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EXECUTIVE SUMMARY

This report presents the results of an experimental program on functionality of relays and circuit
breakers connected in integral electrical circuits. This program was an extension of an earlier vibration test
program on relays, conducted at BNL and reported in NUREG/CR-4867, The current program was initiated
to achieve the following objectives:

1. To characterize the effects of chatter in the context of relay chatter acceptance criteria.

2 To explore the vanation of relay capacities between specimens of the same model subjected to
vibration.

3. To correlate the capacities of relays subjected to multifrequency vibration with those with single

frequency excitation.

The experimental program was carried out in two phases. First, a group of lockout relays, and
medium and low voltage circuit breakers was subjected to electrical puises to determine the durations
required for a change of state of these devices. In the second phase of the program, a subset of these test
specimens was tested with a group of control relays connected in separate electrical circuits. Both single
frequency and multifrequency excitations were applied to the control relays mounted on a shake table to
determine the vibration levels and chatter durations required to trip a circuit breaker and lockout relays (i.e.,
load devices) located on a stationary stand. Subsequently, both the control relays and the load devices were
mounted in a switchgear cabinet and excited on the shake table.

Electrical experiments showed that the pulse duration required to trip a lockout relay or circuit
breaker is about half of the trip time of the device. The difference between the two corresponds to the
duration of the inertial motion of the tripping latch after its disengagement caused by the electromagnetic
force built up in the solenoid as a result of the coutrol relay chatter.

The vibration experiments indicate the need for testing relays in integral electrical circuits. In
general, lockout relays can be used in lieu of medium or low voltage circuit breakers for this purpose. The
vibration withstanding capability of a relay can be highly influenced by the electrical conditions in the relay
circuit and chatter monitoring instruments. The vibration capacity of a relay in an integral circuit in terms
of its function to control a lockout relay or circuit breaker can be less than its capacity measured in a
conventional way by separately testing with a chatter criterion of 2 ms.

The vibration testing also confirmed that for most relays the variation of capacities of specimens of
the same model is within 100%. For some other relays, the variation could be as large as six- or seven-fold
measured in terms of input sine dwell motion at certain frequencies. As observed in the earlier experimental
program (NUREG/CR-4867), the current program confirmed for an additional relay model that the
multiplication factor needed to convert the single frequency capacity sine dwell input motion amplitudes to
the corresponding multifrequency test response spectrum at a damping value of 5% is in the range of 2.5 -3.0.

In summary, it is recommended that relays be tested in integral circuits representing field operating

couditions and with multiple specimens (e.g., at least three). The capability of a relay at any particular
vibration level should be demonstrated by testing at this and reasonably separated lower levels.
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Background
CHAPTER 1
BACKGROUND
11 INTRODUCTION

This report presents the results of a test program conducted by Brookhaven National Laboratory
(BNL) on relays, and low and medium voltage circuit breakers, under the spounsorship of the U.S. Nuclear
Regulatory Commission (NRC). The test program consists of two parts: electrical testing and vibration
testing. The electrical testing was performed at locations of circuit breakers and at KEMA Powertest facilities
in Chalfont, PA, and the vibration tests were performed at Wyle Laboratories, Huntsville, AL.

The background and objectives of the test program are discussed in this chapter. The test procedures
are described in Chapter 2, and the results are presented in Chapters 3 and 4. The observations are
summarized in Chapter §.

