OFFICIAL TRANSCRIPT PROCEEDINGS BEFORE

NUCLEAR REGULATORY COMMISSION

DKT/CASE NO.
TIT F ADVISORY COMMITTEE ON REACTOR SAFEGUARDS SUBCOMMITTEE ON REGULATORY ACTIVITIES
PLACE Washington, D. C.
DATE January 4, 1993
PAGES 1 thru 155

(202) 628-9300

440 FIRST STREET. N.W.
WASHINGTON. DC. 20001

```
            UNITED STATES OF AMERICA
            NUCLFAR FEGULATORY COMMISSION
            ADVISCRY COMMITTEE ON REACTOR SAFEGUARDS
    SURCOMMITMEE ON REGULATORY ACTIVITIES
                                    Room 1046
                                    1717 H Street, N.W.
                                    Washington, D.C.
                                    Tuesday, January 4, 1983
    The Subcommittee on Regulatory Activities met,
    pursuant to notice, at 8:45 a.m.. Chester P. Siess,
    ACRS MEVBERS PRESENT:
    ZHESTER P. SIESS
    DAVID A. WARD
    WILLIAT KEPR
    JEREMIAH J. RAY
    MAX W. CAREON
    DESIGIATED FEDERAL EMPLOYEE:
    SAM DURAISWAMY
    ALSO PRESENT:
    ANTHONY J. CAPUCCI
    ED VENZINGER
    ALLEN HINTZE
    ZILBUR M. MORRISU&
    CHAPLES ROSSI
    JIN WATT
    CARL BERLINGER
    FRANK CJHGEL
    PHIL STODDARD
    JOE JOYCE
```

 Chairman, presiding.
    ```
            PROCEEDIYGS
    MR. SIESS: The meeting will come to order.
    It is officially 8:45 - by fiat.
    (Laughter.)
    MR. SIESS: This is a metting of the ACDS
    Subcommittəe on Ragulatory Activities. My name is
    Chester Siess and I am Subcommittee Chairman. The other
    ACRS members that are present are, starting on my left,
    Dave Ward, Eill Kerr, Jerry Ray, and Max Carbon.
    The purpose of the meeting today is to discuss
two Fezulatory Guides. One of them is an "old friend",
Regulatory Guide 1.97, Eevision 3. The title is
"Instrumentation for Light Water Cooled Nuclear Fower
Plants to Assess Plant and Environs Conditions During
and Following an Accident."
The second item is Proposed Regulatory Guide, designated Task No. IC 126-5. The title is, "Instrument Sensing Lines."
The meeting is being conducted in accordance with the provisions of the Federal Advisory Committee Act and the Government in the Sunshine Act.
The Designated Federal Employee is Mr. Sam Duraiswamy, who is sitting on my right.
The rules for participation in today's meeting were announced in the Federal Register Notice on
```

December 21.
As usual, we are keeping a transcript. It is important that you identify yourself when you first speak so it will be on the record, and please use the microphone. The reporter has a microphone on the table, so I quess whether you use yours or not is not too important is long as we can hear you.

Te have received no written comments from members of the public and no requests from members of the putlic to make oral comments.

Who is running the show for the staff, Ed
Wenzinger?

MR. WENZINGER: Al Hintze is going to make the presentation on both guides, and if you are ready to s:art out on 1,97, why, he is ready to go.

MR. SIESS: Well, let me just introduce this briefly to the conmittee. Sam sent you out a package of material - I cannot assume you have read it all because I have not read it all. I will not assume you have read it all recently, I am sure you read it all at one time or another beaausp it includes a couple that we wrote and a few other things.

And 1.97 is an interesting Cuide because it is essentially a =esponse to something that the Committee itself brought up - I forget how many years ago - about

```
instrumentation to follow the course of an accident. It
seems to have grown following. TMI. We have seen two
revisions and we have seen drafts of this revision, I
believe, twice.
    I think that I would like to focus the
discussion this morning primarily on the changes that
have been made since we sav this last. Several of these
changes are in response to comments or criticisms that
were made by the Subcommittee or by the ACRS.
    I won't limit the discussion strictly to the
changes - in fact, I don't know how I can. The
Committee zan obviously ask questions on it if it
wants. Eut I would like to concentrate on the changes,
and I think that is what Mr. Hintze will be emphasizing;
and then there are other things we can take up.
    Are there any questions from members of the
Subconmittee beforo we let Al dic in? OK.
    4P. HINTZE: When Revision 2 of Regulatory
Guide 1.97 %as issued in December of 1980, there was an
outstanding question regarding Radiation Exposure Meters
(continuous indication in fixed locations). On of the
purposes of these monitors was to identify radioactive
teleases from otherwise unmonitored release points from
the containment as a means of helping to detect a breach
of containment. The question involved the number and
```

```
location of the fixed location monitors necessary to
accomplish the intender function.
    Since guidance for the number and location of
the fixed location monitore was not provided in Revision
2 Of Regulatory Guide 1.97, the criteria for these
measurements were tied to a study on emergency
radiological monitors then being con.iucted by the
Radiation Assessment Branch of NRR.
    The rasults of this study were recently
published in NUREG/CP-2644, dated Aril 1982, which
concluded that the use of a fixed location area
monitoring system to determine the magnitude of an
unmonitored release could not provide sufficiently
reliable tachnical information to be of use in a
decision-making process in the event of an emergency
situation.
The NRC staff agrees with the technical evaluation of the study as cocumented in a memo from Roger Mattson to Karl Goller dated July 29, 1982, and the Radiation Exposure Meters (continucus indication of fixed locations) has been deleted from the guide. These are on pages 14 and 24 of the tables in the guide.
Another change which nas been made in the guide pertains to the Primary Containment Radiation monitors.
```

Another change which has been made in the guide pertains to the Primary Containment Radiation monitors. In the judgment of the NRC staff, as dozumented in a memo from H. Denton to R. Minogue, dated August 12, 1982, the specified degree of aczuracy (which was a plus or minus 20 percent) for the Primary Containment Area Radiation monitors - which is now given in pages 9 and 18 of the guide - is an unnecessary burden on sensor design and calibration and is an unjustifies recommendation.

Any errors due to energy spectrum will be small for most geometries early in an accident. Later in the accident, correction factors can be applied to compensate for enercy spectrum whes required for a more accurate maasurment. This change involves the deletion of the plus or minus 20 percent phrase in Note 7 on pages 0 and 18 of the guide.

A third change involves the ?adiation Exposure Rate monitors (those located inside buildings or areas, thot is, for example, auxiliary buildings, fuel handling buildings, secondary containment, which are in direct contact with the primary containment where penetrations and hatches ae located).

Further study, as documented in a letter from Harold Denton to \hat{R}. Minogue, deted August 12, 1982, has

```
shown that detection of containment breach (such as the
Type C variables on pages 10 and 19 of the guide) can be
just as readily obtained, and with less ambiguity, from
radioactivity monitors in the effluent path from these
buildings adjacent to the containment.
    Therefore, Radiation Exposure Rate monitors
inside buildings adjacent to containment for the purpose
of detecting containment breach (that is the Type C
variables) has been deleted from the guide. However,
those monitors for the Type E purposes (that is purposes
where access is required to service equipment important
to safety) are retained. Those are on pages 13 and 22
of the guife.
    The fourth change involves the meteorological
measurements. Revisions to Regulatory Guide 1.23,
"Meteorolozical Programs in Support of Nuclear Power
Plants" and Reculatory Guide 1.97 were being developed
concurrently and were in agreement at the time
Regulatory Guide 1.97 was issued in December 1980.
    Regulatory Guide 1.23 is the source of the
meteorological measurement criteria and the variables
are listed in 1.97 for completeness. However,
subsequent to the issuance of 1.97. Regulatory Guide
1.23 underwent further modificatzons as its development
continued. These modifications created some differences
```

 between the two guides. This revision of Regulatory
 Guide 1.97 brings it into agreement with the proposed
 Revision to Reculatory Guite 1.23. The changes aze
 found on pages 15 and 24 .
 The fifth change involves the variable,
 Coolant Level in Reactor. Both industry and NRC have
 expended considerable effort to develop methods of
 measuring zoolant level in the ractor as an indication
 of capability for core cooling.
 As pointed out in SECY-82-407, "Implementation
 of TMI Action Dlan II.F.2 (NUREG-0737), it is probably
 not possible to develop an unambiguous indication of
 water level in the reactor.
 However, it was concluded that it would
 probably be sufficient to require a void indication or
 inventory tracking system to supplement the subcooling
 monitors and the core exit temperature monitors to
 letermine the capability for zore cooling.
 Consequently, the variable Coolant Level in the Reactor
 has been changed to Coolant Inventory as provided by
 SECY-82-407.
 Other substantive changes are:
 The variable BWR Core Temperature on pages 8
 and 9 of the guide are not being recommended at this
 time pending fur ther development and zonsideration as
 stated in Supplement 1 to NUPEG-0737.
For the PNR variable, Core Exit Temperature on
pages 17 and 18 of the guide, the range for operating temperatures from 200 degrees to 1650 degrees F are deleted, leaving the recommended range of 200 to 2300 degrees F, since all plants should have the 2300 degree F capability as provided by NUREG-0737.

The Implementation section - which has heen passed out, a modification of it has been passed out this morhing - was modisied to agree with supplement 1 of NUREG-0737, which provides that the implementation schedule should be negotiated by the applicant or licensee with the NRC project manager on a plant-specific basis.

Subsequent to the issuance of Revision 2 to Rejulatory Guida 1.97, a contract was issued to Idaho Nuclear Engineering Laboratory to conduct an independent evaluation of the guide to evaluate the understandability of the guide and to determine if its provisions could be met with state-of-the-art instrumentation.

The preliminary results of this study revealed some areas where clarification would be helpful and where minor changes in instrument ranges could be made which would nct compromise the measurement objectives

```
but would be more consistent with practical instrument
capabilities. These changes are incorporated in
Revision 3 of Pegulatory Guide 1.97.
    The major change to the guide, which was for
clarifivation purposes, is in the re-formating of the
qualification criteria for Categories 1, 2 and 3
variables. The criteria are now in tahular raiher than
narrative form. This makes it easier to see the
differences in qualification requirements between the
varicus categories. Other changes are editorial and are
readily identified in the comparative text of the draft
guide.
    MP. SIESS: Al, I might have missed
    something. That change from Coolant Level to Coolant
    Inventory, that is just for the PYR?
    MR. HINTZE: Yes, sir.
    MR. KERR: Why does it use "level" in one case
    and "inventory" in the other? You are talking abcut --
    I have forgotten which is which, maybe it is the FWR you
    use "inventory" for.
    #R. SIESS: The "level" is in BWR and
    "inventory" is in PWR.
    MR. KERR: Because the measurements are made
    in the same way, I think. I wondered why in one case
    you refer to "level" and the other case "inventory."
```

धR. HINTZE: I can't answer that, other than the fact that the PWP was the rore difficult one and we have been concentrating on trying to measure levels. MR. KERR: Well, the implication would be that you are measuring different quantities in the two cases, I would think, since in one case you are talking about level and the other case inventory.

I wondered if it really was meant to be different.

YF. RENZIXGER: In the case of the boiling water reactors using iffferential pressure is a reasonably good way of measuring level.

MR. KERE: But you use differential pressure in the PWR.

MR. WFNZINGER: That's correct, and that is not a very good way of measuring vessel level, particularly with the pumps running.

YR. KERR: I guess I just don't see why it will measure level in onz case and not measure level in the other case.

YR. SIESS: Since the BWF is a boiler -MB. KERR: Because it really does not measure level.

```
    MR. SIESS: -- it does not sc?m to me that it
```

 measures level there any better than it does in a \(P\) dir.
    ```
It must become two-phased at some point in the core.
    *R. CARBCE: Yes.
    MR. #ATT: Jin Watt. On the boiler it is part
of the normal control instrumentation to monitor some
level indization.
    MR. KERE: But it really doesn't measure level
    for the BWR any more than it measures the level for the
    PW\hbar. In both cases it measures what one might call
    condensed level.
    MR. WENZINGER: That's ccrrect, collapsed
    level.
    MR. SIESS: I think the point, gentlemen, is
    simplyz this is semantics. But by making the change in
    one and not in the other somebody starts looking at it
    and says, "Why did they do that? What is the hidden
    significanze of this?"
    MR. KERR: It seems to me "inventory" makes
    sense in both cases, but I may be missing something.
    YR. 'ENZINGEP: No, I think you are right that
    "inventcy" does make sense in both cases. I don't see
    any reason way the PWF would not be changed to the
    "inventory."
    KR. HINTZE: Since the question had not been
raised, I guess we had not discussed it.
    MR. SIESS: You know, you can call it
```

```
inventory or you can call it level in quotes, and it
would not rake any difference to me.
    MR. HENZINGER: I think it would be more
sppropriate to call it "inventory" for both cases.
    MR. HINTZE: Do you have any objection to
that, Jim?
    MR. POSSI: I would proceed a little
cautiously in this azea. My name is C. Rossi from the
Instrumentation and Control Systems Branch.
    I think Mr. Watt made a good point that on the
BWFs, "level" has always been used, and I believe that
by "level" it has been actually a level in a down-cover
sense. So, I think it does have a meaning.
    And on RWRs it has always been used as a basic
control parametar and a basic safety parameter, whereas
on the PWPs they onerate essentially solid within the
reactor coolant system, and "level" has just
traditionally not been an important variable from the
standpoint of either safety or control. It is really
the total mass within the system that you would have
tried tc control and maintain in the PWR.
    MR. SIESS: That doesn't make any sense.
    MF. KERT: The differential in a PWR does not
meqsure total invantory, it measures collapsed level in
the vessel.
```

MR. BOSSI: For the BWR now, you are talking about?

MR. KERE: I am talking about the PWR.
MR. ROSSI: Well, I do not even think that it necessarily measures that on the FWR because you have to be very concerned about the pressure drops that are caused by the reactor coolant pumps and close to the core, and that sort of thing.

I don't think any of that was particularly taken into account when the $P W R$ vessel and core were designed.

MR. KERR: If you talk about "inventory" in that case, at best you can measure the collapsed level when the thing is dead.

MR. FOSSI: OK.
KR. KERR: Yet, you use "inventory" in the PKR case and it seems to me that --

MR. SIESS: It seems to me that what the staff is trying to say is that they want to use level for the BNR because they are willing to accept the existing "level" measurements for the future foz 3WRs, that we don't want to change the name.

Is that is what you mear, there ought to be some way of saying it rather than hiding it in the words. yR. गOSSI: dell, I also think that on the

```
3WPs that traditionally a considerable amount of thought
an{ design effort has been gone into maintaining what
they have always called level in the PWRs. Its normal
operation is that that is the important parameter,
whereas with PWPs it is not.
    I think that the pressure drop situation in
BWRS is - and this is getting somewhat out of my area -
different than in the PWRs from this standpoint.
    MR. SIESS: Eut is it a fact that you are
willing to accept the existing level measurements in the
boiler?
    MR. POSSI: That is basically correct.
    YR. SIESS: As meeting the reguirements of Reg
Guide 1.97.
    MR. ROSSI: That is basically correzt, yes.
    v?. SIESS: And you have a feeling that if you
changed it to say "inventory" that there would be some
implication that you wanted something different than the
present "level" maasurement.
    YR. ROSSI: I don't know that that latter was
    a consideration.
    MR. SIESS: Well, that is what it sounds like
    You are saying, that you are fefending the words on the
    basis of the fact that you are willing to accept the
    tried and true.
```

MR. EOSSI: Nell, cartainly, I think on the BNRs the level is indeed true and tried because it has been used for many years and it is used during normal operation in the controls of feedwater.

MR. SIESS: Well, I don't really see the reason why the fact that it is used during normal operation makes it particularly useful during an accident condition.

MR. ROSSI: Well, I think the fact that it is used during normal operation means that a lot of thought has gone into what that measuremewnt means, over the years.

MR. SIESS: OK.

MR. ROSSI: And I think that is an important factor.

MR. SIESS: OK, the interpretation of a measurement.

MR. KERR: Eut has not a great deal of thought gone into what it means during normal operation, and not a lot of thought of what it means during an accident? That would have been my faeling.

NR. ROSSI: That may be true, but I think it is less of an extrapolation to figure out what it means during an accident on a BYR than on a PWR.

MR. KERR: We certainly had some situations at

```
which the level measurement was misleading in terms of
What was in the core in what I call "abnormal" or
perhaps an accident.
    YR. ROSSI: I think that when you are making a
comparison with PWRS and VYRE that you might better
compare the level measurement in the steam generator on
a PWR with the lavel measurement in the core on a BWR.
I would consider those two things to be more analogous
than "level" or "inventory" within the core.
    In fact, the level in a steam generator on a
    PWR is indeed, I believe, included in Regulatory Guide
    1.97 and you have all the same problems thare that you
    got within the core. You got lots of void within the
    tube region of the steam generator and what we are
    measuring is the differential pressure out in the
    down-comer and that you call "level."
    So, I think when you are doing that comparison
    that that is a better analogy than just looking at the
    core.
    MP. SIESS: The differential pressure and the
    down-comer are different from the differential pressure
    inside the core?
    4k. POSSI: I can't answer that question.
    YR. SIESS: I couldn't figure out a good
    reason for it unless there was a heck of a lot of flow,
```

```
friction fcop of something.
    1R. CAREON: We certainly have a different
    friction Arop with differential pressure.
    MP. SIESS: And why is it in the down-comer
    because that is where the pressure taps go?
    MR. KERR: Yes.
    MR. ROSSI: Well, I think in the down-comer
you have something that is very close to really a true
    level, anA you want to have a lot of void and that kind
    of thing in the down-comer. You have water that you
    measure the level. That is a very similar situation in
    my mind to what you have in steam denerators on a PWR.
    3R. SIESS: But if I am really interested in
    the level, ic must be the level in the core I am
    interested in. That is what I am trying to keep cool,
    not the down-comer.
    AR. ROSSI: But again, there is a close
    relationship.
    MR. SIESS: If it is boiling in the core there
    is a close relationship?
    MR. ROSSI: I think there is a close
    relationship betwe\inn what you wawnt inside the core and
    the level that you are measuring in the down-comer
    around the EW?. Certainly, that is the situation on the
    PNR and the steam generator.
```

HR. SIESS: I quess I could interpret that another way and say that if I know the collapsed level in the down-comer, I know something about the inven $o r y$, which tells me something about how much there is to cool the core.

MR. POSSI: I also am not sure that you are really talking about a collapsed level in the down-comer because I think at least in a steam generator on a PWR, it is not collapsed level that you are worried about in the down-comer, it is level in the down-comer.

