.25 \text{ in}^{2} - \frac{10.02}{2} + 0.125\right)$

PL = maximum of : (10.02 + 0.R5) - 0.365 + 0.R5 = 4.895" -

[1.0 + 0.325 - 2(0.25)] - 0.325 + 0.125 = 0.875"

Area anailable in reinforcing = 4.895 (0.52 1.0) = 2.448 in = 72 computer's 2.45 in = -

INL = 2.5 (0.365 - 0.125) = 0.6"

Area available in inside projection = 0.6[0.365 - 2(0.125)](0.86) = 0.059 in² ne computer's 0.06 in²

 $ML = \min(mum_{0}, of :$ 2.5 (1.0 - 0.125) = 2.188" ar 2.5 (0.345 - 0.125) + 0.5 = 1.100" -

Area available in notethe media = (1.100 + 1.0 - 0.438 - 0.725 Y 0.365 - 0.740 - 0.175 Y 0.86)Area available in wedd metal = 0 72 computer's 0 -Area available in wedd metal = 0 72 computer's 0 -Total Area Available = 2.139 + 2.448 + 0.059 + 0 + 0 = 4.046 m² 70 computer's 4.65 m² -

SUBJECT	Computer Argram	MAPE BY	CHKD BY RAH	>	By	CHARGE NO.
	Verification	INDATE	DATE	RE	Date	SHT 2-4 OF

GO 64 REV 4-73

CED
4'5 Area Read
$$\cdot$$
 $\frac{4}{5}(2.249) \cdot$ 1.499 int in computer's 1.50 in 2 -
M. * minimum of:
0.5 $\sqrt{100(10-0.125)} - 0.345 + 0.125 = 4.457$
* (1922 + 0.125) - 0.345 + 0.125 = 4.895"
Area analdake in stell = 4.457(0.5)(10) - 2.219 in 2 in computer's 1.94 in 2 -
Area analdake in reinforcing \cdot 4.457(0.5)(10) - 2.219 in 2 in computer's 2.22 in 2 -
Area analdake in inside projection \cdot 0.059 in 2 is computer's 0.06 in 2 -
tes = minimum of:
0.5 $\sqrt{5.255(0.345 - 0.125)} + 0.5 \cdot 1.062$ "
* 1.5(10-0.125) \cdot 1.315"
(ML = maximum of:
0.5 $\sqrt{5.255(0.345 - 0.125)} + 0.5 \cdot 1.062$ "
* 2.5(0.345 - 0.125) $+ 0.5 \cdot 1.062$ "
* 2.5(0.345 - 0.125) $+ 0.5 \cdot 1.062$ "
* 0 in computer's 0 -
Area analdake in weld widal = 0 is computer's 0 -
Area analdake in weld widal = 0 is computer's 0 -
Area analdake in weld widal = 0 is computer's 0 -
Area analdake in weld widal = 0 is computer's 0 -
Area analdake in weld widal = 0 is computer's 0 -
Area indicable in weld widal = 0 is computer's 0 -
Area indicable in weld widal = 0 is computer's 0 -
Area indicable in weld widal = 0 is computer's 0 -
Area indicable in weld widal = 0 is computer's 0 -
Area indicable in weld widal = 0 is computer's 0 -
Area indicable in weld widal = 0 is computer's 0 -
Area indicable in weld widal = 0 is computer's 0 -
Area indicable in weld widal = 0 is computer's 0 -
Area indicable in weld widal = 0 is computer's 0 -
Area indicable in weld widal = 0 is computer's 0 -
Area indicable in weld widal = 0 is computer's 0 -
Area indicable in weld widal = 0 is computer's 0 -
Area indicable in weld widal = 0 is computer's 0 -
Area indicable in weld widal = 0 is computer's 0 -
Area indicable in weld widal = 0 is computer's 0 -
Area indicable in weld widal = 0 is computer's 0 -
Area indicable in weld widal = 0 is computer's 0 -
Area indicable in weld widal = 0 is computer's 0 -
Area indicable in weld widal = 0 is computer's 0 -
Area indicable indic

SUBJECT	Computer Argram	MADE BY	снко ву ВДА	N	Ву	CHARGE NO.
	Verification	11/61/1	DATE	BB	Date	SHT 2-5 OF

GO 64 REV 4-73

.

PROG EOTT 2A: NOZZLE REINEG & WELD CHECK, REV SITA

NOZZLE REINFORCEMENT PER ASME SECT. III-NE PAD TYPE

INSIDE NCZ CIA	CORR ALLCW	SHELL THK	NCMI NAL	РАД К РІ. ТНК	NOMINAL NOZ THK	SHELL
 10.02	C. 1250	C. 438C	1.0000	2.5200	2.3050	2.0
REGD NCZ	RAC MI	COLE RAC	MIDDLE F NCZ	OUTSIDE	INSIDE	REINE
0.2400	130.0	0000 5	.2550	10.0000	5.0000	8.0000
 2/3 AREA	REQ D =	1.50		AREA REQ" D	= 2.25	
AREA AVAL	LABLE IN			AREA AVAIL	ABLE IN	
SFELL	= 1.94			SHELL	= 2.14	
 REINF.	= 2.22			REINF.	= 2.45	
 INS. PRCJ	= 0.06	-		INS .PRCJ	= 0.06	
NCZZ.NECK	= 0.0			NOZZ. NECK	= 0.0	
 WELD METAL	= C.O			WELC METAL	= 0.0	
TCTA	L = 4.22			T CT AL	= 4.65	
NOTE: ARE	A REQOD &	AREA FURNIS	HEC ARE BA	SED CN HALF	SECTION OF	NO7ZLE
 RATI (RI	IDS: (NCZZ EINFORCEME	LE STRESS/S	HELL STRES	S) = 0.86 S) = 1.00		
 NOZ	LE-NECK-1	C-SHELL-WEL	D IS FULL	FUS ICN		

CHICAGO BRIDGE & IRON CC.

NOZZLE REINFORCING AREA CHECK, CONTRACT 00054331

CBI

CBI Acorom 781

This program calculates the stresses and displacements in thin-walled elastic shells of revolution, when subjected to static edge, surface, and/ or temperature loads with arbitrary distribution over the surface of the shell. The geometry of the shell must be symmetric but the shope of the meridian is arbitrary. Since this program is based on classical shell theory, it has the same limitations. The shell thickness, physical properties of the materials, and loading more all vary arbitrarity along the meridian. The loading, including temperatures. Many vary arbitrarity around the circumference by using Fourier Series. There may be junctions or loranches. The shape of the shell may be a cylinder, cone, sphere, torroid, ellipse, or parobola.

Location.

Author: JS Endicott Dated Vorsions: 8/79, 11/80, 3/82, 6/82 Limitations: same as Corsical shill theory

3/19 version was approved por CBI OA manual 11/50 version had a title change 3/82 version corrected the program to call a subratime with a size series hormonies was specified

ulse version enlarge the program

SUBJECT	Computer Arogiam	MADE BY	CHKD BY	By	CHARGE NO.
	Verification	URGEZ	DATE 1//82	Chkd Dete	SHT 3-1 OF

GO 64 REV 4-73

Location_ Oak Look Los a tring

3. PROGRAMS E0781A AND E0781S - KALNIN'S SHELL OF REVOLUTION ANALYSIS

3.1 Comparison of 2/1 Ellipsoidal and Torispherical Heads

The structure consists of a torispherical and 2/1 Ellipsoidal head connected with a cylinder. The loading consists of a uniformly distributed pressure acting on the inner surface of the structure. This problem checks the programs ability to generate cylindrical, torisphercal, and ellipsoidal shapes. The results are compared to show the differences, between the hoop force and longitudinal bending in the two heads. These results are then compared with published results.

3.2 Cylindrical Water Tank with Tapered Walls

The problem considered here is a cylindrical water tank with a tapered inner wall. The loading consists of a linear pressure applied to the inside wall. The results are compared with the theoretical solution.

3.3 Circular Hole in Plate

GO 71

The problem consists of a plate with a circular hole subject to uniform axial tension. This problem illustrates Program E07815's capability to evaluate a stress distribution generated by a harmonic series. The KALNIN's results are compared to the theoretical solution.

3.4 Inclined Cylinder under Hydrostatic Loading

The problem considered is a inclined cylinder which is fixed at one end and free at the other end. The structure is analyzed for an internal hydrostatic loading. The KALNIN's results are compared with a published shell solution. 3-2

SUBJECT	TES	CHKD BY	12,	81	TES	STARGE NO.
,	7976	DATE	30	0418	12/76	5 0F

Location Oak Brook Standart De

PROGRAMS E0781A AND E07815 - KALNIN'S SHELL OF REVOLUTION ANALYSIS

Computer Brognam

Sector and Broken Black

Support Object

Feature or Cability (Type Of Analysis)	3.1	3.2	3.3	3.4	
Pressure Load	x	x		x	
Membrane Solution Boundary Cond.	x			x	
Fixed Boundary Condition		x			
Free Boundary Condition		x		x	
Concentrated Load			x		

×.	-	7	
2	7)

	SUBJEC Y	TES NACE BY	CHKD BY	2	8 Y	TES	CHARGE NO.
	where we are the second dama are presented as a second dama and the second dama are set of the second dama are second dama are set of the second dama are second dama are set of the second dama are second dama are set of the second dama are set of the second dama are set of the second dama are second dama are set of the second dama are seco	DATE	DATE	HE	CHKD		
87		7/76			DATE	12/76	SHT

GO 787

Location OB ENG. SERVICES

COMPARISON OF 2/1 ELLIPSOIDAL AND TORISPHERICAL HEADS 3.1

Introduction

This problem illustrates Program E0781A's ability to generate cylindical, torispherical, and ellipsoidal shapes.

A comparison is made to an experimental investigation of 2:1 ellipsoidal heads subjected to internal pressure (see reference 3.4).

Problem Definition

The problem consists of comparing a 2/1 ellipsoidal head to an equivalent torispherical head subjected to the same uniformly distributed internal pressure. An equivalent torisphere will be defined as one having the same height above the tangent line as the ellipsoid and a minimal L/b ratio (thus having the least possible discontinuity between the torus and the sphere). For the geometry shown in Fig. 3.1.1:

 $(L-b) \sin \phi_0 = A-b$ (1) (L-b) $\cos \phi_0 = L-B$ (2)

Minimizing L/b using (1) and (2):

 $\tan \phi_0 = B/A = 0.5019$ Øo = 26.653° $L/A = \frac{c \pm \sqrt{c^2 - 2c}}{2}$ c = B/A + A/B = 2.494 $L = \frac{18.19}{2.5} \left[2.5 + \sqrt{6.22 - 4.99} \right] = 32.778$ inches b = B [B/A-L/A] + A = 9.13 [.5019-1.80198] + 18.19 = 6.32 inches Note: For purpose of calculation A = 18.19 inches from Fig. 3.1.2

B = 9.13 inches

60

	E0781A	PM	CHR2 87	1,		PM	CHARGE NO.
	The cost of the second s	DATE	DATE	12	C == 0	1	
787		6/77			DATE		3-1-1-E

Location OB ENG. SERVICES

3-5

Z Axis

Fig. 3.1.1

GEOMETRY OF TORISPHERICAL AND ELLIPSOIDAL HEADS

(Fit to correspond to geometry of ellipsoidal head in reference 3.1)

						0 0
 	MADE OT	0	11		PM	CHARGE NO.
 EUIDIA	PM	DATE		C		
	6/77	0	1	DATE		5-T 2+2 2

GO 787

Segment lengths used are: $cylinder - \sqrt{rt} = \sqrt{18.16 (0.31)} = 2.37$ torisphere from 5° to 10° - 4 segments @ 1.25° from 10° to 26.567° - 4 segments @ 4.13° from 26.567° to 90° - 6 segments @ 10.57°

```
ellipsoid
from 5° to 10° - 4 segments @ 1.25°
from 10° to 30° - 4 segments @ 5°
from 30° to 90° - 6 segments @ 10°
```

BOUNDARY CONDITIONS

It will be assumed that at 5° from the pole a membrane state of stress exists in both the ellipsoid and the torisphere:

$$Q = M\phi = 0$$
$$N\phi = \frac{pr}{2 \sin\phi}$$

where

60 1

r = distance to pole

Q = effective transverse shear in ϕ direction.

M¢ = moment resultant in ¢ direction.

N¢ = membrane force in ¢ direction.

Letting p = 680 psi

Then for the torisphere:

N¢ = (680/2)(32.778) = 11,144.5 lb/in.

If $N\phi = 11,144.5$ lb/in., a preliminary run yields Q = 95.202 lb/in, so a new value for N ϕ for the torisphere was calculated:

 $\Delta N = \frac{\Delta Q}{tanc}$

 $N\phi = 11,144.5 + \Delta N = 10056.3$ lb/in and an appropriate membrane state was generated. 3-8

	SUBJECT	MADE BY	CHRD BY	1		PM	CHARGE NO.
	E0781A	DATE	DATE	÷ 3 11			automatic and
\$7		6/77			5.**E		8-1 01 01
OB ENG. SERVICES

20

For the ellipsoid

$$r = \frac{A \sin \phi}{R}$$
where $R = \sqrt{C_1 + (1 - C_1) \sin^2 \phi}$
 $C_1 = (B/A)^2 = 0.2519$
 $R = \sqrt{.2519 + .7481 (0.0871557)^2} = 0.5075$ in.
 $N\phi = \frac{A \sin \phi}{R} \frac{P}{2\sin \phi} = \frac{18.19(680)}{1(0.5075)2} = 12,185.78$ lb/in.

To better compare the heads it seemed desirable to have the displacement at the center of the cylinder $O(u_{\phi}=0)$. So the problem was run twice, the first run yielding the W required for 0 displacement at the center (W = 0.0966 inches).

1. Start $W = 0.0966^{"} N\phi = 10,056 lb/in M\phi = N = 0$ 2. End $Q = N = M\phi = 0$ $N\phi = 12,186 lb/in$

Results

To check the results, first the answers at the boundaries should be examined. It was assumed that there was a membrane state of stress at the boundaries and therefore at the edges Q and M ϕ must be approximately 0.

ſ	Q(lb/in)	M¢(lb-in/in)
Start	-0.08636	0.0
End	-0.0009252	-0.0001487

Also to satisfy equilibrium in the cylinder, $N\phi = 0.5pr = 6169$ lb/in. Plots of the hoop force and longitudinal bending from E0781A results compare the ellipsoidal and torispherical heads. Even though the change in radii has been minimized, the discontinunity at the junction of the sphere and torus is considerable, and has been faken int account.

	the second s						01
	3-8-627	MADE BY	C	h		PM	C+++65 0.
	E0781A	DM	DATE	R	C==0		
\$7		6/77	· · · · · ·	1	0478	7.1.1.1	3.4.7

)

Location OB ENG. SERVICES

in cluding the discontinually region Comparison to the experimental ellipsoidal head, shows good correlation of stress values, See Fig. 3.14 through 3.18 for plots of V\$ and VB on the inside, outside, and meridian of the head. Deviations are caused by the changes in thickness and the experimental head's variation from a true 2:1 ellipsoidal head.

3-10

	SUBJECT	MADE BY	CH40 84		87	CHARGE NO.
		DATE	DATE	1	CH40	
7					247E	 3-7 372-7

GO 78

GO 787

GO 187

÷.

. .

Location Oak Brook Eng. Serv.

3-17

3.2 CYLINDRICAL WATER TANK WITH TAPERED WALLS

Introduction

This problem illustrates Program E0781A's capability to analyze a pressure load with one fixed boundary condition and one free boundary condition.

The problem used for this verification is "Shell of Variable Thickness" taken from "Stresses in Shells", by W. Flugge, pp. 289-295 (Reference Number 3.1)

Problem Definition

The problem consists of a tapered shell filled with water. The shell has a radius of 9'-0 and is 12'-0 high. The shell thickness varies from 11" at the bottom to 3" at the top. See Fig. 3.2.1 for location of the Z axis. The length of a segment is $18"(\sqrt{rt})$.

Boundary Conditions

W	-	displacement normal to surface
¢U	-	displacement component in ϕ direction
8\$	-	rotation of reference surface in ϕ direction
0	-	effective transverse shear in ϕ direction
NΦ	-	membrane force in ¢ direction
M ‡	-	moment resultant in ϕ direction
4		

1.	fixed	at	start	W	=	Û¢	-	BQ	=	0
2.	free a	it (end	Q	=	Ν¢	=	М¢	=	0

					And the second second	0 11
5-8-62* 507812	PM	CHKC	1-		TEE	CHARGE NO.
	24'5	DATE	17			
	6/77			DATE	10/77	347575

GO 787

Location Oak Brook Eng. Serv.

Loading

)

Taking the weight of water as 62.5 lb/ft³, the pressure at the bottom of the tank is

$$p = \frac{(12 \text{ ft})(62.5 \text{ lb/ft}^3)}{144 \text{ in}^2/\text{ft}^2} = 5.2083 \text{ psi}$$

The pressure at the top is zero. The pressure varies lineraly so that only two points are needed in the function generator in order to fully describe the function. Z Axis

FIG. 3.2.1

-	
7	0
1-	1 X
2	10

	SUBJECT DOZDAN			1		PM	CHARGE NO.
	LUTBIA	DATE	DATE	. 31	C-+*C		Surgers and
GO 787		6/77			DATE		3

Location Oak Brook Eng. Serv.

Results

60

Program E0781A gives maximum hoop force - $N_2 = 346.8$ lb/in. located at 54" from the base.

Kalnin's Program	Theoretical Solution "Stresses in Shells"					
346.8 lb/in.=4160 lb/ft	4180 1b/ft					

The program gives a 0.48% diviation from the theoretical solution.

Program E0781A gives a maximum moment at the base of $M\phi = -1539 \text{ in.} -1b/\text{in.}$

	Kalnin's Program		Theoretica "Stresses	l Solution in Shells"
-1539	in1b/in.=-1539	ft-1b/ft	-1470	ft-1b/ft

The program gives a 4.69% deviation from the theoretical solution. ϕ

FIG. 3.2.2 Location of t and θ axis

3-19

SUBJECT.	MADE BY	CH#5			CHARGE NO.
	DATE	DATE	:	CHRC	
			1	DATE	 1- 315

Location Oak Brook Eng. Serv.

Progra	m E0781A Resul	ts	"Stresses In		
Distance From Base (inches	N01b/in.	M¢ <u>inlb</u> in.	Shells" Solution At Maximums		
0.0	5.919×10 ⁻⁶	+ -1539.0	M¢=-1470ft-1b/ft		
6.0	21.15	-903.9			
12.0	71.29	-440.5			
18.0	134.0	-124.8			
24.0	194.3	71.47			
30.0	253.3	177.1			
36.0	297.2	218.3			
42.0	327.3	217.6			
48.0	343.3	192.8			
54.0	+346.8	157.1	N0=4160 1b/ft		
60.0	339.6	119.5			
66.0	324.2	85.46			
72.0	303.0	57.80			
78.0	277.9	36.29	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
84.0	250.8	23.41			
90.0	222.9	15.00	이 문제에 가지 않는		
96.0	195.1	10.58			
102.0	167.8	8.685			
108.0	141.4	8.075			
114.0	115.9	7.754			
120.0	91.45	7.032			
126.0	68.13	5.584			
132.0	46.29	3.453			
138.0	26.50	1.177			
144.0	9.453	-1.481x10-3			

TABLE 3.2.1

Comparison of Final Results for N8 and M¢

						2-50
E0781A	PM	CH40 81	1		PM	CHARGE NO.
International second	DATE	DATE	1	CHRD		
	5/77			DATE	1	1

GC 787

Location OB ENGINEERING SERV.

3.3 CIRCULAR HOLE IN PLATE

Introduction

This problem illustrates Program E07815's capability to evaluate a stress distribution generated by a harmonic series.

The problem used for this verification is presented in "The Effect of Circular Holes on Stress Distribution in Plates" taken from "Theory of Elasticity" by Timoshenko and Goodier, pp. 90-97 (Reference Number 3.2).

Problem Definition

GO 787

The problem consists of a plate with a circular hole, submitted to a uniform tension of magnitude S in the x direction as shown in Fig. 3.3.1.

Fig. 3.3.1

SUBJECT MADE BY CHKD BY BY CHARGE NO.

Location OB ENGINEERING SERV.

Boundary Conditions

w - displacement normal to surface N ϕ - membrane force in ϕ direction M ϕ - moment resultant in ϕ direction N - effective in plane shear

start: $w = N\phi = M\phi = N = 0$ (r = 1) end: $N\phi = 0.5S$ N = -0.5S (r = 10) $M\phi = w = 0$

Results

At r = b the stresses are effectively the same as in a plate without the hole and are given by:

 $\nabla r = \frac{1}{2}S(1 + \cos 2\theta)$ $\tau r \theta = -\frac{1}{2}S \sin 2\theta$ at 45° $\nabla r = \frac{1}{2}S$

TT 0= -15

at $r = 10^{\circ}$ and $\theta = 45^{\circ}$

Program E0781S gives $\nabla r(N\phi) = 0.5S$ and $\tau r\theta(N \text{ shear}) = -0.5S$. At r = a, the edge of the hole:

> From "Theory of Elasticity", by Timoshenko and Goodier $\nabla r = (-2A - 6C/r^4 - 4D/r^2) \cos 2\theta$

+
$$\left(\frac{b^2}{b^2 - a^2}\right) \left(1 - \frac{a^2}{r^2}\right) \frac{s}{2}$$
 (1)

 $\nabla \theta = (2A + 6C/r^4 + 12Br^2) \cos 2\theta + (\frac{b^2}{b^2 - a^2})(1 + \frac{a^2}{r^2})\frac{s}{2}$ (2)

DATE

[Equations (1) and (2) are a result of requirements on p. 90 (parag.2). The stress distribution within the ring (r; = 1", ro = 10") is a combination of equations (45), p. 71 and equations (d), p. 91.] 3-72

DATE

10

CHRD

DATE

GC 117

SUBJECT

1. 14

٠.,

Location OB ENGINEERING SERV.

```
using the boundary conditions:
\nabla r (10", \theta) = S/2(1 + cos 2\theta); \nabla r(0, \theta) = 0
\tau r \theta (10", \theta) = -S/2 \sin 2\theta; \tau r \theta(0, \theta) = 0
The constants are evaluated:
A = 0.520664(S/2)
B = 0.00010306(S/2)
C = 0.520458(S/2)
D = 1.041019(S/2)
From equations (1) and (2):
  (\nabla \theta) max occurs at \theta = \pi/2 (pt.m)
          \nabla r = 0
          V8 = 3.09152S
Program E0781A
   N\phi(\nabla r) = 0
   Ne(Ve) = 3.0925
```

Kalnin's Program	Theoretical Solution
E0781A	"Theory of Elasticity"
N0 = 3.092 S	N0 = 3.0915 S

The program gives a 0.02% deviation from the theoretical solution.

3-23

	5-8-ECT 03 5	MADE BY	C=×5 8+	1	 PM	CHARGE NO.
*\$7		24*E 4/77	DATE	1.34		1-+ Janijanij

GO

Location OB ENGINEERING SERV

3-74

3.4 INCLINED CYLINDER UNDER HYDROSTATIC LOADING

Introduction

This problem illustrates Program E0781A's capability to analyze a pressure load with a free boundary condition and a membrane solution boundary condition.

The problem used for this verification is "Inclined Cylinder" (3.1.2.3) taken from "Stress in Shells" by W. Flügge, pp. 114-118 (Reference Number 3.1). Problem Definition

The problem consists of an inclined cylinder partially filled with water. The uniform cylinder has a radius of 100", length of 300", and a thickness of 5/16" (see Fig. 3.4.1). The length of a segment is approximately $1\frac{1}{2}\sqrt{Rt}$, using 36 segments.

Boundary Conditions

Q	-	effective transverse shear in ϕ direction
Nφ	-	membrane force in ϕ direction
M¢	-	moments resultant in ¢ direction
N	-	effective in plane shear
uφ	-	displacement component in ¢ direction
uθ	-	displacement component in 0 direction
1.	m	embrane conditions at start $Q=u\phi=M\phi=u\theta=0$
2	e	rea at and O=NA=MA=N=0

Loading

The loading in the loaded region is given as: $p = -X (x \cos \alpha + r \sin \alpha \cos \theta)$

	E0781A	PM	CHED BY	>-		C-ARGE NG.
0 787		3/75	DATE	ž –	DATE	5

Location OB ENGINEERING SERV.

Using Kalnin's notation with maximum pressure at 1800

- $% = density = 641b/ft^3 = 0.037037 lb/in.^3$
- ∝ = angle of inclination = 45°
- r = radius = 100"
- x = distance along the meridian from a point 150"

from the base to the point at which the pressure

is being calculated

Therefore:

 $p(x, \theta) = -3.70370 \frac{12}{2} (x/r + \cos\theta)$

This function was expanded into a Fourier series at

x/r=0, ±0.2, ±0.4, ±0.6, ±0.8, -1.0, -1.5

for a total of 11 series. The amplitudes at +1.0 and +1.5 are zero. Letting:

\$i = xi/r
xi = x at the ith elevation
0i = one half the angle over which the pressure is applied
at the ith elevation

Then the amplitudes of the nth harmonic at the ith elevation are:

$$a_{io} = C \begin{bmatrix} -\xi_i \theta & + \sin \theta_i \end{bmatrix}$$

$$a_{ii} = C \begin{bmatrix} 2\xi_i & \sin \theta_i & -\sin \theta_i & \cos \theta_i & -\theta_i \end{bmatrix}$$

$$= C \begin{bmatrix} \xi_i & \sin \theta_i & -\theta_i \end{bmatrix}$$

$$a_{in} = C \begin{bmatrix} \xi_i & \frac{\sin \theta_i}{n} & + \frac{\sin (n-1)\theta_i}{n-1} & + \frac{\sin (n+1)\theta_i}{n+1} \end{bmatrix}, n > 1$$

where:

$$C = \frac{3.7037}{\pi} - \frac{\sqrt{2}}{2} = 0.83362$$

 $e_i = \arccos 5;$

3-25

	5-8-657	MADE BY	C##3 81			(CHARGE NO.
		DATE	DATE	11.			dimensional C
GO 787	and the second				DATE		5

Maximum pressure occurs at $\theta=0^{\circ}$ in Flugge's work and $\theta=180^{\circ}$ in Kalnin's (Program E0781A).

3-76

	108062°	S M	CHK2 8*	-	8.	- 5	5	CHARGE NO.
787		DATE 3/77	DATE	11	C-+0	10	177	1-1 Statung

Location OB ENGINEERING SERV.

	0 = 1804	$p_{, \xi} = -1(s)$	= 50")	6 = 1800	$\xi = 0(S)$	= 150")
Т	heoretical Solution	Program E0781A	8 Deviation	Theoretical Solution	Program E0781A	Beviation
$N\phi\left(\frac{lb}{ln}\right)$	-523.8	-513.7	1.92	-130.9	-125.9	3.8
$N\theta\left(\frac{1b}{1n}\right)$	523.8	523.7	0.01	261.89	261.4	0.19
	θ = 2406	$b, \xi = -1(S)$	= 50")			
$N\phi\theta\left(\frac{lb}{ln}\right)$	340.2	340.3	0.03			
	θ = 225	$D, \xi = 0(S)$	= 50")			
$N\phi\theta\left(\frac{1b}{1-b}\right)$	130.9	129.7	0.92			

Table 3.4.1

Final Compared Results

3-77

10

E0761A	PM	CHED BY	1		Ptt	CHARGE NO.
	DATE	DATE	1 2	CHED		
	3/77			0478		S In 7 Superiordial

7 70

Location OB Eng. Services

REFERENCES

- Flügge, W., Stresses In Shells, Springer-Verlag, New York, 1973.
- 3.2 Goodier, J.N. and Timoshenko, S.P., Theory of Elasticity, McGraw-Hill, New York, 1970.
- 3.3 Gerdeen, J.C., Progress Report on The Effect of Geometrical Variations On The Limit Pressures For Ellipsoidal Head Vessels, September 27, 1972, Michigan Technology Univ., for Welding Research Council.
- 3.4 Horowitz, J.M. and R. Henschel, Experimental Investigation of 2:1 Ellipsoidal Heads Subjected to Internal Pressure (Volume One), Progress Report January 17, 1974 to April 16, 1976, Foster Wheeler Energy Corp., for WRC.
- 3.5 Gerdeen, J.C., The Effect of Geometrical Variations On

The Limit Pressures For 2:1 Ellipsoidal Head Vessels Under Internal Pressure, April 1975. Michigan Technology Univ., for WRC.

3.6 Horowitz, J.M. and R. Henschel, Experimental Investigation of 2:1 Ellipsoidal Heads Subjected to Internal Pressure (Volume Two), Progress Report January 17, 1974 to April 16, 1976, Foster Wheeler Energy Corp., for WRC.

	1				2-08
SUBJECT		SHAD BY			CHARGE NG.
	DATE	DATE	A 10	C=+0	
			1	CATE	5 H T

CBI Arcaram 707

This program solves for the geometry of in elliptical head for any major - to - minor axis ratio. The output includes the cone radius and radius of curvature at requested intervals along the head.

Location,

Formulas and geometry used are as follow =

SUBJECT	Computer	Aron ram	MADE BY	CHKD BY	-	Bv	CHARGE NO.
	u n	1 grand	DATE	DATE	REV	Chkd	5400
	Vernic	cation	102182	11/82		Date	SHT 4-1_OF

GO 64 REV 4-73

CBI			Location	
Are Length . a.S.	$\sqrt{ -\frac{\partial_{x}-\beta_{x}}{\partial_{x}-\beta_{x}}}$	305 ⁻ 04	qar	
the integral is the	dued using	Simpzonż	nile	
Are length = $\frac{x_1 - x_2}{3m}(0)$	[Ho+4H + 2H	z + +	CH m-2 + 4	IH m-1 + H m]
where $m = 0m$ even mu and $H = \sqrt{1}$.	mber of equal sp - az - by 2552	acts of ~1	-~0 - 8	
Sample Addem:				
a= 100", a 1	ata = 2.5 ,	increment	\$ = 5°,	und the 1"
ratio at p= 130°	cone radius and compare	radius of with	curvature,	values.
ø = 130° 🗸				
$X = \sqrt{\frac{\frac{(100)^4}{(40)^2}}{\frac{1}{510^2 (30)^4} + \frac{(100)^2}{(40)^2}}}$		5″ 74	computers	74.80° ~
$Y = \sqrt{(40)^{4} - \frac{(40)^{4}}{(100)}}$	4.802) ² = 12.7	H 875	computers	12.73" -
Come Radius = $\frac{(100)^2}{40}\sqrt{1-1}$	$\frac{(34.3025)^2}{(100)^2} (1 - \frac{1}{100})^2$	$\frac{(40)^2}{(10)^2}$ =	83.7560" na	computer's 173.76" ~
Radius of Carvature = (40)	$(173.750)^3 =$	D.XL3"	re comput	15 30.33" ~
T/RZ ratio = $\frac{1}{30.872}$	= 0.03297	on c	imputer's 0.0	- 8655
Computer Anaram	MADE BY	CHKD BY RAH	By	CHARGE NO.
Vertication	10 PATEZ	DATE U/82	Date	SHT 4-2 OF

00 64 REV 4-73

CBI)				Locati	on	
	Arc Length	s in the si an					
	v	m= 3 ,	a = 100	, b	= 40		
	¢ 90.00 95.78 101.47 106.97 117.21 117.16 121.78 126.05 130.00	m « 0 0 1 2.319 2 4.639 3 6.958 4 9.277 5 11.596 6 13.916 7 16.735 8 18.554		$\frac{H}{2} = \sqrt{1 - \frac{400}{.400}}$.400 .401 .404 .415 .404 .415 .426 .440 .456 .475 .495	0 7 8 1 4 4 4	3 ² × ¹	
		Are me Xo . (1)	m m 100		٥.		0 ml
	~ .		94.9	1025	IQ SEA	• • •	V 140.
	Are Length	• <u>0.5258 - 0</u> <u>3(8)</u>	(100) [.4 +	000 + 4(4(.4404) +	4017) + 2(.4567)	2(.4068) + + 4(.47	4(.4151) + 2(.42LA 50) + .4950]
		= 1.3492 [10.4	1036]	= 14.0	57 " 79	computer*	0 14.04 -
BJECT	Computer	Arcarom	MADE BY	снко ву	> Bv		CHARGE NO.

.

GO 64 REV 4-73

1.2)	T 547A					
		and the second				
<i>k</i>	ATT ANTS OF	FLLIPSE =	100.00 IN			
2	.52:1 SLLIPI	TICAL HENC				
	HI INCREMENT		5.00 DEGREE	8		
۲	END THICKNES	s =	1.0000 11			
						-
			rite Ches. 22		an a	
-						
				ter et al a ser a se		
operatur di Salaya 1 - 1						
1.8						
HICAO	CONTRACT	12CN CC 60 1 20254331	NY C4TE 10-23-82	BY OLN SET	CCK ENGINEERING REV C	
					4-4	

.

PEGIAN NO. 917 NOV. 1472

THE PATIC AND SECHETER FOR MELLIPTICAL HEAD

ВН К V CCVE AMILS OF APC PROF COPAL CCCCCINTE CREDEINTE CREDEINTE CREDIT TAMSET CPV STURE TAMSET CERPESS (IN) (IN) (IN) (IN) (IN) (IN) 90.01 100.00 0.0 100.00 100.00 100.00 0.0 100.00 100.00 0.0	RATIO (IN/IN)
RGP#AL DESS (11) (1x) (1	RATIO (IN/IN)
PERPRES (11) (11) (11) (11) (11) 93.21 13.3.00 C.C 17.20 14.40 C.C C.C C.C 95.22 95.23 95.44 1.40 1.51.12 14.15 1.40 C. 120.02 95.23 95.24 12.44 14.45 1.40 C. 120.02 95.47 4.20 122.44 14.45 4.41 C. 115.12 95.47 4.20 122.44 14.46 4.1 C. 120.22 97.42 12.45 22.47 7.47 C. 120.22 97.44 0.31 12.45 22.47 0.47 C. 120.22 97.44 0.31 12.72 12.22 24.47 0.47 C. 120.32 97.43 12.72 12.22 24.74 0.14 14.24 0.14 14.24 0.14 14.24 14.24 0.14 14.24 0.14 15.11 16.22 16.475 0.14 15.55 16.475 16.475 16.475 0.14 15.55 14.475 <td>(IN/IN)</td>	(IN/IN)
99.33 133.50 0.0 170.20 14.00 0.1 1.430 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	P4 35.2
95.22 96.94 1.40 120.32 16.15 1.40 0. 20.70 55.27 85.31 121.25 15.52 2.32 115.07 93.4.43 4.20 102.44 17.46 4.31 2. 115.07 93.27 7.22 105.41 13.60 5.39 0. 15.07 93.27 7.22 105.41 23.42 7.65 0. 22.32 56.35 16.73 117.65 25.99 11.99 3. 10.22 34.33 16.73 127.65 25.99 11.99 3. 10.22 34.33 16.73 127.65 25.99 11.99 30.24 0. 135.27 56.45 14.80 131.11 35.22 16.93 0. 40.03 56.77 17.21 146.43 44.31 27.42 0. 45.22 94.99 15.41 75.47 52.46 74.42 0. 155.77 75.70 24.04 175.47 52.46 74.42 0. 155.77 75.70 24.04 175.47 52.46 74.42 0. 165.70 55.44 33.22 715.71 121.01 46.44 0. 70.73 40.34 32.60 73.2.35 23.45 74.53 0. 175.70 21.27 36.29 196.77 191.01 46.44 0. 70.73 40.34 32.60 73.2.35 23.74 74.53 0. 175.70 21.27 36.29 195.77 150.09 54.55 0. 190.00 C.0 40.40 0. 190.00 C.0 40.00 0. 100.00 0.0 100 0. 100.00 0.0 0.0 0. 100.00 0.0 0.0 0.00 0.00 0.00 0.00 0. 100.00 0.0 0.0 0.00 0.00 0.00 0.00 0.00	0236
20. CC CS. 76 2. 01 121.25 16.52 2. 03 2. 105.21 SG. 43 4.20 122.44 17.46 4.31 2. 115.22 GE. 66 5.75 135.31 14.60 5.32 2. 0.32 7.32 106.47 22.42 7.63 0.47 0. 125.22 CG. 74 7.32 112.61 22.73 7.47 0.47 0. 125.22 CG. 24 11.460 131.71 16.67 0.47 0.47 0. 135.52 C2.74 17.21 142.43 4.31 26.42 0. 145.22 V4.93 16.43 151.27 12.72 152.61 22.75 7.33 0. 155.52 V5.79 26.64 175.42 142.44 C 10. 155.77 15.73 0.24 0. 155.52 V5.73 27.22 24.54 171.401 46.44 C 155.52 V5.74 23.25 23.54 74.67 0. 165.52 V5.74 21.27 23.25 2	. 26190
0.5.2 24.47 4.20 102.44 17.46 4.71 2. 110.2 0.6.47 21.42 7.50 0. 0.1 1.00 5.20 0. 111.00 0.30 7.20 105.67 21.42 7.57 0. 0.27 7.57 0.27 0.47 0. 120.02 57.44 0.00 112.51 22.79 0.47 0. 130.02 34.40 12.72 17.27 17.27 17.27 12.72 14.24 7.57 0. 140.02 52.44 12.77 17.21 140.45 14.24 0. 14.24 0. 140.03 52.20 22.70 164.40 71.30 30.24 0. 145.02 94.63 16.44 71.30 30.24 0. 0. 0.44 0. 155.05 75.00 24.59 196.77 121.00 46.44 7. 0.024 0. 165.07 75.02 24.59 196.77 121.00 46.44 7. 0. 0. 175.67 0. 0.	. 26 21 4
110.01 0 = 30 7.22 105.01 11.60 5.02 2.42 7.57 0. 120.02 0 = 30 7.22 105.42 2.42 7.57 0. 120.02 0 = 7.44 0 = 33 112.51 22.42 7.57 0. 120.02 0 = 7.44 0 = 33 112.51 22.42 7.57 0.47 0. 120.02 54.44 12.72 17.20 2.12.73 14.24 24 14.54 14.24	. 05730
10:12 0:32 7.12 105.42 23.42 7.50 0. 20:12 \$7.44 0.33 112.61 22.75 7.47 0.47 0. 25:22 \$6.26 10.72 117.65 25.64 11.59 7.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.42 0.42 0.47 0.42	.35352
122.02 97.44 9.33 112.51 22.74 9.47 0. 125.22 66.26 10.77 117.65 25.99 11.59 3. 10.52 21.42 12.77 17.72 23.27 14.26 2. 10.52 21.52 14.95 131.71 36.22 16.67 0. 143.03 50.27 17.21 140.43 44.31 20.42 0. 145.27 44.92 16.24 151.72 55.51 24.75 0. 145.27 44.92 16.24 151.72 55.51 24.75 0. 155.57 75.90 26.04 175.40 71.99 30.24 0. 155.57 75.90 26.04 175.40 72.65 3. 155.57 75.90 26.04 175.40 92.65 3. 163.22 67.23 24.69 196.77 131.01 46.44 0. 165.57 55.44 33.23 21.5.2 159.04 54.55 0. 170.77 40.34 36.60 732.25 250.54 74.53 0. 175.00 21.27 36.29 245.17 235.74 92.67 0. 190.00 0.3 40.30 180N 0.240 MY 0. 190.00 0.3 40.50 180N 0.240 MY 0. 190.00 0.3 40.50 180N 0.240 MY 0. 190.00 0.3 40.50 180N 0.240 MY 0. 04K 00000 KENSI 02K18401 0.00054331 0.015 10-20-02 BY 0.14 5FT 0.57 0. V RAM W02	76 899
225.25 24.43 12.72 172.52 23.22 14.24 2 335.20 32.44 12.72 172.72 23.22 14.24 2 335.20 32.25 14.24 131.11 36.22 16.67 0 140.03 52.27 17.21 142.43 14.24 2 12.45 140.03 52.27 17.21 142.43 14.24 2 145.20 44.03 16.22 16.47 0 12.45 145.20 44.03 16.22 16.42 0 145.20 44.03 14.04 11.00 30.24 0 145.20 44.03 16.40 11.00 30.24 0 155.00 75.00 26.04 175.40 93.024 0 165.20 65.24 132.72 150.01 46.44 0 170.01 40.34 32.72 215.02 197.01 46.44 0 175.02 21.27 36.12 245.12 215.74 92.67 0 175.02 21.27 36.22 25.12 20.07 0 0 175.02 21.27 36.20 25.12 20.07 0 190.00	74765
(2) (2) (1)	77047
30.02 42.11 12.12 12.12 14.22 16.21 35.22 16.22 16.21 35.22 16.22 12.25 12.02 12.25 12.07 12.02 17.20 17.20 17.20 17.20 19.20 19.20 19.20 19.20 19.20 12.20 12.20 12.20 12.20 12.20 12.20 <t< td=""><td>63368</td></t<>	63368
135.00 50.20 17.21 140.43 44.31 20.42 0. 140.03 50.27 17.21 140.43 44.31 20.42 0. 155.00 52.20 20.79 164.40 71.09 30.24 0. 155.00 52.20 20.24 175.40 52.66 77.33 0. 155.00 55.46 33.22 715.07 159.09 59.05 0. 170.00 40.34 20.00 732.25 200.54 74.43 0. 175.00 21.37 36.29 245.14 215.74 93.07 0. 190.00 C.2 40.00 2040 MMY OAK P2000K ENGI CHICAGO P5 1000 AND 1800 0040 MMY OAK P2000K ENGI CHICAGO P5 1000 AND 1800 0040 MMY OAK P2000K ENGI CHICAGO P5 1000 AND 1800 0040 MMY OAK P2000K ENGI CHICAGO P5 1000 AND 1800 0040 MMY OAK P2000K ENGI CHICAGO P5 1000 AND 1800 0040 MMY OAK P2000K ENGI CHICAGO P5 1000 AND 1800 0040 MMY OAK P2000K ENGI	22761
145.00 95.27 17.21 145.44 74.11 27.47 145.00 95.27 17.21 145.44 74.11 24.47 155.00 75.20 26.04 151.20 55.65 77.33 0. 155.00 75.20 26.04 175.40 52.66 27.33 0. 155.00 75.55.46 23.22 215.02 159.09 54.55 0. 170.00 40.34 36.60 732.25 200.54 74.53 0. 175.00 21.27 36.20 245.16 215.74 93.67 0. 190.00 C.C. 40.00 245.16 215.74 93.67 0. 190.00 C.C. 40.00 245.10 250.00 115.07 0. CONTRACT 00054331 CATE 10-29-92 RY GLN SET PSV V RAM W/8 2	32257
145.12 04.03 19.24 151.25 24.75 1.12 150.02 92.20 22.79 164.40 71.29 36.24 0.124 155.02 77.30 24.69 196.77 121.91 46.44 0.165 165.02 67.30 24.69 196.77 121.91 46.44 0.170 165.02 67.30 24.69 196.77 121.91 46.44 0.170 165.02 67.34 36.60 73.23 215.07 150.00 54.65 0.170 170.03 47.34 36.60 732.25 233.74 92.67 0.175 175.02 21.37 36.20 245.14 235.74 92.67 0.190 190.00 0.6 40.00 240.444 0.156.7 0.115.07 0.190 190.00 0.6 40.00 240.00 245.14 235.74 92.67 0.190 190.00 0.6 40.00 240.00 245.14 235.74 92.67 0.190 190.00 0.6 40.00 240.00 94.40 94.40 94.40 190.00 0.6 40.00 94.40 94.40 94.40 190.00 10.00 10.00 <	
150.00 °2.20 22.79 164.40 /1.99 30.24 0. 55.77 75.90 26.04 175.60 92.66 27.33 0. 60.02 67.30 29.59 196.77 121.01 46.44 0. 665.70 55.66 23.22 5 274.64 74.63 0. 70.05 40.34 36.60 732.25 274.64 74.63 0. 175.00 21.37 36.29 245.14 215.74 92.67 0. 190.00 C.0 40.00 250 250.00 115.07 0. 190.00 C.0 40.00 250 250.00 115.07 0. CHICAGO PEIDOF AND IRON COMPANY OAK POOCOK ENGI- CHICAGO PEIDOF AND IRON COMPANY OAK POOCOK ENGI- CONTRACT DODS4331 CATE 10-20-92 DV GLN SHT POV V RAM //022	21/27
155.00 75.20 26.04 175.40 52.66 77.33 0. 165.00 77.10 29.69 196.77 101.91 46.44 0. 165.00 55.46 33.22 215.02 150.00 53.55 0. 170.00 40.34 26.60 232.25 200.54 74.53 0. 175.00 21.27 36.29 245.14 235.75 92.67 0. 190.00 0.00 40.00 250 250.00 115.07 0. 190.00 0.00 40.00 250 250.00 115.07 0. CHICAGO PCICCE AND IRON COMPANY OAK POPECK ENGI- CONTRACT 00054331 CATE 10-20-92 PY GLN SET PCV V RAM W&2 V RAM W&2	. 11457
160.21 67.30 29.59 196.77 121.91 46.44 C. 166.77 15.60 59.55 3. 170.00 40.34 36.60 232.25 300.54 74.53 C. 175.60 21.27 36.20 245.14 215.75 92.67 0. 190.00 C.C 40.00 250.00 115.07 0. CHICAGO POICCE AND IRON COMPANY ONAK POFCK ENSI- CONTRACT 00054331 CATE 10-20-92 PY GLN SET PCV V RAM 4/82	. 01079
165.00 55.46 13.22 215.02 150.00 53.55 0. 170.00 40.34 26.60 232.25 200.54 74.63 0. 175.00 21.37 36.29 245.14 215.75 92.67 0. 190.00 C.0 40.00 250.00 115.07 0. CHICAGO PCIDCE AND IRON COMPANY OAK POPICK ENSI- CONTRACT DO054331 CATE 10-29-92 RY GLY SET PCV V RAM W/82	
170.00 40.34 36.60 232.25 200.54 74.63 3. 175.00 21.37 36.20 245.16 235.74 92.67 0. 190.00 C.C 40.00 250.00 250.00 115.07 0. CHICAGO PEICCE AND IRON COMPANY OAK POECK ENGI- CONTRACT DO054331 CATE 10-20-02 RY GLN SHT POY V RAH W/02	. 200530
175.00 21.27 36.20 245.14 235.74 93.67 0. 190.00 C.C 4C.CC 250.00 115.07 0. CHICAGO POIDCE AND IRCM COMPANY OAK POICK ENGI- CONTRACT 00054331 CATE 10-20-02 BY GLN SHT PCV / Ram //OT	. 00499
190.00 С.С. 40.00 250.00 250.00 115.07 0. CHICAGO POIDCE AND IRON COMDANY OAK POICK ENG CONTRACT 00054331 CATE 10-29-02 PY GLN SHT POV / Ram //02	.2:424
CHICAGO POIDCE AND IREN COMPANY CENTRACT DODS4331 EATE LO-20-02 RY GLN SHT DEV V RAM WOT	. 07400

CBI Arogram 1017

This program calculates the natural periods for a system consisting of lumped masses. The system can take into account anchor both stretch with appropriate modeling, foundation interaction, and vione sloshing. The output includes stiffness and mass matrices as will as periods, deflections, shear, and moments for each mode. If spectral values are inputted, then maximum responses are obtained.