12 BACKGROUND

An evaluation of the existing test data at BNL indicated that the seismic capacity of a relay can vary
widely depending on many parameters including its specific design and the earthquake motion characteristics
(1,2} In order to assess the influence of these parameters and demonstrate generation of frequency-
dependent fragility test response spectra (TRS), BNL conducted a test program (Series I) in 1989 on 46 relay
specimens, and the results were published in NUREG/CR-4867 [3]. Most of the objectives were completely
fulfilled and the issues were conclusively addressed by the test program (e.g., frequency sensitivity, input
direction, electrical condition, contact state, etc.). For the remaining issues, BNL's Advisory Panel considered
the test data to be inadequate to draw general conclusions, and recommended additional tests (e.g.,
conversion factor relating multifrequency fragility TRS with single frequency fragility input motion). In
addition, the test program revealed information that raised some fundamental questions regarding
qualification and definition of the fragility level of a relay model (e.g., 2-millisecond chatter criterion,
variation of capacity levels among specimens of the same relay model, damaging effect of successive short
duration [e.g., | ms| chatter compared to a single longer duration chatter). Furthermore, a need has been
identified for determination of the effect of relay chatter on breaker operation.

The Series 11 test program discussed in this report addresses the above issues.
13 ISSUES
Unlike the Series I tests, the issues being addressed in the Series II tests are much more complex.

Therefore, a detailed discussion of the issues is provided in the following sections so that the testing approach
that was employed for each issue can be understood.

13.1 ela atter and Acceptance Criteria
13.1.1  Discussion

The evaluation of the performance of relays during vibration testing requires documentation of the
output effects against a pass-fail criterion. The commonly used criterion for output discontinuities which has
been the basis for judging the fragility level is a 2-ms charter duration. This criterion was developed by the
industry in a consensus standard-making environment and is published in an IEEE Standard [4]. In addition,

1 NUREG/CR-6169



Background

the contact monitoring circuits employed during various test programs have not been consistent. For
example, frequently low voltage and current have been used because it facilitates ease of connection, improves
safety, is less destructive to test specimens and provides equal or greater monitoring sensitivity.

Results of relay fragility testing to date are thought to effectively screen the relays which are likely
1o cause undesired outputs under seismic environments from those which will u .. There are questions,
however, as to whether this is the case for all circvits, or whether there are a few or many exceptions. Each
question about applicability of the criteria typically involves details of a specific application, such as: a
protective device tripping a large current load which will interrupt the current after it has tripped; a seal-in
contact which closes when current to a load is sensed through the protective contact; any interlocking or
permissive circuit scheme; a contact providing an important input signal to a computer or other solid state
controller; a contact picking up a relay with very long interconnection wires with significant resistance and
capacitance; etc.

These concerns are not always explicitly addressed by the generic 2-ms critericn. The use of a
general criterion could result in disqualifying relays which may be adequate as well as qualifying those which
are not. The fact is that the sensitivity of each specific circuit to contact chatter is different and the use of
any single criterion (that can, of course, be realistically implemented) for a pass-fail determination could err
in either direction on many actual circuit configurations.

Another aspect of the 2-ms criterion that has been considered very little during the criteria
development, is the repetition rate of discontinuities. The occurrence of this type of behavior may be rare
in qualification or proof testing but it is observed in fragility testing since the latter explores each device on
the "edge" of its capacity level. In fact, a similar occurrence has been observed during the first test series [3].

13.1.2 Aun Approach to Define Acceptance Criteria

As implied above, the use of the 2-ms chatter criterion for all situations is a compromise and may
not be realistic. The use of relay contacts can fall into two broad categories. As an example, for the first
category, the main purpose of protective relay contacts is to complete the trip circuit of a circuit breaker.
This results in a current flow of 2 to 10 amperes in modern circuit breakers. Due to the inductance of the
circuit breaker trip coil, its energization for a period of 2 ms may not allow the currest to increase to a value
that is required to initiate a change of state; thus the circuit breaker will not trip. Therefore, a more realistic
approach to determine contact failure would be to use the operation of a circuit breaker or a device such as
a lockout relay., Such a device will have similar characteristics such as a spring loaded latching mechanism
aswell as an E/R (voltage/resistance) current value of approximately § amperes at 125 volts DC, to more truly
simulate actual operating conditions,

The second major use of relay contacts is to activate a relatively low energy device, as compared to
a circuit breaker, through either the closing or opening of a relay contact. These secondary devices can have
characteristics that will cause operation on input pulses that range from less than 1 ms for electronic circuits
to more than 40 ms for slowly acting electro-mechanical devices. The simulation of various low-energy
devices would require another series of devi-es with known, specific input pulse requirements such as 2 ms,
S ms, 10 ms, 20 ms and 40 ms, in order to obtain a final operation. These specific devices could then be used
to classify the relay under test.!