MR. KERR: Mr. Rossi, I mean, what you want is What is in the core. You don't really care what is in the down-comer. You measure what is in the down-comer because you have a feeling that that dill tell you what is going on in the core.

MR. ROSSI: That is correct.
MR. KERR: And what y Ou want to know in the core is the inventory in the core, which will provide cooling, I think.

MR. POSSI: That is correct. I claim that is analogous to the situation on a steam generator, on a PWR where you are not interested in what is in the down-comer. What you are interested in is the mixture of whatever - if it is water in void or water in steam within the tube reqion of the steam generator. That is

```
what cools the core on a PN゙R when you are using the
secondary site as your cooling.
    MR. KERP: Which is an argument which means
    inventory to me.
    MR. ROSSI: For the steam generator.
    MR. KERR: And the EKR.
    MR. SIESS: Let's back off from it a minute
    and let's see if I can understand what this means if I
    were a plant owner.
    Tor a BWR, it seems to me what the Reg Guide
    says is that the system of level measuremewnt that has
    been used for a number of years, with all the different
    ranges, is acceptable for Reg Guide 1.97. Is that what
    it says?
    Are there any other critezia against which to
compare?
    MR. HINTZE: Would you state that again?
    MR. SIESS: For a BNR the requirement for
    coolant level in reactor, which is one of the Type B
    variables, is satisfied by the conventional --
    MR. KERR: Existing.
    MR. SIESS: -- existing level measurement,
Delta P measurement systems that BWRs have had all these
years.
    MR. HINTZE: I think that has been accepted as
```

 correct, yes.
 MR. CAREON: May I raise a question before you leave that?

MR. SIESS: YeS.

MR. CARBON: But that won't give you the level in the core when flow rate changes, will it?

MR. SIESS: No.

MR. CARBON: So, it is not giving rou in the core.

MR. SIESS: No. AS I understand the staff's position, this requiremert of Reg Guide 1.97 for BNRs is satisfied by the existing so-called water ievel measurements.

YR. ROSSI: Heli, certainly by a system based on that genezal principle. I think that over the last few years there may have been - I am not absolutely sure of this - some changes in range requirements and how the indicators were caiihrated, and that kind of thing.

4R. SIESS: There have been some changes to get a reference level.

VR. RCSSI: Yes. But basically the methodology we are accepting on the PWRs.

4R. CARPON: Can C still interject before we leave it?

Ma. SIESS: No, let me finish this. I am

```
trying to find out what it means and not whether it
works.
```

 MR. CARBON: OK.
 ME. SIESS: I will come back to you.
 MR. CARBON: Eine.
 MR. SIESS: Now, in Table 2 for PMR variables
 there is one now listed as coolant inventory, and what
 is acceptable to the staff on that is, it has been the
 subject of a couple of NURFGs and I don't know what
 else. There is a Westinghouse system acceptable, a
 Combustion system acceptable, a B\&W system acceptable
 with certain modifications; right?
 In essence, there is no existing system,
 previously existing system, and there are always new
 ones. And this is what this refers to: right?
 MR. HINTZE: That is what this refers to.
 right.
 MR. SIESS: And, let's see, is there a
 footnote that refers to one of those NUREGS or a SECY
 that says \(⿴ 囗 ⿰ 丿 ㇄\)
 thermocoupler is OK?
 MR. HINTZE: I believe we have a footnote
 there, page 17.
 MR. SIESS: It does reference to W\&W but it
 does not reference to -- is there a formal position yet,
    ```
that is, a SECY went up, proposinq epproval of the
Westinghouse Relta P and the Combustion thermocouple, is
that approved yet?
    MR. inATT: SECY-52.407 addresses that. It
essentially agrees with the Westinghouse and Combustion
systems.
    MR. SIESS: Is that referenced anywhere in the
Reg Guide?
    MR. HINTZE: We just mentioned it in our
presentation. It is not referenced in the Reg Guide.
    MR. SIESS: OK. Rut there is a footnote in
there that essentially includes what 82-407 says about
B&W, doesn*t it?
    MR. HINTZE: Right, on page 17.
    MR. SIESS: Well, I understand now how this is
to be implemented. Yax, I will come back to your
question.
MR. CARBON: Yes. The question I have is on the BWE, the Aiffarential pressure in down-comer will give you a measuremewnt of flow rate, but it will be different for a given pressure drop, depending on the amount of the vapor-1iquid mixture and therefore a function in both the flow rate and the power level.
It is not real clear to me how you get from the pressure drop in the down-comer to the level of the
```

```
ccolant or the inventory in the core. It is not clear
to me why this satisfies the requirement in 1.97.
    Is there some simple explanation of this?
    MR. BOSSI: Ne11, on my part I am not an
expert on the pressure drops through the core in
relationship to the weater level or whatever in the
down-comer. I think if you really want to get into the
details of that, I suspect the people that can talk
about that knowleigeably are not here today.
    Certainly, you should not infer from the
remarks that I have made on why I think it was done this
way, that I am an expert on pressure itops. But I would
again come back to the iact that on the ERRS, they have
always depanded on what they zalled "level." It is
measured in a certain way from DPs to tell you what was
felt to be necessary, what was goinc on in the core for
normal operacion to maintain core parameters within
ranges where you won't get into core damage or anything
like that. Initiating safety systems, many years of
experience, and a lot of design effort has gone into it
--
        MA. CARSON: ves.
        *R. ROSSI: -- is what I am really saying
rather than that I understand all the details in the
pressure drops.
```

MR. CAREON: 3ut I think you are also saying what I think Dr. Kerr referred to, an awful lot of experience under normal conditions at the edge of normal.

MR. ROSSI: Well, that is experience but do keep in mind, when accident analyses aze done in either of these plants, they are doina it in terms of measurements and how those measurements are really related to the parameters that were important during an accident.

I ail quite sure that has been the case in the PWRs. Again, I am not an expert on those pressure drops, trying to explain all that.

But you know, when the accident analyses are done they are done in terms of what they call "level" on the BWRs, and it has not traditicnally teen the situation on PVPS since they don't have an analogous measurement for primary systems.

I do think they have an analogous measurement on the steam generators.

MR. AATT: It falls in the post-accident monitoring.

MR. SIESS: I want to get the cast straight here. The three people at the table are from Standards or Research, as it is calied now.
Where are you guys from?

```
    *R. ROSSI: I am from NRS, the
    Instrumentations and Control Systems Franch.
    AR. WATT: I am from Research and Standards
    Coordination.
    MR. SIESS: Are the rest of these NRR people?
    VOICF: Yes.
    MR. SIESS: OK, I just want to get who is
    talking from what point of view, who is writing this and
    who is enforcing it.
    (Laughter.)
    MR. CARBON: Can you gentlemen answer my
question?
    MR. KERR: There is a third group, and that is
    who understands it.
    (Lauahter.)
    MR. SIESS: That is a smaller group.
    M3. CARBON: I honestly fon't understand how
    the Delta p down-comer satisfies the requirements for
    inventory on the core in PWRs. I presume it does, but I
    don't understand it.
    MR. HINTZE: I am not going to answer it
    either.
    MR. WATI: This is Jim Watt. Remember that we
    are talking about decay heat period and we are talking
    about a measurement in the down-comer. And with reduced
```

```
    power you would expect the level to approach that of the
    Ariving force whizh is in the down-comer.
    It is close to accident monitoring. The Delta
    F in the down-comer is close to it, certainly it
    represents the collapsed liquid level in the core and it
    woul be very close to it during post-accident monitoring.
    MR. ROSSI: If I can add a little bit more. I
    have had some experience on FWRs with level calculations
    in a steam generators and in relation to what is assumed
        an accident analysis.
    And what was done there was that you can do
        calculations of the amount of void and the amount of
        actual pounds of water within the tube region of a steam
        generator as a function of things like power, pressure
        in the steam generator, and down-comer level which is
        called DP. And those kinds of calculations are indeed
        done for the st\epsilonam generators on PKRz.
    And then, when you do accident analyses you
    have a relationship between what you are measuring -
    which is this DP and the down-comer which is close to
    level but it is also affected by pressure drops and
    flows and other thincs like that.
    But that is taken into account in the
    calculation. So, when you do an accifent analysis you
    are doing it, relating̣ what you are measuring to hat is
```

```
really going on in the tube recion in terms of void and
so forth.
    I am making an assumption - I am less familiar
and I have not done those calculations on a BKR - that
that same type of thing is indeed done on the ENR.
    Now, I have been involved to some extent with
the ATWS Task Force where they have, General Electric
has been preparing emergency operating procedures for
ATWS which involve such things as lowering the major
level down following an ATkS in order to get a certain
void within the core between the power level down. And
there, I believe -- well, I really know that they have
done calculations on how the aactual void and mass, and
reactivity within the core are related to the thing they
are measuring, which they call "level" again. as a
function of pressures and temperatures, and that kind of
thing.
```

So, I think that the real issue is that you
have to be able to relate what is going on in the core
to the thing you are measuring, rather than very closely
exactly reproduce the thing you really want.
MP. CARBON: You need to be assured there is
something unique, for each partial drop measurement that
you are getting something unique in the core.
YP. POSSI: aell, unique or correctable,

```
usable at least in some way. I think that in some cases
you have to make some corrections to the readings that
you get or you have to maintain the level of reading
    higher because of various pressures and other effects.
    MR. CARPON: Thank you.
    yR. SIESS: Let me see if I can summarize it.
    There does not appea= to be any real good reason for
    using "level" in one place and "inventory" in the other.
    But I think it is clear to me anyway as to
    What the staff expects to be Aone in response to this
    Reg Guide for ETRs.
    It is not all that clear in the Reg Guide.
    But for BWRs they are willing to accept the existing
    Delta p "level" measurements, and for PWRs their
    zosition is essentially that of SECY-52.407, accepting
    the destinghouse and CB systems and accepting Bew with
    some modifications - which I don't think anybody has
    quite come up with yet.
    Now, whether that is a proper position I am
    not prepared to say. We have discussed this in another
    forum a number of times and I do not recall the
    Committee having raised the kinds of questions we raised
    today about the EWRS. It seems we devote most of our
    attention to the PNRS.
    So, I guess I am willing to assume it is a
```

```
quoziion of semantics. The Standards people are willing
to change both to "inventory."
    NRR seoms to think that changing "level" on
BKRs to "inventory" implies somethig different than what
they have been doing, and they are willirg to accept
what they have been doing and prefer to keep it "level"
to keep the picture clear.
    *R. ROSSI: Yes. The last statement I would
    strongly agree with.
    MR. MORRISON: Chet, I am not sure that
    Standards is willing to change the BKRs to "inventory"
either. I think "level" is the term that is commonly
used. We received no comments or objections to the use
of that term and I would be very reluctant to have to
change the term "level" to "inventory" for a en?.
    MR. SIESS: I think that is the reason. By
changing the term there you would imply something
different than what you have teen accepting.
    Now, for PWRs there is no similar problem
because you are requiring something completely
different. It has been exclored and all the anoles to
it have been looked at. So, changing it there makes
some sense and it puts emphasis on a new technique.
Changing in the other place would be wrong because it
would take the emphasis off of an existing technique.
```

```
    That is the way I see it.
    You want to let it ride, gentlemen?
    MR. KERR: I just asked why. I now understand
it is tradition. I am in favor of tradition.
    (Lauqhter.)
    NR. SIESS: Are there any other of these
particular changes that anybody would like to discuss?
    I would like to have an explanation of what
the revised implementation section means. You know, I
know the words but I need to understand.
    MR. RAY: I have trouble understanding that,
tos.
    MR. KERR: Not knowing what is in Supplement 1
to 0737, if you will explain. I want to find out what
be are discussing.
    MR. STESS: The single sheet, Bill.
    MR. KERR& OK, excuse me.
    MR. HINTZE: If you remember, the CRGR minutes
indicated that we needed to work out an implementation
statement with the EID, and what I passed out this
morning was in response to that requirement of CRGR for
thei= approval.
MF. PAY: But it seems to say the same thing that you had on 1.97. I am having trouble understanding what the changes mean. There are changes in the words,
```

but the intent, English-wise, means the same thing to me.

MR. "INTZE: You are right. Legal people like
to have their own way of expressing things.

MR. SIESS: Now, let's take it up. Eor new plants, CBs after June 1, 1983 it is apolicable. That
is the same in both $v \equiv r s i o n s$, right?

MR. HIATZE: Yes, sir.
MR. SIESS: Now, for plants with OLs issued before June 1, 1983 , RCPs issued before --

KR. HINTZE: That is everything, everybody else.

MR. SIESS: That is everyboty else.
MR. HINTZE: Yes.
MR. SIESS: Shoule meet the provisions as

```
specified in Supplement 1 to NUFEG-0737, İght?
```

MR. HINTZE: Yes, Sir.
MR. SIESS: Now, that is what the new one says. The old one said, "Should develop a plan as outlined in," right?

YR. HINTZE: That's tight.
MR. SIESS: And this is more specific, it says, "Should meet the provisions as specified in Supplement 1 to 0737."

What does Supplement 1 to 0737 say?
MR. HINTZE: We provided a copy for you. It

```
says essentially, as far as the schedule is concerned, the same thing that we say here.
MR. SIESS: Does it require that everything in
the same thing that we say here.
    MR. SIESS: Does it require that everything in
Table 1 be implemented?
    *R. HINTZE: Eventually. The legal Feople are
a little bit concerned that if we just said --
    MR. SIESS: Eorget about the legal people,
Allen, just tell me what a plant that is operatinq -
    let's take a spezific plant, Connecticut Yankee-Hoddam
    Weck - what do they have to do to meet this? Do they
    have to meet all the requirements?
    YR. HINTZE: All the requiraments with the
    exception of the qualification of some of the
    instzuments.
    MR. SIESS: That is in 737?
    MB. HINTZE: That is in 737.
    MR. SIESS: But the schedule for doing it is
    something that should be negotiated.
    ZR. HINTZE: That's right.
    MR. SIESS: Nith the project manager.
    MP. HINTZE: That's right.
    MR. SIESS: And the project manager for Hoddam
    Neck is going to be a regional man one of these days;
    isn't he?
    MF. HINTZE: Probably.
```

YR. KERR: In the revision where it says, "Meet the provisions of this guide as specified," does that mean meet them as specified, or the provisions as specified?

MB. HINTZE: As far as the list of the variables, there is no question that they have to have those measurements.

MR. YERR: No, I am trying to find out what
the statemant means. See, "as specified" could refer to
the provisions, or to meeting the provisions, or to both.

Is it talking arout the provisions as
specified in 0737, that is. Frovisions 1 through 10 ; or
is it talking about meeting them in a way which is
specified in 0737, or both?
MR. HINTZF: It means -- let's see if we can
find what you are talking about.
MR. KERR: I am talking about the sheet that
was distributed this morning.
MR. HINTZE\& Yes.
MR. SIESS: Sam is getting a copy.
MR. KERR: Somebody must have written this and
had something in mind. What did the writer mean to say?
MR. HINTZE: He tried to say this, it says,
"It is acceptable to reply on currently installed
equipment if it will measure over the rates indicated in

```
1.97, even if the equipment is presently not
environmentally qualified."
    MR. KERR: So, the provisions.
    MR. HINTZE; So, that is the provision 0737 is
imposing over and above what the guide says. If you
just had the guide that has to have everything qualified
you have to --
    MR. KERR& I am trying to understand the
English here. It would mean the same thing if it said,
should meet the provisions specified, the provisions of
this guife specified, as specified?
    #R. SIESS: Let me try another wording, Bill.
Suppose it said, "Shoudl meet those provisions of this
guide specified in Supplement 1 to NUREG-0737?"
    MR. KERR: If that is what it means. Is that
what it means?
    MR. NARD: NO, 0737 is modifying the
provisions of the cuide; right?
    MR. HINTZE: Modifying them by accepting
    existing measurements.
    MR. WARD: Right.
    MR. UIVTZE: If they tell them what it is. If
    we just said, "weet the quide," they might have to tear
    some things out. They have now an opportunity to
    propose a little Aifferant than the guide says, by this
```

```
statement. That is what we are trying to say.
    Mz. SIESS: Yes.
    MR. WENZINGER: As specified in 0737.
    MR. KEPRz You see, it could mean, meet the
provisions in the way that is specified, or it could
mean, meet the provisions, those provisions specified in
0737, or it could mean both.
    MR. SIESS: Yes. It does mean both because
    the way gives them a time schedule loeway which is
    important, and it also gives them outs.
    MR. HINTZE: Right.
    MR. KERR: If it means both, then that is
probably the way to sey it.
    MP. SIESS: kell, if we understand what it
means, and they understand what it means, and NRR
understands what it means, I guess it's all right.
    MR. KERR: It does not matter whether the
licensee understands it.
    (Laughta.)
    MR. GARD: Would it mean what you want to if
    it said, "Shouli meet provisions of this guide as
    modified in Supplement 1 to NUREG-0737," is that what it
    means? That is what I thought it meant.
    MR. WATT: May I quote a phrase from the
    guide, from the NUREG, a SECY document?
```

"It is our intent that the guidance documents 2 themselves referred to in the enclosures are not to be 3 used as requirements, but rather they are to be used as 4 sources of guidance for VPC reviewers and licensees 5 regarding acceptable means."

Now, that is the guidance.
YR. KERP: Well, if one said, "Chould meet the provisions," that is not a requirement. What is it?

MR. SIESS: Nell, I can find some words. You

KR. KERR: Should follow the gridance?
पR. SIESS: To meet the provisions of this guide to the extent and in the manner specified in the SECY. Is that it?

SECY tells you the extent to which you must meet them in terms of equipment qualifications and the manner in which you must meet them, which includes the timing and the interpretation. I think that is what it means.

I am not sure that is not what it says if you wanted to read it loosely. There are two things involves.

MR. HINMZE: Zould you say that again, Chet?
Let me write it town.
MR. SIESS: I had "to the extent" and "in the

```
manner specified."
    MR. HINTZE: OK.
    MP. SIESS: Recause 0737 tells you how this
should be applied, with what flexibility and so forth.
And it tells you the extent to which it should be
applied to operating reactors, and not everything is
applicable.
The list is, the qualification - not
necessarily. There is a lot of leevay in there, 旃o
has that leeway, Denton or the project manager?
    MR. PINTZE: It would be the project managez
that eventually is the one that decides on each
indivi{ual plant.
    ur. SIESS: I mean, is the project manager
going to have the kind of responsibility and authority
that the SEP project managers have had about accepting
things?
    MR. YINTZE: Jim, do you want to answer that?
    MP. SIESS: That requires an uncommon amount
    of common sense, and I just wonder how many project
    managers have it.
    MR. JOYCE: This is Joe Joice of NRC staff,
    ICSE.
    ICSB will be implementinc Eeg Guide 1.97. the
    project manager will be setting up schedules,
```