Location.

highor : CJ Preper baled Kasson : 9/72 Limitations : None

SUBJECT	Computer Acarom	MADE BY	CHKD BY		8y	CHARGE NO.
	Computer nogram	GUN	MAH	2	Chkd	04001
	Verification	IN STAC	DATE	æ	Date	ынт <u>5-1</u> ог

GO 64 REV 4-73

CAN BROOK SPECIAL STRUCTURES DESIGN

FOLLOWING IS A MODEL WITH HAND CALCULATIONS MADE TO CHECK PROGRAM EIDITA

THE TEST MODEL IS:

CBI

l'	$M_{2} = 5.40456^{2}$ $A_{2} = 20m^{2}$ $I_{2} = 200m^{4}$	E = 2.8 x 107 PSI
-30	3.8604 K	$G = \frac{E}{2(1+V)}$
l, = 40"	$A_{i} = 10 \text{ m}^{2}$ $I_{i} = 100 \text{ m}^{4}$	$= \frac{2.8(10^{1})}{2(1.3)} = 1.0769 \times 10^{7}$

CALCULATE STIFFUESS MATRIX TERMS"

		7	1-12	11-
	(<u>4+ \$)E=</u> R(H\$)	(2-0)EI R(1+0)	6EI R2(1+\$)	-6ET 22(1+0)
[K] =	$\frac{(2-\phi)\in\mathbb{Z}}{\mathscr{L}(1+\phi)}$	(4+0)EI 2(1+ 07)	6 EI 22(1+\$)	-6EI R2(HQ)
L]	$\frac{6 EI}{R^2(1+\phi)}$	6EI 22(1+4)	12 EI R3(140)	-IZEI RXHO)
	$\frac{-6EI}{R^{2}(1+\phi)}$	-6EI l²(i+\$)	-12 EI & 3(1+4)	12 ET 23(1+d)
* REF:	PRZEMIENI ANALYSIS	ECKI, <u>THEOR</u> P. 70-79	Y OF MA	RIX STRUCTURS

 ANALYSIS
 FROM
 5-2

 SUBJECT
 MADE BY
 CHIKO BY
 BY
 SCHARGE NO.

 CRBRP Containment Vessel
 CATE
 CATE
 Crike
 S-4331

 CRBRP Containment Vessel
 CATE
 CATE
 Conte
 S-4331

CBI

APECIAL STRUCTURES DESIGN Location_

12

LET :					
C = (4	+ \$) EI ? (1+ \$)	$A = \frac{1}{2}$	<u>ZEI</u> 3(1+0)		
$D = \frac{(z-z)}{z}$	φ)EI (+Φ)	B = 6	<u>EI</u> 2(14\$)		
TITE MATH	eix For Awy	entries sta	un u	s: 	
, ¢, Đ,	-6-0-				=,
$z D_1 C_1 + e_2$ $3 Q D_2$	D2 0 C2+C3 D3	· · · · · · · · · · · · · · · · · · ·	B ₂ -B, - B ₂	B ₂ 0 0 B ₃ -B ₂ - B ₃ 0	
B, B,		- 0 4,			
-B, 52-6	$B_1 = B_2 = B_2 = B_3 = B_2 = B_3 = B_2 = B_3 $	0	-Az	A2+A3 -A3 -0	
Li Ri	ESPEZITVE STI	FERENCE OF	Fixed B.	C. THER THER BE IGNORED	
SM F	$\begin{cases} = \begin{bmatrix} A_1 \\ -A_3 \end{bmatrix}$	$\begin{array}{c} A_{2}' \\ A_{4}' \end{array}$	$\left\{ \begin{array}{c} 0\\\\ \mu \end{array} \right\}$	- 5-3	
NECT		DAS SW	By	5-4331	
CRBRP Contains	ment Vessel	SATE DATE	Date	SHT_CF	

the second states in the second state of the

L GOSI REVIST

-

CED

SPECIAL STRUCTURES DESIGN

. .

SINCE THEEE ARE NO EXTERNAL MOMENTS EXCEPT ROTATORY INSETTA, WHICH IS NEGLECTED

{M} = 0 A' @ + A' 11 = 0 0 = - [A;] [A;] [A;] [u] And {F}-{-[A;][A;] [A;]+[A;]}{[J;]} = A3 0 + A2 u

	and the second				0-4
SUBJECT	MADE BY	CHKDBY		8y	CHARGE NO.
	Uns	12m	2	Chkd	2-4331
CRBRP Containment Vessel	US2	695E	=	Date	SAT DE CAL
GO 84 REV 4.73					and the state of the second

CBP

Unh brinch SPECIAL STRUCTURES DESIGN Location

 $C = \frac{(4+\phi)EI}{R(1+\phi)} \qquad A = \frac{12EI}{R^{2}(1+\phi)}$ $D = \frac{(2-\phi)(EZ)}{l(1+\phi)} \qquad B = \frac{GEZ}{l^{2}(1+\phi)}$ where $\phi = \frac{12ET}{GA_{*}L^{2}}$ THE STIFFNESS TERMS FOR THE MODEL SHOWN ARE: $\phi_{1} = \frac{(12)(2.8 \times 10^{7})(10^{2})}{(1.0769 \times 10^{7})(10)(40)^{2}} = 0.19500$ $A_{1} = \frac{12(2.8 \times 10^{7})(10^{2})}{40^{2}(111950)} = 4393 \times 10^{2}$ 3, = 40A, = 8786 ×103 $C_{1} = \frac{4.195 \times 2.8 \times 10^{7} \times 10^{2}}{40(1.195)} = 24.573 \times 10^{7}$ DI = 1.805 x CI = 10.573 x107

TJJLBU	MADE BY	CHEDBY	> By	- 5-4331
CRBRP Containment Vessel	DATE 5/82	K. PATE	Date	SHT TF

2_2

Location_ SPECIAL STRUCTURES DESIGN

4

STIFFNESS ZEHS, (CONTO)

$$D_2 = \frac{12 \times (2.8 \times 10^{-7}) \times (2 \times 10^{-2})}{1.0769(10^{-7})(20)(30)^2} = 0.34667$$

 $A_2 = \frac{12 (2.8 \times 10^{-7}) 2 (10^{-1})}{(30)^2 (1.34667)} = 18482 \times 10^{-2}$
 $B_2 = \frac{30}{2} A_2 = 27722 \times 10^{-3}$
 $C_2 = \frac{4.34667 \times (2.8 \times 10^{-7})(200)}{30 (1.34667)} = 60.2507 \times 10^{-7}$
 $D_2 = \frac{1.65333}{4.34667} \times C_2 = 22.9174 \times 10^{-7}$
 $I = \frac{84.624 \times 10^{-7}}{22.9174 \times 10^{-7}} = 18936 \times 10^{-3} - 27722 \times 10^{-3}}{27722 \times 10^{-3}} = 27722 \times 10^{-3}$
 $I = \frac{18936 \times 10^{-3}}{4.34667} \times C_2 = 22875 \times 10^{-2} - 18482 \times 10^{-2}} = 18482 \times 10^{-2}$
 $I = \frac{18936 \times 10^{-3}}{4.3} = 27722 \times 10^{-3}} = 18482 \times 10^{-2} - 18482 \times 10^{-2}} = 18482 \times 10^{-2}$

SUBJECT	MADE BY	CHKD BY	>	By	5-4331
CRBRP Containment Vessel	041E 5/x2	OATE	RE	ChkJ Date	3H1

1.84044444

x

÷.

UAN BROUN

5-7

SUBJECT	MADE BY	CHKD BY		8y	
CRRRP Containment Vessel	DATE	DATE	REV	Chkd	- 6 m 24
GO 64 REV 4-73	1 5/52	10/16-			

•

taking a second to the second second

LOCATION LOCAL STRUCTURES DESIGN

[Ai] [Azi] = 10-6 [11025 -22569] AIRIG -37425] $\begin{bmatrix} A_3' \\ \begin{bmatrix} A_1' \end{bmatrix} \begin{bmatrix} A_2' \end{bmatrix} = \begin{bmatrix} 13680 & -14649 \\ -14649 & 16632 \end{bmatrix} (10^2)$ $\sum_{i=1}^{n} [K] = \left\{ - [A_{3}'] [A_{i}']^{-1} [A_{2}'] - [A_{4}'] \right\}$ $\begin{bmatrix} K \end{bmatrix} = \begin{bmatrix} 0.9/95 \times 10^6 & -0.3833 \times 10^6 \\ -0.3833 \times 10^6 & 0.1850 \times 10^6 \end{bmatrix}$ THE MASS MATRIX IS :

0 14

				5-8
SUBJECT	MADE BY	CHKD BY	B.	5-4331
CRBRP Containment Vessel	DATE 6KZ	DATE	Date	SHTOF

Location SPECIAL STRUCTURES DESIGN

SUBSTITUTE PERIODS INTO CAMEATTERISTIC EQUATIONS TO CHECK AND SEE IF DET. 50 * |-w" [M] + [K] =0 FROM PRINTOUT, PAGE SECOND MODE PORIOD = .195256 × 10-1 $\omega = \frac{2\pi(10)}{195251} = 321.79 \implies \omega^2 = 10.355 \times 10^4$ -w=[M] + [K] = [-10.355×105 + 9.19409×105] [-0 + (-.383201×106)] [-0 + (-.383201 x106)] [-14.497×105 + :18458 x06] = -1.1609 -3.83201 ×105 (-1.1609)(-12.648) - [(-3.83201)] = -.001 OK

* REF: BIGGS IN	REQUER	20 70	STRUCTURA	2 DYWAYICS
SUBJECT	MADE BY	CHKD BY	84	SCHARGE NO
CRBRP Containment Vessel	OATE CATE	DATE	Chkd Dete	SHT SHE
CO & DEV L 11	-1-24/14			

CAK BROOK

5-10

PROGRAM MAS BEEN CHERKED ON PREVIOUS PAGE TO SHOW THAT THE SOLUTION FOR THE EKENVALUES OF THE SYSTEMY (IN VALUES OF WZ) ARE CORRECT. THIS HAS BEEN SHOWN TO BE OKA. 00 IST MODE T= . 157276 $\omega = \frac{2\pi}{15777} \Rightarrow \omega^2 = 1.576 \times 10^3$ 2ND MODE => W2 = 10.355 ×104 CALCULATE EIGENVELTORS, SCALED EGENVELTORS {-w.[m] + [k]{{u}} = 0 [-1.396(104) + 91.9409(104)]u, - 38.32x104(u2)=0 IF 11, =1 , THEN 11, = . 4242 SCALE FACTOR -X = Edin FEmil Exin ? [mi] Spin ?

 SUBJECT
 MADE BY
 CHKO BY
 By
 SCHARGE NO

 CAB
 150
 2
 Chkd
 5-4331

 CRBRP Containment Vessel
 2182
 6761
 Date
 SHT. 1

OAK SKOUK Location SPECIAL STRUCTURES DESIGN

5-11

{ dim } Emi } = }.4242 13 18.242 5107 { dim { [mi] J. 9242 1 } 4.242 14 10 0 { dim { [mi] } dim } § 4.242 14 } 15.80
§ .4242 an X = 18.242 = 1.155 AND SCALED EIGENVE! TRS FOR 15T MODE ARE -M, = . 4899 M2= 1.155 OK/

SUBJECT	MADE BY	CHIND BY	>	By		5-4331	
CRBRP Containment Vessel	LATE	DATE	36	Chkd		SHT 10 OF	
OLL DEVIJI	the same of the same term	and the provide statement of the			and the second design of the s		
SPECIAL STRUCTURES DESIGN

CB

SCACED EIGENVERTORS, ZNO ,LODE (-1.1609x105)u, - 3.832×105)uz=0 IF uz= 1 u, = -3.301 FROM PRINTOUT, Zz= -.155 GO SCALED EKENVERTERS, 2ND MODE ARE: a,= .5117 OF uz= -.155 SCALED EIGENVETORS 04/

SUBJECT	MADE BY	CHKDBY	> 8 y	 5-4331
CRBRP Containment Vessel	2752-	SATE	Dete	 SHT_1OF
GO 64 REV 4-73				

GO 64 REV 4-73

1 841 ------

OAK BROOK LOCATION SPECIAL STRUCTURES DESIGN CBI USING INPUT SPECTRAL DISAACENEUTS: MODE # 1 S.D. =. 5 MODE # 2 S.D. =. 3 DISPLACEMENTS, FORCES, AND ACCERENTIONS BY RMS SCALED ERENVERTORS ARE : More No. 2 .510274 -.154596 MODE NO. 1 .489726 1.1546 DISARAMENTS . FREEDOM # 1 [(.5(.489726)] + (.3(.510274)) = .2888" or FREEDOM # 2 [(.5(11546))2 + (.3(-.154596))2]12 = ,5792" OK SHEARS MODE # Z 304×106 -.224×106 MODE #1 . 336 X105 .258 X105 FREEDOM #1 [(5(.336x103))2 + (.3(.304x106))2] 1/2 = 92734 05 FREEDOM # 2 [(5 (258,105))2 + (.3(-.224,104))2]12 = 68426 OSA 5-14

SUBJECT	MADE BY	CHKD BY	>	8y	
CRBRP Containment Vesse!	CATE -	CATE 6/82	RE	Chkd Dete	SHI 200-24

GO 64 REV 4-73

UAR BREAK

MOMENTS MODE #2	
MOMENTS MODE #2	
MODE #2	
. 545 x10' 672 x10'	
MODE #1	
. ZI ZX107 . 774 X106	
BASE [(5(.212x107))+(.30 FREEDOM #1 [(.5(.774x106))2+(.3	$(.545x107))^2 \int \sqrt{2} = .1948 x10^7 Q$ 3(672x107)) ² $\int \sqrt{2} = .2053 \times 10^7 Q$
ACCELERATIONS	
SPECTRAL ACCELERATION	5 IUAUT
MODERIE.S= SF	PERDAN DISPLACEMENT FOR MODEN
MODE #2= . 3 =	u · · · · · · · · · · · · · · · · · · ·
0° ACCERENTIONS OF EAC DISPLACEMENT	H FREEDOM NO. = TO OF EACH FREEDOM NO.
FREEDOW FI =	. 2858 g 2
FREEDOM # 2 =	.57929) E

UBJECT	MADE BY	CHKD BY	8.	
CDDDD Castal	DAJE	DATE	2 Child	- TUUL
URBRP Containment Vessel	6821	5/87	Date	SHI

E1017A TWO NOD	E MODEL	TE ST_CASE_			
SOLUTION C	ONSIDERS	TPANSLATIC	DNAL DEGREES	OF FREEDO	1 ONLY
INPUT DATA					
MODULUS OF	ELASTIC	ITY= 0.2805	+08 PST		
POI SSON' S	PATIO= 0	.3000			· · · · · · · · · · · · · · · · · · ·
NO. MOMENT OF	INERTIA	ARFA (IN##2)	ELEVATION (IN.)	WEIGHT (K PS)	(KIPS)
1 .1000 2 .2000	0+03 0+03	.1000E+02 .2000F+02	.4000E+02 .7000E+02	- 3860E+01	•0
SPECTRAL DISPL	ACEMENT	VALUES TRAL DISPLA	CEMENT		
SPECTRAL DISPL	ACEMENT	V ALUES TRAL DISPLA .500E+00 .300E+00	ACEMENT		
SPECTRAL DISPL	ACEMENT	V ALUES TRAL DISPLA .500E+00 .300E+00	ACEMENT		
SPECTRAL DISPL	ACEMENT	VALUES TRAL DISPLA .500E+00 .300E+00 VALUES	ACEMENT		
SPECTRAL DISPL	ACEMENT	VALUES TRAL DISPLA .500E+00 .300E+00 VALUES SPECTRAL A	CEMENT	5	
SPECTRAL DISPL	ACEMENT	VALUES TRAL DISPLA .500E+00 .300E+00 VALUES SPECTRAL A .500E+00	ACEMENT	5	
SPECTRAL DISPL	ACEMENT	VALUES TRAL DISPLA .500E+00 .300E+00 VALUES SPECTRAL A .500E+00 .300E+00 .300E+00 .0	ACEMENT	S	
SPECTRAL DISPL	ACEMENT	VALUES TRAL DISPLA .500E+00 .300E+00 VALUES SPECTRAL A .500E+00 .300E+00 .300E+00 .300E+00 .0	ACEMENT	S	
SPECTRAL DISPL MODE NO. 1 2 SPECTRAL ACCEL MODE NO. 1 2 3	ACEMENT	VALUES TRAL DISPLA .500E+00 .300E+00 VALUES SPECTRAL A .500E+00 .300E+00 .300E+00 .0	ACEMENT	S	
SPECTRAL DISPL MODE NO. 1 2 SPECTRAL ACCEL MODE NO. 1 2 3	ACEMENT	VALUES TRAL DISPLA .500E+00 .300E+00 VALUES SPECTRAL A .500E+00 .300E+00 .300E+00 .0	ACEMENT	5	
SPECTRAL DISPL MODE NO. 1 2 SPECTRAL ACCEL MODE NO. 1 2 3	ACEMENT	VALUES TRAL DISPLA .500E+00 .300E+00 VALUES SPECTRAL A .500E+00 .300E+00 .300E+00 .0	ACEMENT	S	5-14
SPECTRAL DISPL MODE NO. 1 2 SPECTRAL ACCEL MODE NO. 1 2 3	ACEMENT	VALUES TRAL DISPLA .500E+00 .300E+00 VALUES SPECTRAL A .500E+00 .300E+00 .0		S	5-10

1	.4000E+02	HOPIZOUTAL TRANSLATION	
2	.7000E+02	HOR I JONTAL TRANSLATION	
		and a second second	
		5-17	

....

	a		
0.9194090+06 -0.3	932010+06		
-0.3832010+06 0.1	848800+06		
	a second seco		
	••••••••••••••••••••••••••••••••••••••		
	A Designed of the second second second		
	·		
		المعقد المروادات	
		· · · · · · · · · · · · · · · · · · ·	
			e 18
	THATE DY I CHAD	67 P	2-18
UBURCT	DAG 3	CHKD	5-4331

A REAL PROPERTY OF A REAL PROPER

.

0 0.1400000.402	0.100000+02	<u>).)</u>	
2-19	0.0	0.1400000+02	
2-19			
5-19			1
5-19			
5-19			
5-19			
5-19			
5-19			
5-19			
5-19			
5-19			
5-19			
5-19			
5-19			
5-19			
5-19			
5-19			
5-19			
5-19			
5-19		and the second the process of the second	
5-19			
5-19			
5-19			
SHARGE NO.			5-19
DAB The 5-433		MADE BY CHAD BY BY	5-4331

-

. . . .

						-
						_
0.0						

						-
						19
		•	•			
					÷.	
						-
	*		****			• •
			1.1 ×	- 1.5		
						_
						-
			- 15 - 44	-		
			a			
					5-20	-
PUBJECY	MADE BY	CHAD av	6 Y	5-	4331	-
	DATE	DATE	CHKD			

.

. .

			and the second
C* * * * **	FICENNEE	FOO BOOLV	
· · · · ·	A TILE NIVE	ITHE AREAY	
Je	L & . Y	A . Y. A	

· · ·

-

· · · · ·

.

MODE NO. = 2 PERIODISECI=0.1952	56E-01		
0.5102740+00 -0.1545960+00		1	
MODE NO.= 1 PERIOD(SEC)=0.1572	76E+00		
0.4897260+00 0.1154630+01			
			-
-			
			e de
		5-21	
pueseet	DAB Rule	5-433	1
TODDD Containment Vascal	- CATE DATE CHED		

10.00

and the second

SF5.55	NE TO SCALED ETSENVECTORS	(L+)
MODE ND.= 2 0.3040+06	-0.2240+06	
MODE ND.= 1 0.3360+05	0.2590+05	· · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·		·
	-	
•	-	
CRBRP Containm	ent Vessel	5-22 CMXD 5-4331 CATE 5-4331

. 61

.

MODE NO. = 2						
0.5450+07	-0.6720+07					
MODE NO.= 1				 		
0.2120+07	7.7749+06					
			• ••			•
		*				24
						Ĩ.
				 		_
			414 (A)			
			n fig			
	in the second		-			1.10
					5-23	
+CaleCf		MADE BY		 	E-4431	

PRODUCTS OF RESPONSES AND SPECTRAL DISPLACEMENTS VALUES FOR THE FIRST 2MODES SUMMED B POOT MEAN SQUARES

	FREEDOM	DISPLACEMENT (IN. OR RAD.)	SHEAR (LBS.)	NOMENT
	2 1 34 SF	.5790+00 .2890+00 .000E 00	•6850+05 •9280+05 •9280+05	.000E 00 .205D+07 .1950+07
1		· · ·		-
· ··· ····				
• • • • • • • • •				

SUBJECY	DAG	CHAD BY	>	87	5-4331
CRBRP Containment Vesse!	ISS Z.	DATE		CHKD DATE	

ACCELERATIONS OF THE FIRST 2 MODES SUMMED BY

.

 F2 = F004 -	ACCELERATION (GRAVITIES)
Z	0.5795+00
1	0.?99E+00
 ••••••••••••••••••••••••••••••••••••••	and a second second
RASE	0.0

10 100

1. W. 14 Mar. 7 Mar.

.

- ----

14.1

5-25

in the second

10. J. (1)

.

1.14.95

-

10.00

**

BUBJECT	DAD CHAD BY	84	5-4331
	- DATE DATE	CHRD	- 1004
CRBRP Containment Vessel	15/82 =	DATE	

CRI Arcaram 1027

This program computes the local shell stresses and stress intensities in the vicinity of an attachment to a spherical or cylindrical shell. Stresses are calculated for loads on the attachment given at the shell <u>p</u> centerline. The attachment is assumed to be rigid with solid cross-section. Formulas used in the program are based on work done by Arofessor P.P. Bijlaard as presented in Welding Research Cruncil Falletim 107 (WRC-107), August, 1965 and revised North, 1979.

Location_

formulas and geometry used are per Table 5 of WRC-107. (see following page.)

In addition, initial stresses in the shell are combined with stresses due to attachment loads.

5X Total * 5X Initial Stress * 5X WAR-107 50 Total = 50 Initial Stress * 50 WAR-107

In uddition, membrane stresses in the shell are also calculated from the WRC-107 surface stresses.

 $\frac{1}{z} + \frac{1}{z} + \frac{1}$

and etc. for Points B, C, and D.

Anthor: K Guistatson Label Verson : 1/82 Limitations : 5 = 1 = 650 .005 = 8 = .500 WRC - 107 Ker 3/19 edition.

SUBJECT	Computer	from	MADE BY	CHKD BY		Ву	CHARGE NO.
	- Children	1 V	DATE	DATE	BE	Chkd	34301
	Veritic	ation	111732	11/82		Date	SHT 6-1 OF

GO 64 REV 4-73

Table 5-Computation Sheet for Local Strasses in Cylindrical Shells

 $N_i/(M_L/\mathbb{B}_a^{i\beta})$ so determined by (C_L) from Table 8 (see para. 4.3). 4.2.2.5.2: When considering bending moment

 $(M_i): \beta = K_i \sqrt{\beta_i \beta_i}$ where K_i is given in Table

4.3 Calculation of Stresses

4.3.1 STRAMES RESULTING FROM RADIAL LOAD, P.

4.3.1.1 Circumferential Stresses (0.):

Step 1. Using the applicable values of β and γ

6-2

10

8.

CBI

Location_

Sample Atables "

Kn = memberone stress concentration factor = 1.0 Ko = bending stress concentration factor = 1.0 Rm = 100" T = 1" To = 5.375" TP = pod pt thk = 2" W = pod pt with of remforcing 8" P = 5000 lbs VL = -4500 lbs MC = -15000 m-lbs ML = 14000 m-lbs ML = 10000 m-lbs

Calculate the outer and inner surface stress intensities at Points A, B, C, O next to the allochment, at 0.5 (RmT from the altochment, and at the edge of reinforcement. Calculate the outer and inner surface stress intensities including initial shell stresses, the membrone stress intensities, and the membrane stress intensities including initial shell stresses at Point A at all locations. Compose ill calculations with computer values.

SUBJECT	Computer	Arcariam	MADE BY	CHKD BY		Ву	CHARGE NO.
		1	001	Лин	EV.	Chkd	04:001
	Ver it ical	TION	INE ST	UNSL	-	Date	SHT 6-3 OF

angeringeren .		Table 5-Computation Sheet f	or Local Stresse	ie Cylledri	cal Shalls			
	neit	to attachment	Hote: Stresses	tue to be	om enibre	ments a	ecenter sto	d ha 3%
	1. Anni of Lands"	1 6	po ne-4	-7 JIST (Ma	·~ ¥e	2.	r lead act	a wantana
	Redist lock, Circ. Homest,	- 5000 IL	·		-UZ Du	A	-VL	
	Taraisa No vant,		(0.875)	04703	DL	2.	ATTACHM	ENT
	See Less.	VL :	Cancernetten den .	-1 6	ALT A	95	TA	
	T+TP warment this hases,	1- 15 - N	anding load, Kb -	Int	A a	é à	- (W)	
-	Vosad radius,	R M	tence with sign care		CYLIND	RICAL SP	HELL	
ASB CCO	Free Read corres	Compute absolute values of stress and exter result -	STRESSES - if i		Her shown, re	CL	0. 0	-
7.84. 18.44	3C OT HO =	L. (H)	-52 -52	-52 -	52 -64	-64	-64-6	4
.137 .182	1C or (1) 2C-1 , 3	(い)(い)(い) = 2972 7912	-2192 +2192	-252+7	192 - 79R	+77	-012 +70	17
2.317	34	L (+ + + + + + + + + + + + + + + + + +			+49	++9	49 .	49
.105	14 (10) =	Later X and B . Att = - NTZ			+1072	TOR		同
1 7.825	38 HU 20 2	K. (NO	-155 -155	+155 +	55		\gg	
.058	18-1 (m) ==	12(10) (10/ Band) · ANL = 552	-52+52	+52 -	55Z		\gg	
~	Add elgabratastiy for man		-3495 1993	11 1805-	2015- 66	175	-447 332	
18.416 17.96	3C OF N	·····································	-64 -64	- 64 -	64 - 56	-5%	-52 -5	2
.12 .137	10-1 er 20 =	1 = (=) ×= = 2012 202	-77 +797	-2912 +1	512 -2192	+ 292	-2192 +20	72
Э	**	ε= (== + − − − − − − − − − − − − − − − − −		NY N	+ 65	+15	- 65 -6	5
.ou	24 10 Rag #	12(10)			+623	T IZ	= 13 + 17	3
2.246	48	(- 45 - 45	+ 45 +	45		$\times \mathbb{N}$	
.095	28-1 ML Raf =	Low X	- 996 + 996	+84 -9	RL X	X	$\propto \times$	
	Add eigetree-saily for many		-#57 3339	-7595 14	0015- 72	1038 -	-3476 253	4
	Maar erens des te Tersian, Mr	10. = 7.0 . 2 = 37	+31 +51	+ 57 +3	1 + 31	+ 21 +	+37 +3	7
	Shaner allenna dan Ta land, Ye	Tro = - V 29	+779 + 779	-729 -7			$\times \times$	
	Sheer stress day to land, VL	Ted - VL TO			+757	+751	51 10	57
	Add Algorithm cally for some		246 246	1-192 -1	72 294	294	-770 -77	0
	COMBINED	STRESS INTENSITY - S .	4526 3198	2659 15	59 2594	ATS	4587 334	ier
	1) When T S = 1/	$\neq 0, S = largest absolv2 [\sigma_x + \sigma_{\phi} \neq \sqrt{(\sigma_x - \sigma_{\phi})^2}$	+ 4T ²]or	V(ox - c	$(ther)_{\phi}^2 + 4$	2.		
	2) When T S = O	= 0, S = largest absolution, σ_{Φ} or $(\sigma_{\mu} - \sigma_{A})$.	ute magnitu	de of e	ther			

 $N_{\star}/(M_{L}/R_{\star}^{*}\beta)$ so determined by (C_{L}) from Table 8 (see pars. 4.3). 4.2.2.5.2: When considering bending moment (M_i) : $\beta = K_L \sqrt[3]{\beta_1 \beta_1}$ where K_L is given in Table

4.3 Calculation of Stresses

4.3.1 STRESSES RESULTING FROM RADIAL LOAD, P.

4.3.1.1 Circumferential Stresses (...):

Step 1. Using the applicable values of β and γ

Stresses in Shells

10

8.

			Table 5-Compute	tion Sheet In	r Local 1	Stresser	in Cylin	drical S	helis		1 .		
	to	0.54 Rm	T	Noie: St	- Allh	to the to	initre -	mome	אני בוח	- A		Iment	
	1. Applie	d Londo"	- 5000 -	1 6	nte Parente	T			· Ve	E			
	Gin	ini long, i. Mament, i. Kaments,		'	+-		SIDE	-	Du	E	R	DUND	
	Ter	aion Ho want, ar Lond.	Ve = **	ß	(0.675) -	R		+	Au	2-4	-By	CHMEN	
	2. 6			1) m		nan dan n mi Ka	1-	(4)	-T	71×	S. I	n)	
Te+.54		winner rodus,		-107 8.	Low all		-	(h)		COCL		S.	
	V.	ead radius,	Rat June in		STRESS	25 - 11 4		E stra ther	TLINDA	TLAL S	HELL		1
Ats CtD	1.	Hand carries	stress and one or res	wit -	Au	46		81	6	CL	0.	DL	
15.743 12.922	3C of 4C	10 F/Es =	R. (HO) - F 3	525 431	-53	-575	-55	-535	-+21	-431	-431	-431	
.078 .116	1C or . 2C-1		$U_{1}^{(n)}\left(\frac{n}{r}\right)\cdot\frac{dr}{r} =$	1248 / 1856	- 1748	+138	-1248	+ 7.48	- 1356	+1556	-1356	+1356	
3.716	34		Ra (Ho Rat B) - Rat BT	= -#					+ 41	+41	= +1	= 11	
.093	14	(10) =	12(10) = A) · = AT	= -492		X	X	XX	+ 4%	₹ 4 <u>%</u>	= 49Z	+ 172	
1 10.979	38	HU #	En (- 113	- :13	-113	+113	+10	254		X		
.042	18-1	(10) =	12 10 (11. 00 /) · dal	= 707	- 707	+ 207	+ 207	- 707	284	X	X		
~	Add eige af & are		-		-2095	817	-1453	63	-1754	974	-30	1576	
12.972 15.743	JC or 4C	H	L. (+++) · + +	431 55	-431	-151	-431	-131	-55	-75	-25	-53	
.116 .078	1C-1 ar 2C	9 =	(二)(二)・	1354 1748	-1856	+1856	-1856	+ 1556	-1748	+ 138	-125	+175	
17	44	H	En (He B.). He Boild T	= - 66	284	1884	1524		+ 66	+ 66	i lie	100	
.051	24	(a.) x. 2 ag x	12(10)	013	100		7. S	X	+ 270			+210	
3.679		H	1. (Ho Bo B) - HL Road BY	- 38	-38	-38	+38	+ 58	X	X	X	X	
.064	28-1		Ides June Rang) . and To	= 316	- 316	+36	+310	-316	X		X	X	
	A dd eiged of X atros	na.ds C	. .		-ZLAI	1703	-1953	1147	-1451	519	-2009	121	<
	te Tares	n. 87	10. = T.0 - 7.	10 = T	+ 10	+ 10	+ 10	+ 10	+ 10	+ 10	+ 10	+ 10	
	Shaar and	··· ···	T=0 = 3	×== 119	+ 119	+ 119	- 119	- 119	284	X	X	24	
			T=U	VL = -133	1	1844	7774E	84	43	+155	-13	ā 153	
		mainty for second	Nee		129	129	- 109	- 109	143	143	-173	-123	
	. c	OMBINED S	TRESS INTENSITY	- 5 =	2000	ITU	1957	1167	PORI	1015	7341	797	
	1) When t	# 0, S = larges	t absolu	te ma	gnitu	de of	eithe	er				
		3 = 1/2	$[\sigma_x + \sigma_\phi \neq 1 \sigma_x$	$(-\sigma_{\phi})^2$	+ 472	lor	V (Ox	- 04).	2 + 41	2.			
	2) When T	= 0, S = larges	t absolu	te ma	gnitu	de of	eithe	er				
		5 = °x'	of or (ox - of			_							

 $N_{\star}/(M_{L}/R_{*}^{*}\beta)$ so determined by (C_{L}) from Table 8 (see para. 4.3). 4.2.2.5.2: When considering bending moment $(M_{\star}): \beta = K_{L}\sqrt[4]{\beta_{1}\beta_{1}}^{*}$ where K_{L} is given in Table 4.3 Calculation of Stresses

4.3.1 STRESSES RESULTING FROM RADIAL LOAD, P.

4.3 1.1 Circumferential Stresses (0.):

Step 1. Using the applicable values of β and γ

Stresses in Shells

10

8.

			Table 5-Computation S	linest for	Lecal	Stresso	s in Cylin	drical S	ihells			
	0	t edge of	reinforce ment							the		
	1. Applie Red Gin Los To Sho	d Louis" Rai leoi, I. Marcent, g. Naments, sien Morent, or Loud, or Loud,		с , , , ,	10.475)	100	1170	T C	Ne Du La		N N N N	
~	2 6	ny ned thickness, ndiata rodius, seal adjus,	1.15	a) and b) bes "NOTE: constraint	tone prive aling ion Enter ali ace with		I an		TLIND	TICAL I	SHELL	())
¢B C¢D		Read curves	Compute obseivte values of stress and enter result -		STRES					CL	o she was	T DL
182 10.197	30 or		K. (HO) = 774	1515	-74	-T4	-T4	-14	-515	- 515	- 55	-515
44 .07%	1C or 2C-1		$ = \left(\frac{a\psi}{r}\right) \cdot \frac{dr}{r_2} = 1520 $	1200	-150	+ 120	- 150	+ 130	-30	+30	-7030	+230
4.03%	34		L. (HO RATA) - Be B. J.	-57	X	850	X	X	+ 52	+2	152	52
.078	1.4		Eb (Ho A + A + A + A + A + A + A + A + A + A	-600				XX	+ 670	00J 🖬	÷ 100	+60
197.01	38	NU	E. (H. L. L. H. E. H. T. E.	129	-129	-129	+129	-173	X		PX	X
80.	18-1		E (201	- 201	+ 201	+701	- 301	84	PXX	PX.	
~	Add siged of the street				-2514	468	-1714	574	-2#3	112:1	-3447	2313
1771 N. 1732	JC or 4C	N. 2	··· (====)· = 515	174	-515	-515	-515	-515	-74	-T4	-74	-TA
.072 .044	10-1 er 20	* =	··· (+)· + = 730	120	-7790	+7230	-7080	+ 300	-1320	+1300	-130	+1520
19	**	H	En (Ha Ha Ha B	-73					+ 93	+93	5 95	5 93
.039	2.4	#= x	ra (the Red) . the Bra .	-300				X	007 +	ā 300	3 30	+ 300
4.036		H. H./Gaig =	Ka (Ho Raig) - Raigt a	48	- 43	- 48	+ 48	+ 48	\propto	X	$\mathbb{N}_{\mathbb{N}}$	
.038	28-1	#= =	Ko (Ha Raff) · BARTS =	273	-773	+TT3	+73	-773	X	X	\sim	N/
	Add elgab of X atrees	nesselly in annual s.C. C	••		-3116	1990	-374	1540	-1651	PZE	-721	205
	Shaar are	n, Mr	10. = T.0 - 2	- 9	+ 9	+9	+9	+9	+9	+ 9	+ 9	+ 7
	Shear area		Ted = Tiot	= 128	+138	+ 138	-128	-138	X		X	X
	Share along		TEU	-15					+155	+155	· 155	155
	Add Algen		han .		147	147	-179	-129	lift	15t	-146	- 146
	2	MBINED S Mhen T S = 1/2 When T	TRESS INTENSITY - : $\neq 0, S = largest al [\sigma_x + \sigma_{\phi} \pm \sqrt{\sigma_x} - \sigma_{\phi}]$ = 0, S = largest al	S_{ϕ}^{2}	3144 te ma + 4T ²	anitu Jor gnitu	$\frac{2495}{\sqrt{10x}}$	1554 eith σ_{ϕ}	275) er 2 + 41	738 72 .	348	Z

 $N_t/(M_L/R_*\beta)$ so determined by (C_L) from Table 8 (see para. 4.3). 4.2.2.5.2: When considering bending moment

 $(M_i): \beta = K_L \sqrt{\beta_i \beta_i}$ where K_L is given in Table

8.