'Even though thi. approach is much more realistic than the single 2-ms criterion. it cannot be used as the only
criterion in determining the fragility level of any circuit. The sensitivity of a device to the repetition rate as well
as the wiring configurations in which distributed capacitance can affect overall circuit operation must also be taken

NUREG/CR-6169 2
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13.2  Relay Chatter and Circuit Breaker Malf. iction

In the switchgear circuit of a nuclear power plant, the operation of a circuit breaker can be directly
or indirectly controlled by a number of protective and auxiliary relays. It has been postulated that a 2-ms
chatter of a relay will not cause a breaker trip. However, the amount of relay chatter that a breaker will
tolerate before initiating an unintended operation is not usually known. The size of the breaker (eg., low
and medium voltage), the exact controlling circuit and the existence of seal-in or lockout devices, among other
parameters, affect the breaker performance. The effect of relay chatter on the breaker operation was not
adequately addressed in past studies (e.g.. Reference 2).

133 Specimen Variation

The first test series indicated a large variation of seismic capacities even with specimens of the
exactly, same relay model number and factory adjustments. This raises a fundamental question as to how
many specimens of a relay model should be tested in order to gain adequate confidence in the median and
the variance of the test results. The TEEE Standard [4] recommends testing a minimum of three relays. A
resolution of this issue requires additional test data with consistent electrical adjustments.

1.34  Single Freque to Multifrequency Conversio to

In Test Series I, several relays were tested with both single frequency and multifrequency vibration
inputs where the shapes of the required response spectra for the multifrequency tests were matched with the
shapes of the input motion curves obtained from the single frequency tests. For one relay model, the tests
were successfully completed and the conversion factor relating the multifrequency test response specira (TRS)
with the single frequency put motion was computed for all frequencies. For other relays, the test results
were inadequate for computing the conversion factors. In order to draw a general conclusion on the
conversion factor, additional test data are needed.

14 SUMMARY
The Series 11 test program addresses the following basic issues:

Reiay chatter acceptance criteria

Relay chatter associated with breaker trip

Capacity variation among specimens of the same relay mode!

Additional data for single frequency to multifrequency conversion factor.

1S e

Since the first two issues deal with the chatter criteria, these were addressed in one task in the vibration test

series; whereas, separate tasks were performed for the other two issues. These are further elaborated in
Chapter 2.

nto consideration. Each circuit in the nuclear safety systems needs to be evaluated on the basis »f the devices in
the circuit and the actual overall circuit. For exataple, the use of a circuit with two or more contacts in series
should be evaluated relative to the seismic capability of each of the devices. The use of a low capability unit and
a high capability unit relative to normally open contacts would have the capability of tae highest device.
Conversely, if the overall circuit depends on normally closed contacts for its operation, the fragility level of the
overall circuit would be governed by the lowest capability device.

3 NUREG/CR-6169



Test Plan
CHAPTER 2
TEST PLAN
2.1 INTRODUCTION

In order to determine the chatter-tolerant characteristics of the breaker tripping mechanisms and
relay contacts, an electrical test program was carried out prior to the vibration tests. The results from the
electrical tests were evaluated to pian the vibration tests. The test procedures followed for both the electrical
and vibration tests are discussed in this chapter.

22 ELECTRICAL TEST PROCEDURES

The electrical testing was performed in two phases. In the first phase, eleven circuit breakers and
two lockout relays were tested to determine the time required for these devices 1o trip at 100% and 80% of
their rated voltage. Circuit breakers were for either medium voltage or low voltage applications and
manufactured by Westinghouse, General Electric and ITE. These were functional, used devices, some of
which were tested at locations (such as the High Flux Beam Reactor at BNL) with portable instruments. The
trip current vs. time plots were obtained by use of an oscilloscope.