```
nezotiating schefules with the licenseэ. When there is
a problem in terms of implementing the Reg Guide iteslf
on individual parameters or variables, at that time it
will bo worked out between the ICSB and the licensee.
    MR. SIESS: Not the project manager.
    MR. JOYCE: That's correct.
    MP. SIESS: So, he will not have the kind of
    authority as the SSP project manager had. The Technical
    Branch will make the final decision.
    *Q. ROSSI: That's correct, the Techoical
    Branch will make the final decision, and ICSB will
    consult with other branches that may be involved in a
    particular parameter.
    MR. WARD: Would you say the same approach is
    being taken with SECY-82-111, emergency response
    facilities? Project manager are going to be even busier
    people.
    NP. SIESS: They are going to negotiate
    schedules but the technical implementation will be up to
    the Technical Rranch, which is quite different from the
    SEP.
    OK, I understand. Any other questions about
    the implemewntation?
    The formal reference now is 0737, or SECY --
    &R. HINTZE: Supplement 1 to 0737.
```

AR. SIESS: And what is the force of that in Law? Does that have any more force than a Peg Guide? Is that a rule or regulation, or policy statement? MR. HINTZE: It is a letter that goes out to all licensees saying, this is what we want you to do. KR. SIESS: But it is not a backfit - is it 50. 109 or whatever it is - backfit provision? I am just interested in the mechanics of it right now.

MR. JOYCE: This is Joe Joice again, ICSB.
There was a 50.54 letter on December 17. That letter went out $t s$ all oparating plants, licensees and hoiders of construction permits. The 50.54 is the "show cause" why they should continue to operate without the implementation of the supplement to Reg Guide, to NUREG-0737.

MR. SIESS: And that is different than the backfit, right?

AR. JOYCE: Correct.
MR. SIESS: And the Commission does not have to -- let's see, the 50.54 puts it on the licensee to show why he does not have to do it?

MR. JOYCE: Yes, SiL.
4R. SIESS: And 51.09 would require the Commissicn to shod that it was a substantial improvement to safety.

NR. JOYCE: I don't know the latter. MF. SIESS: Most of the staff don'+. That is
the backfit provision that has never been used by
anybody. That is the way the Commission gets arcund
having to make a finding that safety will be improved.
Any other questions about Rag Guide 1.97,
Pevision 3? Mill, you want to ask something about what?
MP. KERR: I have a number of questions about
Table 1.
MP. SIESS: $Y \in S$.
UR. KERR: IS it time to ask those?
YR. SIESS: That is part of the Reg Guide.
Let me ask one, it may be one you were going to ask when
we started off.
The Type A variables is an open list, plant
specific.
MR. HINTZE: That's correct.
MR. SIESS: What experience has the staff had
in developing a list cf Type A variables on plants? Has
anybody submitted a list yet? This Req Guide has been
out.
MR. HINTZE: I don't know. It has not heen
enforced y et.
AR. SIESS: It has not been enforced.
MR. HIVTZE: I don't know whether they have

```
done it on a voluntary basis or not. Јoe may know.
    MR. JOYCE: That is correct, Al. There have
    been, I guess, three or four documents that have come in
    on a voluntary basis in response to Reg Guide 197,
    Revision 2.
    The staff has not looked at these dccuments.
    We are waiting for correlation with the project manager
    and licensees and the official submittals, so that we
    can start implementing and reviewing.
    AR. SIESS: There are 150 plants out there,
    140 something, that this is going to apply to.
    MR. JOYCE: yes.
    MR. SIESS: I am not talking about the future,
I worry about those. They may be standard plants.
    Are you going to get separata submittals from
        each one of those as to what they think the Type A
    variables are?
                            MR. ROSSI: I think the answer to that is,
yes, we are. However, I would like to point out that
the Type A variables are the ones that are required in
order to cope with an accident. The staff reviews, in
my opinion, have always lookei at those pratty carefully
because we have always looked at any manual actions that
are required following an accident carefully from the
standpoint of ensuring that it is OK to use manual
```

```
actions rather than to automate them.
    That has been an issue that has been brought
up by essentially every r sview. So, I think those hve
been pretty well covered in most plants. What we are
talking about doing here is getting a more formal
listing in one place.
    MR. SIESS: Yes, but you are going to get }14
formal listings. Who is going to coordinate this? It
seems to me that people that have been reviewing
emerqency procedures have to be involved because that is
where it calls out what the manual actions are. And
emergency procedures are being revised like mad theze
days and reviewed. Everybody is reviewing and revising
emergency procedures.
    MR. ROSSI: You are correct, the emergency
procedures will be important and the Reator Systems
Branch will be deeply involved in that review.
    MR. SIESS: What is the probability that two
or more or less iAentical plants are going to come in
with a different list of Tye A variables, will somebody
look at those?
MR. ROSSI: That could very well happen. But keep in mind that the reviews we do on the staff are basically qudit \(\quad\) feviews. The burden is on the licensee to pick the correct Type A variables and we will audit
```

```
    what he picks to assure ourselves that he has done a
good job in picking the correzt ones. Comoarisons will
be done, but we do not intend to do an exhaustive
comparison of everyone's list.
    MR. KERR: Mr. Rossi, I have gotten the
impression that Regulatory Guides were supposed to give
guidance to the licensee as to what the staff would find
acceptable. That is the reason that they come into
existence as regulations, and the Reg Guide tells the
licensee he can go with that requlation.
    Now, it does not seem to me that this gives
very much fuidance to a Iicensee as to what a Type A
variable is unless you are willing to accept whatever a
licensee picks out.
    If you are not going to accept just what a
licensee picks out, then it seems to me some guidance
might be appropriate. And to just say "plant specific,"
it seems to me, is not a lot of guidance.
    MR. FOSSI: Well, I think there is in fact a
lot of guidance already available. I believe the
Standard Review Plan covers what is acceptabie.
    AR. KERR: Nell, why is that not referred to
here, rathar than the tərse statement, "plant specific?"
    I mean, if there is guidance somewhere else
that is more spercific, it seems to me it might he well
```

```
to refer to it here.
    MR. HINTZE: This guide is a list of variables
    to be measured, ok? And unless there is one vari=*ie
    that should fit every plart, we can't put it in.
    MR. KERR: But how are you going to make a
Iudgment, then, when you get them as to whether they are
appropriata or not? Somebody is going to make a
judgment, I am told. Will that just be on an ad hoc
basis for each plant?
    If sc, what does the reviewer use as guidance?
    MR. NATT: The reviewer would use the judgment
of whether that measuremewnt gives the operator
sufficient information to take the action.
    MR. KERR: Eut he is going to use some
criteria, I think -- maybe it is the Standard Review
Plan, mayba it is something else.
    If he is going to use this, why not tell a
lizensee the reviewer is coing to make a judgment based
on whatever he is going to do, so that the licenspe can
save himself some trouble?
    I mean, he has some idea of what criteria are
going to be used. It seems to me he is in a better
position to give you the information you want the first
time around.
    MR. WAMT: The emergency core cooling systems
```

```
are plant specifiz. the lonq-term cooling
characteristics are plant specific.
    MR. KEPR: Eut everything in here is plant
specific, lik\inly. And yet, we have lists of stuff and
foz some reason for Category A, for Type A, we have a
the terse statement, "plant specific."
    *R. WATT: I have been concerned about this,
too. Eut really, you have to anticipate an accident and
say, when would an operator have --
    MF. KERR: You had to do this for neutron
plugs, for control rod position, for PCS solulable Boran
concentration. I mean, you don't use those unless you
speculate an accident and say, "I need this."
    MR. ROSSI: Well, I think that these variables
are determined by what is in the Chapter 15 analysis of
the FSAR ani what is in the emergency operating
procedures.
MR. SIESS: I think the latter is a lot more important than the former.
MR. POSSI: Well, it is the combination of the two.
MR. SIESS: But the emergency operating procedures tell me what is a manual action and what is an automatic action, and the Chapter \(15 s\) will not. MR. ROSSI: Well, Chaoter 15 analyses, though,
```

2

```
    tell generally what the bare minimum required safety
actions and equipment are in orier to cope with an
accident.
    (Simultaneous conversations.)
    MP. FOSSI: They are the ones that are picked
    in Chapter 15.
    MR. KERR: We have already gone beyond the
design basis accidents in Req Guide 1.97.
    MR. SIESS: What is more, we have vendors
    coming up with standard operating procedures. They are
    developing oferating procedures. So, there are not
    going to be 140 different sets of operating procedures.
    MR. ROSSI: Eut there are still aoing to be
    plant-specific aspects.
    MR. SIESS: There will be some plant specific
    but every plant is not going to be unique. There are an
    awful lot of things similar between Millstone 1 and
    Dresden 2 and 3, for example, and Dresden 2 and 3 and
    Quad Cities 1 and 3. They are the same vintage plants
    and the same company, for example.
    Sow, I will quarantee that they will have the
    same. Ani I am not even sure they have the same project
    manager.
    YR. FOSSI: I look at the Type A variables as
    being more along the lines of the Chapter 15 analyses
```


Now, it seems to me: n order of importance and maybe I misjuige - but I trouqht thit probably Type A variables are a bit more 1 mportant than E, and B is more important than C, ans so on. Maybe that is not the caミe.

MR. ROSSI: Tiat is cortect.
MR. KERR: If it is the case, it seems to me if you define somathing as a Type A variable, then the specifications on that instrument and that channel are such that you do not have to worry about whether it is a B, C, D, or E, you have alreaiy taken care of it.

So, I do not see why one worries about it. MR. ROSSI: Fell, we did not want to infer
that if something was listed as a Type A variable and a
Type B variable, that they had to have a separate
instrument for the two. I think that was the reason.

MR. HINT7E: If we start listing Type B variables, we are dictating to them as to whit they should have manual and what they should have automatic.

MR. KEFR: I am not sayina that you list
them. I am saying give them come guidance.

MR. HINTZE: We do.

YR. KERR: All it sa7z here that it is plant specific. Indeed. I think maybe it qives too mucn specificity in the E, C, D, and E. I was oust struck by

```
What seemef to me to be an anomaly in terms of
importance. The important variables, you say, are plant
specific. Those are the less important.
    MR. SIESS: Bill, the A, B, C, D, the order of
importance is on a time secuence. A are those things
you --
    MP. KERR: I thought that I was just told that
that was true, that there was an order of importance.
    MR. SIESS: I believe that is incorrect.
    MR. KIVTZE: The Categories 1, 2 and 3 are the
orders of importance.
    MR. WARD: Yes.
    MR. SIESS: Eill, if you look at them, A are
those things you have to know in order to do the proper
manual actions: B tells you whether the autoratic
systems are working; C tells you you are likely to have
a failure somewhere in one of the boundaries - I forget
what D is: and E tells you when it is outside of
containment.
    It gets progressively worse.
    MR. WENZINGER: v2. Chairman, may I have a
word, please?
    MR. SIESS: Yes.
    NR. NENZINGEP: Thank you.
    I think we have all forgotten, and I think the
```

```
ANS would probably accuse us of having deliberately
forgotten - that may be right or wrong but I won't argue
it - but this Deg Guide does in fact endorse an ANS
standard although the degree of endorsement is perhaps
not as much as the ANS would have liked.
    Let me read to you from Section 4.2 of the
endorsed standard. It says, "Three classifications of
variables have been identified. Operator manual actions
during design-basis accident events are pre-planned.
Those variables that provide information needed hy the
operator to perform these manual actions are designated
as Type A."
    No identification of a spcific Type A
monitored variables is provided in this standard because
they are plant unique. The process for selecting Typpe
A variables is given in Section 5.1.1. "Those variables
needed to asess critical plant safety functions," and it
zozs on to B qnd C.
    Let mego, then, to section 5.1.1. It says,
for Type A under variable selection, "The process for
selection of accident monitoring variables shall incluce
identification of - for Type A - the design basis
acident events for which manual action is required,"
that is one.
    Two, "Pre-planned operator actions to deal
```

```
with those events."
    Three, "Monitored variables needed for
pre-planned operator actions."
    Four, "That the monitoref variables for which
current value, rate, trend or a combination of these are
reguired for pre-planned operatcr actions during an
accident."
    Now, that is the guidance and criteria that is
given for Type A in the standard. We did not repeat it
in the guide because we agreed with it.
    MR. SIESS: Thanks, Ed, we needed that.
    MR. KERR: Now, is a reviewer going to have
available that ANS standard?
    AP. SIESS: Oh, yes.
    MR. WENZINGER: ves, it is specifically
endorsed by the Reg Guide, believe it or not.
    MR. KERR: That was not my question.
    (Laught\inI.)
    MR. SIESS: There will be one copy of it.
    MP. TENZINGER: There is one copy here, and I
am sure the ANS would be glad to sell you additional
copies.
    MR. SIESS: Inzi&entally, Type A specifically
says DRAS.
    MR. KEPR: And those instrumentation systems
```

```
are safety grade, are they not?
    MR. |ENZINGER: Yes, siv.
    MR. HINTZE: That is correct, Category 1.
    MP. KERR: And that is an indication of
importance there, they are therefore considered fairly
important.
    MR. WESZINGEP: Very important, yes.
    MR. KERR: I have some other questions, Chet.
    MR. SIESS& Yes, sir, go right ahead.
    KF. KERR: Let me go to Table 1. I recoanize
that BWR core temperature is still an open issue. But
is it really the core temperature that one wants to
measure, or is that still undecided?
    I do not have any idea of how one measures
core temperature or €ven what it means.
    MR. SIESS: It used to say core thermocouples,
and I guess we knew what that meant. Now it says core
temperature.
    MR. HINTZE: That was changed because
thermocouple is not a variable, temparature is a
variable.
    MR. KERR: That is true, but what would one
mean by the core temperature, and how in the devil would
one measure it?
    vR. POSSI: I think that is why we are still
```

```
considering what is going to be reguired in this area.
I think it is premature to try to talk about it.
    MR. KARD: Is it core coolant temperature?
    MR. KRRR: You really did not orizinally
intend to measure the core temperature, did you?
    MR. RJSSI: Again, I think the reason that
    this is not being implemented at this time is, we are
    still discussing exactly what it is we want to know and
    how we are going to find it out. I do not think we can
    answer your question.
    MR. KERR: Then why not leave that line
    blank? That woula indicate that you do not know what
you are doing at al1.
    (Laughter.)
    MR. BERLINGER: I am Carl Berlinger, Core
Performance Branch.
    The BWR core temperature variables you are
just discussing, it really is referring to temperature
measurement that was proposed to be implemented on BNRS
for core exit thermocouples.
    Some time agc, core exit thermocouples and the
application in BWRS was questioned and thore were
several meetings between the B#R owners qroup and the
staff.
As a result of the meeting, the BWR owners
```

```
group has developed a generic report which has recently
- around the middle of December - been submitted to the
staff, which proposes that core exit thermocouples are
not needad in order to track inventory or water level in
the core.
    The staff will be revisuing this report, and
actually there are several reports there, quite
lenathy. We intend to complete these reviews in
mid-summez, around August.
    4R. SIESS: I have a problem with this. It
seems to me what we are interested in --
    MR. KERR: It was a very good answez to some
question.
    (Lauchter.)
    UR. SIESS: It seems to me that what we are
intererstef in is the temperataure of the plant, isn't
it? If it gets above a certain temperature it creeps,
it interacts with the water, hydrogen develops.
    MR. KERR: He is right. Oriqinally, what we
talked cbout was something, and indeed this says to
provide diverse indication of water levels.
    MR. SIESS: Weli, that is what bothers me
because what I am interested in is the temperature of
the stuff in the core. I guess if there is water in
there, that helps a lot.
```

Eut I am not realiy interested in where the water is, I am interested in what the temperature is, am I not? That was one of the problems in TMI.

MR. KERR $\boldsymbol{\text { M }}$ Chet, you are very interested in what the cladding temperature is. The problem is, nobody knows how to measure it.

4R. SIESS: I know. But the thing is, the purpose is, at TMI they were so concerned about the water level nobody paid any attention to the thermocouples they had. They just assumed that they had enough water in there and ignored the fact that the
temperature --

MR. KERR: Even those thermocouples were not measuring core temperature, they were measuring the outlet temperature of the steam or something close to it.

YR. SIESS: It spems to me that we are still putting emphasis on the water level and not on the core temperatures.

The object of the game is to keep the core cool, isn't it? Cbviously, if it is covered with water, it is beina kept cool.

MR. XERR: I guess the answer is that that is still under discussion.

MR. KENZINGER: I think that is what we said originally.

MR. KERS: I did not realize anybody ever
really was talking about trying to measure core
temperature. That is what this sort of implies. Eut, so be it.

4R. SIESS: Dut if You have a way cf measuring the clad tamparature, is that not what you would want to know?

MR. WENZINGER: Sure.

WR. CARBON: We want to know roth, I think. MR. WARD: Yes, but that is hopeless to say
you are ever going to measure that. So, you try to
measure what you zan, and that is the core exit coolant
tenperature.

MR. SIESS: It would not have to be the exit
temperature.
 is representative of the condition of the core.

MR. SIESS: That's right. Eut this says you want to measure something that is representative of where the water level is, over in the last column.

MR. STODDARD: What you are really trying to say here is that you want to make sure that the core is being cooləd.

MR. WARD: Right.

MR. STODDARD: And one way you do that is by

MR. WENZINGER: Yes, there is a reason.
Recall, there are two purposes that the variable is used
for. One to tetermine, like for Type B, whether the
safety function is being accomplished, and under that it
is listed.

The question of whether or not the houndary to release the fission products is being detected, the Type C purpose, is listed there as well.

MR. SIESS: But it only goes to 110 percent of design pressure there. On a PWR, where do we do to on pressure? The first thing when the ACPS brought this up
was, they wanted higher reactor coolant pressure
measurement, higher containment pressure measurement.

MR. KERR: On the PWR for what, Chet?

MR. SIESS: Containment pressure.
MR. KERP: Something like three times for concrete, four times for steel, as I remember.

MR. SIESS: Nell, Type B still goes to design
pressure.

MR. KERR \boldsymbol{M} Does it? OK.

MR. SIESS: Type C still goes to design
pressure.

4R. KERR: Maybe it is just because for Type B that is all you need, whereas for Type $C \ldots$

KR. SIESS: Well, I am trying to find the