10

4.3 Calculation of Stresses

4.3.1 STRESSES RESULTING FROM RADIAL LOAD, P.

4.3.1.1 Circumferential Stresses (0.):

Step 1. Using the applicable values of 3 and 7

Stresses in Shelis

CBI

surface stresses + shell mitral stresses = for fornt it , net to attachment SX total = 900 + (-4457) = 4543 to computer's 4547 -50 total = 900 + (-3995) = 5505 re compaters 5510 -SI = 2 [4543 + 5505 + ~ (4543 - 5505)2 + 4(216)2] = 5574 m computer's 5579 -Abint Au, et 0.5 (RmT SX tob) = 9000 + (-2641) = 6359 re computers 6351 for " the = 900 + (-2093) = 1907 is computerts 1907 -SI · ½ [6359 + 6907 + √ (6359 - 6907) + 4(129)] 6935 no computer's 6935 -= TOT ~ USE and an USA = (+7374) = (+757-) + 0000 = Later CE $SI = \frac{1}{2} \left[5384 + (dz_0 + \sqrt{(5384 - (dz_0)^2 + 4(147)^2)} \right]$ = 6654 no computers 6663 ~

Location

SUBJECT CON	menter Aroanam	MADE BY	CHKD BY		By	CHARGE NO.
		CLI	- JAH	1	Chkd	24 1 31
	Mandiada	DATE	DATE	æ	GIRU	1.7
	AGULTICO 107	115 82	11/82	1	Date	SHT OF

CBI membrane stresses : for Bint Am, next to attachment = - 659 va computer's - 658 ~ 30 = -3975+1995 · -751 va computers -751 ~ $SI = \left[\frac{1}{2} \left[-59 - 751 - \sqrt{(-59)^2 + 4(20)^2} \right] \right]$ - 975 70 computer's 974 for foint $A_{m,q}$ at $0.5\sqrt{R_mT}$ = -469 va computer's - 469 -20 = -073-817 = -638 va computerto -638 -SI = | 2[-409-658 - V(-469 + 658)2 + 4(129)2"] | = 708 vs computer's 707 for fornt Am, at edge of reinforcement -553 to computers -553 -SO = -2574+418 = -853 73 compaterts -853 ~ SI = | 2[-563 - 853 - V (-563 + 853)2 + 4(H7)2"] = 914 no computers 915 -

Location.

SUBJECT	Computer American	MADE BY	CHKD BY		8v	CHARGE NO.
	Company midiant	VUI	JAN		Chkd	24221
	V. f. t.	DATE	DATE	(C)	UNKU	1.0
	MCILCUIDA	1115182	1482		Date	SHT OF OF

CBI

	membrane stresses + shell initial stresses =
for	Point Am, next to attachment SX total = 9000 + (-659) = 8341 rs computers 8342 -
	- PASS strategeness at PASS - (137-) + DOF = Later DC
	$5I = \pm [834] + 8749 + \sqrt{(834) - 8749} + 4(716)^{2}]$
	- 8565 no computer's 8565 -
for	Point ilm, at 0.5 NR. T SX the 9000 + (-469) = 8531 24 computer's 8531 -
	50 the = 900 + (-638) = 8362 m computers 8362 -
	$SI = \pm [853 + 832 + \sqrt{(853 - 832)^2 + 4(73)^2}]$
	= 8601 no computerts 8601 -
for	Abind Am , at edge of reinforcement. SX total 9000 + (-563) - 8437 vs computerts 8437 ~
	50 total = 9050 + (-853) = 8147 ve computers 8147 ~
	$2I - \frac{1}{2} \left[8421 + 8141 + \sqrt{(8421 - 8141)_{c}} + 4(141)_{c} \right]$
	= 8498 72 computer's 8498 -

Location_

SUBJECT	the Acitim	MADE BY	CHKD BY		Ву	CHARGE NO.
Compared institution		0LA	KAH	JE V	Chkd	16645
ternication		IN SIST	W/82	-	Date	SHT 6-9 OF

PROG E10274, REV JAN 82 (WRC=107 REV MAR 79) STRESS INTENSITIES AT LCADED ATTACHMENTS IN CYLINCERS AND SPHERES

.

· ·	INPLT	TCHMTS	VESSEL	LCADING	ANALY	SIS		
		1	1=CYL	-1=FIXEC	2	D		
		KN	КВ	RM		T	LCC	с
	1	.00	1.00	100.000	1.0	00	0.5000	1.65
		RO	TI	. TP			a te are	
	5.	375	0.0	0.500	8.0	00		
		Ρ	VL	VC		MC	PL.	MT
	50	00.00	-6500.00	5800.00	-1500	0.00	14000.00	10000.00
	INITIAL S	TRESSES	NEXT TO AT	TCHMNT		1		
	SX(AU) 9000	SG(A) 9000	U) SX(CU) 0. 9000.	SC(CU) 900C.	SX (AM) 9000.	SC(AM) 9000.	SX(CM) 9000.	SO (CM) 9000.
	INITIAL S	TRESSES	AT LCC+SCR	T (R* T)				
1	SX(AU)	SOLAL	J) SX(CU)	SD(CU)	SX(AM)	SCIAM	SX(CM)	SC(CM)
	9000.	9000	9000.	9000.	9000.	9000.	9000.	9000.
	INITIAL S	TRESSES	AT EDGE OF	REINF	1.00			a second second
	SX (AU) 9CCC.	SCIA	SXICUS SCOC.	SO(CU) 900C.	SX (AM) 9000.	SC(AM) 9000.	SX(CM) 9000.	SD(CM) 9000.

-		-	-		-
- C		τ.	-	1 (т
	τ.		~	• •	
-	~		•	•	

	-						
 BIJLAA	RD COEFICI	ENTS	v			,	
	NEXT TC	ATTCHMAT	AT LCC*S	CRT (R*T)	AT EDGE	OF REINF	
	A & B	C 8 D	A & B	030	A & B	030	
NX/P	18.416	17.866	12.922	15.743	10.297	14.482	
MX/P	C.182	0.137	0-116	0.078	0.076	0.044	
NX/MC	3.	039	5.	\$47	7.	249	
MX/MC	0.	061	0.	C51	с.	039	
NX/ML	2.	246	3.	679	4.	0 3 6	
MX/ML	с.	093	0.	C64	с.	038	
NC/P	17.866	18.416	15.743	12.922	14.482	10.257	
MC/P	C.137	C.182	C. C78	0.116	0.044	0.076	
NO/MC	2.	317	3.	716	4.	036	
MC/MC	с.	105	э.	093	0.	078	
NO /ML	7.	825	10.	ç7ç	10.	791	
MO/NL	0.	058	0.	C42	0.	C28	
						the second se	

54331 GLN 11-2-82 V RAH 1/80 ROUND ATTCHMT

ON A CYLINDRICAL VESSEL

	LC.	5.315;		1						
٠.		(AU)	(AL)	(80)	(EL)	(cu)	(CL)	(CU)	(DL)	
~	SX	-4453.	3136.	-2588.	1445.	-2101.	1033.	-3470.	2150.	
-	SC	-3490.	1988.	-2081.	1200.	-2394.	1265.	-4646.	3320.	
~	TAU	266.	266.	-192.	-192.	293.	293.	-220.	-220.	
-	SI	4521.	3194.	2652.	1554.	2576.	1466.	4686.	3360.	
	SURF	ACE STRE	SS INTEN	SITIES A	1 LOC+50	RT (R*T)	(U=CUTS)	; (L=INS)		
	RC=	10.375;				1011	101	10:11	124.5	
		(AU)	(AL)	(EU)	(eL)	(0)	(LL)	1001	024	
-	SX	-2649.	1712.	-1540.	1154.	-1438.	526.	-2106.	1007	
-	SC	-2093.	818.	-1452.	638.	-1/63.	954.	-2820.	1003.	
~	TAU	128.	129.	-105.	-109.	143.	143.	-123.	123.	
~	SI	2678.	1730.	1563.	1176.	1817.	1024.	2841.	1899.	
	SURF	ACE STRE	SS INTEN	SITIES A	T ECGE O	F REINF	(U=CUTS)	;(L=1NS)		
	4(=	13.3/3.	(41)	(811)	(91)	(0))	((1))	(00)	(DL)	
10	C Y	-3127	2001	-2489	1555	-1643-	381.	-2432.	798 .	
-	24	-3121.	450	-1711	521.	-2159.	1233.	- 3456.	2322.	
-	TAU	-2304.	147	-129	-120	164	164 -	-146 -	-146 -	
	CI	3155	2017	2505	1570.	2207.	1263.	3476.	2336 .	
-	31	5155.	20210	23070	1					
	DUTP	UT INCLU	DING INI	TI AL STR	ESSES					
	SUR	FACE STRE	SS INTEN	SITIES N	EXT TO A	TTCHMNT	(U=OUTS)	; (L=[NS)		
	RC=	5.375;						1011	101.1	
		(AU)	(AL)	(EU)	(EL)	1001	10020	EE20	1115C	
	SX	-4547.	12136.	6412.	10445.	6899.	10039.	5550.	12220	
	so	-5510.	10988.	6919.	10200.	6606.	10265.	4334.	12320.	
-	TAU	266.	266.	-192.	-192.	293.	293.	-220.	12260.	
	SI	-5579.	12194.	6984.	10554.	1081.	10400.	5570.	12300.	
-	SUR	ACE STRE	SS INTEN	ISITIES A	T LCC+SC	RT(R*T)	(U=CUTS)	; (L=[NS)		
	nc-	1 4113	1413	(811)	(81)	((1))	(0.)	(00)	(OL)	
	C Y	-6351	10712.	7060-	10154-	7562.	952 C.	6894.	9926 .	
	20	- 6907	0819	7548	9628.	7237.	9984.	6174-	10883.	
	TAU	129	129	-109	-109-	143 -	143.	-123.	-123.	
	CI	- 6035	10730	7571.	10126.	7494.	10024-	6914.	12899.	
	51	- 0935.	10130.	12110	TOLICE		1002 10			
	SUR I	ACE STRE	SS INTER	SITIES A	T EDGE)を一日日間F	(U=CUTS));(L=1NS)		
	Contraction of the Association	(AU)	(AL)	(EU)	1 15	1 (15 +	(11)	(00)	(DL)	
	SX	- 5873.	11001.	6512.	109 55.	1357.	9381.	6568.	9798 .	
	SC	¥6636.	9658 .	7289.	9521.	6841.	10233.	5544.	11322.	
	TAU	147.	147.	-129.	-129.	164.	164.	-146.	-146.	
	SI	¥ 6063.	11017.	731C.	10576.	7405.	10263.	6588.	11336.	
	543	31 GLN 11	1-2-82 182							
	RCU	NC ATTCH	MT				ON .	A CYLINDR	ICAL VE	SSE

RC=	5. 375;			
	(AM)	(8M)	(C4)	(DM)
SX	-658	- 569.	- 531	-660.
SO	V-751	-440.	- 56 5	-663.
TAU	260	-192.	293	-220 .
12	- 974	. 709.		. 982.
CTRL RC= 1	INE STRESS INT	ENSITIES AT LOC * S	CRT(R*T) (*=CTR	U .
	(AM)	(EM)	(CM)	([M)
SX	-469	- 393.	-459	-590.
SC	V-638	-412.	- 390	-472.
TAU	128	-109.	143	-123.
SI	L 707	• 512.	571.	. 669.
CTRL	INE STRESS INT	ENSITIES AT EDGE	CF REINF (=CT R	.)
	(AM)	(8M)	(CM)	(DM)
SX	-563	-467.	-631	-817.
SC	-853	595.	- 46 3	-567.
TAU	147	-129.	164	-146.
51	- 915	. 675.	731.	. 894.
OLTPO	T INCLUDING I	NITIAL STRESSES		
CTAL	INE STRESS INT	ENSITIES NEXT TO	ATTCHMNT (M=CTRI	L)
HLT	3.3/5;			
	[AM]	(8M)	(СМ)	(DM)
22	- 8342	• 8431.	8465.	8340.
50	- 8249	. 8560.	8435.	. 8337.
TAU CI	200	-192.	293.	-220.
51	- 8565	. 8098.	8748.	. 8558.
CTRL	INE STRESS INT	ENSITIES AT LOC+S	CRT(R*T) (M=CTR	1
RC= 1	C.375;	the second state of the second state of the		
	(AM)	(88)	(CM)	(CM)
58	- 6531	. 8607.	8541.	8410.
SC	- 8362	. 8588.	8610.	
IAU	128	-109.	143.	-123.
51	F 8601	. 8707.	8722.	. 8666.
CTRLI RC= 1	NE STRESS INT 3.375;	ENSITIES AT EDGE	CF REINF (M=CTR	.1
	(AM)	(BM)	(CM)	(DM)
SX	► E437	• 8533.	836 5.	8183.
SC	► 8147	. 8405.	8537.	. 8433.
TAU	147	-129.	164	-146.
SI	► 8498	. 8613.	8637.	8500-
54331	GLN 11-2-82			

Location_

CBI Arogram 1036

This program calculates the maximum stress intensity that is developed among several points of investigation around an externally loaded itlachment on a jumbo insert plate in a cylindrical vessel. Stress analysis is in accordance with welding Research Council Bulletin No. 107 (WRC-107).

Formulas and geometry used are the same as those used in CBI Aragram 1027.

In addition, for a group of penetrations the following yeometry is used:

SUBJECT	Computer Program	MADE BY	CHKD BY RAH	>	By	CHARGE NO.
	Vertication	PATE	DATE	RE	Chkd Date	

GO 64 REV 4-73

CBI

Location_____

By superposition, the stresses it a point due to loads on an attachment are added to the stresses at the same point due to bads on an adjacent attachment.

for example :

streament at Pt. A of Attachment 0 = streament at Pt. A due to loads on Attachment 0 + streament at Pt. A due to loads on Attachment A

Sample Achiem :

lise the sample problem in CBI Argram 1027 as Attachment O. In addition, RA - RD - RC - RD - 13.375", SA = SB - SC - SD = 26.75", Looks on Attachment A : P - 5000 like, YL = -6500 likes; Looks on Attachment B = YL = -6500 like, YC = 5300 likes; Looks on Attachment C : VC = 5300 likes, ML = 14000 in-like; Looks on Attachment D : ML = 14000 in-like, MC = -15000 in-like, MT = 10000 in-like.

Calculate the outer and inner surface stress intensities at Point A next to Attachment 0 and between Attachment 0 and Attachment A. Utso subsulate the outer and inner surface stress intensities including initial shell stresses, the membrane stress intensities, and the membrane stress intensities including unitial shell stresses at Point A for both locations. Compare all calculations with computer values.

SUBJECT	Computer Program	MADE BY	CHKD BY		θy	CHARGE NO.
		GLA	DAN	i iu	Chkd	04001
	Vertication	INSTAL	DATE 11/8 2	G	Date	SHT 7-2 OF

attochments A_B_C_R		IICAI dial Lood, "- Mancent, mg. Mancente, ration Marcant, nor Land, arr Land, arr		7 <u>89</u> 7 (0.875)	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	810		2 200 ×			
54	- F	acch thishnoss, Insimum radius, anal radius,		TE. C	di taras ve	deas in		TLIND	RICAL	SHELL	()
8 C#0	1-	-	Compute absolute relives of	STRE			ante mes	shown, re	T CL		1.0
19 5.771	3C		= (=) · = 354/	92 - 394	-334	-384	-384	-192	- 192	-177	- 19
0 .045*	1C	** .	··· (···· = 767 / 6	100 -717	+767	- 257	+ 747	- 100	+ 100	- 630	+ 6
3.009	34		** (+++++++ ++++++++++++++++++++++++++)	T	N		+19	+19	T P	1
GJ0.	1.4		= (=		T	TS.	SS	+12	178	- 10	+13
7.967	28	-	= (= +++) - = 4	- 40	-40	+ 40	+ 40	CASE.	TN	1XX	TS
.015	18-1		1 (- 30	+30	+ 30	- 30	5	\mathbf{x}	\mathbf{x}	\mathbf{x}
015 83				KIA .	1						
71 11.519	3C	**=	·· (4 -172	-192	-192	-MR	- 34	-34	-334	1-78
* 000. 3	1C-1 # 1C	÷ =	· (=)· = · () 7	7-100	+100	- 600	- 100	-217	+767	1-717	+74
4	**		··· (···· ··· ·······················	8	SSE	SSE	SSEE	+ 48	+48	- 19	= 4
	7.4		E (8	R	5	X	+ 58	58	= 58	+ 5
3.656			· (··································	- 18	- 18	+ 18	+ 18	S	N	N	PN.
050.		······································	10 (- 40	+ 40	+ 40	- 40	I X	一	\mathbf{t}	\mathbf{x}
- 18 A											
	the Tarata		14 T	+2	+2	+2	+2	+2	+2	+2	+ 2
			THO - 3 - +	8 + 58	+ 58	- 58	- 58	382	N	N	PX.
	Internet, V		Tes	5	SSE		SSE	+15	+45	= 15	56
			-	NA							-
	C	MBINED ST	TRESS INTENSITY - S	NA -							-
	2) When T ; S = 1/2) When T ; S = 0	0. S = largest abso $[\sigma_x + \sigma_{\phi} \stackrel{t}{=} \sqrt{(\sigma_x - \sigma_{\phi})}$ 0. S = largest abso σ_A or $(\sigma_a - \sigma_A)$	$\frac{1}{2} + 4\tau^2$	gnitu Jor gnitu	de of $\sqrt{\sigma_x}$	eithe eithe	er 2 + 41	P .		

10 * from Fig 1C-1 instead of 1C * from Fig 2C-1 instead of 2C

Stresses in Shells

CBI

Surface Stresses at Attachment O (Stresses the to hade only) for fant N(U) - 4457 + (- 192-600) - 5249 computers. 3 = - 5240 2 74 50 = - 3495 + (-384-267) - 446 computer's - +HZ . 24 computer's 246 24 Υ. 211 + 0 75 J = [= 249-416 - V (-389+416) + 4(24)] = 5310 compater's 76 for Point A(L) 3539 1872 3139 + (-192 + 600) 1995 + (-384 + 267) - K 3547 computer's . n 1876 = 02 ~ . 24 commuter's 2= ZL 240 + 0 computer's . 24 n 3588 3580 51 computers 23 Surface Stresses at Attachment O (Stresses due to loads and initial stresses) Point A(u) for 5x - - 5249 + 9000 3151 3760 computer's = H ~ - 4146 + 9000 4858 -. 00 4854 computers = 74 Y = Zli 1 24 24 = 23 computer's 4915 4919 ST computers 2 M for Point A(L) 3547 + 9000 15547 51 = . compaters 12539 3 1876 + 9000 -= 02 10876 J7801 . 23 computers 211 Y = Zido 24 -2 273 amouter: SI computers 12580 12588 2 m Surface Stress between Allachments L Stresses due to loads ontry) A(u) for Point SX = -3112 + (-515-200) computers. -5911 - 5935 2 73 $\mathfrak{D} = -7514 + (-774 - 1320)$ -4418 - 44 02 mputers = 74 -147 + 0 computer's 7' = : 147 147 71 SI 5925 5949 . computer's n Point A (L) for $51 \cdot 1990 + (-515 + 2280)$ $50 \cdot 100 + (-714 + 1520)$ 3755 compater : 5179 ٠ m 121A = computer-1747 M 147 + 0 Y : 47 147 computers 74 J 4 5RA ampitat 3181 12 MODE BY SUBJECT CHKD BY CHARGE NO. Computer Acoram By RAH REV

Chkd

Date

SHT 7-4 OF-

DATE

11/82

11 19132

Location_

GO 64 REV 4-11

Ventication

for Point for Point for Point	Surface Stresses between A(U) -5911 + 9000 $50 \cdot -4418 + 9000$ $\gamma \cdot 47$ SI A(L) -5755 + 9000 50 = 1764 + 9000 $\gamma = 147$ SI Membrane Stresses of A(M) $51 = \pm(-5299 + 3547)$	Attachments 	(Stresses) 3089 70 4582 71 147 70 4592 70 147 70 10714 70 147 70 145 82 10714 70 147 70 145 82 145 82 147 70 147 70 1	un to kode an computers Dimputers Dimputers computers computers computers computers computers computers computers	nd unthal stresses 3065 4598 47 407 12779 10247 10247 10787 10787 10787 10787 10787
for Point for Point for Point	$\begin{array}{rcrcr} A(u) & -5911 + 9000 \\ 50 & -4418 + 9000 \\ \gamma & 47 \\ & 51 \\ \end{array}$ $\begin{array}{rcrcr} A(L) & & & & \\ & & & & \\ & & & & \\ & & & & $	- - - - - - - - - - - - - - - - - - -	3089 70 4582 71 147 70 4592 70 147 70 10714 70 147 70 145 82 147 70 145 70 147 70 145 70 147 70 140 70 147	computers Omputers Omputers Computers computers computers computers computers computers	3065 45998 47 4612 17 10247 11 10247 11 10247 11 11 11 11
tor Point for Point	SA = -3711 + 7000 S0 = -4418 + 9000 S1 = 447 S1 = 447 S1 = 5000 S0 = 1704 + 9000 T = 147 S1 = 147 S1 = 51 Membrane Stresses at Membrane Stresses at	- - - - - - - - - - - - - - - - - - -	5087 72 4582 72 147 74 4592 78 107155 78 107154 78 147 72 17164 78 17164 78 107164 78	computers computers computers computers computers computers computers computers	45998 1 477 1 4612 1 10247
tor Point for Point	a) $-4413 + 7000$ $\gamma \cdot 447$ SI SI SI = 3755 + 9000 SO = 1764 + 9000 $\gamma = 147$ SI Membrane Stresses at Membrane Stresses at $SI = \pm(-5289 + 3547)$	- - - - - - - - - - - - - - - - - - -	1032 12 147 74 4592 78 10714 78 147 72 147 72 1714 78 147 72 1714 78	Computer's Computer's Computer's Computer's Computer's Computer's Computer's Computer's Computer's Computer's Computer's	447 4612 1779 10747 10747 1787
for fount for fount	SI A(L) S1 = 3755 + 9000 S0 = 17L4 + 9000 $\gamma = 147$ SI Membrane Stresses at A(M) $SI = \frac{1}{2}(-5289 + 3547)$	thochment	459% 78 12755 78 1071/4 78 147 72 147 72 1271/4 78 1271/4 78	computer's computer's computer's computer's computer's computer's due to load	4612 - 12779 - 10247 - 10247 - 10747 - 12787 - 12787 - 12787 -
tor Point	$ \begin{array}{rcl} h(L) \\ 5X & & 3755 + 9000 \\ 50 & & 1724 + 9000 \\ \gamma & & & 147 \\ & & & SI \\ \end{array} \\ \begin{array}{r} Membrane & Stresses & al \\ h(M) \\ SX & = & \pm(-5269 + 3547) \end{array} $: 1 : 1 : 1 : 1	12755 m 1071A m 147 m 147 m 1714 m 0 (Sticses	computer's compater's compater's computer's due to loods	17779 10247 10747 1787 1787 10787
for Point	SX = 3755 + 9000 S0 = 1764 + 9000 $\gamma = 147$ SI Membrane Stresses at N(M) $SX = \pm(-5269 + 3547)$: I : Milochament	10714 70 147 72 147 72 1714 72 0 (Sticses	computers computers computers computers due to loads	10247 10247 10787 10787
for Advit	30 = 1004 + 9000 $\gamma = 147$ SI Membrane Stresses at N(M) $SI = \pm(-5289 + 3547)$	tilochament	10(14 70 147 72 17104 72 0 (Stresses	compations compations compations date to loads	HT 12787 -
for Advit	$\gamma = 147$ SI Membrane Stresses at N(M) $SI = \pm(-5269 + 3547)$	tillochament	141 Hz 12714 Hz 0 (Shicseo	computers computers due to loads	itisi -
for Advit	Membrane Stresses at M(M) $SI = \pm(-5289 + 3547)$	tillochament	0 (Shiceses	due to loads	only)
for Admit	Membrane Stresses at M(M) $SI = \pm(-5269 + 3547)$	Milliochament :	0 (Shicaso	due to loads	s only)
for Point	N(M) SX = ±(-5249+3547)		-051 14		DEL
for Point	31 = 2(-529) + 3547)		-041 14		
for Point			831 18	computer's	-821 -
for Point	J = z(-4H0+0;10)	• •	1130 18	combiner -	1100
for Point			1795 2	COMPAND 5	1794 -
for Point	Benkman Stranger at	Madamat	n/ strange	her to bed	and what show
loi. Loint.	N/ m)	UNOVNOVI	0 (010360	OME 10 KDICS	Card William Pillo
	St + + (351 + 17547)	1.11	M PNR	manitor	949
	50 : == (4954 + 109716)	1.1	7915 7	Concubrt	R15 -
	Y : 214.	1	24. 10	computers	2110 -
	I		8309 78	computer's	- 2059
	Section 2014	en Atlachme	unts (Stresse	s due to lo	adds only)
ter fort	Plembrane Stresses betwee		1000	Comentant	
	Nembrane Stresses between A(M)		- 1111 24	computer 2	1018
	$\begin{array}{rcl} \text{Permissione} & \text{Theorem Stresses} & \text{believe} \\ & \text{A(M)} \\ & \text{St} & \text{t}(-5911 + 5155) \\ & \text{so} & \text{t}(-5911 + 5155) \end{array}$		-1018 24	Come tack	
	$\begin{array}{rcl} \text{Prembrane} & \text{Stiesses} & \text{betwee} \\ & & \text{A(M)} \\ & & \text{St} & \text{e} & \text{t}(-5911 + 5755) \\ & & \text{SO} & \text{e} & \text{t}(-4418 + 17214) \\ & & & \text{Her} \end{array}$: :	-1517 74	computers	47
	Permissione 51105505 betwee A(M) $51 = \pm(-5911 + 5155)$ $50 = \pm(-4418 + 1714)$ $\gamma = 147$ 51	:	-1018 74 -1577 74 147 74	computers a	47 -

SUBJECT	Computer Arogram	MADE BY	CHKD BY RAH	REV	By	CHARGE NO.
	Verdention	DATE	DATE		Chkd	7-5
1	Intilication	1 9172	11/82		Date	SHTOF

CBI							L	Location				
		Plembrane	Stee	tei ze	NCEN	themtestin	sl	stease tu	k	knob and	mitial	stress
for	Admit 50 7	A(A) = ±(4 =	089 + 582 + 47	12755) 10744 } 51		7972 7423 147 7962	2 1 4 4	computer computer computer	it of of of	1972 1473 147 1972	1111	
UBJECT	Computo	r Atogram	•	MA	CEN*	снко ву Кан	>	Bv		CHAR 543	SE NO.	٦

GO 64 REV 4-73

		CAL	CS & NO	TATION PER	WRC 1C7	REV 3/	75; PR	16 REV 12/	75
INP	LT DA	TA				RV	S LD	CF LD	CUTPUT
	KN		K 2	RM	C	(COE	CASES	CCDE
	1.0	:00	1.000	100.000	1.650)	-1	1	3
	DIST	ANCES	FROM CE	ATRAL ATTO	HAT TO PT	SOF IN	VESTIG	TION	
	RC			RA	R P.		RC		PD
	5.	275	1	3.375	13.37	75	13.	375	13.375
	DIST	ANCE 9	ETWEEN	ATTCHMTS				50	
	26	. 75C		26.750		26.750		26.750	
						NUE CTT	ATTON		
	INSE	NI CN	SPELL	TA	TE	INVESTIC	TC		TO
	1.5	sccc	1	.cccc	1.000	00	1.00	202	1.0000
	I C AC		TTCUNTS	EFR LCAC	CASE =	1			
	PT		p	VL	VC	•	ML	MC	MT
	C	50	00.	-6500 .	5800.	140	occ.	-15000.	10000
	A	50	CC.	-6500.	0.		0.	0.	C
	в		0.	- 6500.	5800.		3.	0.	C
	C		2.	0.	5800.	140	. co.	2.	0
	D		0.	с.	0.	140	.000	-15000.	10000
	INI	TAL ST	PESSES	IN INSERT	AT ATTCHM	т			
		ON	OLTS OF	SHELL OR	INSERT	CN (TRLN CI	SHELL CR	INSEPT
	PT	0	P	С	0	۵	8	с	D
	SX	9000.	9000	. 9000.	9000.	9000.	9000.	. 9000.	9000.
	SO	9000.	9000	. 9000.	9000.	9000.	9000.	9000.	9000.
	INI	TAL ST	RESSES	IN INSERT	AT PTS ET	WN ATTO	FMTS		
		ON	OUTS OF	SHELL OR	INSFRT	ON C	TRLN C	SHELL CR	INSERT
	PT	۵	6	с	C	4	В	с	D
	SX	9000.	9000	. 9000.	9000.	9000.	9000.	. 9000.	9000.
	SC	9000.	9000	. sccc.	sccc.	9000.	9000.	9000.	9000.

PACE 1036 CUTPLT

. .

.

BIJLASRO CCEFFICIENTS

AT AT	TCHNT C	L				-					
	FC	R CTR LT	TACHMENT		FCR ADJ ATTACHMENT						
	Δ	8	C.	D	Δ	6	C	C			
 NX/P	19.416	19.416	17.866	17.866	5.771	5.771	11.519	11.519			
Mx/P	2.182	0.182	C-137	0.137	0.045	0.045	0.020*	0.020#			
NX/MC	3.039	3.034	3.039	3.035	9.956	8.996	8.996	8.996			
 NX/NC	0.061	0.061	0.061	0.061	0.027	0.027	C. 327	C. C27			
NX/ML	2.246	2.246	2.246	2.246	3.656	3.656	3.556	3.656			
WX/WL	0.093	0.093	C.C93	C.Ce3	C. C2C	0.020	C. C2C	C. C20			
 NO/P	17.866	17.866	18.416	18.416	11.519	11.519	5.771	5.771			
MC/P	0.127	0.137	C.182	C.182	C. C2C	C. C2C	C. C45#	C. C45#			
 NC/MC	2.317	2.317	2.317	2.317	3.508	3.608	3.608	3.608			
MOIMC	C.105	C.1C5	C.105	C. 105	0.060	3.060	0.060	0.060			
NC/ML	7.825	7.925	7.825	7.825	7.967	7.567	7.967	7.967			
 MO/ML	C. C58	C. C59	0.058	0.059	0.015	2.015	2.015	0.015			

BTWN		~									
FOR CTR ATTACHMENT					FOR ADJ ATTACHMENT						
 	۵	9	c	n	A	9	c	0			
NX/P	10.297	10.297	14.482	14.482	10.257	10.297	14.492	14.482			
NX/P	0.076	0.076	0.344	0.344	C. C76	C. C76	0.044	5-544			
 NX/MC	7.245	7.244	7.249	7.249	7.249	7.249	7.249	7.249			
MX/MC	0.039	2.035	C. C39	C. C35	0.039	C. C39	0.039	C. C39			
NX/ML	4.036	4.036	4.035	4.036	4.036	4.036	4.036	4. 236			
 MX/ML	C. C38	C. C3E	C. C38	C. 038	0.038	0.038	0.039	0.038			
NC/P	14.482	14.492	10.297	10.297	14.482	14.492	10.257	10.297			
NC/MC	4.035	4.036	4.036	4.036	4.036	4.036	4.036	4.036			
NC/4L	10.791	10.791	10.079	0.078	0.078	0.078	0.078	0.078			
MC/ML	0.028	0.029	0.028	C.C28	C.C28	0.029	0.028	C. C28			
 * COEF	FROM FI	G 20-1 I	NSTEAD O	F 2C							
# CCEF	FRCM FI	6 10-1 1	NSTEAD D	F 1C							

54331 GLN 11-5-82 , RAH 1/52

7-8

.....

	STRESSES D	UF TO ATT	CHNT LCA	DS CNLY				
	4(U)	ALLI	P(U)	BILI	C(U)	C(L)	D(U)	C(L)
SX	-5240.0	3539.0	-2588.	1449.	-2101.	1039.	-3365.	2141
SC	-4142	1872.0	-2081.	1200.	-2394.	1265.	-4498.	3211
T AU	266	266.	-135.	-135.	293.	293.	-218.	-218
51	5301	3580.	2621.	1538.	?576.	1466	4529.	3253.
	STPESSES C	UE TO ATT	CHAT LOAN	DS + INIT	AL STRES	SE S		
	A(U)	A(L)	9(0)	E(L)	C(U)	CILI	0(0)	9(L)
SX	3750.0	12539.0	6412.	10445.	6999.	10039.	5635.	11141.
SC	4959.	10872	6919.	10200.	6606.	10265.	4502.	12211.
TAU	266.	266.	-135.	-135.	293.	293.	-218.	-218
51	4919	12580.	6953.	10508.	1061.	10400.	56/5.	12233
SUPF	ACE STRES	SES FOR P	TS. BTW	ATTCHMT	(U)=0UT	S; (L)=[N	5 1	
	STRESSES D	UE TO ATT	CHMT LOAD	S CALY				
	4(U)	A(L)	E(U)	8(L)	c(u)	C(L)	D(U)	D(L)
SX	- 5935.	3779	-2488.	1555.	-1643 .	381.	-2038.	589.
50	-4402	1247.0	-1711.	521.	-2159.	1233.	-2807.	1778.
TAU	147	147.	2469.	9.	164.	164.	-137.	-137.
51			245.30					
	STRESSES C	UE TO ATT	CHAT LCA	DS + INIT	AL STRES	SES		
· · · · · ·	A(U)	A(L)	9(0)	B(L)	6(0)	C(L)	CIUI	CILI
SX	3365.	12779.	6512.	10555.	1357.	9381.	6552.	9589.
SC	4598.	10247.	1284.	9521.	6841 .	10233.	5193.	10778.
CT	4612	12797 -	7790	17555	74.05	10262	-101.	10707
	-012						07.0.	
			<u>.</u>					
							1000	
							- 1972 - 1	
5433	1 GLN 11-5	- 92						
	V RAH 11/82							
								1.1

•

CBI Acaram 1574

This program determines the basic behavior of thin walled elastic shells of revolution, when subjected to either static or dynamic pressures with arbitrary distribution over the surface of the shell. pressures with arbitrary distribution over the surface of the shell. The geometry of the shell must be made up of spheres, torispheres, ellipsoids, and cylinders with stiffeners. Since the program is based on classical shell theory, it has the same limitations, namely: 1.) The material is linearly elastic. 2.) All displacements are very small. 3.) Both the stress and strain normal to the surface of the shell are so small that they may be neglected entirely. 4.) The shearing strains through the thickness are negligible so that nor maks to the mid-surface remain straight and normal after deformation.

Location.

- offer deformation.
- 5.) both principal radii are much greater than the shell thick ness, so that the total the the Rep and the the Rep

Generally Me must be greater than 10 for adequate accuracy.

Author : JS Endicat Dated Version : 12/75

Initations: above

SUBJECT	Computer Agaram	MADE BY	RAH	>	By	CHARGE NO.	
	Vertication		DATE	RE	Chkd Date	SHT 8-1 OF	

GO 64 REV 4-73

CBI

$$ton \ \phi_0 = \frac{1}{4} = \frac{1}{2}$$

$$\phi_0 = 26.557^{\circ}$$

$$\frac{1}{4} = \frac{1}{2} = \frac{1}{2}$$

Subject _ Stanyale Roblem 1

11 60 84

 $c = \frac{B}{A} + \frac{A}{B} = \frac{2}{2}$ $\therefore L = 50 \left[2.5 + \sqrt{6.25 - 5.} \right] = 180.902"$ $b = B \left[\frac{B}{A} - \frac{L}{A} \right] + A = 50 \left[0.5 - 1.80902 \right] + 100. = 34.547"$

8-2

Dere 1963 by JSE shi _ of 6

Segment Lengthis:

aylinder	VI-2 = V100×1 = 1	0. "
torus	V34.5×1 = 5.9";	<u>5.9 × 57.3</u> = 9.8° 34.5
sphere	V 180.9×1 = 13.5";	13.5×57.3 = 4.3° 180.9

ellipsoid same as torisphere However, the closer the pole or axis is approached the harder the equations become to integrate because of the factor I'r which enters into them, r being the distance to the axis. One way to compensate forthis is to use the distance to the pole as the readius in the above expressions.

sphere @ 5° from pole $\Gamma \simeq 160.9 \times \frac{5}{57.3} = 15.7"$: $\sqrt{rt} = \sqrt{15.7 \times 1} = 3.97"$; $\frac{3.97 \times 57.3}{180.9} = 1.26°$ Actual segment lengths used in the torisphere: $5^{\circ} to 10^{\circ} 4@ 1.25^{\circ}$

10° to 26.567° 4@ 4.13°

Sublect _ Saniple Problem 1

26.507 to 90° 600 10.57°

8-3

Dota 19/19 Ey JEE she 22 of - C

Boundary Conditions:

It will be assumed that, at 5° from the pole, 2 menbrane state of stress exists. in both the ellipsoid and the torisphere, or

$$q = M_{s} = 0$$

 $N_{b} = D_{s}$

where r = distance to pole Letting p= 100 psi then for the torisphere

$$N_{\phi} = \frac{100}{2} (120, 902) = 9045.1$$
 16./in.

For the ellipsoid

$$F = \frac{A \sin \phi}{R}$$
where $R = \sqrt{C + (1 - C) \sin^2 \phi}$

$$C = (B/R)^2 = \frac{1}{4}$$

$$R = \sqrt{\frac{1}{4} + \frac{3}{4} (.0871557)^2} = 0.505664$$

$$N_{\phi} = \frac{A \sin \phi}{R} \frac{P}{2 \sin \phi} = \frac{PA}{2R} = \frac{5000}{.5056} = 9887.97$$

However at the beginning edge a displacement component parallel to the axis of revolution must be specified. This is best done in this problem by defining the radial movement at the start. Assuming a sphere in a membrane state of stress

we core subject _ Sample Problem 1 ____ Cont. ___ Doto 1/69 - 56 shi 3 of 6

$$W = \frac{p\tilde{L}^2}{Et} \left(\frac{1-M}{2}\right)$$

Subject _ Simple Problem 1

where $\tilde{L} = radius of spherical cop which would$ be required to close the remainingdistance to the pole<math>E = Young's madulus = 30 000 000. $\mu = Poisson's ratio = 0.3$ $\tilde{L} = \frac{\Gamma}{sm\phi} = \frac{A}{R} = \frac{100}{.5056} = 197.76$

:. $W = (100)(197.76)^2(.7) = 0.045627$ 30 (10°) (1)(2)

This value of w would be equivalent to setting Q=0. The conter of radius for the sphere would be the reference point, i.e. it would not move if the sphere expanded uniformly as assumed. But, in order to better compare the heads, it seemed desireable to have the displacement at the center of the cylinder zero. Therefore the problem was solved twice, the results of the first run yielding the w required for zero displacement at the center

8-5

Don 1969 or 15E sur - of G

Results:

In order to check the results, first the answers at the boundaries should be examined. For example, in this problem it was assumed that there was a membrane state of stress at the boundaries. Therefore at the edges Q and M& must be approximately zero. If this is not the case either the assumption or the data is wrong. Also, in this problem, No should be approximately equal to Nis if a membrane state exists

Note, too, that in order to seriery equilibrium in the cylinder, No = 0.5 pr = 5000 K. lin.

The segment lengths are exequally short since there is good agreement between beginning and end of segments.

The difference in the two heads shows up quite well in the plots of hosp force and longitudinal bending . on the next page. Even though the change in radii has been minimized the disturbance at the junction of the sphere and forces is considerable.

* m

Cont.

8-6

Date 10/0: 37 JSE 51. 5 ... C

Subject _ Simple Producing 1

CBI

;

Location_

UBJECT	MADE BY	CHKD BY		Bv	CHARGE NO.
	DATE	DATE	REV	Chkd	
	9/70	DATE	1	Date	SHTOF

On the cylinder, a wind load of p=-.2 cost has been used. Boundary Guiditions:

Physically there is an cut a the pole, hence no boundary. But mathematically the most be two boundaries. This situation is handled in the program by making a small hole at the pole and filling it with a modified flat plate stiffness matrix. The radius of the bole & Vas of the radius to the next to last out put point.

At the start of the problem the structure must be fixed squinst rotation about an exist thru &= ±90° and horizontal and vertical movement. This is best done by specifying up and up at the start. If only shesses and relative displacement are desired, these initial

8-10

SUBJECT Parter	MADE BY	CHKD BY		By	CHARGE NO.
	DATE	DATE	REV	Chkd	
	1174	Unit		Date	SHT OF

GOAL DEVI.71

displacements can be set arbitisting. It absolute deflections (i.e. relative to the losse) are needed, one can consider the part of the ajindrical tank which is not included in the above model as a beam/column of circular section. Then for n=0

$$\frac{1}{4} = \frac{PL}{EH} = \frac{N_{\phi}(2\pi 2D)}{30(15^{*})} \frac{57.8}{2\pi 250(14)} = N_{\phi}^{4} 70.4(10^{-6})$$

Location.