```
place where it goes up higher. Is that Type B?
    MR. NENZINGER: TypeC.
    MR. SIESS: Type C, containment pressure goes
to three tims design pressure for concrete, and so forth.
    Now, what do we have for BWFs under Type C?
    MR. KERR: Well, we have containment .- I
don't see it.
    MR. RJSSI: Primary containment pressure on
    the BTRS is on page 10.
    YR. WARD: The same thing.
    MR. SIESS: OK.
    MR. FJSSI: That is primary containment
prassure.
    AR. SIESS: Rut what do you call the primary
containment, the building? The dry-well is not the
primary? I am confused now. It seems to me the
dry-well and wet-well in a boiler serve the same
function as the containment does in a pressurized water
reactor.
    MR. ROSSI: I think it depends on whether it
is a Mark I, II or III containment.
    MR. SIESS: I don't see any distinction here.
The primary containment, what does primary containment
mean, the vuilding?
    MR. EOSSI: I am not sure.
```

```
            MR. KERP: For maintaining containment
integrity one has primary containment pressure minus 5
pSI of design pressure.
    MR. SIESS: But under Type C on page 10 it
goes to three to four times. The primary containment
has got to be the fry-well.
    MR. HI#TZE: It has to be the next barrier
following outside the --
    MP. SIESS: The vessel.
    MR. HINTZE: The vessel, right.
    MR. SIESS: OK, it's all right.
    MR. KERR: So, everybody will understand that
in one place primary containment means dry-well and in
the other case dry-well means dry-well.
    MR. NARDE No, no.
    MR. ROSSI: I thought - and I am not a
containment expert - but I thought that in the Mark IIIs
if you had a dry-well, then that was surrounded by what
was called a primary containment; is that correct?
    MR. NARD: No, it is a secondary containment.
the primary containment is the wet-well.
    (Simultaneous conversation.)
    MR. SIESS: The secondary has the wet-well in
    it in the Mark III; the primary is the dry-well. It is
just confusion because eve in Type C you tave two
```

different values.
MR. FOSSI: Qell, I think we want to agree
with you that we should check to see that we are calling
the same thing by the same name throughout here.
MR. SIESS: Yes.
MR. RJSSI: If we are not, we will take a look
at that. I do not think we can answer your question
right now. But I think that has to be checked.
4R. SIESS: I think primary is the dry-well.
It is the dry-well-wet-well combination for a Mark I and
II, and it is the dry-well itself for a Mark III because
the wet-well is outside the boundary of the Mark III.
MR. KERR: On page 9 of the same document
under "Analysis of primary coolant" - I mean, it is
associated with analysis of primary coolant - what is
the meaning of 10 microcurie per milliliter to 10 curie
per milliliter or TID-14.844 source term in coolant
rod? I just don't understand what that means.
MR. SIESS: That is just another way of
getting curies.

MR. KERR: I understand the statement up to the word "or," but I don't understand the implications of the "or" statement.

MR. SIESS: Whichever is greater or whichever is less, that is another way of asking it.

Does the "or" apply to the upper limit?
MR. STODDARD: Phil Stodeard, NRR, Division of

Systems Integration.

The "or" is simply a second method of
calculating the number. It might be useful for one of the smaller zeactors. The TID 14.844 is used to calculate the ten microcuries per millimeter. The ten curies per millimeter are based on a 3800 megawatt thermal reactor.

MR. SIESS: So, the TID 14.844 is an
alternativa upper level?
MR. STCDDARD: That is correct. You might wind up with a fizure on the order, say, of two curies per millimeter, five curies per millimeter.

MR. SIESS: So, it is whichever is less.
MR. STODDARD: It is optional.
MR. KERR: Well, if it is just the difference between ten curies or two curies, why put in the TID 14.844?

UR. STODDAPD: I don't recall the rationale for putting that in. It was suggested at one point.

KR. KERF: And on page 10 under "associated With," about the middle of the page, "containment and dry-well hydrogen concentration," what is meant by zero to 30 percent volume?
vR. STODDARD: Volume percent.
MR. SIESS: Volume percent.

MR. KERP: And how does an instrument measure
volume perzent? I would think it would measure
concentration or something; correct?
MR. SIESS: I qm interested in the change from
bot tom to top, to top to bottom.
MR. KERR: Oh, I understood that immediately.
(Laughter.)
MR. SIESS: That is one that comes under the
heading of clarification.
(Laughter.)
MR. WENZINGER: That comes under the heading
of making them all the samo.
MR. KERR: That just means the first duy who
wrote that did not know his top from his bottom.
(Lauchter.)
MR. KERR: Is it really intented that the
instrument measure volume percent?
MR. WATT: Yes.
MR. KERR: How can you do that?
WR. WATT: You can set them up in weight
percent and volume percent. There are instruments that
measure on a volume percent basis.
MR. NAPD: I think that is right.
vR. KEPE: I bet they calculate it, but I bet they don't measure it.

AR. YENZINGER: That is correct.
MR. SIESS: The variable provides information

```
that says --
```

MR. KERR: Well, OK.
MR. WENZINGER: That is correct, definitely.
The level is calculted.
MR. KERR: So, the variable being measured is not the volume percent, it is the concentration calculated.

MR. WENZIFGEP: ves, that is true.
MR. KERR: Now, on the next page, 197-11,
there is a key here - and maybe less here than other
places. The implication, I think, that by making measurements of radioactivity one can somehow determine how much has been released, which sort of puzzles me because it appears to me that one needs information not only on concentration but also on flow rate. If one has a release point you found out how much is released.

But the emphasis seems to be, as far as I can tel1, in all the places just on measurement of activity, and the reason for doing this was so that one could tell how much activity has been released.

MR. SIESS: You are talking about the Type C

```
variarle at tho to top of page 11?
    NR. YERR: Yes, and then other places, too,
where one is measuring activity.
    MR. SIESS: Nell, it says the purpose is to
inAicate a breach.
    MR. KERR: Well, if you just want to get a
breach, I fon't think you nee1 that much of a range.
    MR. HINTZE: You mean you would want it to go
off scale?
    MR. KERR: W\inII, I don't know what, it is not
quite clear to me what it is. It says, "Areas where
penetrations or hatches are located." Now, if you put
it inside an area where a hatch is located and measure
its activity, that does not tell you that you have any
release, it just tells you that there is radioactivity
near the hatch.
    I would assume that what one wants to find out
is whether something is getting out, not the fact that
there is radioactivity near where a release might occur.
    Is it that you want to know?
    MR. HINTZE: This is in the effluent path now,
outside. The building is where the hatches are, but the
effluent from those buildings.
    MR. KERZ: How do you tell that this is
    outside?
```

9 I think what we wanted to 10 is make sure that it did
MR. HINTZE: The variable is effluent

```
2 Eadioactivity, zaseous, fzom the buildings where the 3 hatches are.
hatches are.
```

MR. KERR: And you just want to know that there is a breach, not how much. If you just want to know that there is a breach I do not see that you need the nine orders of magnitude cange.

MR. HINTZE: Bill, could you comment on that? not go off scale, no matter what the use --

MR. SIESS: Ordinarily, if it goes off scale that certainly tells you something; does it not? I mean if ten to the rinus six microcuries per ccindicates a breach, then anything more than that certainly indicates a breazh.

MR. IENZINGEF: There was a general philosophy in the entire standard that we would attempt to provide ranges so that the oprator, or whoever might be interested in the variable, would be informed of what the value of that variable is, and that if corrective action is being taken to fix whatever the problem is. That by having the variable on scale he would he able to tell whether his corrective action was having positive, negative effects, or no effects. That is why we wanted it on scale.
aR. SIESS: So, if we have ten to the three and you closed a valve and it went down to ten to the
one, you figure you were doing some good?
KR. HENZINGER: That is the idea.
$\because R$. SIESS: Is that a reasonable range, nine orders of magnitude to this kind of instrumentation?

YR. STODDARD: 2hil Stoddard again. It is reasonable in that the instruments that have been developed typically have three separate detector rate measurement systems.

The single detector is good for no more than four, from a maximum of five decades. But the systems that are being used for this and other purposes are capable and had a nine-decade range, again by using as many as three deteztors.

KR. KERR: What is an operator going to do to a penetration in a hatch to see that something has changed?

MR. SIESS: Close the valve.
MR. KERR: I am convinced.
On paze 197-13, under "Area radiation" there is a specification, radiation exposure rate inside buildings or areas where access is required for service according to safety."

Now, this presumably is a fixed measuring

```
point. I guess I almost think on the basis of previous
experience and previous NRC practice that this almost
may be counter-productive because it implies that one
would make a judgment about access to the area on the
basis of a fixed point monitor.
    And yet, we have had a number of rercent
incidences in which peoplet not only dit not use fixed
point monitors but used portable monitors in the wrong
place and were fined for poor practice.
    I guess almost anybody who is going into a
region like this on the basis of that would take not
just one but several radiation monitors and carefully
survey the region.
So, I am not sure that I understand what this thing is for.
MR. HINTZE: Well, it certainly does not preclude the use of portable monitors. What it intends is to give him an idea of what is there before he starts to go into this, otherwise he does not know.
YR. KERR: I mean, that is precisely what the monitors are for. You start out and you start approaching the source, and if it goes on a scale you back off or do something.
YR. ROSSI: I think your comment has to do
with what \(I\) consifer to be kind of a general philosophy
```

```
assuming these variables here.
    If we are trying to look in too much detail at
one particular variable all by itself, it might tell
somebody about what is going on after an accident. I
think really the attempt on these variables was that ve
implied variables that as a whole can be used to toll
you the magnitude of the problem that you are trying to
deal with.
    And you are absolutely right, we would not use
this as a single variable to make a decision. He would
use it in conjunction with other variables in here and
he probably would use portable equipment. This would be
of use, I think, in telling someone the magnitude,
general maznitude, of the problem that he is trying to
deal with.
    MR. KERR: In temrms of existing plants, are
these likely to be in place, or is this new equipment?
    Mr. ROSSI: I believe it is new. Yes, it is
new.
    MR. KERR: I quess I can't see that, if it is
really new - I am not sure what it is good for, but you
thought about it.
    UR. STODDARD: while this type of
instrumentation is not common to all plants, there was
instrumentation of this nature in place at Three *ile
```

```
Island. There is a record of one such instrumen+
roading, T believe, 600 Roentjens, in the immediate
vicinity of the sampling system shortly after the
accident.
    MR. KERR: Well, it was not my contention that
the thing would not read or would even read incorrect.
It is just that I am not sure -- well, you guys have
given it a lot more thought than I have, I guess.
    On page 14 I sort of wondered what the purpose
of the added statement was.
    YR. HINTZE: Which one is that?
    MR. KERR: "It is unlikely that few fixed
station area monitc=s could provide," and so on.
"However, there may be circumstances."
    It seams to me that this is giving a licensee
rather confusing guidance.
    MR. HINTZE: It was intended to give support
to those who have already installed these area monitors.
    MR. KERR: What does "support" mean? You are
telling them that they have wasted their money? But how
about people who have not installed them?
                            MR. NARD: They don't want them to waste their
mon\iny.
    (Lauahtきr.)
    1R. YERR: There may be circumstances where
```

```
such a system may be useful. To me this tells a
licensee, "We would certainly feel good if you hac one
of these."
    MR. HINTZE: I fon't think I can respond to
    that.
    MR. KERR: And if the decision is left to the
    licensee, it seems to me -- I just don't see what
guidance that gives anybody.
    MR. SIESS: It says if you fump the gun and
put this stuff in because you thought we were going to
require it, we are sorry, but maybe it will be useful.
    MR. KERR: OK.
    MR. HIHTZE: I understand some states require
it. Did not Califc nia require it, Frank?
    yR. CONGEL: Yes. I am Frank Congel, NRR.
    We have a little bit of cirzular reasoning
here because the State of California required it, as I
understand because we had originally required it in our
first version of the Reg Guide.
    But frankly, I think it has already been
expressed why we put in this statement, and that is to
tell those people who did install what it for whatever
reasons they had that it may not be of great value.
    But the analysis that we did shows that the
monitors yould serve --
```

```
    MR. KERR: I understand what the analysis
    showed, I am trying to find out what guidance the
    licensee is gotting from that statement. I gather that
    you are telling me he is not getting any, it was put in
for a different purpose.
    If that is the case, then I understand that.
I just look for guidance in that keg Guide.
    Now, on the bottom of that paga --
    MR. SIESS: It is useful if you are in
California.
    MR. KERR: I do not understand the inserted
statement. Can somebody tell me what that means?
    MR. STODDARD: Phil Stoddard again.
    That came about as the result of some
theoretical objections to sampling that was provided.
    MR. KERR: I want to know what it means, not
how it came about. What is it supposed to tell me?
    MR. STODDARD: Basically, you just go out and
take the best practical sample you can, regardless of
What the theory says about the sampling.
    MR. KERR: Well, does not "representative
sample" say that?
    MR. STODDARD: That is correct, but if you
look into sampling theory, well, just as an example,
there are some systems that have been put in place where
```

```
the sampling lines are approximately 150 feet long.
    MR. KERE: I am trying to unferstand what this
statement tells a licensee. If I were a licensee. I
would not know what I was being told. What am I
supposed to gain from that statement?
    YR. STODDARD: Well, first of all you are
obtaining the best practical sample. It means you
obtain the best sample you can.
    And then you apply to that sample values that
you obtained by test as to what the sample line losses
are. So that you can by applying correction factors
come up with results which are conservative estimates,
approximations, whatever you want to call it, of actual
concentrations.
    MR. SIESS: Does the ANS Standard offer any
better advice?
    MR. STUDDARD: The problem with the ANS
Standard 13.1. which is dated 1969, is that the advice
in there essentially tells you, you can't sample with a
line that is about 15 faet long.
    However, that is not quite correct in that it
has been observed by some number of people that you can
in fact smple over lines as long a 150, 200 feet long.
You do not get a hundred-percent effectiveness, it may
be only 25, maybe only 40 percent. But you do get a
```

```
sample.
What we are saying is that where you do have problems with high radiation levels and so forth, our recommendation is that you gez the best sample you can.
Make some zalculations as to what that sample really
represents in terms of the concentrations at that point
of sampling, not relative to the end product, and just
come up with the best cesults you can, applying
conservative factors to assure that the results are not
going to be on the low side.
    MR. KERR: At page 15, in the footnote 15,
what is meant by "which may be expanded and superseded
by Revision 1?" Is Revision 1 not yet out and so they
are saying -
    MR. HINMZE: That is correct. Revision 1 is
in Harold Denton's office waiting for his final
concurrence.
    YR. KERB: Why is that put in here, then, that
it may be expanded and suporseded because almost any Reg
Guide may be expanded and superseded by revisions.
    MR. HINTZE: Well, the Eegulatory Guide 1.23
contains a lot moze information than what we have got
here in terms of meteoroloaical measurements. They
indicated we made this chançe to be consistent with it
and put them in here because we wanted to let this guide
```

```
to be complete as far as the variables go.
    MR. SIESS: Let's see, 1.23 is the one that
requires the backup system on the ten-foot pole?
    MR. HINTZE: I think that is what it is, yes.
    MR. SIESS: And where is that now? Ne said we
did not like it, and lets CRGR look at it. Where is it
now?
    MR. HINTZE: It is in Harold Denton*s office
waiting for his concurrence as far as getting it issued.
    #R. SIESS: It has not cone to CPGR?
    KR. HINIZE: It went to CPGR and I think it
went back again the second time. The gentleman who was
to talk to that could not make it this morning.
    MR. SIESS: I have a faint recollection that
CRGR sort of agreed with us.
    MR. HINTZE: They had some problems with it,
yes. It got the impression from talking to Mr. Clint
Chevitz that if we can't solve that groblem, CRGR can
solve it. But I can't be sur?.
    UR. SIESS: NOW, this went beyond the existing
1.23; is that not right, what is in 1.97?
    MR. HINTZE: It went beyond? No, it was just
different.
    AR.SIESS: It was different?
    YR. HINTZE: Yes. As far as the variables
```

went, there wore different numbers in the range.

MR. SIESS: OK.
XR. KERR: on page 15 , and also a number of
other placas where it startd with PCS pressure, why do
you require 4,000 for CE plants and only 3,000 for
pressure?
MR. HINTZE: I have forgotter. what the
rationale was.
MR. KERR: It probably has to do vith AMNS,
but I don't understand why.
MR. SIESS: It says that in the footnote.
MR. KERR: That is quite a fifference.
MR. ROSSI: There are some differences in the
plants in terms of the safety valve capacity that they
have.

```
    MR. KERR: But have you concluded it is
    impossible for the other plants to \(g 0\) above 3,000 ?
    MR. ROSSI: I think the conclusion is that it
    is much less likely.
    MR. KERR: And at the bottom of page 17, what
    is meant by trending the voids?
    AR. HINTZE: You can't measure them exactly.
4 You can measure whether they are increasing or
decreasing.

MR. KERR: Why doesn't one say this?
MP. HINTZE: We thought we did by "trending."
```

Maybe we invented a new word. I don't think Mr.

```
Morrison likes that word either.
    MR. MORPISON: That is right, it is not a word.
MR. KERR: I don't think it is a verb, at

1east.

MR. MORRISON: That is my objection to it.
MR. KERR: Maybe it is becoming one.
In page 18 in the footnote, "Monitors should
be capable of measuring radioactive gaseous effluent
concentration."

Is it really the gaseous concentration that one ought to measure, or the activity? I am not sure. It seemed to me that you want the activity, but perhaps you want the gaseous concentration.

MR. HINTZE: I'm sorry.
KR. SIESS: Footnote 8 on page 18.
MP. KERR: Footnote 8, measuring radioactive gaseous effluent concentrations. I am not sure which you want. I would have thought you wanted the activities.

MR. HINTZE: Do you have a problem with that, Joe?

4R. KERR: I do not suggest that you answer

8
```

```
it. Just look at it and make sure that it says what you
```

```
it. Just look at it and make sure that it says what you
want to say.
want to say.
    MR. MARD: On pace 21, the cooling water
    MR. MARD: On pace 21, the cooling water
system, the component cooling water temperaturre, you
system, the component cooling water temperaturre, you
raised the bottom of the range from 32 to 40. I was
raised the bottom of the range from 32 to 40. I was
just curious, 32 seemed like a nice number.
just curious, 32 seemed like a nice number.
    MR. KERR: Another place they raised it from
    MR. KERR: Another place they raised it from
30 to 40, which I thought was nice.
30 to 40, which I thought was nice.
    MR. WARD: Yes.
    MR. WARD: Yes.
    MR. KERR: I decided that }30\mathrm{ must have been in
    MR. KERR: I decided that }30\mathrm{ must have been in
for ice condenser plants.
for ice condenser plants.
    MR. SIESS: Do you have an answer, Al?
    MR. SIESS: Do you have an answer, Al?
    MR. HINTZE: I'm sorry, I was writing.
    MR. HINTZE: I'm sorry, I was writing.
    4R. SIESS: On page 21, the fourth item from
    4R. SIESS: On page 21, the fourth item from
the bottom, the cooling water system changes from 32 to
the bottom, the cooling water system changes from 32 to
40. That is the only change on that page.
```

```
40. That is the only change on that page.
```

```

MR. HINTZE: The only thing we can think of is that we never did get that low.