For n=1, brinding

$$\begin{split} \mathcal{U}_{A} &= \frac{2L^{q}}{8EI} + \frac{PL^{3}}{3EI} + \frac{ML^{2}}{2EI} \\ &= \left[\frac{2(529)^{q}}{8} + \frac{N(529)^{3}}{2} + \frac{N(4(250)(528)^{2}}{2} \right] \frac{T250}{25(0^{6})} \frac{T(250)^{2}}{T(250)^{2}} \\ &= \left[\frac{P5.6(528)^{3}}{8} + \frac{N(522)^{3}}{3} + \frac{N(5(22))^{3}}{3} + \frac{N(5(25)(528)^{2})}{2} \right] 10^{-q} / 30. (2.50)^{2} 1/4 \\ \mathcal{U}_{B} &= \left(41.451 + 1.0467 N + .74242 N_{B} \right) 10^{-4} \\ \mathcal{U}_{B} &= \left(41.451 + 1.0467 N + .74242 N_{B} \right) 10^{-4} \\ \mathcal{U}_{B} &= \left(\frac{3}{6EI} - \frac{DL^{2}}{2EI} + \frac{ML}{EI} \right) \\ \mathcal{U}_{B} &= \left(\frac{105.6(528)^{2}}{2} + \frac{N(529)^{2}}{2} + \frac{N(5(25)(528))}{2} \right] 10^{-q} / 30. (2.5) / 4 \end{split}$$

To complete the members of type building conditions R=14 = 0 in both harmonies .

Subject Schupte Province 2	MADE BY	CHKD BY	>	By	CHARGE NO.
	DATE	DATE	RE	Chkd	
	17/52			Date	SHTOF

CRI

6

We is the start displacement This is a very store backing with a length only slightly greater that it dight. There for the sites of definite is significant. The shear deformation can be obtained by integrating the shear shear along the center line of the beam, $0 = \pm 70^{\circ}$. $N_{\mu}(L) = \int_{0}^{L} \frac{2(s)}{G} ds$ $= \int_{0}^{L} (\frac{N+2s}{Gt}) ds = (NL + 2\frac{L^{2}}{2})/Gt$

 $l_{4}^{\prime} = l_{1}^{\prime} \frac{525(10^{-6})}{11.538(1/4)} + \frac{(.2)(529^{7})10^{-6}}{(2)11.528(1/4)} = 152.04(10^{-6})11 + .009664$

Location.

This chould be sidded to the bending value.

So that the first spring matrix is:

[0] I	-	0	0	. 7	F., 1	in the second	Γ.
-1		· · · ·	c.,		1 21	1.1.1.1.1.1.1	0.
11 = 1	0.	.70400	0.	. 74:42	Ma	15-4 -	.002617
MA	0.	n.	0.	c	21	10 4	0.
11	0	20202	0.	2 5711	N	6 - F - C - F	013810

SUBJECT Sample Profile . 2	MADE BY	CHKD BY		Bv	CHARGE NO.
	DATE	OATE	REV	Chkd	SUT F DE G

Results:

**

Creaking the Loundary, there is very little disturbance in the displacements coused by setting Q=H=0. on the boundary so it can be concluded that things have essentially reached a membrane state at the boundary. The printed membrane state at the boundary. Also note here that dosmore this over plet en a page. Also note here that dosmore this cone plet en a page. Also note here that dosmore the best been used. It a result the attends metrices which are generated by the program are also printed.

Location_

SUBJECT Strappe Problem 2	MADE BY	CHKD BY	2	0v	 CHARGE NO.
	DATE	DATE	ä	Chkd Date	 SHT 6 OF 6

WIND AND SNOW LOADING BENDING STRESS IN PHI-DIRECTION SNOW LOAD ON SPHERICAL ROOF MAXIMA 0.209 0.349 1391. 3313.

A. 1. 3

ation____

Sample Abblem 3, Inclined Cylinder under Hydrostatic Locating Geometry: This is a uniform cylinder with radius = 100." length = 300." Huckness = 5/16" Segment Lengthis: V 100 × 5/16 = 5.6 Because output points were desired at the start and end of the portially looded water region, 50" to 250; the total number of segments was set at a multiple of 6. Taking a segment length of ~11/21 RE, use 36 segments. Boundary Conditions: The shell is free at the end, Q=NS=MS=N=0. Ju order to better compore with Flugge's membrane solution menilorisme conditions were used of the stort, Q= ug " kit = ug=0. Sample Problem 3 JSE CHANGE NO. D.Y CHED SHY / OF G 12/70 - 8-15

Loading:

0.00

t

The problem was taken from Flugge's "Stresses in Shells"
pp. 118-119. The losding; in the loaded region is given as
$p = -\delta \left(x \cos \alpha + r \sin x \cos \theta \right) $
using Kalmins' notation with max. pressure at 180; where
o = density = 64 */43 = .0370370 */in?
x = angle of inclination = 45°
r = radius = 100."
x = distance along the meridian from a point 150"
from the base to the point of which the pressure
s being colculated.
There fore
$P(x, \theta) = -3.70570 \frac{12}{2} \left(\frac{x}{r} + cos \theta \right)$, where p positive
This function was expanded into a Fourier series at
×/r = 0, ± 0.2, ± 0.4, ± 0.6, ± 0.8, -1., -1.5
for a total of 11 series. The amplitudes at +1. and
+1.5 are all zero. Letting
E: = Xip
X; = X at the ith elevation
Q: " one holf of the angle over which the pressure is
applied at the its devation 8-16

. .

ocation _ · ·

C

Sample Problem 3	J'SE	CHRO BY	,	0.7		CHANGE NO.	-
	12/20	OATE	3.8	CHEO DATE		···· 2 or 6	
		and the second second		diversion of the second se	And I I WAS ADDRESS OF THE OWNER	An entering and in the second s	l

Then the amplitudes of the othe instruction of the it's elevation are :

$$\begin{aligned} \partial_{i0} &= C \left[-\frac{5}{5}; \theta_{i} + \sin \theta_{i} \right] \\ \theta_{ii} &= C \left[2\frac{5}{5}; \sin \theta_{i} - \sin \theta_{i} \cos \theta_{i} - \theta_{i} \right] \\ &= C \left[\frac{5}{5}; \sin \theta_{i} - \theta_{i} \right] \end{aligned}$$

 $a_{in} = C \left[-2 \xi_i \frac{\sin n\theta_i + \sin (n-i)\theta_i + \sin (n+i)\theta_i}{n} \right]_{n+1}$

where

 $C = \frac{3.7057}{77} \frac{\sqrt{2}}{2} = .83362$ $\theta_i = arc \cos \xi_i$

Evaluating all the ain yields a 13×10 matrix which is shown on the next page. The rows of this matrix are the amplitudes of the Fourier terms at the given elevation. The columns are the function generators for the indicated harmonic.

					8-17
Sample Piobleur 3	12170	CHKU BY	P.C.V	0.4 CHRO DATE	 CHARGE NO.

÷.			0.	.00	ί.	20.	. 0	20%		3	10.	< ic,	CO BAN	DGE & IR	ON COMPAN
- 22			500.	- 100	- 4:0.	<i>.</i>	.025.	0.	.024	100-	- 600'-	Locati	on_ <i>O</i> .:	<u>nt Bri</u>	
- 48			•	. 720.	010	-033	- 1 - 0	.033	c10.	- 120	· 0			•	
34 -			110.	032	032	810.'	.046	.018	032	032	210-	•			
- se			1:0-	:00	650.	.05%	1 0.	056	- 059	+00%-	150.		-	••••••	
***	0.	0.	590.	.066	£00'-	610	-111-	079.	003	.056	0:00	0_	0		
- 50	0.	0.	0%	14	141 -	501 -	- 0:	501.	111.	111.	.0%	o.	0.		
	0.	0.	0:11	502.	. 428	. 523	.556	.523	. 628	582	,120	. 0	0.		
10	0.	0.	-,136	373	199	973,	-1.3101	-1.641	-1.958	-2.246	-2. 483	2.615	-2.619		••••
00	0.	0.	110.	203	378	683.	.534	1.112	1.425	1.774	2.166	2.619 -	3,928,	1	
-			2	66	8	15	-	6	2	1	*		1	: 	
\$	0	,0'	53.86	53.12	66.42	18. 44	\$	101.53	113.579	126.870	143.130	<i>B</i> .	180.		
ii.	5%	1.0	ŵ	9	ġ		ö	N. 1	5.	9.1	• • •	07	57-		
ŝ	300.	250.	230.	210.	15.0.	170.	150.	130.	110.	8	70.	19	.0	****	0-10
	50	impl	S Pi	2/10	irm	3			22	0 + T &	a C e	8* ****0			8-18 or G

11.11

Results:

415

The first 3 plots show the losding plotted in various fashions. The curves only approximate the losding, of course, since we are using 10 functions with cantinuous derivatives to represent a function which has a discentin uity in its slope. There fore at the air/water interface we get faired in pressures in stead of an abrupt change. This error can be made smaller by adding more terms to the series. For example at \$=0 and 0=90° the pressure reduces to

P= C[1-(1-13)+(-13+15)-(15-11)+(-11+19)]= c/9=.09 so that the error is inversely proportional to the number of terms included.

The curves for No or No differ from those in Flugge's "Stresses in Shells", pp. 118-119, principally in the manner presented. Flugge's curve are plotted on the projection of the cylinder while the plots here are made on holf of the circumference. Since this is a rother thin shell without disruptions are would expect that Flugge's membrane solution to be quite close to the solution including bending. This is indeed the case. At the

TUDJECT				8-19
Somple Roblem 3	JSE	CHRD BY	n.v.	CHANGE NO.
	12/201	DAIL	CHRO	
and the second state of the second state and the second state and the second state of	11/10		DATE	 min 5 or G

angle .	where maxi	mum press.	ure occurs	(0=0°
Flugge's	eremple.	and 8-180	" in this ezo,	nola) The
nesults	e of fe-l.	(5=50) an	d 3=0 (se	:150°) are
	Flügge's 5=50	membrane 5= 150	program res.	S=150
Nd	- 523.8	-130.9	- 513.8	-125.7
Na	522.2	261.2	523.8	261.3 .
At 60	from the a	bove angle	with g=-1	(5=50)
NAD	30.2		340.3	
At 45°	from the ang	te of maxim	um pressure	with 5=0 (3=150)
NSO		130.9		129.7

8-20

Sample Froblem 3	JSE	CHRO BY				6	PLAN		».
	12/20	DATE	24			2 ++ 2	6	0. 6	6
and the second				Arr.y	State of State of State of State				

1.

PRESSURE DISTRIBUTION AT 50 INCH INTERVALS (SCALE: INCH=PSI) INCLINED CYLINDER UNDER VARIABLE HYDROSTATIC LOADING MAXIMA 6.547 5.238 3.926 2.611 1.312

8-24

10

E.

LONGITUDINAL FORCE AT 50 INCH INTERVALS (SCALE: INCH=200 L8/INCH) INCLINED CYLINDER UNDER VARIABLE HYDROSTATIC LOADING MAXIMA 807.656 513.754 286.611 125.865 29.949

1

.

.

CIRCUMFERENTIAL FORCE AT 50 INCH INTERVALS (SCALE: INCH=200 L8/INCH) INCLINED CYLINDER UNDER VARIABLE HYDROSTATIC LOADING MRTMA 653.297 523.809 392.579 261.322 131.266

MEMBRANE SHEAR FORCE AT 50 INCH INTERVALS (SCALE: INCH=200 LB/INCH) INCLINED CYLINDER UNDER VARIABLE HYDROSTATIC LOADING MAXIMA 456.635 340.340 230.490 129.709 48.217

MAXIMUM SHEARING STREAS AT 50 INCH INTERVALS (SCALE: INCH=1000PSI) INCLINED CYLINDER UNDER VARIABLE HYDROSTATIC LOADING MAXIMA 4675. 3320. 2173. 1239. 515,989

CBI

Location_____

A. 2.1 Sample Roblem A : Ficely Vibrating Spherical Cap N=1 Geometry and Properties : This pretown is taken firm "Thin Elastic Shells", by Hory Krous, Wiley , 1967. fiel edge It is presented in chine, sion -1.55 from 2/2 = .5 and 2/2 = 10. 30 where to thickness a . stational radius at the eage R= splierical radios letting E= 30000000. psi u .. 3 7 -. 263 #/in 3 a = 296.4 in/sec2 R = 20. t = 1. then \$ (at start) = 180-30 - 150° J2' = wa (p/E) 1/2 = w (10) (.253/3 3.1 x 3. x 10 6) 1/2 = (2TTF) (.09741) 10-3 = . # 1045 (-3 F f = 3221.1 S. sr

AUBJECT	MADE BY	CARE BY		By	CHANGE NO.
and the second s	DATE	DATE	REV	Chkd	
	1 2.54	Unit		Date	SHT OF

CÊ

This is a fairly thick shell with an are length of 2.3 VEE. However in order to given more detail to the plots so that they may be compared with the publicited results, 16 segments were used.

Location_

Boundary Conditions:

Starting edge is specified as clamped; there fore vi = up = p = up = 0.

Results :

The published results are included on the next page so that they may be compared with the program's results. One can see that the primary displacement of each inde agrees very well, while some of the secondary displacements differ. slightly. However there are errors in the published plots of the same magnitude (mode 5 does not go to 1., mode 3 does have up and up exactly equal and opposite) so one can say that the agreement is very good. Note that the sign convention for up is different in the two solutions.

SUBJECT Envire Provide A	MADE BY	CHKD BY		Bv	CHARGE NO.
Janipe 1150	DATE	DATE	RE	Chkd Date	 SHT_2 OF 5

Location____

....

SUBJECT Company First and de CHARGE NO. MADE BY CHKD BY 8. 1.12 REV Ched DATE DATE SHT = OF = m/7.1 Date -----

ж

11.186

CBD

Converting the dimensionless I' to frequencies in Herte yields the following comparison :

Location.

mode	Kraus	program	
,	2640.	2453.	
z	5966.	5456.	
3	6929.	6561.	
4	10739.	10214.	
5	11812	10761.	
6	16927	16921. (estimate	·d)

The aissque must here is surprising since the eigenvalues, and especially the lowest, and much less sensitive than the mode shaper. One would expect the agree ment in the lowest eigenvalue to be an order of magnitude better than the mode shape ; but this is not the case. However if one uses the mode shape of the first mode as a pressure distribution the maximum deflection is 5.7258 (10⁻⁴). If this value is factored from all diplacements, in order to normalize them, and displacements agree within . and of the original mode shape. And the frequency = $\left(\frac{1}{1+\max}, \frac{2}{2}\right)^{1/2}$ is a 2007. This indicate that the pregram is sets fying the original differential equations quite well. The static results follow. 8-31

SUBJECT Saude Problem A	MADE BY	CHKD BY	>	Bv	CHARGE NO.
	DATE	DATE	Α£	Ched Date	SHTOF

1 1 1 1 1 1 0 3. 10000. 0.30000 0.2930C 346.40 2 23.000 150.000 100.000 1.00000 16 0.0

1	3	0.0	5 0	.0	7 0.0		0.0
0.0	0.0	0.0	17	17 17			
151.875	0.033	153.750	0.122	155.675	0.252	157.500	0.407
159.375	0.569	161.250	0.724	153.125	0.855	165.000	0.950
160.875	1.000	168.750	0.997	170.625	0.940	172.500	0.828
174.375	0.669	176.250	0.469	179.125	0.242	180.000	0.0
151.875	0.003	153.750	0.005	155.625	0.003	157.500	-0.004
157.375	-0.016	161.250	-0.035	163.125	-0.059	165.000	-0.087
166.875	-0.117	168.750	-0.152	170.625	-0.184	172.500	-0.214
174.375	-11.239	176.250	-0.259	178.125	-0.271	180.000	-0.275
151.875	-0.019	153.750	-0.040	155.625	-0.061	157.500	-0.083
159.375	-0.105	161.250	-0.128	163.125	-0.151	165.000	-0.173
166.875	-0.194	169.750	-0.214	170.625	-0.231	172.500	-9.246
174.375	-0.254	176.250	-0.268	178.125	-0.273	180.000	-0.275

CMN USED

2780

			W	us	Bd	La.
1					1.4	4
	150.000	1	0.0	0.0	0.0	0.0
	151.875	2	0.18873F-06	0.18496F-07	-0.55574E-96	-0.11137E-06
	153.750	3	0.70036F-06	0.278916-07	-0. 98219E-06	-0.227785-06
	155.625	4	0.14460 5-05	0.16868E-07	-0.127010-05	-9.34920E-06
	157.500	5	n.23322E-05	-0.22549E-07	-0.141418-05	-0.475185-06
	159.375	6	0.326395-05	-0.94819E-07	-0.14150E-05	-0.604375-06
	161.250	7	C.41402F-05	-0.20086E-06	-0.124035-05	-0.735125-06
	163.125	8	0.489995-05	-0.338195-06	-0.10248E-05	-0.86526E-06
	165.000	9	0.54457E-75	-0.50129E-06	-0.67038E-06	-0.992265-06
	166.475	10	0.572985-05	-0.6H208F-05	-0.244405-06	-0.11134F-05
	168.750	11	0.571238-05	-0.87062F-06	0.221048-06	-0.12258E-05
	170.025	12	0.53412E-J5	-0.10559E-05	0.692135-06	-0.13266E-05
	172.500	13	0.474355-05	-0.122675-05	0.113475-05	-0.14133E-05
	174.375	14	0.192015-05	-0.13723F-05	0.151685-05	-0.149345-05
	174.250	15	0.26879E-05	-0.14836F-05	0.181116-05	-0.153505-05
	178.125	15	0.130555-05	-0.15533E-05	0.14965F-05	-0.15066E-05
	180.000	17	A. 43657F-07	-0.15770E-05	0.205075-05	-0-157694-05

Sample Problem 4

819.

slt. 5 of 5

Location_____

A.2.2 Sample Proven 5: Fixed, Free Cylinder Naturel Frequencies

Geometry, Ployerines, and Constary Conditions:

See Sample Pinten 6.

Results:

The main purpose for finding the natural frequencies here is to help in determining the time step which will be needed in the transient energysis of this fixed, free cylinder. This aspect is discussed in Sample Poblem 6. Since it is known that a transient enalysis is to be executed, time can be saved by saming the stiffness and more indires. This has been done by setting AUTHUT = 101 and assigning unit #50 to a permanent disc file. A summary of results:

ligrannie	110	de 1	pic	de 2
	freq	period	fier?	period
0	2271.	440. µ src.	3617.	276. p. see.
,	816.	1225.	22 59.	44 7.
2	382.	2618.	1365.	733.

Note however that the first n=0 mode is a longitudinal "pogo stick " mode which will not preficipate much in the following blact problem. 8-33

SUBJECT TO THE T	MADE BY	CHKD BY		Bv	CHARGE NO.
Sarapas Pittor 11 -		DATE	REV	Ched	
	DATE	UATE		Date	SHTOF

A.3.1 Somple Problem 6: Clamped, Free Cylind & under Transient Blast Load ...

Location.

Geometry, Properties, and Busidary Conditions : This problem was taken from a paper, "Dynamic Response of a Cylindrical Shell's Two Numerical Methods ", ATHA Journal, Vol. 4, 10. 3, p. 456, by D. Johnson and R. Greif. Excerpts from this paper, included on the next page , describe the geometry, material properties, and boundary conditions.

Londing:

The hading distribution in space must time is supposed to represent the pressures that usual be imposed on the shell due to a blast. These are described on the nert prige. One should be advised that the time distribution in vasily distributions and the horizon considered, the rise is instantemeous and the loud constant thereafter. The time us pressure plot for neo shows there pressure distribution in scale.

Time Conditions & Parameters

The shell is initially at rest. U(0) = U(0) = 2(0) = n.

8-34

SUBJECT Sample Provide to	MADE BY	CHKD BY	>	84	CHARGE NO.
	DATE	DATE	H	Date	SHTOF

PERSONAL AND STREET, STR

SUBJECT Same to Providence	MADE BY	CHKD BY		6v	CHARGE NO.
	DATE	DATE	REV	Ched	
	5174	UATE	-	Date	SHT OF

\$

CEI

For the new harmonic Johnson & Greif use Space. time steps. In order to compare ment's, this time stop was used also in executing this sample problem. This is 155 of the longest participating period. If this fraction, were used for the other harmonics (see Sample Problem 5):

Location_

11=1 At = 1225/55 = 22, 1 Sec.

11=2 At = 2619/55 = 48

In order to output at the same times three were adjusted to even multiples 5,20, \$40,0500. In order to keep the output to a modest level, it was defined to salve only out to 1200 perc. and to print a 200 perce. intervets. However there are continuous plats of the values shown in the Johnson \$ Greif paper.

Results:

It can be seen that at the piets spree in grand sinpe. To compare specifie points one must convert the dimensionless values

$$v = \frac{R_{to}}{E} w^{(n)} = \frac{R^2}{Et} w^{(n)} = \frac{R_{to}}{R_{to}} (10^{-4}) w^{(n)}$$

 $M_{p} = \frac{\tau_{0}t^{3}}{R} m_{f}^{(n)} = t^{2} m_{f}^{(n)} = .n:m_{f}^{(n)}$

SUBJECT Sample Product 6	MADE BY CHKD BY		>	81	CHARGE NO.
	DATE D/75	DATE	RE	Chied	SHT_3_OF_4

Location____

variable h	harmonic	end	JEG		program	
			Value	time	value	time
w	0	frec	00124	. 25	00/532	.980
	0		.00011	1.10	.00002	1. 105
	0		00136	.:4	00148	.40
	1		00551	.6	006003	. 601
	2		00943	1.2	01057	1.2
M	0	fired	.94	.44	1.08	.456
	0		3.00	.58	3.24	. 576
	0		5.23	1.00	3. 527	1.105
			2.19	.45	2.571	. 67
	,		.35	1.13	. 38	1.23
	2		1.81	1.12	2.035	1.2
Basically	then the	times see	to agre	e rat	her well w	liile
the marin	a serie	b be ch	E 6. 2 - 12	: 2. Th	is would in	dicate

A sampling of some maxima minima follows:

Basically then the times seems to agree rather well while the maxima sermi to be off by 2 to 12%. This would indicate that the models are expert but the entire losding is about 5% off (suplification factor here is set are 2.). Note that the period for N=0 is (.98-.14)/2 = .28 millisec, which is in good agree ment with the eigenvertue run.

SUBJECT ENTER FULL C	MADE BY CHK	CHKD BY	> 38 Chi	84	CHARGE NO.	
gampie reaction en	DATE	DATE		Chkd		
				Date	SHT OF	

CBI

Location____

A.3.2 Sample Problem 7: Freely Vibisting Cylunder Staring with Bers Hastershon

SUBJECT Sample Piter -1	MADE BY	снкр ач	> 8v	CHARGE NO.
an a	DATE 2/2	DATE	Date	5HT_0P_2

CBI

has been set everywhere to zero. The initial displacements must then be the static displacements caused by the 200 psi uniferm pressure.

Location.

Results:

It can be seen, most easily from the time us displace ment plots, that the variables do indeed vibrate in a sinusaidal fasilien (except for the mathematical damping due to the time integration scheme) about the static displacements.

					8-42
SUBJECT Providence 7	MADE BY	CHKD BY		Bv	CHARGE NO.
			SEV.	Chkd	
	2/71	DATE		Cate	SHT 2 OF 2
A CALL AND A	CONTRACTOR OF THE OWNER OF THE OWNER	and the second	Server, Spring	de una con colorge en construction a construction a construction a construction a construction a construction a	

ŧ.

CBI Program 1392

This program determines the stress intensity in a nozzle by indexing the notate as a beam and adding the trees samed by internal or stand pressure by superposition. Nomenclature and lineation of lading is consider to that shown in WRC-107. The streams are computed for 1° prints around the nozzle. These stresses are calculated near the shell (inside the ira of shell renotorcement) and away from the shell (outside the area of shell remforcement). The stresses found are then used to calculate combined sties intersities.

Location.

Formulas and geometry used are as follow:

00 = outside diameter of nozzle

nominal in = nominal the of nozzle

under the tolerance = Rt 70 mill tolerance

I.S. " initial membrane stress in circumferential direction due to presure in the result pressure in pipe P=

DATE

1482

Date

SHT -1 OF

Anthor : RD Hanson 4 the version was revised to make changes in localing of answers Dated Yerson : 379 Limitations: maximum of 10 batin, cases MADE BY SUBJECT CHKD BY CHARGE NO. 54331 Computer hoaram 8y RAH HE Chkd

11/172

GO #4 REV 4-73

rotation

Location_

CBI

itjusted to a nominal to (1-0.125) note IR/t. . (g-t.)/t. metal area = A = $\pi (R_a^2 - R_z^2)$ moment of mertia = I = I (Rot-RI) section modulus = 5 = 7 mm polar moment of mertia = J = 2(I) Sitter: $\frac{1}{2}$ Q Pt. A = $-\frac{P}{A} - \frac{m_{L}}{2} + \frac{PRm}{2t}$ SX @ Pt. B . - + + + + PRm - + PRm - 7ta SX @ Pt. D . - + + + + + PR. Sp @ M. A, B, C, D = I.S. (next to shell) 34 Q H. A, B, C, D . PR. (away from that) Y Q H. A = the + Me Rm T Q H. B - - Vc + Mr. Rm Y & A. C = - V. - My Rm Y & A. D . VL + MyRm if SX and Sp have like signs, stress intensity = SI = max at $\pm [SD + SX + \sqrt{(SD - SX)^2 + 4\gamma^2}]$ OR N (50-5X) = + + 42 if it and is have white signs, SI= ~ (3d - 5x)2+ 4 ye SUBJECT NADE BY CHARGE NO CHKD BY Computer Acaron By Chkd RAH rentication DATE 111197 SHT 9-2 OF

Date

GO 64 REV 4-73

CBI

Sample Indem:

 $00 = 10.75", nominal t_n = 0.345", under itsk tolerance = 12 to 70,$ IS = 9000 pri, P = -5000 lbs, VL = 2500 lbs, Ve = -2200 lbs.ML = -4000 m-lbs, Me = 4500 m-lbs, Ph = 3200 m-lbs, P = 45 pri

Location

calculate adj. thic, notio IR/t, motal area, section modulus, polar noment of mertia. SX at Pt. A, B, C, D next to shell and among from shell, St at Pt. A, B, C, D next to shell and away from shell, r at Pt. A, B, C, D next to shell and among from shell, and II at Pt. A, B, C, D next to shell and away from shell and compare with computer values:

 $\begin{array}{rcl} \mbox{adjusted} & t_n & 0.345 \left(1 - 0.753\right) & 0.319375 & ns & computer's & 0.3194 & \\ \mbox{rate} & IR / t_n & (\underline{9}_{12} - 0.319375) / 0.319375 & 15.829746 & ns & computer's & 15.83 & \\ \mbox{metal} & \mbox{area} & = \pi \left[(5.375)^2 - (5.055625)^2 \right] & = 10.465527 & m^2 & re & computer's & 10.466 & m^2 & \\ \mbox{moment} & \mbox{al} & \mbox{incrtha} & = & \frac{\pi}{4} \left[(5.375)^2 - (5.055625)^2 \right] & = 142.461912 & m^2 \\ \end{array}$

section modulus = $\frac{42.401912}{5.215313}$ = 27.316081 m³ v: computer's 27.316 in³ polar moment of mertia · 2(142.461912) = 294.923824 in the computer's .34.925 n⁴ -

 $SX @ H. A = -\left(\frac{-5000}{0.447522}\right) - \left(\frac{-4000}{31.347081}\right) + \frac{44(5.105315)}{2(0.319576)} = 992 \text{ pri} = 000 \text{ pri} + 392 \text{ pri} = 532 @ H. B = -\left(\frac{-5000}{0.447522}\right) + \left(\frac{-4000}{21.347081}\right) + \frac{44(5.105315)}{12(0.319576)} = 109 \text{ pri} = 000 \text{ pri} = 0000 \text{ pri} = 000 \text{ pri} = 000$

SUBJECT	Computer	Program	MADE BY	BAN	2	84	CHARGE NO.
	Vertica	noit	ITTE .	54TE	1.1	Child	3-3 OF

GO 64 REV 4-73

F	-		-	
1.1	6	40		h
	e		28	
1	L	Г	31	1

next to shall H. A. B. C. D = 900	n a	74 000	nput	er's 9	000 pro	-		
may from side $A_1, B_2, C_2, D = \frac{\pi (s)}{23}$	(1878) - <u></u>	755 pr		rs somp	ders	735 prv .	-	
$\gamma = 14$. $A = \frac{-3800}{\pi(525255)(0.37555)}$ T = $P1$. $B = -\frac{-2900}{\pi(525255)(0.37555)}$	+ 300(3.2 54.92 + 300(5) + 300(5) 34.52	15315) 15324 15315) 15315)	•	- 477 ps 594 ps	ט גד 10 הר	mpiters -4 mpiters 59	1 15g TT 4 10g -	
7 & H. C · · π(2.2525) 7 & H. C · π(2.2525)	CA.90 <u>xxxx(5.21</u> 200.900	5375) 874		-419 per 536 per	76 CT	npaters 53X	, bei -	_
next to shell $SI = \frac{1}{2} \begin{bmatrix} 9000 + 992 \\ 992 \end{bmatrix}$	+ V (9000-	992)2 + 4	(-m	F].		i 72 competer	5 703 p	×1 -
豆 & H.S 支[9000+699+1 SI & H.C 支[9000+680+4	√[900-630 [900-630	f) ² + 4(-4)) ² + 4(-4)	574) ² (9) ²] - 9] - 9	12 prs 150 prs	ne computers	9042 psi 9021 psi	1 1
SI @ At. D = 2[9000 + 1010 + v	(19000 - 10K) ² + 4(53	'Jer] • 9	12 pz.	го странить от	9036 psi	-
-I @ PH. B= ±[T35+ 492 + 4	(T55-99) (T55-69)	$(2)^{2} + 4(-4)^{2}$	τ)z.] - 13	•=q <i>8</i> 7	tratuqueta hi tratuqueta en	1357 pa	
SI @ M. C · ½[T35+ 680 + √	(755 - 580)	- + 4(419)Z1]• 11	r 129 1	e ampiterio	1178 117	-
JT € M. D = 5[135+ 1010 + V	(132 -1010),	+ 4(556)] = 14	the provide	a somewhere	HZC pro	1
Computer Aggiain	MADE BY	СНКО ВУ ПАН	>-	By		CHARGE NO)	
Ventication	MITE	DATE 11/82	RE	Date		9-4 OF		

- a 20

Location.

0084 PEV.4-71

INPUT CATA:						
	NCHINAL NCZZLE THICKNESS (IN)	UNDER THICKNESS TOLEPANCE (4)	INIT: STPES (PSI	AL SES		
EXTERNALLIA	OS. DESIGN PRESS	LaF(255) . AND	INITIALS	TRESS	S(15) Y 0	R N
CASE P	VL V	ઽ મા	мс		чт	PRSI
l -5000.	2500280	c4000.	45::	•	3200.	45.00
CUTPUT: ACJUSTED	RATIO	HETAL	SEC TI	CN	PCLAR MCMENT C	£
THICKNESS (IN) 0.3104	IR/T 15.33	AREA (SQ.IN.) 10.466	MCDUL (1N** 27. 2	US 31 14	INEPTIA (IN**4) 284.925	
S	TRESSES NEXT TO	SHELL	STRE	SSES A	AY FROM	SHELL
SX 392.	B C 653. 480 9000. 9000 544419 9042. 9021	C 1010. • 9000. • 536. • 9034.	A 735. -477. 1357.	n 735. 594. 1311.	C 685. 735. -419. 1128.	1010 735 536 1426
TAU -477. SI 9028.						
TAU -477. SI -4228.						

CBI Acarom 1671

This program processes penetration loads and geometry, for a cylindrical containment ressel, to obtain specific loading combinations. Renetrations not on the cylinder must be analyzed separately. The cutput is in a formati acceptable as input to programs 772, 1036, and 1392.

Location.

This programs input and output is shown as the input for programs TTZ, 1036, and 1392.

	Andhor	:	RD Hanson
haled	Version	:	ste
Lm	tations	1	none

SUBJECT Computer Arogram	MACHBY	снко ву Кан	> 84	CHARGE NO.
Verification	28/15/01	DATE 11/82	Chkd Dete	 SHT 1-1 OF

Q0 64 REV 4-73

Location_

CBI Arogram 1691

	Verficat	ion	NP2TEL	DATE	RE	Date	SHT 12-1 OF_
SUBJECT (computer P	Togram	MADE BY	CHKD BY	>	By	CHARGE NO
	Limitati na	non: 1/179 NS: SEC PO	ge 12-2				
	A.II	. DS VATIN					

GO 64 REV 4-73

0.1 Scope: This standard describes the use of program E1691A and documents |inherent limitations and restrictions.

0.2 Introduction: The program analyzes two or three dimensional frames or trusses for member end forces, end moments, joint deflections and rotations.]. An analysis can be made on structures with rigid, hinged or free support conditions, rigid ① or hinged member end conditions, and any number of loading conditions. Included in the program is a provision to use rectangular or cylindrical coordinates to describe the structure and a plotting option for a geometry check. The program can combine several loading conditions and can analyze the structure for member deadloads when the unit weight; of the material has been input.

Section 1.0 describes the format of the program with particular emphasis on required input and interpretation of output. A brief summary of the mode of analysis and a collection of notes to aid the user follow in section 2.0.

0.3 Related Programs: Computer program E1689A is also available for large structures which cannot be handled by E1691A. Since E1689A is just an extended version of E1691A which requires more computer time and memory, the subsequent details will generally be applicable to it as well. See section 2.0 for noted differences in the two programs. Program E1688A is available to check and plot input data for E1689A. If it is necessary to use these two programs, contact Oak Brook Development Engineering and Technical Consulting (OZE). Program E1690A checks and plots the input data for program E1691A. Input is the same as input data for program E1691A. Program E1690A uses less core and computer time than program. E1691A. If the input data is out of order or is insufficient, error messages will be printed. The plot will reveal any incorrect coordinates. Program does not check if the problem was modeled correctly. Output is the same as program E1691A except no forces or deflections are printed. All input data for the first run of any significant size for program E1691A should be debugged on this program to eliminate errors and reduce the number of runs required of program E1691A. The input data sheet for E1691A may be used for E1690A.

0.4 Limitations: Program E1691A is similar to the STRESS program developed at Massachusetts Institute of Technology, but is not as versatile. Program E1691A does not have the facility to change structural properties during a given run.

Limitations on parameters for program E1691A are listed below:

420	structural	members

320 joints

1250 degrees of freedom

140 half band width

50 member types

As described under section 1.0 the displacement stiffness method is the mode of analysis incorporated into the program. Due to the banded nature of the structural stiffness matrix, a Gaussian forward elimination and direct back substitution on the matrix performs the necessary mathematics. The capability of the program, however, is directly limited by the half-band width of the structural stiffness matrix. See Fig. 1.1a for details on estimating the half-band width of a particular structure.

1.0 DESCRIPTION OF PROGRAM

The program utilizes the displacement stiffness method to mathematically describe the structure and a Gauss forward elimination and back substitution for the solution. The method of solution entails:

) Rigid is defined as a joint capable of carrying moment.

- Assembling a stiffness matrix for the structure from individual member and joint information.
- 2 Assembling a loading vector for the structure from individual member and joint loading information.
- 3 Solving the resulting matrix equation for structure joint deflections and rotations.
- 4 Substituting back for individual member end forces and moments.

Figs. 1.1a and 1.1b illustrate input data sheets describing the typical arrangement of input information. The first portion of input data described in Fig. 1.1a is concerned primarily with parameters of structural geometry, member properties and other existing conditions. These items are input once and remain unchanged for each job; while loading condition parameters (Fig. 1.1b) may be input several times to correspond with the number of loading conditions. This feature is quite economical when analyzing a structure for different loading conditions.

Prior to setting up data for Fig. 1.1a, it is advantageous to rough out a sketch of the structure to be analyzed in order to establish a global coordinate system.

There are two exis systems used by the program. The two systems are (a) an overall global system that applies to the complete structure, and (b) a member local axis system. Each coordinate system is a right hand orthogonal X, Y, Z system. This is explained as follows:

Right-Handed Coordinate Systems The program assumes that all coordinate positions, angles and rotations are specified according to a right-handed system of cartesian coordinates with orthogonal axes, as illustrated in Fig. 1.0a.

HOLD the RIGHT HAND so that the thumb and first two fingers are orthogonal to one another see Fig. 1.0b. The sequence of thumb, forefinger and next finger point in the positive directions of the X, Y, and Z axes of a right-handed coordinate system.

Imagine grasping a coordinate axis by the right hand, with the thumb pointing along the axis in its positive direction. See Fig. 1.0a The positive sense of an angle, or an angular rotation, will be given the direction in which the fingers curl around this axis. A negative sign for an angle will specify a rotation in the opposite direction.

Fig. 1.0b Right Hand Rule

For further information on Axis System see Appendix A' in program folder for E1691A.

E1691A is equipped to handle input for cartesian or cylindrical coordinate system. Each joint should then be assigned a set of coordinates. Each member should be assigned an identification number beginning with one (1) and increasing in consecutive order.

The joints should likewise be numbered, attempting to minimize the difference in joint numbers for every member. This will minimize the half-band width and computer time required to analyze the structure.

Note that many structures are symmetrical, and only a portion of the structure might need be analyzed. If so, "both computer time and the user's time can be reduced.

Fig. 1.1a and 1.1b are to be used only as guides in coding the input data. Form GO 1077 (pages 1 to 8) are available for coding input data card by card following the format outlined by Figs. 1.1a and 1.1b.Program E1690A should be used to check input data to program E1691A. It will flag any input errors and plot the structure for a visual geometry check.

PROGRAM E1691A Input Data for Three Dimensional Frame and Truss Program

Card	Contract of Charge No	or						Joi	Desc	iptio	•							Name			Date			
1							(L	imit	total n	umb	er of ct	arac	ters to	80)										
Card 2	NTRY Total number of loading conditions	IREV Data sheet revisio numb	on er	N To nul of (3)	tal mber joint 20 m	3 a x)	NMC Total numbe membe (420 m	r of rs wx)	NMTY Total of mer types (50 m	(PE no. mber ax)	NCO Half b width estimation (140 r	te nax)	NCC Coor syste 0 = 1 1 = 0	oR dinat em Rect. Cylin	e Noe ()	i Aodulu Istici Istici Istici	n	UNU Poisso ratio	n's	AU Aven ther expl coef	PB mal mai ficjer	n cont tie	COMB umber loading ombina- ons	
		2		1	-	_						_	1		1	66	1							
Gard	NPLOT Number of pints (4 max) 0 if NJ 1	2	Plot 0 = 1 1 = 3	APX size 12 in 30 in	2		Azimut AZ(1) (deg)	h an	(deg)	tion	AZ(2)	ntan	(deg)		A	Z(3)		EL(3)		AZ	2(4) EL(4 eq) (deg)		L(4)	
			-												1	Inter Mar	-		<u>.</u>			1		
	NC Number of		+	040	ingc	I	2	De	3	T	4	Dup	5	and	mu		rs (4)	7	T	8	1		9	
4	loading con in this com (9 max)	ndition	10	:0	м	100	M	ico	M	ICC	M	IC	0 M	10	:0	м	ICO	м	ICC		M	100	м	
	IJ Joint	Joint 0 = ut	degr	rain	of fr	-1 ·	initial	restr	ained, slation	G or ro	tation		-		T	Joint d	coordinates (rectange ant hand system)			gular	or cy	lindrical		
5	number	TXT		ITY	T	ion	121		IXR	1	IYA	101	IZA		12	(or R		Ye	or de	(21	Z or H		1	
					_								0		1			1	_		1			
	Number	Initia	1 joir	11 11	ansia	tion	s and ro slation	linch	ans (gla	bai c	oordin	ates)	(5)		-		Rota	tion (radia	05)	-			
6	of displaced joint	X - diri or rediat	direc	tion		or e-d	irection	Irad	ian) H	direc	tion	1	Abou or about	t radi	sxi al a	s i ixis	Abou or ab tange	out Y - i out intial i	exis exis		Abo or abou	ut Z-i	axis	
	NTYPE	APEA			-			-						TA	~~			407		_	1.			
Card(s) 7	Member type	Cross-	ectio	onel	1)Pr m m	X biar orne - ax	inertial Int abou	ut	IY Inertial momenty - axis	t abo	IZ Ine ut abo	rtial i lut z	mome - axis	nt y	- d	r aree irectio	n	Shea 2 - di	r area recti	e in on	2 4 2 A	hemb weight lips/ft		
		(10-1			10			+	(111-4)		lin	1		16	n-1			(in-)			+	(6)		
Cards 8	IMEM Member number	1L Left joint numbe		Righ oint umb	t Xer	IT Enc 0 = -1 = 2 =	l condit rigid-rig hinged rigid hi hinged-	ions pid I-rigio nged hing	G R lo	AM oli ab cal x	out - axis		MT Mem of th	iber t	VD		TT Increase in temperature of this member			KO Mer -1 1= 0=	KODMK Member flag code -1 = no compres sign 1 = no tension 0 = no flag			

NOTE: Cards 4, 5, 6, 7 and 8 must include one card for each loading combination, joint, initially displaced joint, member type, and member respectively. Place all =4 cards together, then all =5 cards, then all =6 cards, then all =7 cards and finally all =8 cards. 1 NCOL = 6 (J - K + 1) where J and K are member joint numbers and J-K is the largest absolute difference for any member in the

structure.

(2) Enter zero if NPLOT = 0. All locations un card 3 must be 0 if not used.
 (3) See Figure (1) on next sheet.
 (4) Loading condition are identified as LTRY on card 10. (See sheet 2) if no combinations are necessary omit card 4.

 (5) Use card 6 for a joint only if the joint has an initial displacement as indicated on card 5 by a -1.
 (6) Input value for member types for which dead load is to be independent of member area and unit weight (SG on Card 10). Otherwise input as -1.

Fig. 1.1a Form 1076, Arrangement of Input (for coding use form GO 1077, pages 1 - 8)

PROGRAM E1691A Input Data for Three Dimensional Frame and Truss Program

			Title card	for each k	ading co	ndition			
Card 9			(Limit total	number o	f charact	ers to 80)			
Card 10	LTRY Loading condition number	NI Ni jo	DLJS Imber of ints loaded		NOLDS Number member	i rof rs loeded		SG () Unit w materia dead to	eight of litor ad kips/ft ³
Card(s)	IJX Number of loaded joint	FX (IJX) (FR (IJX)]	Joint loads in FY (LJX) [FØ (LJX)]	FZ (LJ)	oordinate () JX)]	MX (IJX) [MR (IJX)	ordinates) MY (IJX (Mθ (IJ) X)]	(XLI) %
Card(s) 12	IMEX Number of loaded member	kips IXXI 0 = Last or only load on IMEX 1 = another load for IMEX follows	kips IPL (9) Loading plane 0 = load in local x - z plane 1 = load in local x - y plane	kips AB2 (§ Distanc left end load ft	to	ft-kips AB3 (B) Distance from left end to end of load ft	AB4 (8) Angle fro direction member deg	om load i to normai	AB1 Load (if AB2 = AB3) kips load intensity (if AB3 > AB2) kips/ft

Fig. 1 Plot Orientation

Fig. 2 Sign Convention for Member Loads

Notes: For each loading condition the following sequence should be repeated. Place card 9, then card 10, then all joint'load cards (cards 11) and then all member load cards (cards 12).

If the structure's dead load is not to be included in a loading condition'enter zero. To include dead load, global coordinate axis z must be vertical and positive upward

B See Fig. 2.

) If load is not in x - z or x - y plane, resolve the load into these two planes.

1.1 Input Data: Following is an explanation of input items for Figs. 1.1a and 1.1b.

Card 1

Eighty spaces are available for a contract number, job description, name and date.

Card 2

Card 2 specifies the boundary parameters for the job and the material property constants.

Total Number of Loading Conditions (NTRY): The number of loading conditions should be equal to the number of times cards 9 through 12 appear.

Data Sheet Revision Number: The program will accept only the latest data sheet or format of input data.

Total Number of Joints (NJ): The maximum number of joints which the structure may have has been limited to 320.

Total Number of Members (NMC): The maximum number of members which the structure may have is 420.

Total Number of Member Types (NMTYPE): The number of members in the structure with different cross-sectional properties is limited to 50.

Half Band Width Estimate (NCOL): This is an estimate of the half band width of the structural stiffness matrix. This half band width is dependent upon the manner in which the structure's joints are numbered by the user. The estimate may be made by the following relationship:

NCOL = 6(|J-K|+1)

Where 6 represents the number of degrees of freedom of a joint and J and K are joint numbers of a member. Since the largest half band width estimate is required, JJ-K] must be the largest absolute difference for any member in the structure. Program memory requirements limit E1691A to a maximum half band width of 140. It is essential that the user numbers the joints of the structure so as to minimize (J-K). Note, if a joint is completely restrained against rotation and deflection, it does not affect band width and can be ignored in calculating NCOL. For small structures (less than 12 members) make NCOL zero. Two times NCOL must always be less than the number of degrees of freedom. Adding extra intermediate points will usually increase the degrees of freedom without increasing NCOL if the user pays attention to numbering.

Coordinate System (NCOR): This parameter defines the coordinate system in which the joint locations are defined by the user. The user may specify

O for rectangular coordinates

1 for cylindrical coordinates

Modulus of Elasticity (E), Poisson's Ration (UNU), and Average Coefficient of Thermal Expansion (ALPB): The program cannot handle material property variations from member to member; therefore, the material constants are input only once. Units for the modulus of elasticity are kips/inch². Units for coefficient of thermal expansion are in inches/inch-degree fahrenheit.

Number of Loading Combinations (NCOMB): The program will combine up to nine loading conditions. This parameter indicates how many combinations of loading conditions are to be made, and the number of number 4 cards required.

Card 3

The program retains an option whereby a line diagram of the structure with numbered joints may be plotted. Card 3 specifies the user's need concerning the plot(s) of the structure.

Number of Plots (NPLOT): In order to have a structure plotted, it must have more than twelve (12) joints. If no plot is desired, zero (0) is specified for all the parameters on card 3. The user may specify up to four (4) plots of the structure all of which may vary in line of sight or orientation.

Plot Size (NYMPX): Twelve (12) inch and thirty (30) inch paper is available for plotting. The plotting routine automatically scales the structure to the specified size of paper. Use

NYMPX = 0 for 12" plot NYMPX = 1 for 30" plot

Azimuth and Elevation for Orientation of Plot (AZ, EL): For each desired plot the user must indicate the azimuth and elevation which is desired. The plot is viewed from this direction Fig. 1 in Fig. 1.1b illustrates the orientation measurements required. If less than four plots are requested, remaining azimuth and elevation parameters must be set to zero. Some typical azimuth and elevations are:

View	Azimuth	Elevation	
Toward -X	0.	0.	
Toward +X	180.	0.	
Toward -Y	90.	0.	
Toward +Y	-90.	0.	
Toward Z	-90.	90.	
Toward +Z	-90.	-90.	
Isometric	-45.	35.	

Card(s) 4

The program's option to combine loading conditions is regulated by card(s) 4. There should be one card 4 for each combination (specified on card 2).

Number of Loading Conditions In This Combination (NC): Enter the number of loadings to be combined. The maximum number of loadings in any combination is nine.

Loading conditions to be combined (ICO) and Multiplier (M): For ICO enter the number of each loading (LTRY on card 10) to be combined. The number of entries here should correspond to the first parameter (NC) on this card. M is a multiplier for the particular loading condition. For example, if only 50% of a particular loading condition is required, that condition can be input under ICO with a .5 Multiplier (:A). A negative combination is valid and has the effect of applying a load in the opposite direction.

Cards 5

There should be one card 5 for each joint in the structure. This card describes the joint's location and characteristic degrees of freedom. Sincé there are several number 5 cards (the same is true for cards 6, 7, 8) the user may wish to lay out grid sheets for tabulation of multiple card input or use forms GO 1077 (pages 1 to 8).

Joint Number [1J]: This is the number of the joint whose coordinates are defined on this card. The user has an arbitrary choice when numbering the joints except that the joint number of differences for a given member should be minimal for efficiency. Joints must be input in ascending order. Joint Degrees of Freedom (IXT, IYT, IZT, IXR, IYR, IZR): These parameters describe the conditions of each of the joint's six (6) degrees of freedom, i.e., translation in the X,Y, and Z directions and rotation about the X,Y, and Z axes of the joint as defined by the structure coordinate (global) system. The codes are defined below:

- 1 . translation or rotation of the joint is not permitted
- 0 = translation or rotation of the joint is permitted
- an initial displacement or rotation has been imposed. (Any initial displacement or rotation will be described on card 6).

Joint Coordinates $\{X \text{ or } R, Y \text{ or THETA}, Z \text{ or } H\}$: The joint coordinates are input in the corresponding coordinate system specified on card 2. For the rectangular coordinates use X (ft), Y (ft), and Z (ft); for the cylindrical system use R (ft), θ (degrees), and H (ft).

Card(s) 6

Card(s) 6 is used to input initial displacements or rotations for only those joints having a -1 specified for degree of freedom code on card 5. If no joints have initial displacements, card 6 is ignored.

Number of the Displaced Joint: Only numbers of joints which are subjected to an initial displacement.

Initial Joint Translations and Rotations (DX, DY, DZ, $\theta x, \theta y, \theta z$): Initial displacements must be entered in the global coordinate system. For rectangular coordinates, input X, Y, and Z translations in inches and rotations $\theta x, \theta y$, and θz in radians. For cylindrical global coordinates input R and H displacements in inches, and other displacements in radians. Initial displacements may be input only once for each run and are incorporated into the first loading condition only.

Card(s) 7

Card(s) 7 describes the section properties of the various different types of members in the structure. There should be as many number 6 cards as number of member types specified on card 2.

Member Type (MTYPE): A number identifying the member type is assigned in ascending order beginning with one. A maximum of 50 different types of members may be used.

Area of Section (AREA): The cross sectional area of each member type should be input on each card(s) 7 in units of (in.²). Input values must be greater than 0.

Moments of Inertia (IX, IY, IZ): Input the member cross sectional polar moment of inertia (IX) and the cross sectional moments of inertia (IY, IZ) of the area about the local Y and Z coordinate axes in units of inches ⁴. See Fig. 1.1b for details for local member coordinates. For closed members IX = IY + IZ, for open members IX = $\Sigma bt^3/3$ or see property J in AISC manual of steel construction, 7th edition, properties for designing, J is given for individual shapes. Input values of IX, IY, IZ must be greater than zero.

Shear Arcas (ASY, ASZ): Input the member type cross sectional area (in.²) which is available for shear in local Y and Z directions. If shear deflection is to be neglected, enter zero.

Member Weight MWT: In dead load calculations the user may wish, for modeling purposes, to input a member weight (kips/ft) which is independent of member area. If, however, member dead loads are to be a function of member area and material density (as indicated with S.G. on card 10) input a value of -1 for MWT. When using MWT, SG (on card 10) must be greater than zero. When SG is set equal to zero, dead load will be neglected irregardless of the value input for MWT. For dummy members, set MWT = 0 when dead load option (SG card 10) is used. Otherwise, dummy member weights will be included.

Cards 8

Card 8 describes for each member in the structure its end joint numbers, the end conditions and other properties peculiar to each single member. There should be one card 8 for each member in the structure as specified on card 2.

Member Number (IMEM): Identification number of member described on this card is assigned by the user. The member should be numbered consecutively and a member number may neither exceed the total number of members (as specified on card 2) nor the maximum number of 420 members which E1691A can handle.

Joint Numbers (IL, IR): Input the individual member's left end joint number (IL) and right end joint number (IR). Left and right ends may be assigned arbitrarily but caution should be taken to adhere to the initially established convention.

End Condition Code (IT): This code indicates the support condition for each member. End fixity refers to the left joint and right joint respectively, (i.e. rigidhinged means rigid left joint, hinged right joint). Four conditions are possible: IT = 0 denotes a rigid - rigid condition

IT = -1 denotes a hinged - rigid condition

- IT = 1 denotes a rigid hinged condition
- IT = 2 denotes a hinged hinged condition

Roll About Local X Axis (GAM): Input the rotation of the cross section about the positive local x-axis in units of degrees. This eliminates transforming the member cross sectional properties by hand.

The position of a member in space is determined by the global coordinates of its points. However, unless the member is axially symmetric, there is one unspecified degree of freedom, that is, the rotation of the principal axes of the member from the global axes. This additional quantity is called the angle GAMMA (γ) see Fig. 1.1c

For differentiation, call X, Y, Z a global coordinate system and x, y, z a member system. Let A be a plane containing the member x axis and a line parallel to the global Y axis (therefore perpendicular to the X-Z plane). Let y' be a coordinate in this plane and perpendicular to the x axis. The direction of y' must be taken so that the projection of y' on the Y axis is in the positive Y direction. Then γ the angle from y' to y, positive by the right-hand rule around x. This definition is not sufficient if the x axis is parallel to the Y axis, in which case the plane A is indeterminate. Then γ is the angle from the -X axis to the y axis if the x axis is in the same direction as the Y axis and from the +X axis if not.

For plane structures, the definition is taken that when $\gamma = 0$, the member z axis is parallel to and in the same direction as the Z axis. For plane structures, γ must be either zero or a multiple of 90°; γ is given in decimal degrees.

Member Type (MTYPE): Enter the number of the member type which corresponds to this member.

Increase in Temperature (TT): If thermal stresses are to be considered, enter the desired increase (decrease is negative) in temperature which the member will undergo in degrees! Fahrenheit. Joint displacements and member forces will be correspondingly adjusted. Enter zero if thermal stresses are not to be considered. Program can handle only one thermal case per run and will incorporate thermal effects into only the first load case in a particular run. The temperature effect can be included in other cases by using the load combination option.

Member Flag Code (IFLAG): The member flag code is used to indicate when member properties or characteristics dictate its use as a tension or compression member only. No internal changes are made to eliminate or change flagged members. The code is defined as follows:

IFLAG = -1 Tension member only

IFLAG = 1 Compression member only

IFLAG = 0 Member may take tension or compression

The following comments form an explanation of input items corresponding to Fig. 1.1b which deals entirely with loading condition information. The cards included on Fig. 1.1b are repeated in sequence for each loading condition.

Card 9

Card 9 is simply a title card with eighty (80) spaces available to describe or name each loading condition.

Card 10

Card 10 inputs the number of the loading condition (LTRY) and the number of loaded joints (NOLJS) and members (NOLDS) for purposes of reading in cards 11 and 12. An automatic dead load option is available so that the user need not load each member with its own weight. If the dead load of all the members is desired the unit weight of the material (SG) should be input. If dead load is not to be added set SG = 0. Sign convention is very important; when using this option, global coordinate axis Z must be vertical and positive upward.

Card(s) 11

For each loaded joint card 11 gives the number of that joint (IJX), the three components (global coordinates) of force on that joint (FX, FY, FZ) in units of kips, and the three components of moment on that joint (MX, MY, MZ) in units of foot-kips.

Card(s) 12

The purpose of card 12 is to describe a member load. Program E1691A is capable of processing concentrated loads or distributed loads anywhere along the length of the member applied in either the local x-y plane or x-z plane. A load may be inclined at an angle measured from the normal to the member. One card 12 is necessary for cach load on each member.

Number of Loaded Member (IMEX): The number of the member upon which the load acts must correspond with the IMEM system previously established.

Multiple Load Code (IXXI): All loads pertaining to a particular member must be input sequentially. The multiple load code indicates whether or not another load follows for the particular member being loaded. The code is defined below:

- IXXI = 0 Indicates that this load card is the last (or only) load to be read in for the specified member (IMEX).
- IXXI = 1 Indicates that more member loads follow for this member.

Load Plane Code (ITL): The plane in which the load acts is specified as follows:

- IPL = 0 When loads are in local x-z plane.
- IPL = 1 When loads are in local x-y plane

Distance from left end to load (AB2), distance from left end to end of load (AB3), angle from load direction to member normal (AB4) are self-explanatory and are best described in Fig. 2 on Fig. 1.1b.

For distributed loads where AB3 equals the member length, AB3 may be input as any value greater than or equal to the actual member length. The program will use the member length as calculated from the joint coordinates and run the load to the end of the member. Therefore, if exact member lengths are unknown and the distributed load runs to the end of the member, AB3 may be input longer than the member actually is.

Load or Load Intensity (AB1): If the load is concentrated (AB2 = AB3) the load is input in units of kips; if the load is distributed the input units are kips per foot.

1.2 Output Data: Figs. 1.2a thru 1.2g illustrate output from a sample run of E1691A. Although the output data is relatively clear and self explanatory, the following comments may serve as a guide to the familiar user.

Several pages of output should be generated with each job. The output includes an "echo" of the input data with minor additions such as member lengths and angles of orientation with respect to global coordinates. Orientation consists of a Z-Y-X rotation (See (6) in 2.0). For each loading condition the printed output includes (1) a listing of joint loads and member loads, (2) computed global joint displacements (in.) and rotations (radians) for each joint, (3) member end forces (kips) and moments (ft-kips) in local coordinates and finally (4) the reactions at the restained joints.

Loading combination output is self explanatory.

Various messages of warning and diagnostic notes will be printed when faulty input warrants the attention of the user.

2.0 THEORETICAL SUMMARY AND NOTES

The topic of displacement solution of frames and trusses known as the stiffness method is thoroughly covered in many texts concerned with matrix methods of structural analysis. Since this standard is limited in length, the reader who desires a greater depth or background in the topic is encouraged to consult other available literature for a full understanding. A very brief survey of the stiffness (or displacement) method follows.

The stiffness method expresses internal me er forces and moments in terms of the joint components or displacement. These expressions are substituted into a structure equilibrium matrix equation of the form:

(P) + [K] (u) = 0

Where (P) represents the initial out of balance member forces translated to joint displacement components, [K] represents the structural stiffness matrix containing the assembled member stiffness coefficients and (u) represents the unknown joint displacements (one for each degree of freedom) of the structure due to the given loading condition. Stiffness coefficients for structural members may be defined more fully as the relation denoting joint force components resulting from corresponding individual unit displacements.

The matrix equation is simply a system of linear simultaneous equations with joint displacement components as the unknowns. Once the joint displacements are known the member end forces are easily obtained.

The following notes and comments have been compiled to aid the user in the usage of programs E1691A and E1689A.

1) Limitations on parameters for program E1689A are listed below:

- Very large structures will require a considerable amount of time irregardless of the version (E1691A or E1689A) used.
- 3) When using cylindrical coordinates the programs will not accept radius entries of zero. Any zero entry for radius made by the user will be automatically changed to 0.01 feet. The user must correct headings on the printout when cylindrical coordinates are used (i.e. X to R, Y to 0, and Z to H).; This applies to all global output.
- 4) Economy of computer resources and the user's time and effort is always important; only a portion of a symmetrical structure in many cases may be necessary for a complete analysis.

5) Choosing global coordinates for a structure can be very important. In particular, if member loads are present, care must be taken to avoid reversing the local coordinate system as illustrated in Figs 2.0a and 2.0b below... It is recommended planar problems be located in the X-Y global system, For normal usage, the X-Y gobal plane should be chosen for the horizontal plane in three dimensional problems.

Fig. 2.0a Frame Located in Global X-Y Plane

6) In order to determine local axis orientation of a member, begin with member in global system and rotate through angles listed with member properties.

Final Member Coordinate System Orientation

OUTPUT GIVEN

100

Member	Jt	Fx	Fy	Fz	ħ1x	My	Mz	
	11	-153.2	85	.439	1.73	-5.2	-13.2	
	3	163.2	.85	439	-1.73	-3.85	-14.26	

17

2. Axis Systems

There are two axis systems used by the program. The two systems are (a) an overall global system that applies to the complete structure, and (b) a member local axis system. Each coordinate system is a right hand orthogonal X, Y, Z system. This is explained as follows:

<u>Right-Handed Coordinate Systems</u> The program assumes that all coordinate positions, angles and rotations are specified according to a right-handed system of cartesian ccordinates with orthogonal axes, as illustrated in the figure on this page.

HOLD the RIGHT HAND so that the thumb and first two fingers are orthogonal to one another. The sequence of thumb, forefinger and next finger point in the positive directions of the X-, Yand Z-axes of a right-handed coordinate system.

Imagine grasping a coordinate axis by the right hand, with the thumb pointing along the axis in its positive direction. The positive sense of an angle, or an angular rotation, will be given by the direction in which the fingers curl around this axis. A negative sign for an angle will specify a rotation in the opposite direction.

The two major axis systems used by the program are discussed in the following sections.

:11

Overall Global Axis System

The overall global axis system applies to the complete structure and is used for locating joints of the structure. The coordinate values given on the joint data cards refer to this system. The overall axis system may also be used to specify load directions, such as dead loads or wind loads. The overall axis system has one origin and its location is input by the user. It is usually placed to take advantage of symmetry on the structure if it exists. This greatly reduces the problem of generating the coordinate location of joints. In the overall axis system the X-Y plane usually represents the horizontal plane of the structure, and the overall Z is orthogonal to the plane and in a direction opposite to gravity. This generally agrees with normal conventions used in structural analysis. See Figure 1 of the main report.

b.

Member Local Axis System

The member local axis system is used for describing the physical properties of each member. Each member in the structure has an axis system. The axes are labeled x, y, z using lower case letters to differentiate them from the overall global system. The x direction is always along the axial direction of the member and y-z plane is orthogonal to the x. The y-z plane contains the member's cross-section. Two examples follow:

a.

c.

Relationship Between Overall Global Axis and Member Local Axis Systems

The particular arrangement of the y, z axis with respect to the cross-sectional geometry of the "I" beam depends on the particular structure, and how the member may be rotated. There is a set relationship between the overall axis system and the member axis system so that the program can associate each member's properties to the complete structure. This set relationship of x, y, z has nothing to do with the strongest direction of a cross-section of a member nor with the axis shown in the Steel Construction Manual. The set relationship between x, y, z and X, Y, Z is shown on the following page.

The figure on the following page refers to the relationship between the overall axis system and the member axis system. The general case is the beam, brace, or diagonal member while a pure column, with its axial direction exactly agreeing with overall Z, is treated as a special case. For the following, it is assumed that the members are not rotated about its local axial axis ($\gamma = 0$).

Rules for the general case member:

1

- (2) The z axis of the member is generally made to agree with the direction of overall Z.
- (3) The member y axis is generally made parallel to the overall X-Y horizontal plane.
- (4) The x, y, z axis system is a right-hand system and is orthogonal.
 - Note: For $\gamma = 0$, all vertical loads on the structure will cause bending moments about each general case member's y axis.

Consider the general member, and notice the direction of the z axis as the member is rotated about its y axis: the z axis is approaching the horizontal position. At the same time, the member x axis is agreeing more and more with the overall Z. When the member becomes <u>absolutely</u> vertical, we have the special case of a pure column.

Rules for pure columns: $(\gamma = 0)$

- 3

- As in the general case, the x axis is always along the axial direction of the member (positive left to right).
- (2) The x axis always agrees exactly in direction with overall Z.
- (3) The member y axis always agrees exactly in direction with overall Y.
- (4) The member y axis is parallel to the overall X-Y plane.
- (5) The member z axis always agrees exactly in direction with overall X.
- (6) The member z axis is parallel to the overall X-Y plane.

Note: All horizontal loads in the overall X direction will cause bending moments about the y axis in pure columns. All horizontal loads in the overall X direction will cause bending moments about the z axis in pure columns.

12-16 AA-716

In the axis system illustration the type of members shown is unimportant, and how they are placed within their own axis system in unimportant. However, the relationship between the member local axis system and the overall global axis system is important. As members are placed in the structure, knowledge of axis system relationships enables one to determine values for the moments of inertia about the y and z axes. These examples explain this:

Example #1: If an "I beam" is to be used as a column (pure column) and it is desired that the web be parallel with the Z-X plane of the structure Iz and Iy can be determined from:

Example #2:

For the previous column, if the webbing of the "I beam" were to be perpendicular to the Z-X plane of the structure, the cross-section would appear as follows:

The relationship between the member local axis system and the overall global system has not changed -- just the placing of the member within the system.

Example #3:

If a beam or angle brace of a structure is to be an "I beam" with its webbing vertical to the horizontal X-Y plane, its crosssection would appear this way:

Example #4:

If the beam of Example #3 were to have its web parallel to the X-Y plane, it would appear as follows. (If the "I beam" were a diagonal, the web in the cross-sectional view would be parallel to the X-Y plane).

When plane frames are analyzed, a vertical Note: plane of the relationship just discussed is used -- either the Z-X plane or the Z-Y plane. In plane frame analysis some moments of inertia are not needed if all loads act in the plane.

7-12

Rotated Member Axis $(\gamma \neq 0)$ 3.

In some cases a structure is built where a rotated axis system is needed for some members. In the case of "pure columns" one might have a circular structure where the member's principal cross-sectional axis may lie on the radius of the circle and, therefore, the member's y and z axes will not be parallel to the overall X and Y respectively. For the "general case member" (e.g. beams, braces, diagonals) the

member's y axis may be so placed that it is not parallel to the overall X-Y horizontal plane. In either case, the member's cross-section has been rotated through an angle 'r. The member axis may be rotated for geometrical reasons or for analysis output reasons. If a pipe (circular cross-section) is used in a structure and the desired forces and moments are needed in a direction other than the normal output direction, the axis may be rotated in some desired direction to agree with an oblique joint or another member's axis system. In either the "pure column" or the "general member" case, the rotated angle y is measured from the normal position of the y axis to the rotated position of the y axis. The positive sense is determined from the right hand rule and the direction of the member's x axis. This angle y is given in degrees on the member property type card (Card 12, Table 1). Y has a range from -180.0° to +180.0° (-180.0° ≤y ≤180.0°). Two examples are given to clarify the discussion of ۲.

Example 1: Normal Relationship y | |X, z | |Y

In the second example the γ angle shown is from the normal γ relationship to the rotated γ . To determine the sense of the angle, note the direction of the member x axis and use the right hand rule. In the previous example, <u>if</u> the x was out of the paper, the counter clockwise direction would be positive and the value of γ would be negative.

1 4

14

1.4

=

24

24

28

In the "general member" case the member's y axis may not be parallel to the overall X-Y plane after it has been rotated. The normal relationship for this member is to have its y axis parallel to X-Y plane. Therefore, measure γ from the normal y axis position to its new rotated y position. This angle is measured in the member's y-z plane, and its sense is determined from the right hand rule applied to the member x axis.

If this member had been labeled 2 5 on the MEMBER card, the x axis would be positive from left to right; as shown and the y angle shown would be positive.

Note:

- For rotated members the plane of the crosssection does not change -- just the orientation of the principal axis in the plane. The angle y is always measured in this plane from the normal y position to the new rotated y position.
- 2)

ħ

A member does not have a positive x direction until it has been entered on the MEMBER card, positive x being from left joint to right joint.

12-21 AA- 2-2-

ŵ

Ċ,

```
*RCP
Ele414--5.0.41
                  DEFLECTION CHECK -- W/MEMBER WT CPTION
  3.4.3.1.0.0.30000..3.0.0.
   ...............................
..0.1.1.0.0.0.0.0.0.0.
2.0.1.1. C. 0. 0. 40.0.0.
3.C.L.-1.0.0.0.90.0.7.
4.1.1.1.1.1.1.130.0.0.
3.0.0.-1.0.0.0.
1.0.70.7.0.100.15724.550.0.0..2405.4*0.
1.1.2.0.0.1.0.0.
2.2.3.0.0.1.0.0.
3.3.4.7.0.1.0.0.
LCAD COND 1 - DEFLECTION ONLY
1.0.0.0.
LCAD COND 2 - MEMBER WT CNLY
1.0.3.1.
*8CD
E16914--S.P.#2
                   DEFLECTION CHECK -- W/SHEAR DEFLECTION
0.3.4.3.1.0.0.30000..3.0.0.
10+0.
1,0,1,1,0,0,0,0,0,0,0,0
2.0.1.1.3*0.40.0.0.
3.0.1.-1.3*0.90.0.0.
4.6#1.130.0.0.
3. C. C. - 1. 3*0.
1.0.70.7.0.100.15724.950.2*35.3.-1.4*0.
1.1.2.3.0.1.0.0.
  2.3.0.0.1.0.0.
   . 4.0.0.1.0.0.
  10
                  24 MEMBER FRAME MULTIPLE LCADING
E16914--S.P. 43
4.3.16.24.1.0.0.30000..3.0.0.
1.0.30.30.6*0.
1.1.1.1.1.0.1.0.10.0.
2.1.1.1.1.0.1.0.0.0.
3.1.1.1.1.0.1.5.0.0.
4.1.1.1.1.0.1.5.10.0.
5. C. C. C. C. J. J. O. 10. 5.
6.0.0.0.0.0.0.0.0.0.5.
7.0.0.0.0.0.0.0.5.0.5.
8.0.0.0.0.0.0.5.10.5.
9.0.0.0.0.0.0.0.10.10.
10.0.0.0.0.0.0.0.0.10.
11, 0, 0, C, 0, 0, 0, 5, 0, 10,
12.0.0.0.0.0.0.5.10.10.
13. C. C. C. C. O. O. O. 10. 15.
14,0,0,0,0,0,0,0,0,15,
15.0.0.0.0.0.0.5.0.15.
15.0.0.0.0.0.0.5.10.15.
1.0.1..0..146667..093333..083333.7..0.-1.4*0.
1.1.5.2.0.1.2.2.
3.2.4.).0.1.7.0.
                                                                card last of
4.3.7.0.0.1.0.0.
   ..............
                                                                Sample DATA
   . . . . . . . . . . . . . . . . .
......................
5.4.7.9.0.1.9.0.
9.7.8.0.0.1.0.0.
```

```
11.9.13.0.1.1.7.0.
*.6.10.0.0.1.1.0.0.
  .7.11.0.0.1.2.0.
 3.3.12.0.7.1.0.0.
14.9.10.0.0.1.0.0.
15.9.12.0.0.1.0.0.
16.10.14.0.0.1.1.7.9.
17.11.15.0.0.1.0.0.
18,12,16,0,0,1,0,0.
19.10.11.0.0.1.0.0.
20,11,12,0.0,1.0.0.
21.13.14.0.0.1.0.0.
22.14.15.0.0.1.0.0.
23.15.14.0.0.1.0.0.
24.16.13.0.0.1.0.0.
LCADING NO 1
1.2.0.0.
9.1..0.0.0.0.0.0.
10.1.............
LCADING NC 2
2.2.0.0.
9.2..0.0.0.0.0.0.
10.2..0.0.0.0.0.
LCADING NO 3
3.0.1.0.
14.1.1.0.0.0.1...
14,0,1,10,10,0,1...
LCADING NO 4
  2.0..45.
  20
ELCOLA-- S.P. 44 3 BAR FRAME THERMAL DEFLECTION ONLY
0,3,4,3,1,0,0,29000,.3,.CC1,0,
C.O.O.O.C.O.C.O.O.O.
1.1.1.1.1.1.1.-5.0.0.
2.0.0.1.1.1.0.-5.10.0.
3.0.0.1.1.1.0.5.10.0.
4,1,1,1,1,1,1,1,5,0,0.
1.0.2.).2.1.1.0.0.-1.4*0.
1.1.2.0.0.1.10.0.
2.2.3.0.7.1.10.0.
3.3.4.7.0.1.10.0.
#8CD
E1691A--S.P.#5
                  30 TRUSS
                                 NO STRESS CALCULATIONS
1.3.13.20.4.0.0.29000..3.0.0.
4.0.-135.30.180.0.-90.0.-90.90.
4#1.4#3.15.3.
2.3*1.6*C.
3.0*7.0.7.5.10.
4.6+0.3.15.10.
5.e = C. J. J. 10.
4.4=7.27.0.5.
7.0=0.5.0.12.5.
8.4*3.19.3.15.
9.6*3.13.3.13.
" G. # #0.1#.0.12.5.
  . 5*7.20. 1.10.
 -.n=0.15.7.10.
13.4=1.20.0.0.
1.0.5.20.0.0.2100,107.0.10.8.0.0.0.0.-1.4.95.4.45.2.875.2.875
2.0.3.91.0.0..1900.10.50.3.3.0.0.1.0.-1.2.00.2.00.1.970.1.970
```

```
4.0, 2.23, 3.5, 4.040, 3. 72<sup>0</sup>, 3.02, C.0, 0.0, -1, 0, 00, 0.00, 0.00C, C.000
4.0.4.56.0.0..1110.30.10.9.67.0.0.0.0.-1.3.00.3.000.3.000
   .4.0.0.1.0.1.
   .5.0.C.1.0.0.
>.13.6.0.0.1.0.0.
4.6.11.0.0.1.0.0.
5.3.5.0.0.3.0.0.
£.5.9.C.C.3.0.0.
7.9.12.0.0.3.0.0.
8.12.11.0.0.3.0.0.
9.4.3.0.0.3.0.0.
10.5.7.0.0.2.0.0.
11.7.3. C. 0.2.0.0.
12.8.10.0.0.2.0.0.
13.1).11.0.0.2.0.0.
14.7.9.2.0.4.0.0.
15.8.9.2.0.4.0.0.
10.10.9.2.0.4.0.0.
17.2.3.0.0.3.0.0.
18.3.1.0.0.3.0.0.
19.5.6.0.3.3.0.0.
20.4.8.0.0.3.0.0.
DISTRIBUTED AND CONCENTRATED LCADS
1.3.1.0.
5.0.15.4*0.
6.c.5#0.
12.0.0.-5.3*0.
12.3*0.5.59.26.56.-2.
*-0D
                   3D TRUSS
   714--5.P. te
                                 STRESS CALCULATIONS-TOTALS
   ,13,20,4,0,0,29000,.3,0,0,
4.0.-135.30.180.0.-90.0.-90.90.
4#1.4#0,15,0.
2,3*1,6*C.
3.6*0.0.7.5.10.
4.6*0.0.15.10.
5.6*0.0.10.
t . t = 3, 20.0.5.
 .c*C.5.0.12.5.
8.6=0.10.0.15.
9.6=0.10.0.10.
10.5=0.15.0.12.5.
11.0*0.20.0.10.
12.6*0.15.0.10.
13.6*1.20.0.0.
1.2.6.20.0.0..2100.107.0.10.8.0.0.0.0.-1.4.95.4.95.2.875.2.875
2.2.3.81.0.0..1900.10.50.3.36.0.0.0.0.0.-1.2.00.2.00.1.970.1.970
3,1,2,23,3,5,2,040,3,320,3,02,0,0,0,-1,0,00,0,0,0,0,0,0,0,0,0,0,0
4.2.4.56.0.0.1110.30.10.9.67.0.0.0.0.-1.3.00.3.00.3.000.3.000
1.1.4.0.0.1.0.0.
2.2.5.3.3.1.1.0.0.
3.13.4.0.0.1.0.0.
4.6.11.0.7.1.0.0.
5.3.5.7.0.3.7.0.
6.5.9.7.7.3.9.0.
  -. 12.0. ..........
   2.11.7.).3.0.0.
  ..............
10.5.7.0.0.2.0.0.
11.7.8.0.0.2.7.0.
```
```
12.8.13.0.0.2.7.3.3.
13.10.11.0.0.2.0.0.
 4.7.9.2.0.4.0.0.
  , 9.9.2.0.4.0.0.
16.10,9.2.0.4.0.0.
17.2.3.0.0.3.0.0.
18.3,1,0,0,3,7,0,
19.5.6.0.0.3.0.0.
20.4.8.0.0.3.0.0.
DISTRIBUTED AND CONCENTRATED LOADS
1,3,1,0,
5,0,15,4*0,
6,6.5*0.
12,0,0,-5,3*0.
12.3=0.5.59.26.56.-2.
.900
E16914--S.P. 47
                  30 TRUSS LOAD COMBINATION STRESS CALCS-BREAKDOWN
2,3,13,20,4,0,0,29000,.3,0,-1,
4.0.-135.30.180.0.-90.0.-90.90.
2.1..5.2..5.
4*1, 4*0.15.0,
2.3*1.6*0.
3.6=0.0.7.5.10.
4.6*0.0.15.10.
5.+*C.0.0.10.
5.6*0.20.0.5.
7.6*0.5.7.12.5.
8.4*0.10.0.15.
G.6*0,10,0,10,
  .6*0.15.0.12.5.
 12.5*0.15.0.10.
13.6*1.20.0.0.
1-2.6.20.0.0..2100.107.0.10.8.0.0.0.0.-1.4.95.4.95.2.875.2.875
2.-2.3.81.0.0.1.1900.10.50.3.36.0.0.0.0.-1.2.00.2.00.1.970.1.970
3,-1,2.23,3.5,6.040,3.020,3.02,0.0,0.0,-1,0.00,0.00,0.000,0.000
4,-2,4.56,0.0,.1110,30.10,9.67,0.0,0.0,-1,3.00,3.00,3.000,3.000
1.1.4. 0.0,1.0.0,
2.2.5.0.0.1.0.0.
3,13,6,0,0,1,0,0,
4.c.11.0.0.1.0.0.
5.3.5.0.0.3.0.0.
6.5.9.1.0.3.0.0.
 .9.12.0.0.3.0.0.
3.12.11.0.0.3.0.0.
9.4.3.0.0.3.0.0.
10.5.7.0.0.2.0.0.
11.7.8.0.0.2.3.0.
12.8.10.0.0.2.0.0.
13.10.11.0.0.2.0.0.
14.7.9.2.0.4.0.0.
15.8.9.2.3.4.0.0.
15.17.7.2.).4.0.0.
11.2.3.0.0.3.0.0.
18.3.1.0.7.3.0.0.
 3.5.6.0.3.0.0.
  .4.0.0.).3.0.7.
CAN CONC 1
1.3.1.0.
                                                                        12-25
5.0.15.4*0.
```

```
* . * . 5# ].
12. .............
  . 3=0, 5. 57, 24.54,=2,
   013 0013 2
2.3.1.0.
5.0.15.4*0.
6.6. .....
12.0.0. -5.3=0.
12.3=0.5.59,25.50,-2,
*HCD
                   30 TRUSS LCAC COMBINATION STRESS CALCS-TOTALS
516911--S.P. #8
2,3,13,2(,4,0,0,29000,.3,0,1,
4,0,-135,30,180,0,-90,0,-90,90,
2.1..5;2..5.
4#1.4#0.15.0.
2,3+1,++0.
3.6+0.0.1.5.10.
4.6=3.0,15.10.
5.6*0.0.0.10.
6.6=7.20.0.5.
7.0*0.5.0,12.5.
9.6=0.10.0.15.
9.6*0.10.0.10.
10.0*0.15.0.12.5.
11.6*0.20.0.10.
12.6=0.15.0.10.
13.6*1.20.0.0.
1,2,5,20,0.0,.2100,107.0,10.8,C.0,0.0,-1,4.95,4.95,2.875,2.875
2-2.3.91.0.0.1.1900,10.50,3.36,6.0.0.0.-1.2.00,2.00,1.970.1.970
   ,2.23,3.5,6.040,3.020,3.02,C.0,0.0,-1,0.00,0.00,0.000,0.000
   2,4.56,0.0,.1110,30.10,9.67,C.0,0.0,-1,3.0C,3.0C,3.000,3.000
1.1.4.0.0.1.0.0.
2.2.5.0.0.1.0.0.
3.13.6,0.0.1,0.0.
4.6.1..0.0.1.0.0.
5.2.5.0.0.3.0.0.
c.5.9.0.0.3.0.0.
7,9,12,0,0,3,0,0,
9.12.11.0.0.3.0.0.
c.4.3.0.0.3.0.0.
10.5.7.0.0.2.0.0.
11.7.8.0.0.2.0.0.
12.3.10.0.0.2.0.0.
13.10.11.0.0.2.0.0.
14.7.9.2.0.4.0.0.
15.8.9.2.0,4.0.0,
10.10.7.2.3.4.0.0.
11.2,3.0.0.3.0.0.
14.3.1.0.0.3.0.0.
19.5.4.0.0.3.0.0.
20.4.3.7.7.3.7.0.
LCAD COND 1
1.3.1.2.
5.0.15.4* 1.
: + : . 5 = ).
  1=0.5.57.26.56.-2.
 LEID CEND 2
2.3.1.1.
5.0.15.4=7.
```

12-26

*.6,5*7, 12.),0.-5.3*3. 3*0.5.55,25.56,-2. ť

\$

1

6.

CHICAGO BRIDGE & IRON COMPANY

Location (DZE) OAK BRADZ

in all started to 1.292 te train the second 1 1 1 2 2 2 And Sugar 3.141 12.00 - F 2 4 --- F. 1 1. 27.31 " ... to - 72 1.4.14 Julan an in 10.1 1. 01 . 1 - 36 WF 240 1.1.1.1. 3 FI DEFL. 1.1.572 E= 30 110 1.1 A A dia ana i A a production and a state of the - 845'-* + CK ANSWER 371 ----707 2.3.8 r tan 2.5 4 native internet and the second second THEORY OF SIMPLE STRUCTURES REF: P412 ----SHEDD AND VANTER . × 2. 8 - 12. 8 2. 8 - 12.10 - 2 and have a real parts of a summarized management of the second constant can use 1. 1. 1. a sharen i nare 1491.4 1.4 关于的 化二氟化 10000 and a second second second strong a surface and a series in 1. 1.4 a second 2 the second to second the second second Statistics & Lot 17-28 CHARGE NO. ANDE CHED SUBJECT -... à CHRD -0.

CO 64

1 B 11 14

Location_CTM Manter 1 11. 1. Type 1 vie tangular Come Section A. . - A. HI ... TIME 4.95 DOY= 4.95 IT = 106. 5 ... 1 12 . 2: 875 DZZ - 2. 175 IZ . 9. 7 ... 4 AVETL - -. "111 -. 002226 Kai 6.11 Arti. + Axtil. Jon 1 1 YIT'L - API=) + DIY / IY +12. = (-, 000, raz)+(4.95)/(106.2) +12. =-.00016498 Y1_L - 11111_ ZLLSZLL TOUL - AXCOL - TOIL - ZLL = (-, 00: = 1-)- (-, 000 169+8)- (-, 0:8322). . . . 146 TCHEL = AXSIL - THIL + ZEL · (... 23:11) - (-, 00016918) + (- .028325) = -.0304 P 7.1.11 AXTT. + 11.1 - 21L -1-0 1211)+L-. 000 16978)-(.025222) - . -: 126 TELEL AND LIYLL AZEL (-. 028322) == 4502177 Junit 1 1111. - ALINI . 1 1/ / 1 / 12. -1, 0004 0201-12(4.1)/(101.1) × 12. = . Pro 21/4 12-29 CHARGE NO MADE BY CHKD BY SUBJECT Rv. 1 11 5 3 Ched Æ DATE OATE OF-SHT pt -Date

CED	Location_ODE
ZIE = - AF(12) +7 12/172 +12 = - (.021169) +(2.575)/14	7) + 12 =312/68
11.1 271	양 같은 것이 같은 것이 같이 같이 같이 같이 많이 많이 했다.
TSHER AVETE + YUPE + FLR)+(21:112)=21212
TENIL - AXE + YINF1 -2 RR = (00:2:) + (.0003664))-(312148)= .710202
TOUR + AXOTK - YIE + ZLR -1005226) - (.000366	4)+ (212168)= 212 81-
TOLRE = AXCTR - YLR-ZER = (005526) - (.000366	4)-(312168)=.30947

Superation

JT	DPIEIT	IP RIGHT	LOWLEFT	LOW RIGET
í	. 7:1. 11.1.	7:0477	. 02: 83%	- 0302179
4	3141".	.31020	- 214 8 6	.79917

12-30

SUBJECT	MADE BY	CHKD BY	>	9v	CHARGE NO.	
	DATE	DATE	RE	Date	SHTCF	

1373 6 & BRV 8.73

and the second for the second second 1. at 1 - menter by 2 1 to the crock-the the

State of the state

APCA - 6.19 11	614. 495 m	D24- 4.95	IY. 106.3. m.
	612-2.+ 15 m.	122 · 2.275 m	52 · 97 int

A: TL --.014 1.1 . -. 002.6 tai ANTR"

YUFL" '.