MR. WARD: I'd be sure of 32 , I guess.

MR. HINTZE: The Idaho people seem to think
```

that the ranges of instruments that were apparently

```
there might have to change their scales, if they went
down to 32. That's the only thing I can think of.
    MR. SIESS: That came out of the Idaho report?
    MR. HINTZE: Yes.
    MR. SIESS: Eill, do you have some more?
    MR. KERR: Well, there were a number of places
in the guide itself where \(I\) had questions, but \(I\) think
these are not changes, so maybe I should just desist at
this point.
    MR. SIESS: It's up to you. Dave, do you have
anymore?
    MR. WARD: No.
    MR. SIESS: Jerry?
    MR. KERR: One vuestion. There was a
reference to measuring containment temperature, and that
that woulf require instruments in several different
locations. Did that have in mind the fact that maybe,
say, in something like an jce condenser you would want
to measure the temperature in the lower and upper
compartments, or did it mean, say, a big dry containment
```

where you needed to know the temperature in several
locations?

```

It seemed to me that one might have said a little more about what one had in mind there because T was not sure.

MR. HINRZE: I'm not quite sure I --
MR. SIESS: Do you remember where it was, Bill?
MR. HINTZE: I know when we were talking about containment temperatures --

MR. KERR: It is referred to on page 3 of 1.97, and the paragraph uses an example. It says it's important that tha number of points measured be sufficient to adequately indicate the variarle value. For example, containment temperature may reçuire spatial locations at several points of measurements.

Now, it seems to me that in a large dry containment, I'm puzzled that that would be the case. If you're talking about a compartmentalized containment, I could see that it might be, and I wasn't sure which one you had in mind. And indeed, it seems to me it's a fairly important point. If you think in a large dry, for example, that you need a large number of points for measurements, I wondered why. And if you aren't, then --

MR. MENSINGER: This is general guidance. If you expect there might be differences in temperatures,
```

whether it be a large dry or an ice condenser or
whatever, if you expect that there might be different
tempertures at various locations -- pockets, if you
will, where temperatures might get higher -- then you
ought to instrument those areas to know what those
temperatures are.
MR. SIESS: During normal operation of a DWR,
Io you have any ilea how much the temperature varies,
say, in the steam generator compartment at the top of
the dome, or outside the shi\inld wall? Are there large
variations?
MR. HINTZE: Do you have any information on
that?
MR. SIESS: Do they keep the temperature
fairly constant?
MR. ROSSI: I don't think anyone here knows.
MR. KERR: On page 4 under 1.1, the type A
variable definition, it is specifically and deliberately
just for a design basis accident. Then on page 1.2, the
statement is made, "The sources of potential breach are
limited to the enerqy sources within the cladding...*
and so on. What is the sianificance of that? Does that
mean you're considering tornadoes as a source of
breach? I didn't understand what I was being told.
MR. HINTZE: Yes, there are probably lots of

```
```

enezgy sources that somebody could think of that could
breach a containment but it may not be within the
containment itself, as you indicated, a missile or
something like that. You can't measure for those but
you can measure within itself.
MR. KERE: In trying to predict the possible
onset of, say, breach of containment, have you given
specific thought to what sort of use would be made of
the information? For example, if you measured pressure,
are you doing that just as sort of a general thing
because you know the pressure measurement is an
indication of what is going on, or have you gone reyond
that and said if the design pressure -- if we think the
thing will burst at three times design pressure and one
will get within, say, 2.8 above design pressure, one
starts evacuatinc?
Has the thinking gone that far in implementing
this and in talkinq to people about its usefulness? How
far does one go in thinking about how the information is
to be usei?
MR. HINT7E: DI. Ker=, that particular one was
one of the variables that was in the very first 1.97 we
issued at the recommendations of this committee. I
think it was just an effort to not ever be blind as to
what was going on inside containment.

```

MR. KERR: Okay, I'm not sure that I know -MR. HINTZE: We are still batting why you go up that high anyway. What are you going to do if it gets there? Wo're still battling those kinds of questions.

MR. KERR: The other question --
MR. SIESS: Let me follow up on that. he have been talking in connection with degrajed core accidents about containment integrity. Of course, a lot of effort is being put now on when the containment will burst. I've been trying to make the point that there are other Ways you can have a release of material from inside containment. One of the obvious ones is failure to isolate, a purged valve doesn't close or some other valve foesn't close.

Everytime that's been addressed in some of the research programs, there's been an indication that well, this is something we can handle without -- just by licensing or inspection or in procedural type things. If a valve is open we close it; if a valve is leaking we can close the other valve.

Now, we were just talking a little while ago about monitoring potential leakage points. Is this specifically adiresset in connection with -- I forget whether it would be type E or type E variables -- as to
```

what information you would need tc know to determine
that you have not had containment isolation and some
valve is stuck open or some valve is leaking
excessively? You know, it doesn't take a very big hole
to have 100 percent leakage, and that's just about as
good as blowing the containment open.
Has this issue -- this issue has come up more
recently. This guide has been in preparation for some
time, but do you think that's been addressed in h\inre in
the context that I mentioned of yes, we can find cut if
something failed to isolate and we can fix it?
MR. HINTZE: Phil might want to talk to that.
The effluent monitors would certainly pick up any valve
thet was left open if it were in the normal path.
MR. NENSINGER: And there is the
recommendation under type B for each of the primary
containment isolation valves as a position indication.
MR. SIESS: Let me postulate a couple of
things. A likely source of leakage is the personnel
hatch. Thay leak all the time. Either one or both
doors. Is this something that is monitored in any way?
Is this ons of the effluent monitor locations?
MR. GINTZE: That was the purpose of the
original type C variables which were area monitors
inside the building. Is Mr. Conailette here?

```

KR. KERR: When I raised the question about range a while ago. I was told that the monitors would be outside a hatch location and would be expected to monitor a leakage around the hatch. In an accident situation, I'm sht quite sure how the instrument would distinguish between leakage --
¿R. HINTZE: That was the problem with the area monitors inside the buildinc. You couldn't tell whether it was inside or whether it was contained or not contained.

MR. KERR: I Joubt you could tell that when it's outside, either.

MR. SIESS: What about the equipment hatch?

MR. HINTZE: The equipment hatch is in the building and has an exhaust pump.

MR. SIESS: Most of them I've seen - not most of them, but some of them ço right outside, dor't they? Am I wrong on that?

MR. STODDARD: That's correct.

MR. SIESS: That's got an opening that is anywhere from 14 to 22 feet in diameter with a couple of O rings. Now I've got a pressure inside containment that's gotten up to twice the desian pressure and moving up towards three times. I don't know.

Suppose I start getting distortion of that
```

hatch and leakage around the O rings, you know, simply
because the thing has expanded 10 percent. Is there any
Way of detacting that? I'm. not sure it makes any
difference because there's nothing you can do about it.
You can't =lose the valve very easily and turn it off.
But my point is we've been told recently that
these things can be handled by procedures, monitoring
post-accident actions and so forth and I'm wondering if
we've got the instrumentation here to tell us when to do
it and what to do.
MR. HINTZE: You remember the rina around the
plant monitors, the }16\mathrm{ that we could not decide on,
initially 16, was for that purpose.
MR. SIESS: That wouldn't tell you where it
was leaking.
MR. HINTZE: No, but it would tell you that
you had a place where you weren't being monitored.
MR. KERR: Or it would tell you that you had
radiation penetrating the containment wall.
MR. HINTZE: Eut you can't tell what the
source of the radiation is.
MR. VERR: I still think they're useful.
Don't misunderstand me. I just think one should give as
much thought as one can ahead of time to what the
readings mean.

```

MR. SIESS: T suspect as people begin \(=0\) look at failure to isolate they will come up with likely candidates and something will be done about it.

YR. WENSINGER: It seems to me we could go around with a portable monitor and see if any of the hatches are leaking.

MR. SIESS: Yes, except the shine through that hatch might make it pretty difficult to get too close to it. If I've got a concrete containment and if there's a lot of stuff inside, that hatch is going to be pretty hot.

MR. KERR: On page 19 -- Dave's got one.
MR. WARD: In the same type B where you have the requirement for the valve position indication, the guide doesn't take a closed or not closed -- the guide doesn't take a position on whether this should be a direct indication or an indirect indication. In other words, an indication of whether there is a signal to close or whether the valve is actually closed.

MR. HIMTZE: There's a position in the guide that says make the measurement wherever practicable, and that should be the method of measurement.

MR. MARD: This is stated somewhere in the text?
Mr. HINTZE: Yes. In one of the positions.
```

 I've forgotten which one.
 MR. SIESS: Bil1?
 MR. KERR: On 1.97-T3, which is under the
 criteria table, under cateqory 2, "same as category 1
ani the following." I guess I am not sure what guidance
that paragraph provides. It sort of says -- well, I'm
not sure what it does say.
MR. HINTZE: Which one?
MR. KERR: Category 2. It says "same as
category 1 and the followinq," then there's a following
paragraph. I'm nכt sure what a licensee is being told
by that paragraph.
NR. NENSINGER: That page, please?
MB. KERR: 1.97-T3.
MR. SIFSS: It's really suggesting a degraded
approach?
MR. HINTZE\& Yes.
MR. SIESS: thich we don't have.
MR. KERR: If it's to proviAe guidance to a
licensee, what is he supposed to do after he reads that
paraqraph?
MR. SIESS: Come in in the middie and send
back two rounds of questions.
MR. ROSSI: This is quite consistent, you
know, with what we are doing on equipment that is

```
```

important to safety, not safety grade in general. Ax
this time, we are not forcing people to apply Appendix E.
MR. KERR: I'm not trying to force them to do
that. I'm trying to read this as a licensee and saying
having read this, what does it tell me to do?
MR. DOSSI: Go look at your quality assurance
program and do what you think is appropriate for the
level of importance to safety for each of these pieces
of equipment, and we are not going to give you detailed
reguirements for it.
MR. KERR: If this comes in as Chet says, will
he not now get a list of questions? And those questions
will be based on some staff criteria. Why not give --
if you have the criteria --
MR. ROSSI: I think there is work underway to
get more guidance on graded QAs, is there not?
MR. HINTZE: The criteria is listed in
category 1.
MR. SIESS: Actually, that's misleading
because it says "the same as cateqory 1 an? the
following." It seems to me that category 2 ought to be
category 1 plus, and it's not; it's category 1 minus.
MR. ROSSI: You could say "except the
following" instead of "and the following."
MR. KERR: If it's the same as category 1,

```
```

it's the same as category 1.
MR..SIESS: Yes. Now, I was going to ask does
the stsff have some effort underway now on a graded Q\&
program for 2E?
MP. पENSINGER: Yes, we do.
HR. SIESS: If you got that settled, this
would be probably a 2E type thing?
MR. WENSINGER: That's correct, but that's not
settled.
MR. KERR: Why don't you say guidance to be
provided by Revision 4, or something?
MR. RJSSI: I think in the meantime, we want
tham to give thought on their own as to what the
appropriate QA is that should be applied to this, and we
will not accept no QA on these things.
YR. KERR: It's one thing to giva thought, but
it's another thing to submit something to the NRC staff
for approval or disapproval, and that is what the
licensee eventuar. I has got to do. Now, do you expect
him to f\&\&e a submittal before he has any general
guidance, or is this -- he's going to submit something,
it's going to be reviewed. Now, the reviewer certainly
must have some criteria at some point.
MR. WENSINGER: At this point for the middle
category, the reviewer does not have any criteria. If

```
```

the licensee --
MR. KERR: It's every man for himself?
MR. HENSINGEF: If the licensee is able to
propose sonething which can be found acceptable, he is
being given the freedom to do that. And in fact, we
welcome the assistance.
*R. SIESS: Incidentally, you will end up --
MR.WENSINGER: It's a difficult job.
MR. SIESS: -- with a whole range of proposals
from the licensees, and each reviewer has fot to make a
decision on his own. These were technical reviewers,
right?
MR. NENSINGER: Yes.
MR. SIESS: As I understand, under the
regionalization program, all the technical reviewers
will not be out in Bethesda. There are qoing to be
technical reviewers all over the country. Is anybody
going to coordinate this so that you can come up with
some kind of a reasonable basis, absent the 2E?
MR. NEMSINGER: I would defer that to the NRC
management.
UR. ROSSI: I think at this point in time we
are not doing a iətailed review of quality assurance
programs that are applied to none-Appendix B, but we are
asking the licensees to make a commitment that they do

```
```

have a quality assurance program for all equipment that
is not safety grade but is important to safety.
I balieve that we have written letters to
licensees asking for that particular commitment. As a
matter of fact, I was involved in a hearing where the
outcome was that we asked for that. So we asked them to
say that they will have a QA program but the staff is
not, at this time, reviewing that proyram at al1, so
this question of how much has not come up yet. But I
believe we have efforts underway to try to bette= define
that.
MR. SIESS: What does the IEE inspector do on these things without guidance?
MR. POSSI: I would imagine that if the IEE inspector finds that only safety grade equipment has $Q A$ and there is nothing at all in the way of any kind of quality assurance program for non-safety grade equipment, that there would then be considerable discussion as to whether that licensee met our requirements.
MR. SIESS: Suppose they had something for the non-safety grade but it doesn't meet Appendix B? What does he do?
MR. FOSSI: I believe we would accept that at this time in the absence of any further guidance on how

```
```

much he has to have when it is not Appendix B.
MR. SIESS: I think at some point in time --
anf I'll laave it up to tho staff to suggest when that
time might be -- the ACPS would be interestd in getting
a report on what kind of implementations have come out
of Reg Guide 1.97 on a couple of plants. I think we
should keep that in mind and someday get some feedback
as to how this is working out.
This is an extremely complicated thing and the
words are one thing and what is going to come out of it
in terms of hardware and/or QA programs is not at all
clear to us. Nind I have a strong suspicion it is not
too clear to the staff either as to just what's going to
come out.
MR. ROSSI: Certainly, when we go to implement
the reg guides we find areas where there are problems
and when we find those areas, we would work to resolve
it and there woult probably be a Revision 4 to the reg
guide one day that reflects what we've learned in
implementing this revision. As a matter of fact. I
think Eevision 3 really is not a category. Revision 3 I
believe is the result of problems that we now find that
we had with Revision 2, and we found these problems by
discussions with utilities, discussions among the
various groups of the staff, and we are trying to get

```
```

them corrected now.
But I don't think that means that we have
found all the problems we are ever going to find. You
are absolutely right, when we go to implement this on a
large number of plants, we are going to find additional
areas that will require clarification and resolution and
relaxation perhaps, and we will probably have a revision
4.
MR. SIESS: What kind of a timetable do you
think is likely to come out of the implementation of
this? Each froject manager works it out? Do you have
any idea whether it's going to be two years, three
years? I wouldn't even start with one year.
MR. WATT: I would speculate two years, but
that's more or less picking a number.
MR. HINTZE: What was this?
MR. SIESS: What kind of an implementation
schedule do you think is going to be worked out on some
of the backfit plants?
KR. HINTZE: Initially, the guide said it
should be implemented by June of 93.
MR. SIESS: But new it's flexible?
MR. HINTZE: Now it's more flexible. I don't
suspect that they're going to let them draq it out too
long. I think there are going to be some --

```

MR. SIESS: There are a lot of plants that have everybody committed to doing 16 other things, including \(S E P s\) and a Phase III SEP is being talked about. Then we come along with this and there's a lot of engineering that goes into that. Frobably the engineering is going to be ten times as much as the hardware.

Most of the stuff is already there. Somebody's got to find out is it in the right place and is it the right qualification. There will be a couple of man years just understanding this.

MR. HINTZE: I wish I could be more specific.
MR. SIESS: We haven't gotten anybody who's proposed an implementation schedule yet, have we?

MR. HINTZE: The letter just went out in
December. I don't think we have.

MR. JOYCE: Joe Joyce. he received four preliminary documents from utilities. The names I can't remember but we have them in our office. We have talked to other utilities in terms of how far along they are in implementing - even though 1.97 is not a requirement and, as Al said, it just went out in December, but unofficially we ve been talking to plants. Scme plants are 80 percent. They feel they aze \(u p\) to 80 percent in terms of implementing all the parameters within the reg
guide.
nothing. They've been doing surveys, looking at
instrument loops and lines and channelizations and
things within the control room. And what they're
calling Phase \(I\) of their program is just collecting
data, so there is a wide ranqe, anywhere from zero to 90
percent that I'm aware of in which people have already
taken action. They're aware that it's coming out and
they've been dealing with the reg guide since December
of 1980 .

So within the next three months I believe -A1, correct me if I'm wrong -- April of 83 is when the licensees or utilities must fespond to the 50.54 letter in which they will have a detailed program plan for implementation of all the items within supplement 1 of NUREG-0737.

So within the next few months we should have a pretty goof feel for, from talking with the project managers, of what the timetable is. Ve might be able to ju: o on a few casэs that are already saying they they are 95 percent there and start a review within a month or so. Then aain, there might not be some coming in until 84.
```

MR. SIESS: I think we need to follow this up,

```
```

anf I wouli suggest to the members of the committee that
are here, we will probably see some of these submittals
as category E items, and if you spot something why don't
you send it to Sam or call his attention to it and we'll
follow it and sort of keep an eye on it. I think it
would be worthwhile, because somebody that's 80 percent,
that last 20 percent may be pretty tough.
MR. JOYCE: Yes. One other point that might
help to clarify this -- the staff is not doing all of
the reviews in total. We have contracted out INEL to do
these reviews. They are going to be looking at the
broad spectrum of all the parameters in all the plants
so that they should be pretty well correlated in terms
of what parameters and what is needed on certain plants
-- Westinghouse, CE and so on and so forth.
The staff is going to get intimately involved
with those parameters which they take exception to or
our contraztor has problems with. So just crunching out
the numbers in terms of looking at every single variable
for every single plant, our contractor will be handling
the bulk of that work.
MR. SIESS: Iet me ask you something else.
When this issue first came up and the ACRS brought it
up, we placed particular emphasis on what was called
wife range instrumentation two or three times.

```
```

Containment pressure twice, the reactor coolant
boundary, high level radiation monitor and I forget,
there was another one.
That went out in the first guide, right? How
many plants have complied with those particular
provisions?
MR. HINTZE: To my knowledge none, because you
renember they selected about four plants to implement
that on a trial basis, and they balked in being selected
because everybody else wasn't selected I don't think
anything every became of that.
MR. SIESS: The high level radiation monitor
was an 0737 item, as I recal1, and I thouaht most of
them complied with that.
MR. HINTZE: That was after TMI, not when the
guide went out.
SR. SIESS: Do you mean that most of the
plants that are operating still can't measure
containment pressure much more than above 10 percent
design pressure or something like that?
MR. HINTZE: I can't answer that.
MR. ROSSI: I suspect that the ones that are
coming through today for cperating licenses can do more
than that because they would have anticipaced that they
would eventually have to do it. But I think the plants

```
            
            .
                            1
```

 that would have to go and buy new stuff that are already
 hai a license ant were already operating, in fact they
probably have not boucht new instruments yet because
they're probably waiting to see what the final outcome
is going to be.