. .

11 10

Y11 '

2 RLT

1. 411 = . 4. 1 5 - + (+. 62 / 1=) = . 026 19 ksi TEAP - - 10126 - + (-.02845) = - 03011 ks. TO. A. A. A. A. A. TOJXITE T. - 2071 K.

YUTT (11 1 1 1 12 12 - 0002712,

128 - 100000000

ZLE = - UZA 4 K (2.2 11) (12 14/4) = - 31299 KS1 1. 1. 4

2KX = -, 317911 101

12-31

TSULR = -.00226 + .000371 + -.31299 = -.31488 TSURE = -.00276 + .000371 + -.31299 = .31110 TSULR = -.00776 - .00037 + -.31299 = -.21562 TSLRE = -.00776 - .00037 + -.31299 = .31036

kmber 1

TIS

1.1	+. 626 19	03071	:02619	03071
4	31435	. 31110	31562	. 31036

one - me is type - chemion chees achien

A.CA 2.228 11 DIAM - 3.5 IN JY - 3.017 114 T2 - 6314

BENR= 1.1262 + .0882 (+1) 3.5 m 6.3 m² 12in - .51234 bi

Mamber 5

12-33

1

CBI Aragram 1823

CBI

This program calculates stresses and some reactions for the personnel lock barrel, bulkhead, door, hinge, and latching device due to pressure and seismic loads. Loads and standard or modified coefficients for each stress summary sheet are inputted. Stresses or reactions are computed by multiplying the loads by the coefficients.

Location.

	Author	:	RO Hamson
Cated	Version	•	10 19
Lm	tations	:	none

omouter Proto	Int	MAPEBY	CHKD BY		Ву	CHARGE NO.
Company right	m	- CUI	KAH	2	Chkd	10640
Vertication		NUL RZ	DATE	x	GING	SHT 13-1 OF
					Date	

BIRMINGHAM DESIGN

13 7

Ser.

BARREL DESIGN

The lock barrel is 1/2" thick for fabrication reasons. The thickness is checked as a cylindrical shell in accordance with ASME rules using the design pressure loads.

The design internal pressure will be external pressure on that portion of the lock barrel that extends inside the containment vessel. The maximum length that the barrel may project inside the containment vessel is determined based on this pressure. For 1/2" barrel and 60 psi, this length is 38".

The maximum length that the barrel may project from the containment wall and remain dynamically rigid is determined. For 1/2" barrel, this length is limited to 27'-5". The additional length is added between bulkheads. For the 27'-5" barrel length, the bulkhead to bulkhead length is limited to 23'-11". This length is checked for the design external pressure. The stress due to Dead Load and acceleration load will be determined based on the projections as determined above.

Design is based on barrel for 4'-0 x 6'-8 door size.

Loads: Design Temperature = 400 °F.

The barrel is analyzed using unit load. The resulting stresses are multiplied by the appropriate factor and tabulated on the stress summary for the barrel. Stresses are reported only at points of interest.

					AND DESCRIPTION OF TAXABLE PROPERTY.			
	1)	PI	•	Design Internal	Pressure		60	_ psig
	2)	PE		Design External	Pressure	•	5	_ psig
	3)	D	•	Dead Lcad			50000	_ 16.
	4:)	Ahz	•	Acceleration (ho along Z	axis)		1.5	_ 9
	5)	Ahx	•	Acceleration (ho along X	axis)	•	1.5	_ g
	6)	Av		Acceleration (Ve	ertical)	•	1.0	_ 9
Load	Case	1B :	PI	+ D + Ahz + Ahx	Av			

Load Case 28: PE + D + Ahz + Ahx + Av

SUBJECT			MADE BY	CHKD SY		9v		CHARGE NO.
	DARREL	DESIGN	LDF	CKS	2	Ched	1	UID. FL
		~	DATE	9/00 mg	8	Dete		SHT == 0#

30 14 REV 1-73

BIRMINGHAM DESIGN

					13-3
SUBJECT BARRET / DADS	LOF	CHIKD BY	,	By	STD. PL
	8-21-74	9PATE 9		Child	

CBI

1

6

.

BIRMINGHAM DESIGN

80

1						13-4
SUBJECT	STRESS SUMMARY	LDF	CHEDBY	>	•	STD. PL
BARREL		DATE 8-21-79	9/6/79			

00 44 MEV 4-71

Trans - comments - co

In the X-Y plane the hinge is modeled as a cantilever frame supported at the upper hinge support bracket. and lower hinge support bracket.

In the X-Z plane the hinge is modeled as a simply supported frame supported by the upper and lower hinge bracket at one end and by the latch bar assembly at the other end.

The hinge will be designed for the following load case:

Case 1 - Seismic Acceleration acting vertical downward, Horizontally outward (along Z axis tending to unseat door) and horizontally across face of door (along X axis) is combination with the dead load, pressure load, and gasket seating load.

Loads:

: Design Temperature = 400°F.

D - Dead Load
 Pe - Design External Pressure = 5 PSIG
 Pg - Gasket Seating Load - 25 lb/in (req'd to maintain 1/8" compression)
 Ahz - Seismic Acceleration (horizontal along Z axis) = 1.5 9
 Ahx - Seismic Acceleration (horizontal along X axis) = 1.5 9
 Av - Seismic Acceleration (vertical) = 1.0 9.

Load Case 1 = 0 + Pe + Pg + Ahz + Ahx + Av

13-5

BUBJECT H	INGE	DESIGN	MADE BY	CHKD BY	>	Ľv	STD. PL.
			9-18-79	10/1/79	×	Child	

00 4+ REV 1-73

2.1

CBI

1

An analysis is performed utilizing a unit load. The resulting stresses are multiplied by the appropriate factor and combined in accordance with Case 1. These stresses are tabulated on the stress summary for the hinge. Stresses are reported only at points of interest.

Hinge design is based on dimensions and loads required for a 4'-0x6'-8 door.

13-6

SUBJECT // Destan	MADE BY	CHKD BY	By	CHARGE NO.
HINGE DESTON	0ATE 9-18-79	DATE	Contral Dana	SHT - OF
00 64 REV 4-73	1/1011	1	dana dana mener	

-	Ĵ				Ű	BIR	MINGHAM	DESIG
СВ)				Locatio	n		
	HINGE DESIGN							
	HINGE LOADS						1.1	
								i,
	Pe = Pressure Load due	to 5 PSI	acting	ove	r area	of doc	r	
	• (4050) <u>2</u> • <u>2</u>	0250						
	Pg = Load due to gasket	seating (2	5#/1n)					
	 Door perimeter x 2 Couple produced by 	Dead Wedge	5) = 625	0.	-		anad from	-
4	Joints 3 and 11	Dead weigh	C 01 000	r D	eing c	ancitev	ereu rrum	
	-= 0							
10	OOR I I		D1 - M	(14)	- 26	70(14)	= ± 850#	•
Ŷ			•					
	TIT			•				
	$D_2 = Wt of door = -2670#$							
	D3 . Wt of Main Hinge Pt	in = -350#						
	D ₄ = Wt of Hinge Arm + 0	Tr. Hinge	Pin = -	1400) + -4	80 = -1	900	
	D ₅ = Wt of Roller Assy.	100#						
	AHZ1 = Horiz. Force due to	accel. on	D1. Alt	noug	h resi	ltant	force is	
	horizontal, the cau	ise is vert	ical.	Use	vert	Ical Ac	cel. Factor.	
	- <u>10</u> (850) - ± 850		ь. 1° б					
	A _{HZ2} = Horiz. Force Due to	Accel. on	D2					
	= <u>1.5</u> (2670) = <u>400</u>		e de la					
	AHX2 = Horiz. Force Due to	Accel on	02					
	= <u>1.5</u> (2670) = <u>400</u>	0						
	A _{HZ3} = Horiz Force Due to	Accel on D	3					
	AHX2 = Horiz Force Due To	Accel. on I	03				12 -7	
UBJECT	<u>1.5 (</u> 350) = <u>525</u>	MADE BY	CHKDBY		av		CHARGE N	0.
	HINGE LOADS	LOF	CRS	REV	Chkd		STD. PL	
		3-27-79	1716/79		Dete		SHT OF	

00 ++ REV +-73

3)		
	A _{HZ4}	:	Horiz. Force due to Accel. on D ₄ <u>1.5(1900) = 2850</u>
	A _{HX4}	:	Horfz Force Due to Accel On D4 1.5 (1900) = 2853
	AHZ5	:	Horiz Force Due to Accel On D ₅ 1.5(100) = 150
	AHX5	•	Hor1z. Force Due to Accel on D_5 1.5 (100) = 150
	Av2	:	Vertical Force Due to Accel on D_2 -1.0(2670) = -2670

Location BIRMINGHAM DESIGN

1 3

. .

C

-

Ay3 = Vertical Force Due to Accel on D3

- -1.0 050) - - 350

- $A_{V4} = Vertical Force Due to Accel. on D4$ -1.0 (3900) = -1900
- A_{V_5} = Vertical Force Due to Accel on D₅ = -1.0(100) = -100

					12-8
SUBJECT	MADE BY	CHKD BY		84	CHARGE NO.
HINGE LODDS	LOF	CK2	SE V	Chkd	SID. PL
	3-27-79	7/1: 79	-	Date	SHTOF

00 44 REV 4-73

 *

* * 1.1

а ц. З^{ар}

÷.

1

.

***** **** ***

State -

1 . .

A

١

0 FORM OF 124 MEY NON Sto PL 51-61 MAN NINGS P.N Reactions Dauge Braige & Iven Co 1 THE REAL PROPERTY. 1.916 398 2 350 11295 3765 10040 BSIS 915 5845 9705 Res -1364 19265 ACTUAL REACTION Ra. 200 10 309 -----3950 Sant 1.000 2 MIL 21.5 3.81 1950 R ... 3950 Peus REACTIONS Press. 06.5 3150 - - -All I 75 215 105 R *1 % TOTALS mar Cl -Jan 2001 2037 1100 oser 100 UNIT REACTION Rrs 0] 1. rus 242 1505 TO 202 8,38 0 Patt 1.0 H 21/2 1115 R.s. 111 CASE - Formation STIEN N. 1000 058 1350 Sealer N 01950 ----e Ar 1100 1 10000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1 1110 0.250 2150 212 - Star 201.11 4 à

11.

14

٩

time - references

)

1. 1. æ. * • . ;

10 C .

- Kr.

.

.

).

-58

lin.

7.99 ¥

1

ee 200

.

A State of the second

5

公義士

. انگر

10 20

8 × 4

E.

11 Mar

-

2 × 2

č

.

ti ng Mara

den geog

22 1000

2

-

FORM ON 12 A NEV NON 18 8 Heinelland toongington ber and the pro-STREES CATEGORY For Housed Tanson = Par Contrast No. ALL OTHE STRESSES REMATE EXCEPT WELD STARSSES, ARE STRESS CHEGONY RIFP. 13-19 UPPER BEARING HOUSING Chicago Bridge & Ivon Congenty Main Hinde Pin 191 an CIS and H ... FHTUJ HOULT I MAN FWBIE CASE STIS + FW81. [freitfrei) + (fre) FHUIS FLAN + FLAN FHTU1 - (fe,) + (fe) CASS PSYS 1325 Hausen A REAL 100 July Land 2) 2) 3 1. 10 5135 115 * 53 513 230 21155 12 1000 001 5 C 1065 260 4500 1035 1625 ALTUAL STACE UNI 4 È 19 UPPER BEARING HAUSING - JOINT | 18-4 201-2 5 R 8 THI! 3 Jan St fair fun 2500 A State 20 So 5140 202 ALC: NO A (A) S 100 10 33.3 of - 45 ... 2 010 A. WHIT STARAS and and Sile fan. 165 180 10 10 120 2 10 A 1 A 1 3 -190 CASE 2560 1745 190 fer. 3 201 10 10 10 10 30 3162 30 205 15 400 00 An 98 00 100 1001 ÷ 191 22 141 H. A STORE the state 11 Person 11 205 2:8:0 135.14 1000 2 A SI P17 670 Stree W 11.15 22 and the 1000 5.4 23

.

1

18

1

Just

Ċ,

्र इ. स

BIRMINGHAM DESIGN

BULKHEAD DESIGN

The bulkhead consists of a stiffened flat plate. The thickness is determined based on the largest panel using flat plate design. The primary and secondary stiffeners are designed as simple beams. The reactions from the hinge and latch are taken out at the primary stiffeners. A portion of the bulkhead plate is assumed to act with the stiffener.

The bulkhead is designed for two load cases:

Case 1A - Seismic acceleration acting horizontal (along longitudinal axis of lock) in combination with specified design internal pressure and reactions from hinge and latch.

Case 2A - Seismic acceleration acting horizontal (along longitudinal axis of lock) in combination with specified design external pressure and reactions from hinge and latch.

Loads: Design Temperature = 400°F

- 1) PI = Specified Design Internal Pressure 6° PSIG.
- 2) Pe = Specified Design External Pressure -______PSIG
- *3) PEQ= Equivalent Pressure Due to Seismic Acceleration (Horiz. along longitudinal axis of lock) = .74 Ahz = .74(1.5)
- 4) Rz7= Reaction from latch
- 5) Rxl= Reaction at Joint 1 main hinge pin
- 6) Rzl= Reaction at Joint 1 main hinge pin
- 7) Rx9= Reaction at Joint 9 main hinge pin
- 8) Ry9= Reaction at Joint 9 main hinge pin
- 9) RzS= Reaction at Joint 9 main hinge pin

*Note: PEQ is derived by uniformly distributing the bulkhead stiffeners and door stiffeners to arrive at an equivalent thickness. Equivalent thickness of bulkhead and door are assumed equal.

The bulkhead and stiffeners are analyzed using unit loads. The resulting stresses are multiplied by the appropriate factor and combined in accordance with Case 1A and Case 2A. These stresses are tabulated on the stress summary for the bulkhead. Stresses are reported only at points of interest.

Load Case 1A: PI + PEQ + Rz7 + Rx9 + Ry9 + Rz9 Load Case 2A: Pe + PEQ + Rz7 + Rx9 + Ry9 + Rz9

				10 00
MADE BY	CHKD BY		By	CHARGE NO.
LDF	CKS	2	Child	510. 12
OATE	DATE	æ		5-27
	ADE BY	MADE BY CHKD BY LDF CRS DATE DATE	MADE BY CHKD BY LDF CRS	MADE BY CHKD BY DY LDF CRS DY CAND

GO \$4 REV 4-73

13-23

																		•		Charles and has tangen	STRESSES IN BULKHERD	Due To LATCH LOAD	Canan te	aller on CAS at was STD. P	W.W. LARINES (COMPLIAND DATE TO THE COMPLIAND DATE TO THE PARTY OF TH	and the first state of the stat	NAM ALL WOMED
I	1	fur.	X	X	X	X	261	X	X	21/2	220	X	X	23.10:	0+10	X	X	11:	01/0	X	X	01/01	Piust -	ST RE 15	240	-+2	
	-	\$~.	all'	0416	X	X	X	05/20	X	Х	X	X	X	X	X	0110	X	X	X	0/ 6/17	Х	Х	TALAT	11413	270	12.60	
	=	f.	X	X	X	X	15.	X	X	oot	01 20	X	X	325	01210	X	X	2140	0120	Х	Х	0120	dawe	He with	760	760	
	STAC	fres	X	X	X	X	00125	X	X	1001	216	X	X	2110	02 10	X	X	202	250	X	X	2510	C.R and	Neve SAil	340	1 10	
	CTUAL	f	X	X	X	X	OEL	X	X	130	20	X	X	02.00	06 14°	X	X	06 250	2100	X	X	340	\$100 A 2	TANS!	41.	410	
1	-	f.,	2115	05 20	24 250	5450		0) 40	1-1-	0/10	X	21 21	.000	X	250		01-20	3 60:	000	000		000	LABOUT	11111	\$12	003	
		fer.	2110	02/20	09 00	03 00	100	21 425	21-02-	01	X	21 20	1000	X		5 16	01-1:	01 40	0	er:	010	0000	Tours?	Sint I	280	282	
	-	fung	X	X	X	X	A.	X	X	ore	09 51	X	X	1160	250	X	X	SEE	02	X	X	202	41.00	Sintus .	.17.	111	
(181)		furs	345	20105	25 55	25 50	01/00	the state	21-12	01/0	X	51.50	1	X	25	er:	1-00-	01 600	050	0 15	. 400-	. 200.	Fairer	Scars.	255	205	
		fbyr	X	X	X	X	11/10	X	X	2720	200	X	X	2012	0/202	X	X	2510	. 24	Х	Х	30		Part of	2710	2710	
	5	fie,	X	X	X	X	05-10	X	100	000	X	X	2.2	X		X	200	3.1.	0110-	X	1	100		Pa	-15	-25	
	STABS	ferx	X	X	X	X	01 200	X	01-10	10/00	X	X	200	X	2	X	A	10	100	X	£.	200 C		Pm	10	01	
	UNIT	fore	2040	213	130	10:	X	080	X	X	X	101	X	X	X	100	X	X	X	2100	1	X		Pm	215	745	
		file	212	1.6	25	200	X	100	X	X	X	15	X	X	X	100	X	X	X	0	X	X		P.	205	510	
		f.	0.150	1000	X	X	X	05/	X	X	X	X	X	X	X	101	X	X	X	0/ 4/11	X	X		ď	265	1245	
-	20%	0	Strans	SUE	2000	1950	2710	10	7.	1100	0110	A. Mark	1.16	1 and	10	N.V.	AM	1	1000	Purs.	Pres -	15/00	TALSS T	Au-Sti	1.4	24	

*

BIRMINGHAM DESIGN

DOOR DESIGN

The door consists of a stiffened flat plate. The thickness is determined based on the largest panel using a flat plate design. The stiffeners are designed as a simple beam with a uniform load. A portion of the door is assumed to act with the stiffener.

The worst pressure load on the door is the design internal pressure. An equivalent pressure due to horizontal acceleration acting over the area of door is combined with the design internal pressure. Stresses due to vertical acceleration is zero.

Loads: Design Temperature = 400°F

- 1) PI = Design Internal Pressure = 60 psig
- 2) PEQ = Equivalent pressure due to acceleration (horizontal along longitudinal axis of lock) = .74 Ahz = .74 (1.5) psi (See bulkhead design for PEQ)

The door plate and stiffeners are analyzed using unit load. The resulting stresses are multiplied by the appropriate factor and tabulated on the stress summary for the door. Stresses are reported only at points of interest.

This design covers three different size doors 4'-0x6'-8, 3'-6x6'-8 and 2'-6x6'-8. All three doors utilize the same plate thickness, stiffener sections, and stiffened arrangement.

The only dimensional difference between the door sizes is the width. The largest width occurs on the 4'-0x6'-8 door. Therefore, the design is based on the 4'-0x6'-8 door.

13-75

te i de la casa de la casa de

SUBJECT	MADE BY	CHKD BY		84		CHARGE NO.
Door Design	LOF	cus	IE V	Chad		510.7-
	9-18-74	10/1179	-	Cure	S	TOF

00 64 REV 4-73

BIRMINGHAM DESIGN Locat

-

ET T

Å. 12

13-26

SUBJECT STORES	Summary	MADE BY	CHKD BY	-	By	STO PL
STRESS	Jerry Mary	DATE	DATE	HE	Chie	
20	OR	9-27-79	1-7-3179		Case	SHTOF

-

ŵ.

AND LATCHING DEVICE BASED ON CUEFFICIENTS	CR STANCARD	
CONTENTS AS LISTED ON TABLE OF CONTENTS SHE	TS SPL-O R.O	
REV.O CCTONER 1979		
SAMPLE PROBLEM - STANDARD LOCK DETAILS WITH STANDARD LO	DING	the second s
16/18/92		
040 PRESSURE LOADS 000		
DI . ACCITA INTERNAL COCCURC.	10 00 001	
PE a DESIGN EXTERNAL PRESSURE	5.00 PSI	
PED = EDUIVALENT PRESSURE DUE TO SEISHICE		
	and the state of t	·····
POO PARREL LOADS 000		
IDALLIL = MOMENT DUE TO DEAD LOAC . LIVE LOAD=	B. CALE . DO IN-LE	
AHZ = RADIAL FORCE DUE TO HORIZ ACC ON D.	75000. LB	
AHX . TANG FORCE DUE TO HURIZ ACC ON EDM.	1.299E.07 IN-LE	
A . VERT FUNCE DUE TU VENT ALL UN BUME	B.COUL.OP IN.F.	
000 HINGE LOADS 000	and the second secon	
1/2PRLD = 1/21PRESSURE LOAD DUE TO EXTERNAL PRESSUR		
ACTING OVER DOOR .	13125. LD	
1/2PG = 1/21LOAD DUE TO GASKET SEATINGI=	3125. LB	
DI . COUPLE PRODUCED BY ECCENTRICITY CF DOOR.	85G. LB	
ANT I . TANG FORCE DUE TO VERT ACC ON GL.	65C. L8	
D2 = WEIGHT OF DOOR=	2670. LB	
1/24HZZ = 1/2(HADIAL FINCE DUE TO MONIZ ALL ON DZIA	COC. LB	
TZAHAZ - TZETANG FUNCE DUE TO HUMIZ ALL UN DZI-	2000. 18	
AT A LETCET DE DITO DINCE BING	150. 18	e a la consecuta e se come es me
1/24H23 = 1/218ADIAL EDECE DUE TO HERIT ACC ON DILL	245. 18	
1771HIL I 1771TANC FIRTE DUE TO HORIT ALL DA DATE	265.18	
If cannot a free and for to nonite acc on orte	350. 18	
AV3 . VERT FORCE DUE TO VERT ACC UN D3.	1900: 18	
AV3 * VERT FORCE DUE TO VERT ACC UN 03* 04 * WEIGHT OF HINGE ARM * CENTER HINGE PIN=		
AV3 = VERT FORCE DUE TO VERT ACC UN 03= 04 = WEIGHT OF HINGE ARM + CENTER HINGE PIN= 1/24H24 = 1/21RADIAL FORCE DUE TO HCRIZ ACC ON 041=	1425. 10	
AV3 = VERT FORCE DUE TO VERT ACC ON 03= 04 = WEIGHT OF HINGE ARM + CENTER HINGE PIN= 1/24H24 = 1/21RADIAL FORCE DUE TO HORIZ ACC ON 041= 1724H24 = 172ITANG FORCE DUE TO HORIZ ACC ON 041=	1425. LU 1425. LB	en la seconda de la compositione de
AV3 = VERT FORCE DUE TO VERT ACC ON 03= 04 = WEIGHT OF HINGE ARM + CENTER HINGE PIN= 1/2AH24 = 1/2IRADIAL FORCE DUE TO HORIZ ACC ON 041= 172AH24 = 172ITANG FORCE DUE TO HORIZ ACC ON 041= AV4 = VERT FORCE DUE TO VERT ACC ON 04=	1425. LU 1425. LB 190C. LB	······································
AV3 = VERT FORCE DUE TO VERT ACC UN 03= 04 = WEIGHT OF HINGE ARM • CENTER HINGE PIN= 1/2AH24 = 1/2IRADIAL FORCE DUE TO HORIZ ACC ON 041= 172AH24 = 172ITANG FORCE DUE TO HORIZ ACC ON 041= AV4 = VERT FORCE DUE TO VERT ACC UN 04= 05 = WEIGHT OF ROLLER ASSEMBLY=	1425. LU 1425. LB 190C. LB	
AV3 = VERT FORCE DUE TO VERT ACC UN 03= 04 = WEIGHT OF HINGE ARM • CENTER HINGE PIN= 1/24H24 = 1/21RADIAL FORCE DUE TO HORIZ ACC ON 041= 1724H24 = 172ITANG FORCE DUE TO HORIZ ACC ON 041= AV4 = VERT FORCE DUE TO VERT ACC UN 04= 05 = WEIGHT OF ROLLER ASSEMBLY= 1/24H25 = 1/21RADIAL FORCE DUE TO HORIZ ACC ON 051=	1425. LU 1425. LB 190C. LB 10C. LB 75. LB	

10

1.4
•											 8
			and the second								
	941							 			
	IN STANDARD LOAD FFIGIENTS 000	IHdS	u*0	0.0	0*0	0.0	0*0			the second s	
	DCK DETAILS MI MIT STRESS COE BARREL	LOAD STHETA		•••	- 0 0-	.0	•0				
	- STANDARD L	INU	14	96	111-01	AHK	•				

			8110	0.0	0.0	0.0	0.0	0°°	0.0	0.0	6.3	0.0	0.0	···)	0.0	
			C1X8	0.0	·.0	0.0	0.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
			RVIO	6.0	0.0	0.0	C.J	0.5	0.0	0.0	·	···	0.0	C.J		
			1ia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	o.c	
			5×8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0:0	
			-	0.0	0.0	0.0	u.0	u.0	0.0	0.0	u*0	6.6	0.0	0.0	0.0	
				3.3	0.0	C.0	0.0	C. .)	0.0	0.0	Ú•C	···	0.0	ù.L	0.0	
		• 51N3	Fexe	0.0	0.0	6.0	6.0	0*0	0.0	0.0	0.0	0.0	0.0	6.0	0.0	
		DEFFICI	CI193	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.6	
	Sulde	18655 C	FRIG	c.0	0.0	0.0	0.0	0.0	0.0	6.0	0*0	0.0	0.0	0.1	0.0	
	DARD LO	CNIT S	FALO	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	H STAN	INPUT	F 824	0.0	0:0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0*0	0.0	¢.0	
	1115 11	•	FDX4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	CCA DET		FAL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
i	NDARD L		FBIA	0.0	0.3	0.0	0.0	c.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
1	- 514		FBXA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0*0	0.0	0.0	0.0	0.0	
	PROPLE		FAL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	SANPLE		01 110	129410	942/1	10	1744	62	1241122	124442	* 42	50	124424	1241184	114	

	FVZ	C.0	0.0	0.0	0.0	C*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1 Å J	0.0	0.6	0.0	0.6	c.0	0*0	0.0	0.0	0.0	u*6	0.0	0.0
	113	0*0	0.0	0.0	6.0	C*0	0.0	6.0	0.0	0*0	u*0	0.0	9+9
	E	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0*0
	117.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0*U	0.0	0.0
	112.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
. IENIS ec	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0+0	0.0	3.0
CUEFF1C	113	0.0	0*0	0.0	0.0	0.0	0.0	0.0	C.0	0.0	r.0	0.0	6+0
L SIRESS	583	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
I ANDARD	FY2.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	¢*0	0.0	0.0
HIH S	FYI	0.0	0.0	0*0	6.0	0*0	0.0	0*0	0.0	0.0	C+0	0.0	0*0
K DELAN	8	0*0	0.0	0.0	0.0	0.0	0.0	0*0	0.0	2.0	0.0	0*0	0*0
10 4 00	FIZ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.9	0.0	0.0	0.0
STA	EII	0.0	C.0	0.0	0.0	0.0	0*0	0.0	0*0	0.0	0.2	0*0	0.0
SAMPLE PROBLE	NIT LOAD	129210	1/2PG	10	1711	02	124472	124482	AV2	64	224115	2 AHX4	444

.

SAMPLE PROPLEM - STANDARD LUCK DETAILS WITH STANDARD LOADING

400 INPUT UNIT STRESS COEFFICIENTS 000 SHEET STI

ł.	0.0	0.0	0.3	0.0	0.0	1.0			0.0
Fux	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0
CINJ.	0.0	0.0	0.0	0.0	0.0	0.0	6.0		0.0
FWLL	0.0	0.0	0.0	0.0	0.0	0.0	6.0		0*0
Ling .	0.0	0.0	0.0	0.3	6.0	0.0	0.0		
Fat	0.0	0.0	6.0	0.0	0.0	0.0	0.0		
FBY	0.0	0.0	9.0	0.0	0.0	0.0	0.0	0.0	
FBE	0.0	0.0	0.0	6.0	0.0	0.0	C.0	0.0	
FHY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
FWX	C*0	0.0	0.0	0.0	0.0	6.0	0.0	0.0	
FWIS	0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	
FHIZ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
FWL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
FBYL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
FAYI	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0411 F040	1/2PRLU	1/200	10	1244	02	1/24422	1/24482	AV2	

12-21

·s

SAMPLE PROBLEM - STANDARD LOCK DETAILS WITH STANDARD LOADING

. × 1

1

*** THPUT UNIT STRESS COFFEICLENTS ***

FOSH FPLI FALL FULL FULL FULL FULL FULL FUL FUL FIL FIL FIL FIL FOLL FOLL FULL FULL FULL FULL 112 UNIT LOAD FTA

0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C. . 0.0 0.0 0.0 C.0 0.0 0·0 0.0 C.C 0.0 0.0 0.0 0.0 0.0 2.3 **C.U** 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C.J 3.0 0.6 0.0 1/29810 1/24482 1/24422 1296 1 21:X 02 AV2 10

	000
	ICIENTS.
-	CUEFF
PUIDEDING	STRESS SHEET
DARD	INIT
1 STAN	INPU
ALLA	
DETAILS	
1005	
STANDARD	
EM	
HU	
9	
-	
ANP	

1

S.

-

		1	i		-	-			-									
F45-12	0.0	0.0	0.0	0.0	0.0	6.0	0.0	0.0	C.0	0*0	0.0	0:0	0.0	0.0	0:0	0.0	0.0	0:0
11-53	0.0	0:0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.0	6.0	0.0
Fu	0.0	0.0	0.0	0.0	0.0	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0:0
FLOY	0.0	0.0	0.0	0*0	0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Fe	0.0	0*0	0*0	0.7	0*0	0.0	0.0	6.0	0.0	0.0	1.0	u.0	0.0	C*0	0.0	u*0	0.0	0.0
FA	0.0	0.0	0*0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
F10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0*0	0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
878	0.0	6.0	0.0	0.0	0.0	0.0	0*0	0.0	0.0	0.0	0*0	6.0	0*0	0.0	0.0	0.0	0.0	0.0
812	0.0	0.0	0.0	0*0	0*0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0:0
¥12=412	0.0	0.0	0.0	0.0	0.0	0.0	0°U	0.0	0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
827	0.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	0*0	0.0	0*0	6.0	0.0	C*0	0.0	0.0	0.0	0.0
THIL LOAD	1/2PALD	1/296	10	12148	02	1/24412	1/24HX2	AV2	1/24423	1/24483	•0	1/24424	1/24485	***	05	1/2AH25	1/2AHX5	AVS

13-33

18 A.

A Device of

							A contraction on experimental in the contract of the second states and the second state of	A					and the second	and a set of a set of the set of		A	An any second				12-21
6		R 29	u*0	ـــــــــــــــــــــــــــــــــــــ	0°u	0.0	0*0	C*0	0.0	v*0	U*0	U*U	0*0	¢*0	0.1	0.0	v*0	0.0	0.0		1.0
LOADIN	15	178	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0.0
STANDARG	EFFICIEN	8 X 9	0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
H114 5	14655 CO	118	0*0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C.0	0.0	0.0	6.0	0.0	0.0	0.0	0.0
K DETAIN	1 UNIT SHI	819	0.0	0.0	0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0*0
NDARD LD	NPU	R X B	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0*0	0.0	0*0	0.0	0.0	0.0
EM - STA		RX2	0*0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0
SAMPLE PRODU		UNLT 1CAD	1/29810	1/296	10	1 2 H K	20	1/24412	1/241182	AV2	03	1/24423	1/2AHX3	AV3	40	1/24414	1/2AHX4	444	0.5	1/24425	1/2AH#5

SAMPLE PROBLEM - STANJARD LOCK DETAILS WITH STANDARD LOADING

4

 FWE	C.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C.0	0.0	0.0	0.0	0.0	0.0	0.0	6.0	0.0	0.0	6.0	0.0
 Fax	0.0	C.0	0.0	0.0	0.0	0*0	1.0	0.0	0.0	0.0	0.0	0.0	6.6	0*0	0:0	0.0	6.0	0:0	6.0	0.0
FWY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	u.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0
Fexc	0*0	0.0	0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C.0	0*0	0:0	0:0	0*0	0.0
 £840	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	U*0	0.0	0.0	0:0	0*0	0.0	0:0	0.0	0.0
 FAD	0.0	C.0	1.0	0.0	u*0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	u*0	0.0	6.0	0.0	0.6	6.0	0.0
FexC	0.0	0*0	0.0	0.0	0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0*0	0.0	0:0	0*0	0.0
FBIC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0*0	0.0
FAC	0.0	0*0	0.0	0.0	0.0	0°0	0.0	0.0	0.0	U*0	0.0	0.0	0.0	0.0	N.0	0.0	0.0	0.0	0*0	0.0
F946	0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	VV
FBIB	0*0	0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0*0	0*0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
FAR	0.0	0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	V V
0 T T T T T	129%10	1/206	10	1244	02	/ 2 AH2 2	/ 2AHX2	AV2	03	/ 2AH23	(ZAHX3	EVA	50	1/2AH14	124484	AV4	05	21H12	L/2KHX5	311

i

i

HEL FRED FAX FOY FAE FREL FHEZ FHX	0*0 0*0 0*0 0*0 0*0 0*0 0*0	0*0 0*0 0*0 0*0 0*0 0*0 0*0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0*0 0*0 0*0 0*0 0*0 0*C 0*0 0*1	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	6*0 0*0 U*0 0*0 0*0 0*0 0*0 0*1	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0*0 0*0 0*0 0*0 0*0 0*0 0*0 0*0	0*0 0*0 0*0 0*0 0*0 0*0 0*0	1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0°0 0°0 0°0 0°0 0°0 0°0 0°0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0		1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0*0 0*0 0*0 0*0 0*0 0*0 0*0 0*0	
FB FW	0.0 0.0	0.0 0.0	0.0	•0 C•0	0.0.0.	0.0.0	0.0 0.0	0.0 0.0	0.0 n.	0.0 0.0	0.0	0.0.0.	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	
FY	0.0	0.0	0*0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0:0	0*0	
£12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
FIL	0.0	0.0	0.0	0.0	0.0	0*0	0.0	0*0	0*0	0.0	0.0	0*0	0*0	0.0	0.0	0.0	U*0	0.0	0.0	
UTIL LOAD	1/29810	1/296	10	1244	02	1/24422	1/24482	AV2	03	1/24413	1/ 2AHX 3	EVA	14	1/24H24	1/24484	AVA	60	1/24425	1/24HX5	

SAMPLE PROBLEM - STANDARD LOCK DETAILS WITH STANDARD LOADING

1

an C 4

ese INPUT UNIT STRESS COEFFICIENTS ese

FWX	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.0	0.0
Fav	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6:0
F423	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
F122	0.0	c.0	0.0	0.0	C.0	C*0	0.0	0.0	0.0	0.0	U*U	0.0	0.7	0.0	0.0	u*0	0.0	0.0	1.D	0:6
Full	0.0	. 0*0	0.0	0.0	0.0	0.0	0.0	0.0	0*0	0*0	0.0	0.0	0.0	0.0	0.0	0*0	0.0	0:0	0.0	0.0
FWE	0*0	0*0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
F87	0*0	0.0	0*0	0*0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0
FESH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0.0
512	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0*0	0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	VV
III	C*0	0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0*0	0*0	0.0	0*0	0.0	0.0	0.0	0.0	VV
011 1040	/ 2PALD	1/296	10	1244	02	1244122	/24482	442	03	/2AH23	/ 24HX 3	EVA.	50	124424	/ 24HX4	444	05	214425	ZXHXS	2012

13-37

R

				And the second second second second									in the state of the second sec							
		0.0	0*0	0*0	0.0	0.0	0*0	U*0	U*U	0.0	0.0	C.0	0.0	0*0	u.0	0.0	0:0	0:0	0*0	0*0
401	EN2 - EN	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	U.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	C.0 C.0	1.0 0.0
DEFFICIENTS	Fb(1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0
518655 CI	- FUI2.	0.0	0.0	0.0	0*0	0*0	0.0	0.0	C*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5 11MA 10	F811	0.0	0.0	0.0	0.0	0.0	0.0	C*0	6.0	0.0	0.0	0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0.0
ANI See	£12	0.0	0.0	0.0	0.0	0.0	0*0	0*0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	fII	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0*0	0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	UNIT LOAD	1/29810	1/295	10	1710	20	1/24422	1/24482	AV2	03	1/24423	1/24423	AV3	•0	\$ 2H\$2/1	1/24HI4	404	05	1724425	1/244×5

•

1

-

.

化東边 法 未要

.

....

1 1

	ff . f .	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	u°c 0°0
0401MG	ł	0.0	0*0	0.0	0.0	0.0
FFICIENTS	Fv	0.0	0.0	0.0	0.0	u*0
15. MIH 5 RE55 60E		0.0	6.0	0.0	0*0	6.0
CK. DETAIN	ł	0.0	0.0	0.0	0*0	0.0
NDARD 10	FBA	0.0	0.0	0*0	0.0	0.6
LEN - 511	FBA	0.0	0.0	0.0	0.0	0.0
SAMPLE PROM	DADI TIM	/20810	1/296	124422	124424	1/24H25

SAMPLE PROBLEM - STANDARD LOCK DETAILS WITH STANDARD LOADING

*** INPUT UNIT STRESS CREFFICIENTS ***

÷

1	0	0.0	0.0	0.0	0.0
11	0.0	0.0	0.0	0.0	0.0
60	0.0	0.0	0.0	0.0	0.0
Fu	0.0	0.0	0.0	0.0	0.0
H	0.0	0.0	0.0	0.0	0.0
89	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	C*0	0.0	L*0
1	0.0	0.0	0.0	0.0	0.0
R	0.0	0.0	0.0	0.0	0.0
FB	0.0	0.0	0.0	0.0	0.0
4	. 0.0	0.0	0.0	0.0	0.0
53	0.0	0.0	0.0	0.0	0.0
H	0.0	0.0	0.0	0.0	0.0
6.8	0.0	0.0	0.0	0.0	0.0
UNIT LOAD	1/2PRLD	1/296	1/24422	1/24424	57H82/1

1

-

- C - C - C - C - C - C - C - C - C - C	
	-
	-
	1 6
	1.0
*	IN
1	-
1	
1	
1	
÷	
10.0	
÷	
1	1
1	
1	
4	
+	
1	
1	4
1	1

	i.	
	۰	
	1	
	ĉ	
	ł.	
	ic	
1	2	
c	21	
è		
	-	
4	3i	
5	2!	
-		
	01	
	-	
	-	
1	1	
	3	
2		
1	1	
2	5	
4)	
1		
2	밁	
-		
1	2	
1		
	~	
	. 1	
	11	
1	1	
4	2	
i	2	
-	-	
-	È	
-	-	
1	1	
	1	
	1	
	1.0	

000 INPUT UNIT STRESS COEFFICIENTS 000

	F89	0.0	0.0
	FINA	0.0	0.0
-	EN13	0.0	0.0
	FUF	0.0	0.0
	- 18 MJ	0.0	0.0
	F422	0.0	0.0
	FW3A	0×0	0.0
	FBH	0.0	0.0
	FAY	0.0	0.0
	F839	0.0	0.0
	SHAK)	0.0	0.0
	SHAKE	0.0	0.0
	SHAKI	0.0	0.0
and the second state and the second state of	UNIT LOAD	1d	34
3		1	1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

PEQ

SAMPLE PRUBLEM - STANDARD LUCK DETAILS WITH STANDARD LOADING

*

eve INPUT UNIT STRESS COEFFICIENTS ave

NJN - 1	2.0	3.6	0.0	0.0	0.0	0.0	0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	P.C	0.0	3-42
FWV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	-
FWB4	0.0	0.0	0.0	C.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0:0	I
F WB3	C.0	0.0	u•u	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Fu82	0.0	0.0	0.0	0.3	c.0	0.6	C.0	0.0	0.0	0.0	0.0	0.0	0.3	0.6	0.0	0.0	0.0	0.0	C.J	0.0	
F + 81	0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
FWFW	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0:0	
614.1	0.0	0.0	6.0	v*0	C.0	0.0	0.0	u*0	C.0	U*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C:0	
F ME 9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
FB9Y	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
FUCLX	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
F B9x	0.0	0.0	0*0	0.0	0.0	0*0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
FULL	0.0	0.0	0.0	0.0	0.0	0.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
1693	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
FEL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
UNIT LOAD	1/29810	1/296	01	1244	02	1/241122	1/24482	AV2	10	1/244423	1/24483	ENV	04	1/24414	1/2AHX4	444	05	1/2AH25	1/2AHX5	AVS	

1.10 -

,* * ingen in Ngen in n # **

, " An

13-43 i -----÷ į SAMPLE PROBLEM - STANDARD LOCK DETAILS MITH STANDARD LOADING ĩ ł -000 INPUT UNIT STRESS CUEFFICIENTS 000 SHEET 525 5H 0.0 0.0 0.0 0.0 FW 0.0 0.0 f B 0.0 0.0 SPAN UNII LOAD PEC FI .