```

MR. SIESS: Bjil, did you have some more? MR. KERR: Yes, sir. The same page, Category
```

3. That short statemant seems to me to be more directed
```
toward quality than quality assurance. I'm in favoz of
quality, but it does not seem to me that it has much to
do with quslity assurance.
    On page \(T-4\), under "Display" --
    MP. SIESS: We will accept that as an
editorial comment, Bill.
    MR. KERR: Under "Nisplay and Recording," on
the second paragraph. I guess, does that mean that all
channels of all instrumentation must be recorded?
    MR. SIESS: Where are you looking at?
    MR. KERR: Under "Display, Recording, Category
1" recording of all instrumentation channels. Does it
mean every channel must be recordez?
    MR. HINTZE: Yes.
    MR. KERR: I guess I do not understand why.
If you have three channels redundant, you record all
three?
    MR. HINTZE: That is right.
    MR. KERR: Why in the wozld do you do that?
    MF. SIESS: They probably do it now.
    «R. HINM2E: It does not have to be
displayed. It just has to be recorded.

MR. WENSINGER: It does not say analog strip chart recorders, either.

MR. KERR: "The recoriing of instrumentation
readout information should be provided." That has been changed, so it may not be done now, Chet. Is it done now, do you think?

MR. SIESS: On the computer count?
MR. KERE: All channels?

MR. JOYCE: I would suspect not.
BR. KERR: What is the purpose of all three
channels?

MR. JOYCE: I do not recall why this was
changed to all. Always in the past, even with Revision 1 -- not Revision 1, the original Reg Guide 1.97, post-accident monitoring, we always recorded as a minimum one channel.

Al, why has this been chançed to "all" now?
MR. HINTZE: What would you do if you lost
that channel? You are allowed one failure.
पR. JJYCE: We never applied single failure to recording channels. All we said was you had to have two redundant channels, one of which was recorded but had to be operated before and not necessarily during the earthquake.

MR. KERR: This is going to add - could add a
```

good bit of additional hardware and storage capacity and
so on. If you are really convinced it is needed, okay,
but it seems to me it could be a significant added
burden.
MR. WENSINGER: There may not be any
additional hardware.
MR. KERR: Well, you've got to connect to the
other channels. You have got to put in isolators and
whatever, I would guess. I don't know. Somebody ought
to look and be sure that it is truly needed. If you
make a case that it is needed, okay.
MR. ROSSI: We are going to look at that
particular one to see if that might be an error in the
revision or whether that was really intended to be read
that way.
MR. KERR: Then, in Category 2 and 3, I do not
know much about the English language, but I have an idea
that it is not the "monitors" that you want recorded.
On the next page, T-5, under Category 1
equipment identification, what is meant -- is the intent
that on tha control panel there be something that says
this is an A-type -- this is A-type information; this is
B-type; this is C-type? What is the intent of that?
MR. JOYCE: In the past, we have always
encouraged the utilities in the control room to identify

```
```

instrumentation and indicators which were designeted
post-accident monitoring, that they either culor code
them or have them all together in a group, et cetera, so
that the oparator knew where his post-accident
monitoring instrumentation was located in the control
room.
For the Category 1 --
MR. KERR: Excuse me. I did not make my
question clear. Are they to be identified as these are
the instruments used during an accident? Or are they to
be identified by saying this is a type-A instrument,
this is a B instrument? From that sentence I cannot
tell.
MR. HINTZE: No. They are Category 1 s . They do not have to be identified A, B, or C.
MR. KERZ: Well, it says that they should specifically be identified on the con rol panel. It does not say identified as what.
MR. PJSSI: I think that means, as Category 1. The intent there was to make sure --
MR. KERR: I think I understand the intent. You are saying these are -- the paragraph, I think, could lead ons to believe that you had to identify them as A, B, C, and D.
MR. WENSINGER: This is intended to mean that

```
```

for Category 1 and Category ? instruments, tiose that
are A, B, and C types, should be itentified so that the
operator can know that these instruments, that
collection of instruments, are intended for use under
accident conditions.
MR. KERR: You say you identify them by
painting them all red and you tell the operator all red
instruments are for accidents. You do not identify them
by saying this is an A instrument, this is a E
instrument?
MR. WENSINGER: That is correct.
YR. KERR: It seems to me that sentence is a
bit unclear as it now reads because it does not say what
identification they are asking for. fnd since you have
just mentioned A, B, C, and D -- in fact, when I first
read it, I thought that is what you meant, that you put
all the A instruments in one spot, all the B and all the
C, and all the D.
MR. WENSINGER: Perhaps you can suqgest a
better phrasing of that sentence. We did zgonize over
that a little bit, but the iast phrase is, ad I think
that is the operative phrase, "so that the sperato- can
easily discern that they" -- "they" meaning types F, B,
and C in Categories; 1 and 2 ..
MR. KERR: One could say specifically the

```
```

instruments designated should be specifically identified
Eor use in accifents, or something. I would be a little
reluctant to try and compose it here, if you see my
point.
MR. MORRISON: Yas, we sea your point.
MR. KERR: On paqe T-6 --
MR. HINTZE: We can say specifically
identified as Category 1 or 2.
Mr. MORRISON: No, that's not what you want.
MR. WENSINGER: NO.
ZR. HISTZE: We will arque it out.
MR. KERR: Maybe you will decide it was not
confusing. It was confusing to me, bat it may not be to
a licensee.
On page T-6, under Category 1 human factors,
it seems to me the first two paragraphs are pure
boilerplate and do not prcvide any guidance at all. The
third paragraph, I think, does, to say they should be
designef to facilitate the recognition, location,
replacement, repair, or adjustment of malfunctioning
components or modules. I just do not see what guidance
that gives anybody, or to say that they should minimize
the development of conditions and so on.
MR. ROSSI: I believe that those words are
basically out of other TEEE documents.

```

MR. KERR: I'11 bet they are.
MR. POSSI: They apply to safety grade equipment.

MR. KERR: I bet they are, and I bet they mean exactly the same thing in those locations, which is nothing. If you want to add words to your guide, okay, but, really, what is a person going to do after having
read that? Nothing.

KR. POSSI: Well. I will assure you that the reviewers from time to time have done something with that second one on instruments that give anomalous readings and so forth. But we may have --

MR. KERR: It is obvious that you do not want instruments to give anomalous readings, whether they are safety grade or anything.

MR. ROSSI: Well, that is true, but at least it gives us a regulatory basis for arguing --

MR. KERR: This is not a regulation.
MR. WENSINGER: This is quoted from 2.79; that is a regulation.

MR. KERR: It just seems to me it is so obvious that you 10 not want instruments to give anomalous readirgs that you would not have to araue that with anybody.

MR. POSSI: Well, I think from time to time we
```

argue about whether something is or is not anomalous,
ani I am not sure we can cover all --
MR. SIESS: But this does not help you there.
MR. ROSSI: -- but this coes not give enough
guidance to cover that.
MR. SIESS: This does not give you any
guidance in deciding whether this is anomalous or is
not. All it doas is tell you how to spell it.
(Lauchter.)
MR. KERR: If it makes you feel good to have
it there, I do not think it does any harm. I am just
trying to save the government money.
MR. SIESS: Listen, Bill, if it does not do
any harm, that in itself is an issue.
LR. KERR: Under "direct measurement," I guess
I am not quite certain why the instrumentation input
should be from sensors that directly measure the desired
variable. I am not sure what the significance of that
is.
MR. WENSINGER: One good example of this was
the point that Mr. Ward brought up with regard to the
position of the containment isolation valves, for
example, that the instruments that indicate the position
of those valves should be a direct measure of the valve
position, not, for example, an indication of some

```
```

control valve on that valve -- a pilot valve, if you
wil1.

```

MR. ROSSI: I was coing to give the example of
the TMI relief valves.

MR. WENSINGEP: That is another good example.
H⿵人. SIESS: It says "to the extent
practicable" beaause aven when you are trying to measure
directly a valve position, you usually measure the stem
position, not the disc, and we have had a few instances
whore the disc and the stem were in different places.
    MR. KERR: You certainly want an indicating
instrument to measure what you are trying to measure,
but it seems to me that - well, and to say an indirect
measurement shouli be made only if shown by analysis to
provide unambiguous information is probably going to be
impossible, so I do not think that is an escape clause.
    MR. SIESS: Nothing is unambiguous. The stem
disc is an example.
    MR. KERR: I have no more.
    MP. SIESS: And there was instance recently
where a valve was locked closed instead of open because
the valve stem was six inches longer than it was
supposed to be. It was sticking out six inches and they
assumed it was open.
    Ihat is all for you, Bill. Dave, do you have
any?

MR. KARD: No.
KR. SIESS: Jerry? Hax? Gentlemen, what is your pleasure? The Staff is proposing --
«R. KERR: Kay I ask just one more general question? Has anybody had the time or inclination to take this guide and look at one or \(t w o\) serious or potentially serious accidents that have occurred in the past and said, hai this been in existence it would have been quite helpful?

MR. QOSSI: I believe there was a Crystal
River event and the Rancho Seco events where significant amounts of information to the operator were lost recause of a rather simple power supply failure and problems. It is my opinion that had this guide been implemented on those plants that that might have alleviated a large number of those problems.

MR. KERR: I think you are going to find the answer is yes. My point was it seems to me if you did that as an exercise on sevaral you might find some things that perhaps should have been covered that were not. It just seems to me that given that there have been some that were serious, like TMI, or potentially serious, maybe it is too time-consuming but it might be a useful check to say, okay, here is this thing on which
```

we put a lot of effort.
Has it really covered the information that an
operator would have needed either in this accident or in
a potential accident that might have occurred from this
set of transients?
MR. ROSSI: I think that is getting done, but
I fo not know that it has been done in exactly the
systematic way you just mentioned.
MR. SIESS: Did INEL actually look at actual
transients, or did they look at hypotheticel DBEs and so
forth?
MR. HINTZE: The Idaho study was not intended to tell us whether we had the variables listed or not, all that we shoult have or should not have. His study is to tell whether it can be implemented or not, can be understooi or not, are there measurement equipments available to do what we have asked them to do.
MR. SIESS: I am going back to an original
report that came out back in the very beginning of this
thing where somebody went through and came up with lists
of variables.
MR. HINTZE: Maybe you are thinking about the AFI report -- AIF, excuse me.
MR. SIESS: No, I thought it was something that was done through the VPC.

```

AR. KERR: I have a vague recollection of that.

4R. SIESS: And it listed a whole list of
```

variables. It was the basis for the first Reg Guide.

```
It was done under contract from you guys, I am sure. I
thouaht thəy went through the accijent sequences.
    MR. KERR: I thought they did too.
    MR. HINTZE: It was not a standard sponsored
study.
    MR. KERR: I have a vague recollection of
that.
    MR. SIESS: Do we have a list of references in
    here?
    MR. KFPR: So it is possible that
substantially the same thing has been done. It would be
worthwhile if you had the manpower and time to do it,
but it could be time-consuming.
    MR. SIESS: The Staff is proposing to issue
this thing as an effective guide without again putting
it out for public comment. The changes they have made
have been basically changes in response to the public
comments and they do not see any real point in putting
    it out again for public comment.
    What they are azking us is to approve issuina
it as an effective guide and allowing them to delete the
```

sentence about ACQS concurs with the opinion. Does
anybody have an objection to that?
MR. KERF: I think it is an improvement,
considerably, over what we have seen sarlier, and it
seems to me it is something that needs to be done. I
hope it is interpreted as a guide because it may have
flaws in it. It seems to me anything this extensive is
likely to have, so it ought to be used initially, it
seems to me, with a good bit of discretion, and I assume
it will be.
MR. ROSSI: I believe that to be correct. As
a matter of fact, I believe we generally use all guides
that way. Some utilities may not believe that, but we
do look at regulatory guides with discretion. This one
is going to have to be used with more because we have
less experience with it.
MR. KERP: Yes.
MR. SIESS: Okay. Hearing no obiections, we
Will recommend to the full ACPS that they approve this
for issuance 3s an effective guide at long last.
Let's take a short break, and then we will
come back and take up the next item of business, which
is the instrument-sensing lines.
(A brief recess was taken.)

```

MR. CIESS: The meeting will reconvene. Where
```

is Mr. Kerr? woll, we will start without him.
The next item of business is Draft 1 of Reg
Guide Task Number IC 126-5. Instrument Sensing Lines.
We looked at this a little over a year ago and I guess
We did not look at it raal hard. We said it looks
reasonable to send it on out for public comments. It
has been out for public comments. It has received a
modest number of public comments. They have been
responded to by the Staff. I thought the Staff was
reasonably responsive to the public comments.
I guess I had a question or two and some of
you may have some. It has been to CRGR. CRGR looked at
it and saif the implemention is strictly forward fit, no
backfit, and we do not see many reactors coming down the
line, so it does not look lika it is a great big issue.
They made two formal recommendations to the EDO regariing this guide. The first was whether it should be only a forward fit, as to whether there possibly should be a backfit for certain of the revisions important to safety, or whether it might be voluntarily backfit by licensees, and went on to say, however, if you are going to backfit this, then your value impact statement needs modifyinc, because the sensing lines you are calling for are likely to be

```
```

fairly expensive, I think.
The other recommendation -- and I do not
really understand it; maybe the Staff can explain it --
this is CRGR's recommendation. It says "Research and
NRR should develop and forwart to the EDO
recommendations concerning how regulatory requirements,
including regulatory guides -- regulatory guides are not
requirements -- are to be applied to futurz CP
applications."
Now that seems to be a sort of a strange
question to be asking at this point in time, about how
requirements are going to be applied to future C?
applications. But they went on to say the Committee
recommends that this reg guide be placed on hold pending
the EDO's fecision on this matter. It obviously has not
been placei on hold since it is in here.
Has the EDO reached a decision on that matter,
or did you not aczept CRGR's recommeniation?
MR. MORRISON: Mr. Chairman, we do not know What the EDO is going to do with this recommendation as yet. But I think when you say it obviously has not been placed on hold, that is not exactly correct. It has been placed on hold, I think, just because of the CRGR recommendation, pending decision on what the EDO will do with the racomandations.

```

As far as issuing it as an effective guide, however, since we had already sent this guide down for consideration by the ACRS, we have no objection that we go ahead and have the ACPS review it.

The spacific paragraph here does not relate specifically to this guide. This guide just happened to get caught when the question arose involving the question of well, what do we do about revisions to regulatory guides, new regulatory guides with future \(C\) ? applications, and primarily, based on what \(I\) could gather at the CRGR meeting, on the standardized plant applications.

There is work going on now to resolve this
issue --

MR. SIESS: I do not see what the issue is. MR. CARBON: I do not either. Would you explain it a little more?

MR. MORRISON: I am not sure I can explain the issue either. One of the issues is -- and maybe Ed wants to add to this - but one of the issues is, well, if you have a standardized plant over five years, then there are requirements coming out, for example, the boiler and pressure vassel code, where you come out with a new addenda in the fourth year of the five-year term, by that time they cannot get the equipment in accordance
```

with the edition of the code that was approved for the
standardized plant.
It is that type of thing.
MR. SIESS: Ed, do you want to add something?
MR. WENSINGER: Yes, an` I think Bill
explained the answer to your question. You did not ask
all the right questions, though. Let me ask the
question for you, or maybe I should just give the answer
and the question will be obvious.
During the discussion with the CRGR, they
noted our recommendation that it only would be forward
fit and thare werz some gentlemen sitting in the
audience who indicated that the guide, in part at least,
was already being implemented at the present time on
near-term operatinc licenses. And the question then was
w\inll, all right, you recommend that this only be forward
fit --
MR. KERR: Does "implement" mean effectively being required by the NRC or voluntarily on the part of the licensee?
MR. WENSINGFR: Well, that gets me into the other point, which was the word that I think you found strange, and that was the word "requirement" used in connection with "guide". I cannot speak for the CRGR, and do not claim to speak for them, but it is my view

```

1 that they consider regulatory guides to be

2 pseudo-requitements and, for all practical purposes, to

3 be requirements, and they refer to them as

4 requiraments.

8 complied with by licensees or the Staff asking enough
ME. SIESS: Now "implemented" meant Ey Staff reviewers or Iicensees?

KR. WENSINGER: *ell, either voluntarily questions until that volunteering comes about, or the Staff perhaps being persuasive. I do not know what other ways \(I\) can say it, but not all of the guide and not all of the reference standard either, only portions of it.

So that led to further confusion with regard to what was the intent with regard to implemention since the recommendation was for backfit, no backfit, forward fit only, and yet some of it was already being done. In fact, as far as we could tell, all of the provisions of the guide, to the best of our knowledge, are in fact now being implemented in one way or another.

There may be questions of matter of degree, but at least most, if not all, of the points that are in the guide and the standard are now being considered in Staff reviews of existing operating license applications.

MR. SIESS: But not backfits?
MR. WENSINGER: That depends on what you mean by "backfit".

MR. SIESS: Not operating plants.
\#R. WENSINGER: That is correct.
MR. SIESS: Now this question on reference leg
arrangement in \(E W R\), was it level measurement? Is that rolatef to this, where failure of a common reference leg you could lose instrumentation?

MR. MENSINGER: I will let Mr. Rossi answer that.

MR. ROSSI: I believe there are requirements in here that would address that particular protlem. Basically what it says, I believe -- and Al can correct me if I am wrong -- but I think it says that if you have a failure of a sensing line that affects the control system in a way to cause a transient and it also defeats a portion of the protection system, that the remaining portion of the protection system has to be able to sustain an additional single failure and still perform its actions.

MA. SIESS: That has been a requirement on instruments for a long time, right?

MR. WENSINGER: This is simoly a logical extension of what is in the IEEE standard.

YR. PJSSI: Let me answer your question. You asked if that has been a requirement for a long time. YR. SIESS: On instruments. Mr. POSSI: Indeed it has been on
```

instruments.

```

MR. SIESS: There has been a question raised about the reference leg that would violate these requirements or these guides, right? Has the Staff been doing anything about that, with 50.54 or anything else? MR. ROSSI: Yo, we have not done a 50.54 . Well, we have dons some looking at reference legs. MR. SIESS: Was there an IEE bulletin on
```

that?