ł

SAMPLE PRUDLER - STANDARD LOCK DETAILS MITH STANDARD LOADING

999 BARBEL UNIT SIRESS CCEFFICIENTS 409

į

ł

* *******

,

でいる

÷

そうまちまう ちょうちょう

1

1445	63.001	u00*19:	1.5481-04	5.0001-01	1.5986-04	1.54RE-04
STHETA	124.	-126.		.0		.0
UNIT LOAD	14	þf	1011101	2H4	THA	•

*

第二日、日本、日本、日、日本、日本、日本の書の書、来

1

大学 ふう とき

ł

......

1.1

13-44

1.00

1

ある 「あっ」」」、 アンドアンション ある

「「「「「」」」」」」」「「「」」」」」」

i marti

1.1

ì

i

第三日 二十二十二日

東三東人

į

ţ

and the part of the second

The second second second second

4

-

------1 315. -375. 7560. 3787. JIRO. SPHI -REV 20161 -2016. -315--1384. CONTRESS SUMMARY BANREL DOO LOAD STHETA SPHI -630. -- 315. 1384. . •0 .0 1111.01 SHA 14 u d ANA

SAMPLE PRUBLEM - STANDARD LOCK DETAILS WITH STANDARD LOADING

1

and the start of a local start

'n

> 0999. -1439. 0. 1304. -1384. 1560. CASE 18

-

-5534. + + 06 + - 639.

CASE 20

13-45

1

a sur sur

SAMPLE PRONLEM - STANDARD LOCK DETAILS WITH STANDARD LUADING

000 CENTER HINGE PIN UNIT STRESS COEFFICIENTS 400

1.003 1.796 1.600 1.000 1.000 301.1 0.0 ALIC 0.0 0.0 0.0 0.0 0.0 1.000 1.000 0.0 0.0 CIX8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.500 0.500 0.500 0.500 0.0 0.0 CIAN 0.0 0.0 0.0 0.0 0.0 000-1 0.0 1.000 1. 000 -1.796 0.0 -1.796 0.0 0.0 1.000 0.0 +14 0.0 1.000 1.000 0.0 0.0 RX4 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.500 0.500 0.500 0.500 0.0 0.0 0.0 0.0 0.0 0.0 c.0 -0.0 1.062 0.0 0.0 FALS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 1.062 1.762 FEXE 1.002 1.042 1.062 C.J 0.6 4.4 0.0 0.0 0.0 0.0 101.0 0.0 FRAIQ FOLD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C.0 0.0 0.0 1.367 1.367 1.367 1.167 1.367 0.0 0.0 0.0 0.0 0.0 0.0 0.0 +1C.0 0.039 0.039 0.039 0.0 F814 F10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 161.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 F885 1.367 1.367 1.367 -1.367 1.367 0.0 0.0 0.0 0.039 0.0 0.0 0.0 0.0 0.039 0.039 0.039 0.0 0.0 0.0 0.0 0.0 0.0 0.0 FBXA FBLA FAS 0.0 1.062 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.062 1.062 1.062 -1.062 -1.062 0.0 0.0 0.0 C.0 0.7 0.0 0.0 0.20% 0.204 L030 FAA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1/20810 224422/1 1/241124 1/241184 1/241182 1244 1/206 20 AV2 +0 10 AVS

13-46

1.0

SAMPLE PROPLEM - STANDARD LOCK DELAILS WITH STANDARD LDADING

100 N	
=	1
	1
NGE	
-	
IER	1
143	12
-	1
-	1.5
2	-
AHI	
SUPHAAR	100
YAAPPHUS SS	200
TRESS SUMMARY	1.1
C STRFSS SUMMARY	

Ŧ

100.00

1

.

.

i

0 FBXE 0 FBXE 0 101753. 0 903. 0 903. 0 903. 0 2124. 0 2124. 0 2124. 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L L L L L L L L L L L L L L L L L L L	FAIO FBAIO FBAI FAIO FBAIO FBAI 0. 13441. 0. 4272. 0. 1162. 0. 1162. 134. 0. 134. 0. 134. 0. 134. 0. 134. 0. 159. 0. 159. 159. 0. 159. 150.	6000000000000000000000000000000000000	518655 518655 19511 19511 0. 0. 13841. 13441. 0. 0. 13841. 0. 4272. 0. 0. 4272. 0. 4272. 0. 0. 4272. 0. 4272. 0. 0. 4272. 0. 1162. 0. 0. 1162. 0. 1162. 0. 0. 1162. 0. 1162. 0. 0. 1162. 0. 1162. 0. 104. 0. 1162. 0. 1124. 0. 11341. 0. 1162. 0. 104. 0. 1162. 0. 1124. 0. 0. 1162. 0. 0. 104. 0. 0. 1192. 0. 1194. 0. 0. 1192. 0. 1194. 0. 0. 0. 0. 0. 104. 0. 0. 0. 0. 0. 0.	FAA FBIA FAI FAI
--	---------------------------------------	--	---------------------------------------	---	--

FCA. 15635. FC4. 20473. FC13. 25121. FCN. 16126. -

							41. St. 1967 - 199	1				the set of the	
	513	- Uli	1AJ	£ Å S		-	613	11xd	11174	114	11	1 Å	5 V.S
1	0.454	0.0	0.0	0.0	9*0	0.0	1.009	0.0	1.000	0.0	u*0	0.0	0.0
1	0.454	0.0	0.0	0.0	0.0	0.0	1.000	0.0	1.000	0.0	0.0	0.0	0.0
1	0.815	0.0	0.0	0.0	0.0	0*0	-1.000	0.0	000.1	0.0	0.0	0.0	0.0
1	519.0	0.0	0.0	0.0	0.0	0.0	C00.1-	0.0	000%	0.0	0.0	0.0	0.0
1	0.0	0.263	0.227	0.0	0.0	1.000	0.0	0.0	0.0	c.0	2.640	0.0	0.82
1	0.454	0.0	0.0	0.0	0.0	0.0	1.000	c.0	1.000	0.0	0.0	0:0	·
	0.0	0.0	0.0	0.454	1.000	0.0	0.0	1,000	0.0	108.0	0.0	0.628	0.0
-	0.0	0.263	0.227	. u. n	0.0	0.00.5	0.0	0.0	0.0	0.0	2.640	0.0	0.9
-	0.0	0.263	0.227	0.0	0.0	0.0	0.0	0.0	3.0	0.0	0.0	0:0	0.3
	0.454	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
38	0.0	0.0	0.0	0.454	0.0	0.0	0.0	0.0	0.0	0.0	v.0	0.0	0.0
	0.0	0.263	0.227	0.0	0*0	0.0	0.0	0.0	0.0	0.6	0.0	0.0	0.0

CON CENTER MINCE PLU UNIT STRESS COEFFICIENTS CON

SAMPLE PRUBLEM - STANDARD LOCK DETAILS WITH STANDARD LOADING

-

13-45

-

1.20

1

SAMPLE PRURLEP - STANDARD LOCK DETAILS SITH STANDARD LDADING

ŝ,

東京の東京市

R.

KN 2 6

et .

	811465	000000	273	;	•	••	.0	
	DIN PEAS		114	.0	•	•0	-2	
	JOINT J JOINT J STRESS IPSII		115	•0	••	••		
	01.15-CTR	00000000	E	3.	·.	••	3.	
		000000000	117.	.52101	.5216	850.	850.	
	4811165		1111	•0	•0	•••	••	
E PIN co	CAU BE	00000000	-	10125.	3125.	- 996.	- 856.	
IEN HING	оососсоссо 18. н160	0.0000000	5	;	•	••	9.	
SHELT S	9 14 50	0000000			•0	•0	•0	
F 55 SUM	0 0 0 0 0 0 0 0 0 0 0 0 0	000000	F V 2	0.	••	·.	.0	and the second
000 STA	00000	00000000	1 Å J	. •0	••	••	•0	ALL NO ALL
	F ARM	00000000	EI J	•0	•0	•0	•0	A LOW ALL THE
	18. HING	0000000	F12	.192.	.6151	693.	693.	the second se
	9-51 1U9		FIL.	.0	•0	•0	•0	and the second sec
	0 ~ 0 0	000	1960	120810	1/296	10	8112 B	
1		1		-	1	1		

	•0	••	.0	.1125	.0	.,	2211.	••	9.	••	.0	
.0	.0	•0	-2	.0	•	1656.	••	••		•0	.0	1656.
•0	••	••		1036.	;		1616.	;	.0	•0	•0	.51211
	••	••	3.	••	•	1614.	•0	•	3.	•	•0	1014.
10125.	.5216	.058	.056	•	2000-	0.	••	•	.0	•0	0.	14950.
•0	•0	••	••	•	3	2000-	3	3	•2	••	•0	2000.
10125.	3125.	- 996.	- 856 -	;	2606.	•0	;	;	• ?	:	•••	11550.
;	•	••	9.	2670.	o.	0.	2670.	•	.0	•		
· .	•0	•0	.0	••	•0	2000.	••	•	•0	••		. 2005 .
.0		·.	0.	.0	•	908.	.0	;	•0	041.	· e	1595.
. •0	•0	••	.0	. 709	••	• • •	. 209	.165	.0	•••	.111	2075.
.0	•0	•0	•0	102.	•0	.0	102.	.0.05	.0	•0	1005	14042
.1922	.6141	.193.	. 693.	0.	.906	.0	••	•0	647.	•0	•0	.956.
.0	•0	•0	•0	.0	۰۵	876.	.0	•0	•0	624.	.0	1500.
/20810	1/296	10	12114	102	124412	124482	2 1 2	50	14414	/ 24HX4	AV4	1.356.1

13-49

FC9P. 19347.

FLIL 23761.

F(ba. 13866.

13-50 0.0 3.0 0.0 3.162 3.162 0.0 0.0 0.0 0.0 0.102 3.0 FULL FULL FULS FULS FUR 10.00 -0.142 0.0 0.0 0.0 0.0 201.0 0.162 0.0 0.162 0.0 -3.162 0.0 0.154 0.0 1.946 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 * 6 * 1 0.0 3.0 0.0 290.0-C.0 200.0-0.0 0.0 290.0 \$60.0 *** CENTER HING* PIN IMIT STRESS CUFFFICIENTS *** \$60.0 FAL 0.0 0.0 0.0 201.0 0.0 Fer 0.0 3.0 0.0 0.0 0.0 ... i 115.0 115.0 · · 0 c.0 1.0 u.0 ..0 FBX 0.0 0.323 6:6.0 SAMPLE PRUGLEM - STANDARD LOCK DETAILS MITH STANDARD LOADING FWY 0.0 0.0 0.0 1.1 0.0 0.0 0.0 9.323 0.0 FW21 FW22 FW23 FWX 0.323 0.0 0.0 0.323 0.0 0.0 0.323 0.0 0.0 152.0-6.323 0.0 0.289 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.732 1.732 0.0 0.0 0.0 0.0 0.0 0.0 FAVI FOY? 0.274 0.0 0.0 0.0 0.0 0.0 0.665 0.0 0.0 0.265 0.665 0.665 0.665 0.0 0.0 0.0 E/24HX2 01842/V 1/241172 1040 1/206 1244 10 02 AV2

SAMPLE PROBLEM - STANDARD LOCK DETAILS MITH STANDARD LDADING

4

ACCESSION AND ADDRESS

.

-

		ł
		ł
4	٢	ļ
2		ł
-	•	ł
-	•	ł
H	ė	ļ
L'I	2	ļ
2	-	ļ
1	5	Į
a	c	i
-	-	Į
3	ī	l
ų	G	ł
		-
*	•	1
2	-	1
2 0.11	1 1 1	
T ALLA C	- ANAL	第二日 第二日 ちょうちょう
T ALLA L	- AMALLI	第一日 第二日 あっとう ちょうしょう
" N TT THIN T	1 AMADDIC	「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」
Country of	A RAFFICUCE	「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」
T ULINALUN T	I AMATRIC CC	「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」
Cee cumulu 1	I TRAFFIC CCT	「「「「「「」」」」
Tuese country ?	I AMATEULC CC THI	「「「「「「」」」」
T VULLE COMMEND &	I REFERENCE CE THIS	「「「「「」」」」」
CTUCCE COMMEND OF	A RAFFILLUE CE TALE	「日本の子の」の「日本の」」の「日本の」」
T CTOCCC COMMINA C	I ANATHUL CUTATU DO	「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」
The Paster Cumula P	A TRATILUC CUTATU DOG	

A REAL PROPERTY AND

10-01	
. M	
• •	• •
JOINT J GUSSETS	518655
	• •
PLATEWELD-MUNNING PL TO GUSSET	0 STAF55

LOAD

•0	••	•0	.0	433.	••	.0		865.
•	••	.0	.0	••	.0.	324.	.0	324.
1640.	\$36.	-130.	-138.	•0	324.	.0		2195.
•	••	••	.0	0.	•0	108.		100.
•	••	••	••	\$180.	••	•0	.0812	10160.
942.	.191.		-18-	•	190.	ú.	.5	1287.
	°	ċ	•0	•	•0	10.		10.
•	;	• • •	•0	1525.	.0	.0	1525.	3049.
ċ	•	•0	•0	A62.	ċ	.0	.508	1725.
•	.0	.0	•0	0.	••	646.	•0	646.
3270.	. 9001	-512-	-515-	•0	\$46.	•0	•0	.1164
.0	.0	•0	.0	•0	•0	578.	•0	578.
•0	•0	•0	•0	+024.	•0	•0	+474+	9249.
•0	•0	•0	.0	ů.	•0	548.	•0	548.
6133.	2078.	505.	565.	.0	.0861	.0		11272.
1/20810	1/286	14	A1121	02	1/24422	1/24442	AV2	CASE 1

FBG3. 4546. FuGD. 13295.

FWMP. 14322.

FEMP. 11820.

081.2 0.0 C.0 441.0 3.0 0.0 3.169 0.0 25-51 FT2 FB21 FB22 FW21 FW22 FWX 0.189 0.0 0.3 6#1.0 0.109 0.0 U.189 C.658 0.298 0.0 0.124 0.0 C.528 0.0 0.0 0.0 0.0 0.0 0.0 ++0.0 0.0 110.0 C.0 ++0.0 0.044 6.3 0.044 0.0 0.0 0.0 0.0 0.0 0.278 0.0 0.298 3.0 0.0 895.0 0.0 895.0 0.0 805.0 2.332 6.0 0.0 2.332 0.6 0.0 0.0 111 1.0 0.0 0.0 C.J 000 CENTER MINGE PIN UNIT STRESS CUEFFICIENTS 000 9.4 0.0 0.0 **U**•*i* 0.0 0.139 0.0 FWX 0.189 0.0 0.0 0.0 0.0 C ... 「おうとおう」で U.189 C.O 0.528 0.C C.0 FIL FIZ FOSH FOLL FOLZ FELD FULL FULZ FULD FUT -0.1 P91.0-C.189 C.6 -0.189 C.U U.139 C.J 0.0 0.311 0.0 0.0 0.0 0.0 111.0 SAMPLE PROBLEP = STANDARD LOCK DETAILS WITH STANDARD LOADING 0.0 0.0 0.0 8(0.0 0.0 0.0 0.0 0.0 -0.038 0.0 C.0 880.0-0.038 3.0 0.038 U.O 0.0 0.101 0.0 1.435 0.229 0.0 0.0 0.0 0.0 9.229 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25 ..0 0.255 0.0 0.0 -0.255 0.0 0.255 6.0 -0.255 0.0 0.0 0.255 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1/24412 1/20810 1/2AHX2 LUAD 1/295 AHZI AV2 20 IU

SAMPLE PROBLEM - STANDARD LUCK DETAILS MITH STANDARD LOADING

÷

一下第二十年 二十二

-

100

ì.

1000

.

UDD STRESS SUMMARY CENTER MINGL PIN 101

	LOWLA BLARING HOUSING-JUINT IL .	STRESS o	o (154)	
000000000000	•	•	•	000000000000000000000000000000000000000
άθαιοοοροοροφούρουνοιοιορούουνοι το	• UPPER BEARING HOUSING-JGIME 3	o 518ESS	6511	000000000000000000000000000000000000000

	2	2	2	0	0	0							
F.K.			1		1		15		11			M	2
2745	1913	590	160	160	0	378	0	0	1203			13-1	•
124	0	•	0	0	0	0	1055	2	1055				
4 27a	\$11	131	11		0	18	0	0	145				
4 174	0	e.	0	0	S	0	548	2	248				and the second se
5 2	110	116	\$\$2	\$\$3	0	565	0	0	1>05		5746.		+210+
-	0	0	0	0	0	•	545	0	545				- 114
8	0			2	526	3	315	226	168		4	-	
	1	2	,	2	9	,	8	2	6 13				
FWX							37		11				
FWT	2	3	3	0	505	3	0	\$05	1009				
(7=	1913	065	341-	-140	0	37.8	C	0	2560	•			
42.2 M	0	3	0	0	0	S	1355	0	1355				
1178	2	5	3:	0	9001	0	0	1006	2013				
9 (79	384	110	217	- 32	0	15	0	0	\$15				
9 2 2 8	0	3	0	2	0	0	113	0	117				
1 178	0	2	0	0	119	0	2	110	1222				
ASH F	0	0	0	0	1585	0	0	1202	1662				
13 21	185	961	\$13	216	0	505	0	0	1455		. 6 9 3 .	• 25	132.
	0	0	0	0	0	0	29	0	. 60	1376	-	61	~
FII							2		5	-	·HIU.	= NH	= [IHM s
LOAD	1/29410	1/206	10	1244	05	1/24112	1/241182	AVA	1 358 1				-

i,

A

.

13

-

COMPANY NAMES

1.000

	21-54	0.247	0.241	0.0	0*0	0*0	1.2.0	0*0	0.0	0.0	0.0	0.0	0.247	0.0	0.0	0.0	. 296.0-
	11=11	0.353	656.0	0.0	0.0	0*0	155.0	0.0	0.0	0.0	0.0	0.0	151.0	0.0	0.0	0.0	0.552
	2	0.151	0.153	5.662	0.602	0.265	151.0	0.172	0.265	0.0	u*0	6.265	0.153	0.172	0.265	0.0	\$\$0*0
ILMIS COU	101	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
COLEFIC:	FA	0.0	0.0	0.0	0*0	0.616	0.0	195.0	0.616	6.0	150.0	0.616	0.0	0.463	0.616	0.0	0.0
STRESS SHEET S	Få	9.362	0.162	101.1	3.301	010.0-	0.362	100.0	610.0-	0.0	190.0	v10.0-	0.362	190.0	610.0-	0.0	011-0
IND 354	610	265*0	0.592	2.360	2.360	600.0-	265.0	150.0	000°0-	0.0	150.0	-0.039	265.0	150.0	600.0-	0.0	101.0
H 303	474	055.0	0550	1.196	1.196	0.0	0.450	0.0	0.0	000-1	0.0	0.0	0.450	0.0	0.0	0.0	PE1.0
	842	054.0	0.450	1.196	961.1-	0.0	0.450	0.0	0.0	1.000	0.0	0.0	0.450	0.0	0.0	0.0	811.0
	¥5=¥12	155.0	0.551	0.0	0.0	0.0	0.551	0.0	0.0	0.0	0.0	0.0	155.0	0.0	0.0	0.0	861.0-
	827	1.102	1.102	0.0	0*0	0*0	1.102	0.0	0*0	0*0	0*0	0.0	1.102	0*0	0.0	0.0	121.1
AMPLE PRUS	LUAD	ZPRLD	1296	10	1244	02	124412	2 AHX2	AV2	(24H13)	EXHKS/	50	124H14	ZAHR4	AVA	05	24H15

SAMPLE PAULEN - STANDARD LOCK DETAILS HITH STANDARD LMANING

ş 1 e esecondes 0 - 5 -352. : 3 ·105c .0 i h +11+ 112. • ? .0 * * 6 * : FW5-12 : .0 • 3574. +1. 503. . \$ 920. :0 is .0 0 0 106. :0 . .0 : .0 : 1103. : 12-15 218. .112 : -6602. 245. 503. • :: 1549. .18. 512. 512. 106. 306. 344. 108. : :0 3 : ! 11 ::-3. .3 :5 • :, ., :0 • • : 3 : : : .; : : 1013 000 514555 SUMMANY MINGE 00 1170. 1170. E 3 15. ... 5 3 7293. .9:6 .0 •0 1645+ 656. : ; 1645. 5 : ł ł 28. .0 10832. 14029. 11914. -1.9. .18 -19. .0 - 21. 16. 516. 122. - 27. 1131. 124. .0 . ant. 2000. 3665. -51 -11-14. 15. -11-844. .18 ; 0. 2006. - 24. 1184. 114. - 54. • 1050. 2006. ***** F10 0* 0* 0* 10. : 641. ., :0 265. 3 3 1521. . Jue 3 0 :0 0 1406. 1527. 4556. 878 10. 4726. 641. 0 4556. 265. .0 .0 0 0. 0.0 .0 :5 1406. -1527. -1521-.0 .006 812 -10. 0 9118. 785. •0 : .0 •0 •) .0 0. .6125 0 0 .0 :0 212-24 1102. 1722. 129. .0 0 14505. 0 : .0 :0 0 1570. 0. .0 2204. 3444 . :0 11158. 0 :0 417 1/241183 1/24HX5 1/2AH24 1/2AHX4 1/2AH25 1/24423 1/20810 1/2AHX2 1/24422 LUAD AVS AHZI CASE 1/296 AVA 50 AV2 10 20 10

13-55

F= 14047.

RY9 RA1 RA9 R41 R49	0*0 0*0 0*0 0*1 0*420 0*42	0.0 0.0 0.0 0.0 0.0	11.1 SEI.1. 0.0 0.0 0.0	CI.I 2EI.I- 0.0 0.0 0.0	1.000 0.5.0 0.5.0 0.0.1	0.0 0.0 0.0 0.0 0.0	0.0 0.0 1.000 1. 000 0.0	1.000 0.500 0.500 0.0	U-0 0.0 C-0 0.0 000.1	00" 0"0 0"0 0"0 0"0	0.0 0.0 1.000 -1.000 0.0	1.000 0.0 0.0 0.0 0.0	1.000 0.500 0.500 0.0 0.0	0.0 0.0 0.0 0.53 0.45	C.0 0.0 000.1- 000.1 0.0 0	1.0 0.1 0.500 0.500 0.0 1 1	1.0 0.0 0.000 0.00 0.00 0.0	0.0 0.0 0.0 0.0
RXB	0.0	0.0	0.0	0.0	0.192	0.0	-1.000	261.0	0.0	0*0	-1.000	0.0	0.192	0.0	-1.000	261.0	1.436	0.0
882	0.0	0.0	0.0	0*0	0.792	0*0	1.000	0.792	0.0	0*0	1.000	0.0	191.0	0*0	1.000	261.0	1.438	0.0
0VD	PRLD	296	10	1200	02	2 4 4 2 2	24HX2	112	03	241123	EXHX3	ENN	•0	241174	ZAHX4	TUL	50	2 2 4 4 7 5

10.000

1 2.4 12

100.001

i i

-

-

1.4

i

A set man and

-

13-51

٠

۲

SAMPLE PRUSEEM - STANDAND LOCK DETAILS MITH STANDARD LOADING

•

10001-100

a set the set

ż

-

.

watching and the same is to say on the line of

10.10

A manager of the second of the second

9	
-	
-	
C	
-	
-	
C	
-	
-	
3	
œ	
-	
- 2	
2	
-	
-	
-	
wn.	
-	
-	
÷.,	
-	
-	
-0	
**	
-	
-	
-	
-	
Add.	
-	
-	
100	
-	
C	
-	
1.00	
OI	
100	
-	
-41	
C.	
7	
-	
300.	
1.78	
-	
. 4 1	
14.1	
14.1	
-	
-	
10hr	
0	
100	
-	
Sh .	
1.00	
-	
-	
Sec.	
*	
-	
-	
UN.	

COO STRFSS SUMMARY MAIN MINGE PIN COO SHELT SIG

REACTIONS

*

f

A21 R27	4556. 4556.	1476. 1476	- 365. 54.	- 465. 945	• • • • •	115 .334	ite t	C. C	•••	265. 265	0. 1	•	u.	041. 641	0.	э. с	U. U	14. 17	0. 0	· · · · · ·	
6×9	'n		÷	••	.6661	;	-2000.	1335.	•0	•0	- 595-	0.	.6.24	.0	-1425.	950.	.16	;	.15.	.16	
IXB	•0	·.	• • •	••	.4111	· • •	2000.	1335.	ć,	• •	265.	•	.056	.0	1425.	.056	.16	•	.51	.16	
679	•0	0.	•0	•0	2670.	.0	·.	2670.	350.		.0	350.	1900.	.0	•0	1 900.	100.	•0	•0	100.	
R KG	•0	с.	•0	•0	2115.	•0	-2000.	2115.	.0	0.	-265.	•0	150%	• • •	-1425.	1505.	144.	•0	.41-	144.	
RX7	•0	.0	.0	.0	2115.	÷5	2000.	2115.	• •	.0	265.	.0	1505.	.0	1425.	1505.	144.	••	15.	144.	
LOAD	120810	12245	10	12114	20	214421	1 6 81182	112	10	£ 2447 J	(ZAHE)	EVA	56	1241174	124484	444	05	1/2AH25	1/24HX5	4V5	

SATPLE PRUMEN - STANDARD LOCK DETAILS MITH STANDARD LIADING

Saint Same

COS MAIN HINGE PIR UNIT SIRESS COLFFICIENTS C.O.

0.0 7.158 0.0 $r.0$ 0.514 0.0 0.0 0.061 0.0 0.158 0.0 0.0 0.0 0.0 0.0 0.0 0.061 0.0 0.0 0.0 0.0 0.0 0.0 0.061 0.0181 0.0 0.0 0.0 1.251 0.0 0.3212 0.0 0.0 0.0 1.251 0.0 0.3212 0.1126 0.0 0.1214 0.0 1.251 0.0 0.3122 0.1126 0.0 0.11141 0.0 0.1214 0.0 0.0 0.0 0.1126 0.0 0.11141 0.0 0.0 0.0 0.0 0.1126 0.0 0.1141 0.0 0.0 0.0 0.01117 0.1126 0.0 0.0 0.0 0.0 0.0 0.01117 0.1126 0.0 0.0 0.0	FAN FBJB FBXD FAC	FBKA FAC	FAC		Ferc		0*1	FEIC	Fert	Fur	and a	1.11
0.0 $n.158$ 0.0 $n.5114$ 0.0 <	AL											
0.0 $n.15s$ 0.0 3.0 $n.51s$ 0.0 0.0 0.0322 0.1 0.10 0.1 0.1 0.1 1.257 0.0 0.322 0.1 0.10 $0.125s$ 0.511 0.0 1.257 0.0 0.322 $n.11k$ 0.0 $0.125s$ 0.10 1.1251 0.0 0.322 $n.11k$ 0.0 0.1 1.1141 0.0 0.541 0.0 0.10 0.10 0.11141 0.0 0.041 1.251 0.0 0.0 0.10 0.1141 0.0 0.01141 0.0 0.01174 0.0 0.0 0.1141 0.0 0.0 0.01174 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.454 0.0	0.0		0.0	1.158	0.0	0.0	\$15.0	0.0	0.0	0.081
0.0 0.0 0.0 0.0 0.1251 0.0 0.1251 0.0 0.1251 0.0 0.1251 0.0 0.1352 0.1156 0.0 0.254 7.511 7.0 0.090 1.257 0.0 9.0 0.156 0.0 0.254 7.511 7.0 0.941 0.1156 0.0 0.1 1.1141 6.0 7.0 0.941 0.116 0.0 0.1 1.1141 6.0 7.0 0.941 0.10 0.1244 0.411 0.0 7.0 0.541 0.0 0.0 0.0 0.1143 0.0 0.0 0.114 0.0 0.116 0.0 0.0 1.1143 0.0 0.114 0.0 0.10 0.10 0.1143 0.0 0.0 0.0 0.114 0.116 0.0 0.141 0.0 0.0 0.0 0.0 0.118 0.10 0.143 0.0 0.0 0.0 0.0 </td <td>0.0 0.0 0.0 0.0</td> <td>0.454 0.0</td> <td>0.0</td> <td></td> <td>0*0</td> <td>n.158</td> <td>ú*0</td> <td>0*0</td> <td>115°U</td> <td>0*0</td> <td>0.0</td> <td>190.0</td>	0.0 0.0 0.0 0.0	0.454 0.0	0.0		0*0	n.158	ú*0	0*0	115°U	0*0	0.0	190.0
3.0 0.400 0.0 0.511 0.0 0.312 0.0 n.111 0.0 0.234 7.511 7.0 0.090 1.257 0.0 9.0 0.158 0.0 0.734 7.511 7.0 7.0 0.041 7.112 0.0 0.1 0.1 0.1 0.0 1.257 0.0 7.135 0.0 0.1244 0.51 0.0 7.0 7.517 0.0 7.157 0.0 0.1244 7.1141 0.0 7.0 7.174 0.0 7.157 0.0 0.1244 7.0 1.143 0.0 7.0 7.174 0.0 0.0 0.0 1.143 0.0 0.0 7.0 7.174 0.0 0.0 0.0 0.0 0.0 7.1143 0.0 7.0 7.174 0.0 0.0 0.0 0.0 0.0 0.0 7.0 7.174 0.1116 0.0 0.0 7.1143 <	0.0 0.0 1.14 0.0	1.144 0.0	u*0		6.0	0.400	u*0	u*6	1.251	0.7	0:0	0.322
r.112 0.0 0.7.3.4 7.511 7.0 0.090 1.257 0.0 0.0 0.1158 0.0 0.1 1.111 0.0 7.0 0.541 0.0 -0.135 0.0 0.1 1.111 0.0 7.0 0.541 0.0 -0.135 0.0 0.1 1.111 0.0 7.0 0.541 0.0 0.10 0.10 0.1114 0.0 0.1 1.113 0.0 0.0 0.179 0.10 0.10 0.1114 0.0 0.0 0.0 0.119 0.1 0.119 0.0 0.1179 0.1114 0.0 0.0 0.1179 0.1114 0.0 0.0 0.1179 0.1114 0.0 0.0 0.0 0.0 0.1179 0.11 0.10 0.1114 0.11 0.1114 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 1.144 0.0	1.144 0.0	0.0	1	0.6	0.460	· U*0	0.0	1.291	0.3	0.0	0.322
9.0 $n.158$ 0.0 $n.511$ $n.0$ $n.0$ 0.541 0.0 -7.157 0.0 0.7 1.111 6.0 7.0 0.541 0.0 -7.157 0.0 0.7 1.111 0.0 1.257 0.0 -0.116 0.0 0.1244 0.711 0.0	0.041 0.544 0.0 0.054	0.0 0.054	0.054	1.	n.176	0.0	1.2.4	115.1	0.0	060*0	1.257	0.0
-7.357 0.0 0.1 -1.114 6.0 7.0 0.544 9.0 C.1116 0.0 0.20 0.204 7.511 0.0 7.257 0.0 0.0 0.0 0.1244 7.0 0.0 7.0 0.0 7.0 0.0 0.0 0.0 1.1143 0.0 0.0 7.0 7.0 0.0 0.0 0.0 1.1143 0.0 0.0 7.174 7.0 0.0 0.0 0.1244 0.0 7.0 0.0 7.0 7.0 0.114 0.0 0.114 0.0 7.143 0.0 7.0 7.0 0.114 0.0 0.114 0.0 7.143 0.0 7.0 7.01 0.1146 0.0 0.1143 0.0 7.143 0.0 7.0 7.01 0.1146 0.0 0.1144 0.0 7.143 0.0 7.01 7.01 0.1146 0.0 0.1143 0.0 <td< td=""><td>0.0 0.0 0.00</td><td>0.0 121.0</td><td>0.0</td><td></td><td>0.0</td><td>0.158</td><td>u*0</td><td>u*u</td><td>v15.0</td><td>0.0</td><td>0.1</td><td>190.0</td></td<>	0.0 0.0 0.00	0.0 121.0	0.0		0.0	0.158	u*0	u*u	v15.0	0.0	0.1	190.0
C.117b 0.0 0.234 0.511 0.0 0.1257 0.0 0.1257 0.0	· 0*0 0*0 900*1- C*0	0*0 0*0	0.0		256.0.	0.0	1.0	19191-	0.0	1.0	1.547	0.0
9.0 0.0 0.1 0.0 0.1 <td>0.041 0.504 0.0 0.054</td> <td>0.0 0.054</td> <td>0.054</td> <td></td> <td>c.176</td> <td>0.0</td> <td>0.204</td> <td>115.0</td> <td>0.0</td> <td>080-0</td> <td>1.251</td> <td>0.0</td>	0.041 0.504 0.0 0.054	0.0 0.054	0.054		c.176	0.0	0.204	115.0	0.0	080-0	1.251	0.0
0.0 0.0 <td>1.0. 0.0 1.0.C</td> <td>0.0 0.154</td> <td>0.754</td> <td>1</td> <td>0.0</td> <td>0.0</td> <td>+02. n</td> <td>0.0</td> <td>0.0</td> <td>1.0</td> <td>0.0</td> <td>0.0</td>	1.0. 0.0 1.0.C	0.0 0.154	0.754	1	0.0	0.0	+02. n	0.0	0.0	1.0	0.0	0.0
-0.352 0.0 0.0 -1.1143 0.0 0.0 -0.1144 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.13 0.10 0.114 0.0 0.0 0.0 0.0 0.0 0.0 0.116 0.10 0.114 0.114 0.0 <t< td=""><td>0.0 0.0 1.000 0.0</td><td>0.0 800.1</td><td>0*0</td><td></td><td>0.0</td><td>1.35°</td><td>0.0</td><td>0.7</td><td>1.143</td><td>0.0</td><td>0.0</td><td>611.0</td></t<>	0.0 0.0 1.000 0.0	0.0 800.1	0*0		0.0	1.35°	0.0	0.7	1.143	0.0	0.0	611.0
0.0 0.0 0.1734 0.0 7.0 0.0 0.1 0.1 7.116 0.0 0.124 0.511 0.0 0.0 0.0 0.0 0.0 0.15 0.1 0.1 0.1 0.0 0.0 0.0 7.116 0.0 0.0 1.113 0.0 0.0 0.0 0.0 70.155 0.0 0.114 0.0 0.0 0.0 0.0 70.176 0.0 0.114 0.0 0.0 0.0 0.0 0.116 0.0 0.114 0.0 0.0 0.0 0.0 0.1176 0.0 0.114 0.0 0.0 0.0 0.0 0.1176 0.0 0.114 0.0 0.0 0.0 0.0 0.1176 0.0 0.114 0.0 0.0 0.0 0.0 0.120 0.0 0.1149 0.0 0.0 0.0 0.015 0.120 0.0 0.1149 0.0 0.0 0.0 0.015 0.120 0.0 0.1149 0.0 0.0 0.0 0.0 0.120 0.0 0.0 0.0 0.0 0.0 0.0 0.1210 0	0.0 -1.008 0.0 0.0	0*0 0*0	0.0		-0-352	6.0	0.0	()1.1-	0.0	0.0	+11.0-	0.0
7.116 7.24 0.511 7.0 7.10 7.24 0.511 7.0 7.11 7.0 7.12 7.0 7.1 7.0	220.0 0.0 0.0 140.0	20°0 0°0	\$\$6*0		0.0	0.0	101.0	0.0	0.0	0.0	0.5	1.0
0.0 0.15 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 -0.15 0.0 0.0 0.114 0.0 0.0 0.547 0.0 0.0 -0.15 0.0 0.144 0.0 0.0 0.0 0.547 0.0 0.16 0.254 0.511 7.0 0.0 0.257 0.0 0.0 0.120 0.0 0.156 0.0 0.0 0.257 0.0 0.0 0.152 0.0 0.156 0.0 0.0 0.0 0.0 0.0158 0.152 0.0 0.156 0.0 0.156 0.0 0.0 0.0 0.152 0.0 0.156 0.0 0.0 0.0 0.0 0.0 0.152 0.0 0.151 0.0 0.0 0.0 0.0 0.0 0.152 0.0 0.141 0.0 0.0 0.0 0.151 0.0 0.121 0.10 0.10 0.151 0.0 0.0 0.0	0.041 0.544 0.0 0.054	0.0 0.054	0.054	1	3.176	J*U	1.204	115.0	0.0	0.000	1.251	1.0
-0.135 0.0 0.0 1.113 0.0 0.511 0.0 0.517 0.0 0.116 0.0 0.244 0.511 9.0 0.0 0.257 0.0 0.120 0.0 0.224 1.139 0.0 0.0 0.257 0.0 0.0 0.049 0.0 0.156 0.10 0.0 0.0 0.013 0.1320 0.0 0.156 0.156 0.16 0.156 0.0 0.01 0.1320 0.0 0.156 0.16 0.16 0.171 0.10 0.010 0.1320 0.10 0.156 0.0 0.16 0.10 0.0 0.0	0.0 121 0.0 0.0	0.454 0.7	L.0		0.0	9.158	··.	0.0	+15° J	0.0	0.0	180.0
0.1 7.1 0.6 0.51 7.6 0.0 0.557 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0	c*0		-0-35:	0.0	0.0	(1 1 1 .	0*0	0.0	0.547	0.0
0.120 0.0 0.2.1 1.1.13 0.0 0.0 0.155 0.0 0.155 0.0	0.041 0.504 0.0 0.054	0.0 0.054	0.454	1	0.176	0.0	10.364	145.0	0.6	060.0	1:22.1	0.0
0.0 0.049 0.7 7.0 7.158 0.0 0.0 0.725 -7.152 0.0 0.7 -1.143 0.0 0.7 3.761 0.0 0.120 1.0 0.734 1.039 2.0 0.0 0.7 5.257 0.0	0.041 0.916 0.0 0.05	+\$(*0 0.0	+\$(*0		0.320	0.0	3.2.4	1.739	0.0	.0.0	152.0	0.0
	0.0 0.0 0.0 0.0	0.139 0.0	0.0		0*0	650.0	0	0.0	0.158	0.0	0.0	\$76.0
0.120 1.257 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0*0 0*0 800*1- 0*0	0.0 0.0	0.0	1	-4.152	0.0	4.0	11143	0.0	6.0	196.0	0*0
	0.041 0.916 0.0 0.054	0.0 0.054	0.054		0.120	0.0	+004	1.039	0.3	0.0	152.0	0:0

13-58

SAMPLE USLEM - STANDARD LOCK DETAILS WITH STANDARD LOAD!

				:	;			;		••	:					;	.0			•0		
MI4 0	143	820	52	21.	117		16.				•		1	1	F	l.	ł			ĺ.		194
5 19511 0000000	E M	•0	0.	••	•	3356.		1094.	3350.	••	.0	-11-	••	2368.	.0	. 119.	2388.	-92	.0	12.	-92	13434.
L D-HING 518ES	141	••	.0	••	•0	240.	••	•	\$40.	.0	•	.0	••	111.	.0		111:	.0	••	.0	.0	823.
9.000000000000000000000000000000000000	FEXD	******	1104.	1102.	1102.	·.	1.28.	•	••	••		.0	:	3	.211	••	•	•0	12.	5	•0	110011
	619	;	· · ·	;	;	1525.	;	- 2286.	15251	۰,	;	-101-	••	1665.	• 2	- 1629	1045.	. 101	•	-86.	:+01	1123.
30000000	F AD	••	•0	••	ډ.	. 545.	•• •	;	545.	.11	•	0.	.11	. 986	• 7	·.	348.	.64	••		.94	2048.
	f b K C	1603.	. 464	.0.1	340.	· .	316.	••	.0	•	.1.	.?	•0	•	-522	.,	•	.0	;	••	0	1412.
E 55E 5 P 51 1 00000000	1910	•0	٠.	5	·.	.10.	•0	. 104.	.10.	•	•	-93.	•0	.,,((3.	-205-	334.	12.	••	-26.	175	347.
115	FAC	•,	.0	5	•0	144.	.0	•0	144.	.61	•0	0.	.61	.601	•0	•0	.01	-5	••	:5		542.
	FBXB	.1924	1419.	972.	972.	•0	.906	•0	•0	•0	261.	.0	.0	.0	647.	.0		0.	10.	.0	:0	9193.
	F D 28	•0	.0	• 0	0.	1346.	.0	-2016.	1346.	•0	•0	-261.	•0	. n56	.0	-1436.	-856	.26	•0	-16.		995.
	FAB	.0	¢.	.,	.0	. 601	•0	•0	104.	.11	•0	.0	14.	78.	0.	0.	78.	4.	.0	.0	.,	.112.
0 0 0	0+0	PALD	2PG	10	174	02	22114		142	60	6 1H4 3	2 4HX 3	503	10	72472	2AHX4	101	50	241125	2 AHXS	SVA	1 354

.

ł

SAMPLE PREDLEP - STANDARD LOCK DETAILS WITH STANDARD LOADING

OUT MAIN MINCE PIN UNIT SIRESS CONFEIGIENTS OUT

																	-			
Fut	0.0	0.0	0.0	0.0	0.00.0	0.0	11.135	0.068	0.0	0.0	\$11.0	0.0	0.068	0.0	\$61.0	0.06B	0.123	0.0	561.0	0.123
FWIZ	190.0	0.001	151.0-	151-0-	0.0	0.061	0.0	0.0	0*0	0.135	0.0	6.0	0.0	1.061	0.0	0.7	0.0	610.0	0.0	0.0
1243	0.0	0.0	C*0	0.0	1.534	0.0	1.068	\$15.0	0°0	0.0	1.008	0.0	1.534	0.0	1.068	1.534	116.0	0.0	1.068	116.0
1.1	260.0	260.0	180.0-	180.0	0.0	1.03?	0.0	0.0	0°C	110.0	C*U	0°0	0.0	260.0	0.0	0.0	0.0	c10.0	0.0	0.0
FUT	U*U	0.0	u*u	0.0	1.263	:.•u	1.516	19. 0	0.0	6.1	0.566	0.0	1.243	۲.۵	0.566	0.283	\$15.0	·	1.566	\$15.0
in)	1.0	r.0	u*6	6.0	\$61.0	v.0	676.0	561.0	0.0	0.0	0.364	c.0	561.0	u•u	0.269	511.0	0.245	0*0	0.769	\$*2*0
E#12	0.121	0.121	-3.105	571.0-	0.0	121.0	0.0	0.0	0.0	0.749	0.0	u.c	0.0	121.0	0.0	0.0	0.0	110.0	0.0	c•0
1141	0.0	0.0	0.6	0.0	\$09°C	0.0	1.129	404.0	0.0	0.0	1.328	0.0	10.604	0.0	1.329	1.664	1.207	u*0	1.326	1.207
6.9	011.0	0.310	-0.781	191.0-	0.136	011.0	0.617	0.136	0.0	0.688	0.610	0.0	911.0	0.110	114.0	1.336	604.0	\$50.0	0.670	0.669
FY	0.0	0.0	0.0	0.0	\$15.0	0.0	0.828	\$15.0	0.0	0.0	9.825	0.0	\$14.0	0.0	0.828	\$15.0	151.0	0.0	0.828	151.0
F12	616.0	0.313	0*6*0-	0*6*0-	0°u	616.0	0.0	c.0	u*0	0.828	0.0	0.0	0.0	616.6	0.0	0.0	0.0	0.115	0.0	0.0
£11	0.0	0*0	0.0	0*0	101.0	0.0	0.801	101.0	0.0	0.0	0.847	0*0	101-0	6.0	0.807	101.0	\$61.0	0.0	108.01	0.134
LUAD	/2PRLD	1/206	10	12:14	20	124412	12AHA2	AV 2	10	124423	(ZAHX3	E VA	50	124424	1/241124	444	0.5	1/24H25	1/241145	AV5

13-60

NICH - STANUARD LOCK DETAIL BOLT STRESS PET FT PET PET <th>DOD STRFSS SUMMARY MAIN, MINGL PIN . C.</th> <th>ополосоволого социальные полосоволоволоволоволоволоволоволоволовол</th> <th>FA FWZI FWZZ FWX FAY FAZ FWZI FWZZ FWX</th> <th>3139. 6. 1225. 4. 1. 324. 0. 618. 4.</th> <th>969. 0. 378. 4. 4. 105. 0. 191. 0.</th> <th>·0. ·259. U. U. 69. Q. ·130. U.</th> <th>-664. 0254. 0. 069. 0130. 0.</th> <th>877, 1773. U. 3'.U. 756. Q. 1426. Q. 182.</th> <th>620. U. 242. U. U. 64. 0. 122. U.</th> <th>1340. 2656. 3. 514. 1134. 0. 2136. J. 270.</th> <th>891. 1113. 0. 343. 746. 0. 1426. 0. 192.</th> <th>0. 6. C. 0. C. 0. 0. 0. 0.</th> <th>182. 0. 71. 0. 0. 19. 0. 36. 0.</th> <th>176. 352. 0. 71. 15C. C. 2AJ. J. 36.</th> <th>0. <u>0</u>. 0. 0. 0. 0. 0. 0. 0.</th> <th>634. 1262. U. 256. 538. C. 1015. D. 129.</th> <th>**2. 0. 172. 0. 0. *t. 0. 87. 0.</th> <th>955. 1892. 0. 383. 807. C. 1522. 0. 192.</th> <th>638. 1262. 0. 256. 538. C. 1015. 0. 129.</th> <th>\$1. 121. 0. 25. 51. 0. 97. 0. 12.</th> <th>7. 0. 3. 0. 0. 1. 0. 1. 0.</th> <th>50. 100. U. 70. 42. D. 80. 0. 10.</th> <th>· 61, 121, 0 25, 51. 0. 97. 0 12.</th> <th></th>	DOD STRFSS SUMMARY MAIN, MINGL PIN . C.	ополосоволого социальные полосоволоволоволоволоволоволоволоволовол	FA FWZI FWZZ FWX FAY FAZ FWZI FWZZ FWX	3139. 6. 1225. 4. 1. 324. 0. 618. 4.	969. 0. 378. 4. 4. 105. 0. 191. 0.	·0. ·259. U. U. 69. Q. ·130. U.	-664. 0254. 0. 069. 0130. 0.	877, 1773. U. 3'.U. 756. Q. 1426. Q. 182.	620. U. 242. U. U. 64. 0. 122. U.	1340. 2656. 3. 514. 1134. 0. 2136. J. 270.	891. 1113. 0. 343. 746. 0. 1426. 0. 192.	0. 6. C. 0. C. 0. 0. 0. 0.	182. 0. 71. 0. 0. 19. 0. 36. 0.	176. 352. 0. 71. 15C. C. 2AJ. J. 36.	0. <u>0</u> . 0. 0. 0. 0. 0. 0. 0.	634. 1262. U. 256. 538. C. 1015. D. 129.	**2. 0. 172. 0. 0. *t . 0. 87. 0.	955. 1892. 0. 383. 807. C. 1522. 0. 192.	638. 1262. 0. 256. 538. C. 1015. 0. 129.	\$1. 121. 0. 25. 51. 0. 97. 0. 12.	7. 0. 3. 0. 0. 1. 0. 1. 0.	50. 100. U. 70. 42. D. 80. 0. 10.	· 61, 121, 0 25, 51. 0. 97. 0 12.	
ALLA SIANUA CONCENSION OF BULTS BULTS BULTS BULTS CONCENSION BULTS CONCENSION BULTS CONCENSION BULTS CONCENSION C		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12 FV	111. 0.	166. 0.	.0	.6 .661	· sult 6	146. 0.	0. 1056.	.2011 .9.	0. 0.	219. 0.	612 .0	0. 0.	0. 781.	532. 0.	0. 1180.	0. 181.	0. 15.	9. 0.	0. 62.	0. 15.	
		90000000000000000000000000000000000000	113	0. 0	0. 1	.0	0	1019.	.0	1615.	1079.	•0	0.		•0	168.	0.	1150.	768.	13.	•0	.19	13	

SAMPLE PROBLEP - SLANDARD LOCK DETAILS WITH STANDARD LOADING

8

1

書き とうろう あっあう

a risk way include

29-81

a second

...

SAN ... PTINLER - STANDARC LOCK DETAILS MITH STANDARD LOAD.

	OHOUSING TENSION OSHOULDROHOUSHG-O WELD- O WELD-BRACKFT TO RULKHEAC STRESS OSTRESSO BEND OGUSSETO STRESS											
	• • • • STRESS• STRESS•						(FSI)					
	0	0		IPSII 0	IPSII ¢					0		
	000000000000	00000000	0000000000	000000000	00000000000	000000000	0000000000	0000-000	0,0000000	000000000	Surger win a si seco d	
LOAD	FIL _	F12	FBSH	F62	fwl	F#21	5672	Fals	Fat	* WX		
12PHLD	0.	547.	0.	132.	780.	0.	5.	374.	C .	0.		
1/296	Ű.	169.	0.	41.	241.	٥.	0.	94.	۰.	0.		
01	0.	116.	0.	27.	165.	٥.	٥.	65.	с.	0.		
AH21	0.	116.	0.	27.	165.	0.	5.	65.	0.	6.		
D2	163.	0.	3249.	1247.	489.	. 30.	1124.	٤.	175.	91.		
/ 2AH2 2	0.	108.	٥.	26.	154.	э.	ů.	65.	с.	0.		
/2AHX2	-242.	0.	0.	-356.	-208.	-344.	э.	0.	č.	-134.		
AV2	163.	0.	3249.	1247.	489.	230.	1124.		175.	41.		
6.0	6.	0.	425.	132.	40.	6.	147.	č.	23.	0.		
1/241173	0.	32.	0.	1.	45.	6.	u.	10.	с.	0.		
1/2AHX3	-32.	0.	0.	-41.	-28.	-46.	٥.	••	с.	-18.		
AV3	0.	ů.	426.	132.	46.	٥.	147.	ü.	23.	0.	A CONTRACTOR OF A CONTRACTOR O	
04	116.	0.	2312.	887.	348.	163.	830.	с.	127.	65.		
1/241124	ΰ.	77.	0.	19.	110.	0.	6.	43.	0.	0.	- The Control of State and State and State and State and State and State	
1/24484	-172.	0.	0.	-254.	-148.	-245.	0.	3.	с.	-95.	-	
444	116.	0.	2312.	887.	348.	163.	800.	6.	127.	65.		
05	11.	0.	122.	54.	23.	16.	42.	0.	1,	6.		
1/241125	0.	1.	0.	с.	2.	0.	0.	1.	٥.	0.		
1/241185	-9.	ù.	٥.	:13.	-8.	-13.	ú.	с.	с.	-5.		
AV5			122.	54.	23.	16.	42.	·····		6.		
CASE 1	124.	1167.	12219.	4250.	3375.	176.	4227.	£48.	673.	71.	13-63	
			HS	EET 518								
---------	-------	--------	-------	---------	-------	--------	--------	--------				
0.0	-113	F12	FBIL	F 812	1741	54.2		e.				
PRLD	0.0	0.134	0*0	070*0	0.0	0.085	1.0	0.144				
1296	0.0	0.134	0.0	0.020	6.0	590.0	r.0	0.144				
10	0.0	-0.338	0.0	050.0-	0.0	512-0-	1.0	-0.766				
17:0	0.0	-0.338	0.0	150.0-	0.0	-7.215	1.0	-0.766				
0.2	0.143	0.0	291.0	0.0	0.244	0.0	560.0	1.129				
24412	C*0	1110	0.0	0.020	0*9	C.085	· · 0	9.344				
2 AHX 2	0.298	0.0	0.124	0.0	0.528	0.0	0.147	659°u				
242	0.149	0.0	9.062	0.0	0.264	0.0	\$50.0	9.329				
10	0.0	0*0	0.0	0.0	0*0	0*0	c.0	0.7				
24423	0.0	0.298	0.0	*****	0.0	0.169	0.0	0.615				
2 AHK 3	0.298	0.0	0.124	0.0	0.528	0.0	0.149	9.658				
E AV	C.0	0.0	0.0	0.0	0.0	0.0	r.0	1.1				
04	0.143	0.0	0.062	C*0	0.204	0.0	\$60.0	0.329				
24424	0.0	0.134	0.0	0.040	0*0	580.0	r.0	0.1.4				
241184	0.298	0.0	0.124	6.0	0.528	0*0	0.109	9.658				
AV4	0.149	0.0	0.062	0.0	9.264	0°0	260.0	0.3:9				
50	0.210	0.0	611.0	0.0	0.4.0	0.0	9.172	0.548				
2 AHZS	0.0	170.0	0.0	900*0	0.0	0.026	u*0	150.0				
2 AHXS	862*6	0.0	921.0	0.0	825°C	0.0	0.169	1.658				
201	0.270	0.0	111.0	0.0	0"7"E							

ALL MARK NO. IN M. O.

Ŧ

13-64

the most same a const

A CONTRACT

34.1 C PROBLEM - STANLARD LOCK DETAILS MITH STANDARD

000 STRESS SUMMARY MAIN MINGE PIN 400

UPPER REALING HUISING JUINT 1 STRESS

a service and the service of the ser										and a second of the second of			(1) and the second conduction of the second seco		the set of	A second state of a second second state of the second		and the second sec	· · · · · · · · · ·		
63	3076.	.352	.1.9-	-150-	676.	en8.	.3161	676.	••	.9:1	.114.	;	625.	433.	\$14.	.\$29		.,	.54		9447.
1	•0	.0	••	••	. 452	;	376.	254.	•0		\$0.	• • •	.161	.0	. 445	111	.11.	• 0	1	-111	1614.
F 122	661.	246.	-183.	-183-	· 0	17.	•0	.0	.0	.05	.0	•0	••	-121.	.0	••	.0	•7	•0	·	
1744	:	.0	•	•	01	· ·	1.56.	105.	;	••	140.	••	\$02.	9.	. 752.	. 105	48.	••	.04	.8.	1011
1101	202.	6i.	-43.	-43.	•0	*0*	•0	•0	.0	-:1	·.	••	••	78.	.,	.0	· 0		••	°.	241.
1183	•0	.0	.0	0.	166.	•0	240.	166.	•0	.0	.11.	.0	116.	3.	.171	.611	-11-	.0			1054.
F13	1357.	419.	-281.	- 287.	•0	268.	•0	.,	.0	.61	۰.	•0	•0	161	•0	.0	.0	3.	9.	*p	174.9.
- UJ		.0	.0	э.	398.	•0	\$96.	398.	.0	0.	19.	.0	283.	.0	425.	283.	21.	.0	22.	:15	2514.
LOAD	/ ZPRLD	1/206	10	17117	02	1241122	124482	AV2	60	124423	/24HX3	143	50	724421	/2AHX4	344	- 93	/2AH15	1241185	AVS	1 328 1

.

Ť

FHIUI* 3378. FHUI* 1317. FWEI* 5829.

.

13-65

1

CALCULATION AND

the second second

手下る

1. A.A. 1. -

-

SAMPLE PROPLEM - STANDARD LOCK DETAILS MITH STANDARD LOADING

*** ROLLFR ASSEMBLY UNIT STRESS CUEFFICIFNTS ***

FT FV FV FP FR	1.473 0.702 0.252 9.441 1.123	1.413 0.7U7 0.252 0.441 1.123	1.413 0.132 0.252 0.441 1.123	1.473 0.702 0.252 3.441 1.123	1 1/1 1 1/1 0 1/1 0 1/1 1 1/1 1
2	\$15.0	\$15.0	\$15.0	115.0	0.44.0
6 8 8	0.588	0.568	0.588	9.588	0 010
FBA	619.0	0.613	0.613	\$ 19*0	040
LOAD	1/2PALO	1/296	221152/1	1/241124	124474

-

i

i

.

ł.

114.

1

*

13-66

SAMPLE PROBLEP - STANDARD LOCK DETAILS WITH STANDARD LOADING

		oo STRES	S SUMMAR	FET TIT	ASSCHO	14 000			
	BEAR SO	6000000 5 6	WELD- 0 BLARINGO	BOLTS	PIN	SILEAR O	HEARINGU STRESS O MIG ARMU	CUNTING ARM BASE	
	• IPSI	1 0	U BASEO	0		. YOKE .	YOKF .	PLATE	•
	000000000000	00000000	00000000	330000000	00000000	01.000000	00000000	0000000	×0
h har and	-		e i 1						
LOAD	FUA	FBB	FW	+1	FV	۴v	FD	FR	
1/2PRLD	6207.	5953 e	4192.	14914.	7108.	2551.	4465.	11376.	
1/206	1916.	1837.	1294.	4603.	2194.	787.	1378.	1509	
1/24472	1220.	1176.	828.	2940.	1404.	504.	882.	2246.	
1/241124	674.	836.	590.	2099.	1000.	357.	6.8.	1000.	
1/241125		69.	. 49,	. 134			52.	132.	
CASE 1	10294.	9874.	6952.	24115.	11768.	4232.	7575.	19850.	
									a se and to a love excluse
				Service of the		1 1. - 1			
				-			i porte i		
	and the state								
							are general company.		
· · · · · · · · · · · · · · · · · · ·	and the state	1.1.1	1.1.1	1000					
							1. Mar. 1. 1. 1. 1. 1. 1.		the second s
			and the state						
									15-61

SAYPLE PROBLEP - STANDARD LOCK DETAILS NITH STANDARD LOADING

000 LATCH UNLT STRESS COFFETCIENTS 000

.....

-

151.0 1.151 1:1.0 3.1.1 0.236 0.31: 1.113 0.778 0.560 3.407 0.360 0.984 0.913 7.151 1.106 0.044 1.106 0.044 0.069 1.106 0.044 1.106 0.044 0.236 1.731 58 151.0 151.0 1111 0.278 4.560 0.561 0.360 0.984 0.913 0.151 1 616.0 619.0 154.1 0.816 J.564 1.540 1.477 1 3.36.0 0.984 \$86°0 0.366 4.5 0.500 095 .0 54 0.560 0.550 1. 0.434 0.21B 812.0 3 1.113 1.741 1.113 4 5 0.441 0.315 \$11.0 0.315 165.0 4.4 1.690 0.630 0.690 1.090 0.441 0.441 1 *** 0 1.0n3 0.441 0.441 FB FL FS 1.090 0.441 1++*0 1.080 1/20410 1/24472 +2442/1 1/24415 LDAD 1/206

1.14

13-68

						. STRESS	SUMMAR	Y LATCH	600 1						
	000000000 0 0 LATCH 0 0 BAR 0 0		H PAR A	SEHBLY	000000 000000 PIN	WELO O	0000000	LATCP	RACKE	T ASSEMI 0 0000000 0 RASE 0 PLATE			LATCH MOUNTG PLATE	RACKET	PCUKTIKG P WELD GUS PL ID NTC. PL
LOAD	FB	FT	FS.	FP	FB	FW	FT.	FS	FP	FR	FI	FW	FB	FT	Fh
1/2PALD	10935.	4465.	4465.	3189.	11269.	2815.	5670.	5670.	3645.	9963.	9244.	1529.	11198.	445.	1529.
1/296	2375.	1378.	1370.	9841	3478.		1750.	1750.	1125.	3675.	2453	472.	3456.		412.
1/24422	2160.	862.	882.	630.	2226.	556.	1120.	1120.	720.	1968.	1826.	302.	2712.	88.	362.
1/241124	1539.	628.	628.	449.	1586.	396.	798.	798.	- 511.	1472.	.13.1	215.	1576.	63.	215.
1/241125				37.	- 111:						107		- 130.		!!!:
STRESS	PB	PM	AVG PRIM SHEAR	BRG	PB	FILLET	PM	AVG PRIM SHEAR	BRG	PP	AVG	FILLET	PB	PM	FILLET
CASE 1	18136.	7405.	1405.	5290.	18690.	4668.	9464.	9404.	6745.	16524.	15331	2536.	18572.	739.	2536.
			_						ala di seconda da secon	animan inte					
						-									

SAMPLE PROBLEM - STANDARD LOCK DETAILS MIN STANDARD LOADING

â

000 DULKHEAD UNIT STRESS COEFFICIENTS 000 SHEET 52" IPSII

The same of

No. 1 March 1

日 二日 二日 日月 日

693 10+0

314*16 000 58 000 68 000 61 000 101 000 161 000 561 611 591 601 10 000 162 000 155 000 555 000 511 076-151 000-271 000-271 000-271 000-171 000-171 000-191 000-191 000-162 070-121 000-192 000-172 000-112 314.000 244.000 351.000 291.000 124.010 285.340 192.000 191.000 114.000 185.000 112.000 151.000 151.000 PEO 11 50

times and

Contraction of the local

13-70

二 二 二十二

「日日日、月二日

				040 31	HE33 30	MMANY U	ULKHEAD	0.00						
de dame				·		SHFE	522							
1040	SHAXI	SMAX2	SMAR3	F838	FBV	f BH	Fw34	FW22	FN533	FWF	FWLS	FW14	F ? 9	
P1	18840.	14640.	21420.	17460.	7480.	17120.	11700.	11820.	10443.	11340.	.001	10320.	9236.	
PE	1570.	1220.	1785.	1455.	339.	d21.	975.	985.	535.	580.	445.	425.	+88.	
PLO	1491	2111	3961	323.	138.			219.	1931	210:	161.	191.	171.	
								5.1.1		• •				
LATEGORY	PB	PB	PB	PM	PM	PM	FILLET	FILLET	FILLET	FILLET	GROOVE	FILLET	PM	24
							STRESS	STRESS	STRESS	STRESS	STRESS	STRESS		
LASE 1A	19189.	14911.	21816.	17783.	7619.	17437.	11916.	12039.	15621.	11550.	8861.	10511.	9407.	
CASE 24	:919.	1491.	2181.	1778.	411.	1138.	1191.	1204.	728.	790.	606.	616.	659.	
	CCFEVI.	7881.		CFBV2:	1720.					11.1	10 S.			
1 10 10 10 10 10 10 10 10 10 10 10 10 10	CFPHS1=	17618.		CFUHS2:	1849									
	CFEH91=	12323.		CF8H92 =	3959									
	CFW11:	12650.		CFW12=	3195.		and the second second	1		1.1.1.1.1.1.1.1.1	el a caractería			
- The second second second	CFW21.	12551.		LFw22=	2295.									
	CFW31+	10780.		(F#32+	1692.		1.000 (h			-			· Lesing a la la	

an element and all a second as a second of the

the server officer

The second second

A T T M THE OF ALL A LOCATED AND A LOCATED A

shallow be at the set of the set of

13-71

the second of the state of the second second

which is a second second land

SAMPLE PROSLEW - STANDARD LOCK DETAILS WITH STANDARD LOADING

000 RULKHEAD UNIT STRESS CREFFICIENIS 000 SHEET 5.3

..... 210.0 0.012 3.012 510.0 0.072 0.072 0.072 M4M. 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.016 0.076 0.076 0.016 611.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 FWV 0.0 0.0 0.075 0.375 0.075 510.0 0.075 0.075 0.075 210.0 0.0 0.0 FW84 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 160.0 160.0 110.0 160.0 160.0 0.0 0.0 160.0 1.037 160.0 0.0 0.0 FWB3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.048 0.648 870.0 8+0-0 0.048 8+0-0 8+0-0 0.0 8>0-2 0.0 0.3 Fuez 0.0 0.0 0.0 C.0 0.0 0.0 0.0 0.0 0.0 100.0 610.0 500°0- 160°0-0.005 0.029 -0.001 .0.005-120.054 1 00.0 ()0.0 0.74.8 \$70.0 100.0 100.0 0.029 0.029 0.029 0.054 \$ 30° U-1841 0.0 3.0 0.034 900.0 0.000 110.0-0.038 1.004 0.038 0.018 -0.001 C.004 1.362 0.004 010.0 +00.0 010.0 0.0 0.0 FNF9 FINF9 FAF 0.176 0.0 0.005 -0.018 0.269 0.005 0.176 0.176 0.176 A11.C 1114 0.176 0.176 0.0 -0.0 - 57U.C 0.034 0.0 -0.0 .00.0-C.0 0.0 0.0 0.0 0.0 0.0 0.0 0002 0.034 0.034 0.003 1.051 -0.00% 0.269 0.003 40.0-102.0 0.065 460.0 -0.006 100.0 0.065 0.0 3.0 0.0 0.0 0.269 0.269 0.269 0.269 9.269 0.269 0.0 FB9Y 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 022.0 200.0-0.005 -0.010 0.0.0 0.020 010-0- 100-0 010.0-0.001 -0.013 -010-2-0.020 0.0 0.0 FBCLX 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.005 0.003 100.0 -0.005 0.0 120.0 -0.005 FB9X 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0.0 0.040 0.040 0.028 0.040 0.031 110.0 F891 F8642 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.029 0.054 0.029 0.019 0.048 0.029 0.054 9.029 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.116 +10.0 +10.0 0.074 0.074 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 EBL 772AF 25 1/ZANKS 1/2PRLD 1/24HX2 1/24423 1/2AH24 1/2AH25 1/24412 1/24484 1244 LOAD 11206 AVI AVA 05 AV5 AV2 50 50 20 0

13-72

															•			-					13-7	年 三月二十二 一十二
	737.3	.0	••	.0	.0	192.	.0	.0	192.	.55.	.0	.0	. 25.	.181	.0	.0			.0	.0		FILLET WELD	123.	第二 日田 そうしこうし
	~	769.	231.	.0	.0	•0	152.	.0	.0	•0	.c	••	.0	.0	108.		.0			.0	.0	FILLET	269.	三月十百妻 -
	FWBA	•0	.0	.0	.0	\$00.	.0	.0	230.	26.	.0	•0	.95.	142.	.0	•0	142.		.0	.0		GROUVE	153.	「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」
	FWBS	.0	•0	.0	·.)	.99.	•0	3.	. 66		.0	•0		10.	•0	•0	-01	*		.0	1	GROTVE WELD STRESS	.116	
	fub2	•0	•0	•0	•0	128.	•0	.0	128.	11:	.0	•0	.11.	-16	.0	••	.16	•	•0	•0	*	GROGVE STRESS	442.	-
	1944	. +62	.10	*0*	46.	.8	58.	· 16.		.;	13.	·1:	.,	.9		.1:	.9	.5	-	•2-	•0	UTLCVF UTLC	5112	
6.70	FWFW	385.		. 92.	. 65	÷	16.	.11.	÷	••	16.		ċ	8.		·u1:		-	. 2.	1.	-	STRESS	219.	
	F14F9	.0	••	.0	.0	470.	•0	·. 7	470.	62.	.0	.0	62.	114.	•	••	314.	16.		.0	16.	STRF SS	1767.	
125 1 13	FHES	344.	106.	. 55.	.55.		68·	.12.	3.	.0	15.	-1-	.0	.9	.8.	. 6 -	.9	.0	2.	-0-	•0	SIPESS	2500	
15 201	1683	.0	•0	.0	.0	718.	.,	.0	118.	. 46	.0	•0	• * 6	115	0.	.0	-1115	.13	.0	.0	.1.	на	2101.	
	FBGLA	•0	•0	.0	.6	.15:	•0	*0*	-12-	•0	.0		•0	-61-	•0	.85	-61-	:1:	•0	ŀ		¥ d	- 50.	
	F898	.0	•	.0	.0		.0	-10.	d.	.0	.0	-1-	•0	· 9	•6	.1:	• •	3.	•0	•0-	· c	Hd	10.	
	FBGLL	·05.	125.	26.	26.	.0	.08	.0	.0	.0	1.	.0	.0	.0	51.	•0	.0	.0	;	.0	· 0	M	107	
	- 768J	\$44.	•16	40.	49.	.0	58.	.0	.0	•0	13.	.0	.0	.0	.11	•0	•0 .	.0	ŀ	0.	•0	M	205.	
	FBL	149.	231.	•0	.0	•0	148.	.0	•0	•0	•0	•0	•0	.0	105.	•0	.0	0.	.0	.0	•0	Н	262.	
	LUAD	1/20810	1/206	10	1114	02	1/244122	1/241182	242	03	1/24413	1/2AHX3	EVA	50	1/24414	1/241184	AVA	50	1/2AH25	1/244485	SAV	STHESS CATECJRY	LASE IA	

						41-51
LOCK DFTALLS MITH STANDARD LOADING FFICIENTS 000	4 Su -52 146.62	.52 146.82			the second se	
54MPLE PROSLEP - STANDARD 24MPLE PROSLED 24MPLE PROAPD 2	UNII LUAU SHAX FR FI	PIC 60.39 292.43 209				

×. SAMPLE PROBLEM - STANDARD LOCK DETAILS WITH STANDARD LDADING

「「「」」」」」」」」」

ł

THE PART NAMES

A state of

000 STRESS SUMMARY DOUR 000

- Andrewsky

UNIT LUAD SMAX FB FM SM

PI 3423. 17559. 12571. 8809.

1651 - 175 - 7357 - 1837 - 1831

STRESS PB PM FILLET GROOVE LATEGORY PB PM FILLET GROOVE STRESS STRESS

1.141.0

CASE IA 3690. 17870. 12804. 8972.

1

東ノ言

2 112

一、一、一、一、一、

.....

GL-81

Ĉ. Attachment (4) CR-783:VF:82-598 ۲

CONTAINMENT VESSEL SUMMARY OF PRESENTATION

- RESOLVE ALL QUESTIONS RE: 1974 VS. 1980 ASME CODE (220.25).
- RESOLVE ALL QUESTIONS RE: ULTIMATE CAPACITY (220.30).
- RESOLVE ALL NRC AUDIT (MAY 1982) QUESTIONS.
- RESOLVE ALL OUTSTANDING PSAR QUESTIONS.
- CONCLUDE THAT ALL SAFETY EVALUATION REPORT ISSUES HAVE BEEN SATISFACTORILY RESOLVED.

CONTAINMENT VESSEL OUTSTANDING ISSUES

RESOLVE COMMENTS ON PREVIOUS RESPONSES:

- 220.25 WHY WAS 1974 ASME CODE USED (ALSO AUDIT CONCERN II.2).
 - WHY WAS $P_F = 0$ USED IN N-284 ANALYSIS.
 - DEMONSTRATE THAT THE SHELL DOES NOT BUCKLE IN THE VICINITY OF THE EQUIPMENT HATCH.
 - PROVIDE NUMERICAL COMPARISONS FOR TYPICAL PIPING PENETRATIONS.
- 220.30 EXPAND THE ULTIMATE CAPACITY PREDICTION (ALSO AUDIT FINDING I.B.I).

NRC AUDIT FINDINGS (MAY 1982)

- RE-EVALUATE THE SKEWED AIRLOCK EFFECTS.
- RE-EVALUATE THE LIVE-LOAD EFFECTS ON THE AIRLOCK FREQUENCY RESPONSE.
- CONFIRM THE FUNDAMENTAL DOME BREATHING MODE.
- VERIFY ALL SIGNIFICANT COMPUTER CODES.

MISCELLANEOUS

CRITERIONS ARE NOT CURRENT IN PSAR 3.8.2.2.4

UESTION:	WHAT IS THE JUSTIFICATION FOR ASSUMING THAT THE EXTERNAL CON-
220.25)	TAINMENT PRESSURE (P _E) IS O FOR THE ASSESSMENT OF CONTAINMENT
	BUCKLING ACCORDING TO CODE CASE N-284?
ESPONSE:	 CONTAINMENT BUCKLING WAS EVALUATED FOR BOTH EXTERNAL PRESSURE AND EARTHQUAKE.
	 THESE LOADS RESULT FROM TOTALLY INDEPENDENT ACCIDENT SCENARIOS AND THEREFORE ARE NOT COMBINED.
	• EXTERNAL PRESSURE IS AN AFTER EFFECT OF A NA FIRE (C.V.
	ATMOSPHERE COOLDOWN).
	- MAXIMUM P_{F} = .13 PSIG (BASED ON REFINED ANALYSIS).
	- PROBABILITY IS EXTREMELY REMOTE.
	- PERIOD IS VERY BRIEF.
	- OCCURS VERY LATE INTO THE SCENARIO.
	- C.V. WAS CONSERVATIVELY DESIGNED FOR .5 PSIG USING ASME RULES (N-284 DID NOT CHANGE).
	• EARTHQUAKE LOADS GOVERN THE DESIGN BY A SIGNIFICANT MARGIN.
	- NO KNOWN SCENARIO CONNECTED TO EXTERNAL PRESSURE
1.1	- EFFECT OF COMBINING EXTERNAL PRESSURE WOULD BE INSIGNIFICANT.
	• THEREFORE, $P_{e} = 0$ WAS APPROPRIATE FOR THE N-284 ANALYSIS.

 $P_E = 0$

EQUIPMENT HATCH BUCKLING

QUESTION: PROVIDE FURTHER INFORMATION ON THE EFFECT OF THE EQUIPMENT ACCESS

(220.25) HATCH ON THE MARGIN AGAINST BUCKLING. THE N-284 BUCKLING EVALUATION PROVIDED BY THE APPLICANT AS PART OF THE RESPONSE TO QUESTION 220.25 DOES NOT ADEQUATELY ADDRESS THE EFFECT OF THE EQUIPMENT ACCESS HATCH. DESCRIBE METHODOLOGY USED IN DESIGN INCLUDING CONSIDERATION OF BUCKLING.

RESPONSE: • OPENING HAS BEEN REINFORCED BY ASME AREA REPLACEMENT VALUES.

- ADDITIONAL STIFFENING SYSTEM PROVIDED TO MAINTAIN CONTINUITY OF RING STIFFNESS.
 - ANALYZED AS A STRUCTURAL FRAME UTILIZING STANDARD DESIGN PRACTICES FOR BEAMS AND COLUMNS.
 - STIFFNESS EQUAL TO OR GREATER THAN UNPENETRATED SHELL.
 - ALL LOADS CARRIED BY STIFFENING SYSTEM.
- STIFFENING SYSTEM CARRIES ALL LOADS IN THE REGION AND, THEREFORE, THE SHELL CANNOT BUCKLE.
- ANALYSIS SUPPORTED BY EXPERIMENTAL STUDY REFERENCE: "EXPERIMENTAL STUDY OF THE BUCKLING OF CYLINDRICAL SHELLS WITH REINFORCED OPENINGS", C. D. MILLER - JULY 25-28, 1982.
- LARGE EQUIPMENT HATCH OPENING DOES NOT AFFECT THE MARGIN AGAINST BUCKLING.

PENETRATIONS

QUESTION: NOZZLE PIPING TRANSITION. THE COMPARISON INCLUDED IN THE (220.25) RESPONSE TO QUESTION 220.25 RELIES ON ENGINEERING JUDGEMENT. PROVIDE NUMERICAL COMPARISONS FOR TYPICAL PIPING PENETRATIONS.

RESPONSE: • ALL DESIGN LOADS ARE STATED CONSERVATIVELY.

- FOUR OF THE HIGHEST STRESS D PENETRATIONS WERE SELECTED FOR ANALYSIS.
- MEMBRANE AND SURFACE STRESS WERE EVALUATED AT CRITICAL LOCATIONS.
- ALL STRESSES SATISFY THE 1980 CODE REQUIREMENTS.
- IT IS CONCLUDED THAT THE CURRENT PENETRATION DESIGN PROVIDES A LEVEL OF SAFETY EQUIVALENT TO THAT WHICH WOULD RESULT FROM FULL IMPLEMENTATION OF THE 1980 ASME CODE.

ULTIMATE CAPACITY

QUESTION: THE ULTIMATE CAPACITY PREDICTION FOR THE CONTAINMENT (220.30) SHOULD BE EXPANDED TO INCLUDE THE EFFECT OF ALL DIS-CONTINUITIES AND THE CAPABILITIES OF ALL PENETRATION COMPONENTS INCLUDING SEALS, DOORS, ETC. APPROPRIATE THERMAL EFFECTS SHOULD BE INCLUDED.

RESPONSE: BUCKLING OF THE EQUIPMENT HATCH IS CALCULATED TO OCCUR AT 43 PSIG AND 70°F. PENETRATIONS, DOORS, DISCONTINUITIES, SEALS, ETC. ARE NOT CONTROLLING.

> BUCKLING OF THE EQUIPMENT HATCH IS ALSO CALCULATED TO OCCUR AT 40 PSIG AND 450°F. PENETRATIONS, DOORS, DISCONTINUITIES, SEALS, ETC. ARE NOT CONTROLLING.

SKEWED AIRLOCK

QUESTION: IN EVALUATING THE EQUIPMENT AND PERSONNEL AIRLOCK FOR SEISMIC (1.C.1.A) LOADS, AN ASSUMPTION WAS MADE THAT IT PENETRATES CONTAINMENT IN A RADIAL DIRECTION. TO DEVELOP THE DYNAMIC MODEL FOR THE AIRLOCK, ONLY TWO DEGREES OF FREEDOM WHERE ALLOWED; RADIAL AND ROTATION ABOUT A HORIZONTAL AXIS. IN ADDITION, WITH THE MAXIMUM LIVE LOAD IN THE EXTREME END OF THE AIRLOCK, ITS FUNDAMENTAL FREQUENCY IS BELOW THE PEAK OF THE DESIGN RESPONSE SPECTRUM FOR THIS LOCATION. TO ADEQUATELY EVALUATE THE AIRLOCK, THE FOLLOWING NEED TO BE DONE.

- A. A THREE-DEGREE-OF-FREEDOM MODEL NEEDS TO BE DEVELOPED THAT INCLUDES THE SKEWED PENETRATION ANGLE EFFECTS. THE ADDITIONAL DEGREE OF FREEDOM SHOULD BE ROTATION ABOUT THE VERTICAL AXIS.
- RESPONSE: A DYNAMIC MODEL E-1724A WAS DEVELOPED TO PROVIDE FREQUENCIES; FORCES AND MOMENTS WITH A SKEWED PENETRATION.
 - THE RESULTANT ACCELERATIONS INCREASED LESS THAN 3.2%.
 - NON-CONTROLLING STRESSES INCREASED UP TO 11%.
 - CONTROLLING STRESSES WERE REDUCED BY 4%.
 - THE ASSUMPTIONS IN THE DESIGN REPORT REGARDING THE SKEWED AIRLOCK ARE CONSIDERED VALID.

LIVE LOAD IN AIRLOCK

QUESTION: B. AMOUNTS OF LIVE LOAD THAT ALLOW THE FUNDAMENTAL FREQUENCY (1.C.1.B) TO FALL ON THE PEAK OF THE DESIGN RESPONSE SPECTRUM SHOULD BE CONSIDERED.

RESPONSE: • MULTIPLE SCOPING CALCULATIONS WERE PERFORMED.

- LOAD VALUE AND LOCATION WAS VARIED.
- MAXIMUM FREQUENCY RESULTED FROM CENTERED LOAD.
- MAXIMUM FREQUENCY SHIFT WAS 13%.
- DESIGN CALCULATION CONSIDERED ± 10% FREQUENCY SHIFT.
- SINCE THE SPECTRAL ACCELERATIONS ARE MAXIMUM AT THE MINIMUM MOMENT ARM, THE EFFECT OF THE 3% FREQUENCY SHIFT IS NEGLIGIBLE.
- THE FREQUENCY IS ALWAYS ON THE LEFT SIDE OF THE PEAK FOR THE VERTICAL AND CIRCUMFERENTIAL RESPONSE.
- THEREFORE, THE DESIGN CALCULATIONS ARE ACCEPTABLE.

DOME BREATHING MODE

QUESTION: THE SEISMIC LUMPED MASS MODEL INCLUDES STIFFNESS COUPLING TERMS

(1.C.2) TO SIMULATE THE FUNDAMENTAL DOME BREATHING MODE. THE FREQUENCY AND MODE SHAPE OF THIS MODE NEEDS TO BE CONFIRMED WITH A MORE REFINED MODEL.

RESPONSE: • CRBRP USED COMPUTER PROGRAM NO. 1017 TO ANALYZE SHELL.

- DYNAMIC SHELL OF REVOLUTION COMPUTER PROGRAM NO. 1374 WAS USED TO CONFIRM RESULTS.
- MODE SHAPES ARE IN CLOSE AGREEMENT.
- FREQUENCIES ARE WITHIN 10%.
- THEREFORE, THE DESIGN CALCULATIONS ARE CONFIRMED.

VERIFY COMPUTER CODES

QUESTION: ALL SIGNIFICANT COMPUTER CODES USED FOR STRUCTURAL DESIGN NEED (1.D.3) TO BE ADDRESSED IN THE PSAR ALONG WITH VERIFICATION DOCUMENTATION.

RESPONSE: • ALL COMPUTER CODES USED IN THE CONTAINMENT VESSEL DESIGN HAVE BEEN VERIFIED (NO'S 655, 772, 781, 907, 1017, 1027, 1036, 1374, 1392, 1671, 1691, 1823).

• THESE VERIFICATIONS WILL BE ADDED TO APPENDIX A OF THE PSAR.

PSAR 3.8.2.2.4

QUESTION: CRITERIONS ARE NOT NUMBERED CORRECTLY AND #14 IS MISSING.

RESPONSE: CRITERION 14 HAS BEEN ADDED.

CRITERION 4, 50-58 AND 64 HAVE BEEN RENUMBERED.

1.1

Enclosure (5) CR-783:VF:82-598

200

MEETING NOTICE

SUBJECT: CONTAINMENT VESSEL/CODE CASE(S) ANALYSIS

- LOCATION: WLLCO, Landow Building, Room 1111 7910 Woodmond Avenue Bethesda, MD
- TIME: 8:30 AM

6

DATE: December 8, 1982

PURPOSE: To resolve the outstanding containment vessel/code case(s) issues.

SCOPE: This meeting will address:

- a) The 1974 versus 1980 ASME Code Comparison (NRC Question 220.25). The Ultimate Capacity (NRC Question 220.30).
- b)
- c) The NRC Audit Questions.
- d) The Identification of Closed Issues.

Containment Vessel/Code Case(s) Analysis Working Meeting Agenda

1.	Introduction	DOE/PO
II.	Responses to NRC Questions on the 1974 versus 1980 ASME Code Comparison	W-LRM
II.	Responses to NRC Questions on the Ultimate Capacity Analysis	W-LRM
IV.	The NRC Audit Questions	W-LRM
v.	Discussion and Resolution	DOE/PO W-LRM
VI.	Identification of Closed Issues	DOE/PO W-LRM

Attachment (6) CR-783:VF:82-598

ATTENDANCE

Name	Organization	Phone
Tom Butler	Los Alamos	(505) 667-5171
D. Jensen	Los Alamos	(505) 667-9208
Rick Whipple	CBI	(312) 654-7170
Richard Orr	Westinghouse	(904) 724-7700
Richard E. Gale	Westinghouse	(615) 576-1613
P. R. Washer	CRBRP-PO	(615) 576-6179
Vincent Fayne	CRBRP/PO	(615) 576-6394
Chen P. Tan	NRC/SEB	(301) 492-8424