```

MR. ROSSI: Yes, I believe there was. I'm not sure of exactly what was done on operating plants, but on near-term operating license reviews we are looking at the sensing lines and the reference legs and we are starting by assuming that if they meet this criteria they are all right. If they do not meet the criteria, then we are looking at why they do not meet i.t and Whether there is a safety problem in not meeting it.

And the kind of thing that we are looking at is if you get a sensing line failure that causes some sort of a transient through the control system and lefeats a portion of the protection system, how long

```

 *ould an operator have in order to take manual action to
 prevent a safety problem from developing.
 If that time is a long time, then we arf
 accepting those kinds of designs, with the further
 assumption that he has appropriate information to tell
 him that he has to take manual action.
 MR. SIESS: Let me set the stage of what we
 are supposed to be doing here.
    ```

The stafe is asking us to concur in the regulatory position, which means concurring in the revisions they have made in response to the public comments. We can if we wish recommend to the EDO that this be published, or we can simply say we have no objection to it, or we concur in the positions. The question of what you are going to do with future \(C P^{\prime}\) s is another problem. We don't really need to address that here. As you point out, it is more generic. So, all you are asking is, go through it the second time to see whether it is okay, whether we agree with it. Now, we can go, if you wish, a step farther than that. We can address the guestion of whether this guide or che positions in this guide should indeed be backfit, whethar there are significant safety improvements to be obtained by applying these criteria to sensing lines fust as they have been applied to instruments themselves in the past.

That is, if this is a good idea, why not backfit? I hring that up hecause there is at least one member of the committee who has been concerned about some of these things, and one of our consultants has addressed this. Walt Iipinski has addressed this question that we do not apply the same criteria to the lines that lead to the instruments as we do to the
```

instruments themsalves. That is going beyond what the
staff is asking us to do in addressing whether this
should be backfit.
Personally, I would grefer not to do that,
because I feel like -- I feel the same way that the CRGR
does, that if you want to consider backfitting this,
then somebody had better sit down and make a value
impact analysis, a cost benefit analysis, a risk benefit
analysis on hackfitting. I don't think there is any
question that it improves safety. Eut it may improve
safety at a cost that is unreasonable by any basis you
want to apply.
It is also not clear to me that you can go in
an operating olant and backfit these criteria without
lousing something up and maybe onding up with something
worse than you had. So, I think the question of whether
it should be backfit is a difficult one to address
without a value impact, cost benefit, risk benefit
analysis on the backfit problem.
MR. CARBON: I support what you are saying
there, but I wouli welcome hearing from the staff why
they left out backfitting or decided not to go that
direction.
MR. SIESS: Keep in mind that if they want to
backfit it, strictly speaking, they have got to invoke

```
```

50.109 and establish that it will be a significant
contribution to safety which has never been done, and
they wouli have to go back to the CRGR.
MR. CARBON: I am simply saying, what was
their thinking?
MR. SIESS: Yes, I think we would Iike to hear
that. Do you want to adiress that first? And then we
will get into the details?
MR. HINTZE: Did you want to speak to that?
NR. \#ORRISON: No, you can speak to it.
MR. HINTZE: In regards to the code
classifications of the sensing lines, the staff has been
reguiring that cole classification through Regulatory
Guide 1.23 all the time. That is not a new position.
Therefore, we didn't feel that that was a backfit --
MR. KERR: 1.23 is a Reg. Guide, and it is to
be treated as a requirement?
MR. HINTZE: I am sorry, 1.25. I said the
wrong number. It should be 1.26.
MR. YERR: So it is beinq treated as a
requirement?
MR. MORRISON: NO, I don't think you really
meant that.
MR. HINTZE: It is an acceptable means of
meeting --

```

4 Ona is the one that has to do with -- where -- let me put it this way. Fosition Cne is the one that essentially extends the electrical requirement to the sensing lines.

HR. HINTZE: Yes. Failures causing an

9 accident. You follow it by a single failure. Positions Two and Three have to do with what happens when you attach a line to a Class 1 component. What does it become? Is it a Class 1 or Class 2? And down to some isolation valve, et cetera. Two and Three are the ones that Al just said in effect are required by the staff. They are Reg. Guide 1.26 positions, and they are not really new ones.

MR. HINTZE: Yes, that is correct.

MR. SIESS: Razkfitting those would be one ungodly mess. You couldn't backfit those without going in and taking out a hell of a lot of pipe, or doing something.

MR. HINTZE: Also, because of Reg. Guide 1.26. that recommendation has been in for quite a whie.

MR. SIESS: yes, but I mean if that were to be made a backfit for those that didn't have it, it would
```

be quite an operation.
MR. HINTZE: Yes.
MP. SIESS: And I think of questionable value
when it gets down to QA levels. It is really a QA level
type thing, isn't it?
QR. HINTZE: Yes.
MR. SIESS: The Class 1, 2, 3 determine, what,
QA levels and not stress levels, does it?
MR. YORRISON: Nell, it gives the type of
systems that go into the various code classes.
MR. SIESS: Does it control stresses or simply
२A?
MR. HINTZE: It controls stresses, I think, on
the metal itself.
MR. SIESS: Four is a minor item. Four and
Five have to do with freazing.
MR. HINTZE: That is correct. Six by virtue
of the CRGR meeting has been deleted. We intended to
tell you that this morning.
MR. SIESS: Six has been feleted, so really
what I was addressing, and I think the question we
wanted answered has to fo really with Position One.
MR. HIYTZE: Yes.
Mr. SIESS: Now, Position One as a backfit
would recuire --

```
*F. KERE: I am sorry. Six here has been
```

deleted?

```

MR. SIESS: Yes. That is one thing to consider. What is the reason for not backfitting Position One? You said Two and Three it is really not necessary for most plants.

MR. HINTZE: Ernie, I guess we are going to have to defer to you on that one.

KR. हCSSI: Let me see if I can clarify a little bit what we all think we mean by backfitting a regulatory guide. As a start, let me tell you what I think backfitting a reculatory guife would mean. I think that that would mean that every licensee having an operating plant would have to go through item by item this regulatory guide and standard and identify all places in his plant where he did not literally meet the regulatory guide, and then either change his design to meet it or alternatively to justify not having to change his design to meet it.

As a justification for not having to change his design to literally meet the regulatory guide, he could provide a justifization that said that it vas more expensive to change the design than the safety binefit you would get from the change. Now, that is what \(I\) think backfitting means.
```

 MR. KERR: Well, how can one backfit a
    ```
    MR. KERR: Well, how can one backfit a
rejulatory quide? I just fon't understand. Presumably
rejulatory quide? I just fon't understand. Presumably
a requlatory quide tells how one satisfies a
a requlatory quide tells how one satisfies a
regulation. The regulation has not changed.
regulation. The regulation has not changed.
    MR. ROSSI: No, no, no. The regulatory guide
    MR. ROSSI: No, no, no. The regulatory guide
does not tell how one satisfies the regulation. What a
does not tell how one satisfies the regulation. What a
regulatory guide does is give one acceptable method of
regulatory guide does is give one acceptable method of
satisfying the regulation, and says, if you use this
satisfying the regulation, and says, if you use this
acceptable method, then the staff will agree with you
acceptable method, then the staff will agree with you
that you have satisfied the regulation, but you can
that you have satisfied the regulation, but you can
choose to do it some other way.
choose to do it some other way.
    MR. KERR: No, but having the regulation not
    MR. KERR: No, but having the regulation not
changed in an operating plant, this is prima facie
changed in an operating plant, this is prima facie
evidence that the plant meets the regulation.
evidence that the plant meets the regulation.
    MR. ROSSI: If they meet the Reg. Guide.
    MR. ROSSI: If they meet the Reg. Guide.
    YR. KERR: It doesn't have anything to do with
    YR. KERR: It doesn't have anything to do with
the Rez. Guide. The plant has got to have met the
the Rez. Guide. The plant has got to have met the
regulation in order to be in operation.
regulation in order to be in operation.
    MR. ROSSI: The plant has to meet the
    MR. ROSSI: The plant has to meet the
regulation as --
regulation as --
    MR. KERR: Any lawyer worth his salt will tell
    MR. KERR: Any lawyer worth his salt will tell
you that if that plant is operating, it has got to be
you that if that plant is operating, it has got to be
meeting NBC regulations, or somebody is guilty of
meeting NBC regulations, or somebody is guilty of
    malfeasance or something even worse. Now, with the
    malfeasance or something even worse. Now, with the
    reculation not having changed, how can you go in and say
```

 reculation not having changed, how can you go in and say
    ```
```

to a plant operator, we know what you've got, but we
have decided you don't meet the regulation?
NR. ROSSI: No, no. I don't think that's what
I'm saying.
*R. KERR: That's the only way you can make
them make a change.
MR. ROSSI: We are saying, we're not sure we
know what you've got, we're not sure that you looked at
this particular aspect of your plant to make sure that
you meet the requlation. I think that is what we are
saying, rather than, we think you don't meet the
regulation.
hR. KERR: You have got to have him over the
barcel on something elsa to have him accept that
argument. Unless you've got him over the barrel on
something else, you are not going to make him make a
change on that basis, because a lawyer wouldn't let
him. The Public Service Commission wouldn't let him
spend that money.
YR. EOSSI: I quess I started this discussion
by trying to define what I thought backfitting meant,
and again, what I thought backfitting meant was that he
tells us where he doesn't meet the Reg. Guide and why
his plant is okay in those aroas where he does not meet
it. That is what I thought backfitting did, but that he

```
```

had to do that in a systamatic way.
MR. 'VNSINGEE: Having no CRGR member present,
let me not attempt to speak for them, but aive you my
perception of their views. I believe they would feel
that if this Beg. Guide were issued, it would be likely
that an inspector at a near term operating license plant
or even perhaps in an operating plant would take this
regulatory guide and look at it, and look at provision
Whatever, go look at that item in the plant, and perhaps
try to cite that licensee for non-compliance.
MR. KERR: Well, I must say I think this is
capricious, and maybe even -- I just don't understand
how the NRC can bring itself to operate this way.
MR. SIESS: You mean with the implementation
you have in there now, you think an inspector might do
that?
MR. WENSINGER: That has been the allegations
that have been made in the discussions I have had with
the CRGR.
MR. SIESS: That is ridiculous.
MR. WENSINGER: I am glad you said that.
MR. MORRISON: It wasn't the allegation of an
inspector. It was more an allegation of what the NRR
reviewer might do.
MR. SIESS: Can't he read?

```

MR. MOREISON: I hope so.
MR. SIESS: This is very specific. But my question has nothing to do with the legalities. The question was simply, if Position One represents a criterion that would not improve safety, why is it not a good ifea to have it on all of the plants?

MF. PCSSI: It is a good idea to have it on all the plants. I believe the issue is whether we want to go back to every plant and ask them to verify in writing that they have checked all the sensinq lines and the safety systems on their plant, and can confirm that they meet Item 1, as opposed to what we are doing now, Which I believe is where we find a problem with a sensing line in an operating plant by either an LER or by finding something in a current review where we think they do not meet Item 1. Then I believe what we are doing now is, we are sending out bulletins and that kind of thing to tell people that they ought to look at their desions in those areas.

3R. SIESS: Ckay. You are saying that a lot of the plants probably were well designed, and somebody probably thought of these things without having it as a Rez. Guide or a standard.

MR. ROSSI: Yes, I think that is correct. That is what we believe, or we wouldn't have licensed
the plants.
    MR. SIESS: There were a couple of obvious
    cases where that wasn't true, and those are being worked
    on.
    MR. RJSSI: I think that's zcirrezt, too.
    *R. CAREON: I am not clear yet on the answer
to that question. I guess the answer to the question of
why this is not proposed for backfitting is that the
staff has one way or another come to the conclusion that
it is not needed or it is too cost2\%. Is that so?
    MR. ROSSI: I think that it is the latter.
Yes.

MR. CARBON: The latter? It is too costly?
MR. ROSSI: It is too costly to go back and make the licensees systematically go through and review their design to come back under oath and affirmtion that says that they meet --

MR. CARBON: TOO costly for the increased safety that would be achieved?

MR. ROSSI: Right.
MR. SIESS: I think that what he is saying was that in a lot of cases they think this would be satisfied as they are, and in a few cases where they aren't, like a reference leg thing, it couli lead to a violation. It has been caught. People have been warned
```

about it and asked to do something about it, and the
staff has made, just as Mac sald, ar informal or
subjective cost benefit judgment that doisa enything
more than that is not likaly to be wortn it.
MR. ROSSI: mhat is correct. Now, the thing
that you would get more than what we have sone by going
back and "backfitting" Item 1 is, you would rake all the
lizensees go reviaw their plant and make additionally
certain that they have no problems in the arsa of Item
Number 1. As we stand toda, I do not think we know of
any plant that has a safety problem related to Item 1.
The question on Item 1 is that on some BWR's where you
break a level sensing line, you tequire, if you have
another single failure in the protection system, manual
action in approximately ten to twelve ninutes, something
on that order, and people may argue about whether that
is enough time to allow manual action for that
situation, but in general the staff is taking the
position that we have made a judgment and are going to
permit that on thz older plants.
Nabe ne newer plants are doing better in this
area. I *O* whether they have been browbeaten
into doing better, or if they have decided on their own
to do better, or they fust concluded that yhen they
started the design, that it sas cheap enough to do

```
better, that they might as well do it then, because some
2 day they might be forced to change it if they didn't. I
3 Ion't know which of those is the situation, but the
4 newer \(E W R\) 's are better with respect to the independence
5 between control room protection in the sensing line area
6 than are some of the older ones, but the older ones we
7 believe from what I know to be acceptable on the basis
8 that they have enough time, enough information available
9 to use manual action.

10 MR. SIESS: What was the inspiration for the ISA action on the standard?

MR. WENSINGER: Me.
MF. SIESS: When did that start, Ed?
MR. NENSINGER: About three years ago.
MR. SIESS: And had there been some problems discovered, or was it just the idea of extending -- what is it, IEEE --

MB. WENSINGER: 279. BY the way, since that time, IEEE has picked up on it, and IEEE 603, which covers the entire safety system, not just the protection system, now does include sensing lines as well as actuation fevices, actuation equipment, et al, and you gentlenen, by the way, chose not to comment when we went out for cemment on that guide. Ve do have g guide that 25 endorses TEEE 603, which is now out for public comment.

MR. SIESS: Okay. Gentlemen, I would like to suggest that we look at the changes they have made in response to the public comments, et cetera, and see if We have any questions about those. A major change they made was to change the scope considerably by backing it off to safety related rather than important to safety.

MR. KERR: What is the difference? Is
non-safety the antithesis of safety related? I notice
you use safety related, but then when you talk about the
instrument that is not safety related, it is apparently
called non-safety rather than non-safety related.

MR. MENSINGER: Is there a particular place in the text?

MR. KERR: In Page 2 is the first place I noticed it, just above \(C\), Rec̣ulatory Position. Instrumentation is referred to as non-safety instrumentation. I don't know whether that is --

MR. HINTZE: That is an oversight.
MR. KERR: I wasn't sure whether there was a further distinction or not.

MR. RAY: It is mentioned acain, too, down below under Two, to revise the One. You talk about performing safety related function, and then non-safety function.

MR. SIESS: It looks like you have been
```

consistent.
MR. HINTZE: We have been consistently wrong,
I guess.
MR. WENSINGER: That should be considered
editorial, and we will fix that.
MR. NARD: Can I ask a question?
MR. SIESS: Certainly.
MR. WARD: Could we go back to your comment,
Ed, on IEEE 503? You said there was a Reg. Guide which
is out for comment?
MR. WENSINGER: It was published a few weeks
ago.
YR. SIESS: We told them to send it out for comment, and we will see it when it comes back.
MR. WARD: What is the relationship of that
Reg. Guide to this Reg. Guide?
MR. WENSINGER: That Req. Guide encompasses a
system that is much broader than this. This covers
instrument sensing alone. The IEEE standard covers the
sensing lines, tha instruments, the by stables, the
logic, the actuation devices, and the driven equipment.
MR. SIESS: Does it reference this one for
sensing lines?
MR. WARD: Why isn't this one a part of that?
MR. पENSINGEE: This simply has a lot more

```
```

letail. This is much mora component oriented, much more
detailed.
MR. ROSSI: You might correct me if I am
wrong, but IEEE EO3 aqain is going to be an IEEE
standard, and I would think because it is an IEEE
standard that whatever is in there that we are still
likely to get into arguments about how far into the
mechanical area the scope of IEEE 603 can go, and this
document here, it would seem to me, would make it very
clear that this covers sensing lines and you don't have
that argument.
MR. WENSINGER: There is no dispute among ASYE
or IEEE or ANS or whatever that the Instrument Society
of America does have cognizance over instrument sensing
Iines, and that is one reason why they were persuaded to
work on this document.
MR. SIESS: Okay. The other change -- well,
you delete1 Six, riaht?
MR. HINTZE: Yes, si工.
MR. SIESS: Because that is covered in other
guides?
MR. HINTZE: PartIy. Also partly because it
didn't address all valves in the sensing lines. It just
addressed the one check valve, and to have an indication
on one valve and not the wther valves would give kind of

```
```

ambiguous status indication of the system.
MR. SIESS: You didn't think it was practical
to have that on all of them.
MR. HIN7TE: Right.
MR. WENSINGER: There is a multiplicity in
these lines that are used for multiple purposes, and it
would be an extensive deal to put indications on all of
those valves.
MR. SIESS: Now, in connection with Positions
Two and Three, there was some discussion in one of the
comments about their relation to 50.55A and the code.
You say it is not inconsistent with the proposed
50.55A. Does that mean that -- I am looking at Comment
4 of Mr. Saldorini. He said it shouli be modified to
conform to and agree with the proposed revision of
50.55A, and you say that it was written to agree with
Reg. Guide 1.26, and Reg. Guide 1.26 is the basis for
the proposed revision of 50.55A, and there is no
disaoreement.
I guess I cannot tell from this -- Why was he
wrong? He says there is a disagreement. You say there
is not one. Is this just a matter of an opinion, or is
there a factual basis for him thinking one way and you
thinking arother?
MR. HINTZE: I guess I didn't really call him

```

4

5

E

HR. HINTZE: Yes, sir, which will make it a rule rather than a Requlatory Guide.

MR. SIESS: 50.55 A simply references an
updated code version, right?
```

MR. SIESS: That is the update?
back to find out why he falt the way he did. We
compared the two. Pnd the people who are working on
50.55A --

``` .

 \(=\)
 8 * \(=\) -

Doesn't \(50.55(a)\) just update it, or am I
wrong?

MR. HINTZE: No. It spells it out
```

specifically, if I can find it.

```
(Pause.)

MR. SIESS: Is that a new part of the
requlation?

MR. HINTZE: It is part of the revision to the rezulations, yes.

MR. SIESS: What does 50.55 cover? What is in 50.55? What is the heading?

KR. YORRISON: \(50.55(a)\) is entitled "Codes and Standards".

MR. SIESS: That is what \(I\) thought, but I did not think 50.55 incluied actual requirements. I thought it simply referenced the appropriate code.

MR. MORRISON: Well, it in fact makes those codes and standards in \(50.55(a)\) requirements, minimum requirements.

MP. SIESS: That suggests to me that the code or standard which is being made a part of the requiraments actually includes these provisions. Doesn't it meet the ASME Code in this case?

MR, MORRTSONg Right.

HR. SIESS: So we are talking about whether
```

this guide is different than the ASME Code, and you are
saying it is rot.
MR. HINTZE: That is correct.
MF. SIESS: And what Nr. Saldorini was
apparently saying is the code is diffarent and if
50.55(a) recognizes the Code, then it is going to be
different from the standard, and you said you compared
the appropriate part of the ASME Code and it would agree
with this standard.
MR. HINTZE: The 50.55(a) and not the code.
MR. SIESS: All 50.55(a) does is reference the
Code, doesn't it? Dces it include reguirements over and
beyond the Code?
MR. HINTZE: It tells exactly the same thing
that is in the proposed revision 1.26.
MR. SIESS: I'11 buy that, but I am still
trying to find out what is in 50.55(a). I thought
50.55(a) simply said ASME Section 3, Winter 1982,
applies.
MR. MORFISON: That is right.
MR. SIESS: And if I look at the proposed
revision?
MR. MORRISON: It also tells you what part of
the plant should fall unfer the various classes of the
Code.

```

MR. HINTZE: Right.

MR. MORRISON: That is not in the Code.
MR. SIESS: Okay, that is where the difference
is. \(\operatorname{iel} 11\), since it is not being backfit, I do not see that it makes any difference.
(Pause.)

MR. SIESS: Dave, do you have any questions?
MR. HARD: No.

MR. SIESS: Bill?

MR. KERR: (as safety-related and its
definition inventad in connection with this guide?

MR. WENSINGER: No. It was a memo written by

Mr. Denton some months ago.

MR. KERR: Safety-related means it will
withstand a safe shutdown earthquake?
MR. WENSINGER: Among other things.
MR. SIESS: There were three categories:
important to safety, safety-related -- what was the thind one?

MR. WARD: Non-safety.

MR. WENSINGEP: The term "safety grade" is often used.

YR. MORFISON: Safety grade Category 1 is
synonymous with that.

MR. SIESS: You used the words important to
```

safety, right?

```
    MR. MORRISON: And safety-related and Appendix
\(B\).
    UR. SIESS: Safety-related is in the
regulations?
    MR. NENSINGER: That is correct.
    MR. KERR: It seems to ma important to safety
ought to be more important than safety-related, but it
is the other way around, isn't it?
    MR. MORRISON: It is the other way around.
    MR. WARD: That is because some non-safety
systems are important to safety. Get it?
    MR. KERR: Well, if it is something that is
just related to safety, important to safety is
important.
    MR. WENSINGER: It is a broader category.
    MR. KERR: And it is more important. It is
not just related; it is important.
    MR. WENSINGER: Xe have traditions to contend
with.
    4R. SIESS: But as we looked at the SEP
plants, thay were allowed undar their mandate to Iook at
non-safety systems that could be used to shut down the
plant. Now in that context they become important to
safety but nut safety-ralated wirhin the definitions of
the regulations.

MR. WENSINGFR: That is right.

AR. SIESS: That again gets us to these two
levels of importance that we were talking about before.
                            MR. KERR: Churchill said it very well a long
time ago. This is the kind of nonsense up with which I
will not put.
    (Laughter.)
    YR. WENSINGER: I am underwhelmed.
    MR. SIESS: Anything else, Eill?
    KR. KERR: On page two I point out
non-safety-related. There is another one in Number 1
which we may have caught -- the single instrument ine.
You got that?
    MR. SIESS: Yes.
    MR. KEPR: Then, on page \(2-A\), under 2 , the
second-from-the-last sentence -- penultimate I guess it
has been called -- there is a statement about when
degraded by a second random failure. This implies that
the first failure has to be random, I think.
    It seems to me we do not neaz to imply that.
I think you do not want this random failure to foul you
up, whether the first one is random or not.
    MR. WENSINGER: The purpose of using this
language das to be consistent with the language in IEEE
```

2.79 so as not to imply that we were suggesting some
different requirements than 2.79 required.
MR. SIESS: I think it reads, Bill, with a
comma between second and random -- a second failure and
a random failure.
MR. KERE: Mell, you could say "by random
failure not associated with the initiating event", which
it seems to me would be clearer, but if it is tradition,
I cannot argue with that.
AR. WENSINGER: That is what it is.
MP. SIESS: It is not just tradition. It is
being consistent with 2.79.
MR. PJSSI: \dddot{ell, 2.79, you recognize,}
represents a compromise in wording that has been the
subject of long hours discussing wording, so I think we
have no choice but to accept it.
MR. SIESS: Can I read that as second, comma,
random failure?
MR. WENSINGER: That is correct.
MR. KERR: I am interested that when the Staff
likes wording they go along with the standards with no
questions asked, but when they do not like them, they
feel free to amend, add to --
MR. WENSINGER: Sir, in this case the wording
25 is in the regulations. We do not have any choice.

```

MR. KERR: Protective action, even when depraded by a second random failure.

הR. HINTZE: We will put a comma after that.
YR. SIESS: I doubt it.
MR. WENSINGER: I do not think it is.
MR. KERR: On page three, unjer 4 , why should
freezing temperature be added to the environmental
conditions? That assumes that all sensing lines are going to be subjected to freezing temperature, which strikes me as being odd.

MR. HINTZE: No, just that it has to be considered.

MR. WENSINGER: You have to look at the section in the standard that says the conditions that have to he considered. All this means is you retter consider freezing also.

MR. KERR: I thought it might be something like that.

MP. SIESS: But only if you have got something in it that can freeze.

MP. KERR: That is all I have.
MR. SIESS: Vax, do you have any questions?
vR. CAREON: I have two guestions.
Bill George indicated in a statement we estimate that the 1.26 requir?ments in positions 2 and 3
will add about \(\$ 200,000\) to the cost in operation of a nuclear station. Do you know, is he talking there about backfitting, or does he mean that when you impose these on a new station it will add that cost?

I am also confused because they are already following 1.26. I do not see what he is getting at. MR. HINTZE: I do not either, and \(I\) should have called him, but I did not.

MR. CARBON: My other question, the first CRGR recommendation, judgment should be made by Research and so on, whether or not ISA and so on, will be adopted. The wording they use there really does not make sense to. me, and I \(\exists\) uess \(I\) am asking, is it correct that they are saying there that you should decide whether to require backfitting or not?

MR. WENSINGER: They are saying more than that. They are saying you cught to decide consciously whether you are going to impose these requirements on even near-term operating licensees or just new CPs, or are you going to take care of existing operating plants and demand that they take a look at it -- or all three.

MR. CARBON: Then I guess that goes to Dr.
Siess' statement. Has the Staff made this decision?
MR. SIESS: That is what we are being told.
AR. HIYTZE: That we are not going to
```

systematically backfit.
vR. CARBON: And you are not going to impose
the conditions and so on?
YR. KERR: Well, if you put it in that tone of
voice --
MF. HINTZE: I think the guile is not going to
be --
MR. CARBON: It was not intended to be a
tone.
MR. HINTZE: The guide will not be ignored when we put it out. We will hope the people who could still use it would use it, but we will not insist that they use it.
MR. ROSSI: Let me make a comment on that. By putting the guide out, I think what you do is you give engineers who are designing nuclear power plants a kind of a checklist that they ought to think about when they are designing sensing lines. Khat this thing really represents is a colleztion in a formal writing-down of all of the experience that has been obtained over many years on nuclear power plants of things that people ought to think about when they design sensing lines.
Now one of these things which I am surprised he did not talk more about was the one on freezing lines. We have seen a lot of instances on operating

```
```

nuclear power plants where they have had freezing lines
in the protection system that have defeated various
portions of the protecticn system.
After we had seen these in LERs, we sent out
either an I\&E notice or bulletin. But people were told
to go back and look at all their lines to be sure that
they were adequately protected from freezing and that
they took adequate precautions before winter was upon
them to make sure that any equipment that was used was
going to be working to keep these lines from freezinq.
A lot of these things, when we do a review and
We find some place where it is likely that a line is
going to freeze, when we find that, no one ever argues
With tha fact that something has got to be done arout it
because it is obvious to everyone that it has to be
fixed. So it is not a question of us imposing a new
requirement, that you are not allowed to have your
protection system lines freeze in the winter. It is
really more a matter of having a nice checklist of
things that you ouaht to worry about when you design
sensing lines.
Item Number 1, I think, is in the same
category, If somebody were to find a olant where the
breaking of a sensing line would cause the shutoff of
feedwater to the core and 30 seconds later the core was

```
```

going to be uncovered because no automatic systems were
initiated, I do not think we would have to impose a
requirement to get that fixed. I believe that there
just would not be any question that they will fix it.
MR. HENSINGEE: Strange as it may seem, this
happens to be a standard, this ISA standard, in the real
sense of the word. This is in fact a collection of
actual practices that are going on in the industry as
opposed to some of the earlier standaris.
MP. SIESS: Position Number 1 seems to me to
be very important.
XR. YENSIYGER: I was referring to the ISA
standard, not the reg guide.
MR. SIESS: Position Number 1 in the reg guide
seems to be quite important. It echoes the position
that we have had for a long time and the standard IEEE
2.79. Was it considered by the --
AR. WENSINGER: Yes, it was, and it was
rejected.
MR. SIESS: Why? Because not one of the
public comments complained about it. There was not a
single comment aqainst Position 1 in your comments.
MR. WENSINGER: That is correct.
MR. POSSI: That comes back to what I just
said. If you found a place where they dil not meet

```
```

Position 1 and they had a true safety problem at the end
of ten seconds, they are going to fix it.
MR. SIESS: But why not include that in the
standard?
MR. WENSINGER: I will tell you the argument I
got. I will not defend it, but I will tell you the
argument I got. They saii that was covered by IEEE
2.79.
MR. SIESS: Eut it is not, obviously.
MR. WENSINGER: That was my response.
MR. SIESS: Some people may have interpreted
it that way, and that is why the plants are built
right.
MR. WEXSINGER: And, in fact, that it was in
another response.
MR. SIESS: It is interesting that here the
Standards Committae would not put it in, but nobody
objected to your putting it into the reg guide.
MR. WENSINGER: No, and I rave run into that
situation on several occasions when I have been told
directly, well, we do not want to put it in our
standard. You put it in the reg guide and we will not
object.
MR. MORRISON: Chet, that situation you have described is not unique. I have run into the same

```
```

thing. Vaybe it is a question of they can object to it
in the Standards Committee meetinq, but they do not want
to go on zecord to write a letter that ends up in the
public document room saying that this should be done.
MP. SIESS: Good point.
Anything else, Max? Does anybody else have
anything else?
(No zesponse.)
I lookef at Moeller's stuff. You got a copy
of Dr. Moeller's letter?
MR. HINMZE: Yes, sir.
YR. SIESS: He was worrying about sensing
lines for air monitors and that is covered in 0737, and
he wanted to know why you did it that way rather than
putting it in here. Are air monitors safety-related?
MR. HINTZE: That is sampling lines, not
sensing lines. It was a little out of the scope of what
the ISA standard was written for. There is a lot more
consideration going into a sampling line than sensing
lines as far as plate-out and so forth. It was just a
little bit out of the scope for us to consider.
MR. SIESS: I think that is a suitable
answer.

```
    The conzern that Mr. Ebersole had had is one I
    have already mentioned, I think. That was the common
```

reference line.
MR. HINTZE: I think Ernie addressed that.
MR. SIESS: That has been taken zare of by the
I\&E bulletins or something else, right?
MR. ROSSI: In the zases we know about, that
is correct.
MR. SIESS: Are there any objections to
recommending to the full Committee a concurrence with
the positions in this guide?
MR. KERR: I have none.
MR. SIESS: We will so recommend them.
What do you have coming up in the near
future?
MR. MORRISON: I cannot speak for the near
future, but I can speak for next month, and we have
nothing for next month.
MR. SIESS: de have sort of gotten away from
our monthly meeting schedule. After seeing the proposed
budget, I think we may be on an annual meeting basis.
MR. MENSINGER: I might mention there are a
couple of guides in my branch that this Committee may be
interested in. I mentioned one of them, endorsing IEEE
6.03, which is just now out for public comment.
There is one other that is taking considerable
time to resolve public comments on, and we have had

```
```

considerable difficulty in getting the Instrument
Society of America to complete its job -- not that they
are being lax or anything of that nature. They simply
got a lot of comments on their standard by our putting
out a reg guide endorsing it.
In fact, about }80\mathrm{ percent of the comments we
have received were on the standard and not the reg
guide. This yas on the subject of response time testing
of instrument channels and protection systems, and we
hope to have that to you before the summer gets here.
MR. SIESS: Okay. This implementation section
on sensing guides --
MP. HINTZE: That says forward fit only, and
that is still the intent. Now we may add a statement,
but I do not know that we will.
MR. MORRISON: I think the intent, what we
told the CRGR was our intent was to apply the guide to
only forward fit, but also to announce the Staff
position on the standard so that if people voluntarily
wanted to follow it they would know the position. I
think we may add some words to make that explicitly
clear in the implementation section.
MR. SIESS: Eut if an operating plant or a
near-term OL put in their FSAR that they were complying
with the standard, that is still acceptable. If they

```
```

```
want to say they are complying with this reg guide, that
```

```
want to say they are complying with this reg guide, that
is acceptable. They could say the standard without the
is acceptable. They could say the standard without the
reg guide.
reg guide.
    Ma. ROSSI: Yes, that is all correct. And
    Ma. ROSSI: Yes, that is all correct. And
keep in mind the fact that we still intend to review
keep in mind the fact that we still intend to review
sensing lines to be sure that they meet the regulations,
sensing lines to be sure that they meet the regulations,
whether we make them do everything in the reg guide or
whether we make them do everything in the reg guide or
not. We will ask questions about sensing lines to make
not. We will ask questions about sensing lines to make
sure that the plants are safe.
sure that the plants are safe.
    MR. SIESS: But you will mainly concentrate on
    MR. SIESS: But you will mainly concentrate on
those things that have come up in the past.
those things that have come up in the past.
    MR. FCSSI: On known problems, yes.
    MR. FCSSI: On known problems, yes.
    MR. SIESS: Anything else, gentlemen?
    MR. SIESS: Anything else, gentlemen?
    (No response.)
    (No response.)
    (Whereupon, at 12:30 0.clock p.m.., the meeting
    (Whereupon, at 12:30 0.clock p.m.., the meeting
    was adjourned.)
```

```
    was adjourned.)
```

```

MUCTEAR REGULNTORY COMMISSEON

This is to certさfy tiat the attached groceecings before the ADVISORY COMMITTEE ON REACTOR SAFEGUARDS SUBCOMFITTEE OV RECULATORY ACTIVITIES
in tre matzar ef:
Daje of Procseding: \(\qquad\)
Decket Number: \(\qquad\) PIace of Frecsedinz: \(\qquad\)
wars held as herain apouars, and that this is tiae original oranscrif thersef for cin Efite cf the Commissicn.

Jane N. Beach
af:ictal สeporter (:Yped)
-


\section*{HECTEAR RETUULATORY CNMPIISSION}

This is to certify that the attached groceedings before the ADVISORY COMMITTEE ON REACTOR SAFEGUARDS SUBCOMMITTEE ON REGULATORY ACTIVITIES
fn the matear of:
\[
\text { Jate of Proceedins: January 4, } 1983
\]

Docket Number:
Place of Proceeding:
were held as herein appears, and thaz this is tios orizinai tonscrizz Ghereof for line fite of the Commission.

1. Delete Radiation Exposure Meters (continuous indication in fixed locations).
2. Delete energy response accuracy of \(\mathbf{\pm 2 0 \%}\) for the Primary Containment Area Radiation monitors.
3. Delete Radiation Exposure Rate monitors inside buildings adjacent to containment which were intended to detect containment breach.
4. Change the range of the meteorology measurements to agree with proposed Revision 1 to Regulatory Guide 1.23 .
5. Change variable "Coolant Level in Reactor" to "Coolant Inventory" and modify the range consistent with SECY-82-407.
6. The variable BWR Core Temperature was changed to reflect the current staff position that the measurement be put on hold pending further develooment.
7. The upper range of \(1650^{\circ} \mathrm{F}\) for operating plants for the PWR variable Core Exit Temperature was deleted and all plants should provide for \(2300^{\circ} \mathrm{F}\) to be consistent with NUREG-0737.
8. The IMPLEMENTATION section was modified to agree with Supplement 1 to NUREG0737 (SECY-82-111B).
9. Numerous changes to improve clarity of the guide.

\section*{b. For type E}
(1) The planned paths for effluent release;
(2) Plant areas and inside buildings where access is required to service equipment necessary to mitigate the consequences of an aceident;
(3) Onsite locations where unplanned releases of radioactive materials should be detected; and
(4) The variables that should be monitored in each location identified in (1), (2), and (3) above.
2.4 The determination of performance requirements for system operation monitoring and effluent release monitoring information display channels should include, as a minimum, identification of:
2. The range of the process variable.
b. The required accuracy of measurement.
c. The required response characteristics.
d. The time interval during which the measurement is needed.
c. The local environment(s) in which the information display channel components must operate.
f. Any requirement for rate or trend information.
g. Any requirements to group displays of related information.
h. Any required spatial distribution of sensors.
2.5 The design and qualification criteria for system oderation monitoring and effluent release monitoring
instrumentation should be taien from the criteria provided in regulatory positions 1.3 and 1.4 of this guide. Tables ! and 2 of this regulatory guide should be considered as the minimum number of instruments and their respective ranges for systems operation monitoring (Type D) and effluent release monitoring (Type E) instrumentation for each nuclear power plant.

\section*{D. IMPLEMENTATION}
fll plante-going-into-eperstion-aflor junt- 1983 -showld meet the provicions of thisguide


Plante cobeduled in be tienaced io oparate befoce fung-h

 the cohedulec af these docismete or prior io the irguace of

 +96\%


 f-ovirgnodinga, nixan=r*~mens

This guide is applicable to all plants for which the construction permit is issued on or af́ter June 1, 1983.

Holders of construction permits or operating licenses issued before June 1, 1983 should meet the provisions of this guide as specified in Supplement 1 to NUREG-0737. The permittee or licensee should devclop a plan for implementing this guide and negotiatc a schedule with the NRC Project Manager on a plant-specific basis.```