In the second phase, three lockout relays, three circuit breakers and eight auxiliary self-reset relays
(of four models) were tested at an electrical power testing laboratory (KEMA Powertest). The trip current
traces were obtained for the breakers and lockout relays. In addition, the electrical pulses of minimum
durations required to trip all these devices were determined. Repeated alternating (i.c., on/off) pulses were
also used to determine various combinations of “on" and "off" pulses that are required to trip the devices.

A listing of the breakers and relays used for the above two electrical test programs is provided in
Table 2.1.

In addition to the electrical pulse characteristics testing described above, three specimens of each of
HMAI124, SC and SVF relay models (i.e., a total of nine relays) were tested for electrical pickup and dropout
conditions. These relays had been shake-table tested as part of the Series I program [3) and exhibited large
differences in their seismic capacities even within the same relay family. In the Series Il electrical testing,
each relay was visually inspected to search for observable design differences, and then was set to achieve
comparable electrical pickup and dropout characteristics.

23 VIBRATION TEST PROCEDURES
The vibration testing was grouped into three tasks each of which is discussed below.

231 Task 1

The objective of this task was to explore alternatives to the 2-ms chatter limit as potential acceptance
criteria for a relay in specific common circuit configurations. Five protective and auxiliary relays were used
as the source relays to produce signals for possible tripping or chattering of a medium voltage circuit breaker,
two lockout relays and another auxiliary relay (see Table 2.2 for listing of devices). Initially, the source relays
were mounted on the shake table and the load devices on a stationary stand. Subsequently, they were all
mounted on a switchgear cabinet and shake-table tested. The following are the test sequences:

5 NUREG/CR-6169



Test Plan

Five source relays were mounted on a rigid fixture which, in turn, was welded on the shake
table. Four load devices were installed at a stationary location. The electrical output from
each of four of the five source relays was connected to each of the load devices. The contact
signal from the fifth source relay was monitored for chatter in a 25-milliamp circuit. The
load devices were subjected to 125 VDC.

The assembly was shake-table tested with single frequency, sine dwell motion applied
separately in the front-to-back and vertical directions at the following frequencies: 1, 2.5,
5, 7.5, 10, 12.5, 15, 20, 25, 30, 40 and 50 Hz. The sine dwell amplitude was gradually
increased 10 the machine limit or decreased from it until a parrow range is established
between the success and malfunction (i.e., trip or chatter) levels. For the same electrical test
setup, the contact chatter (for the fifth source relay) was also monitored separately with 1-
amp aod 150-milliamp currents. The voltage on the load devices for these last two sets of
test runs was reduced to 100 VDC to determine the effect of a voltage change. Vibration
testing for these runs was performed only at §, 10 and 15 Hz.

In the above tests, provisions were also made to monitor the chatter of the source relays
connected to the load devices through parallel circuits. In order to minimize disturbance on
the tripping function, the current used in these chatter monitoring circuits was 25 milliamps.
This arrangement provided the opportunity to determine the contact chatter in the source
relays that caused tripping of the load devices. The contact chatters were monitored by
repecting the test runs that resulted in tripping or chattering of a load device.

After successful completion of one electrical test setup described above, the connections
were interchanged and the tests were repeated four more times 5o ti.at each source relay was
once connected to a load device and the chatter monitor circuit. The five test setups or
conditions are listed and schematically presented in Table 2.3 and Figure 2.1. For example,
in electrical setup 1, CO9 was monitored for chatter with a 25-mamp circuit, and IAC, 1AV,
SVF and HFA were respectively connected to HEA, LOR, SHK and HMAI11 using 125
VDC. In electrical setups 1a and 1b, CO9 was monitored drawing respectively lamp and
150 mamps, and other relays were connected as before but using 100 VDC. The schematics
of the source and load devices are shown in Figures 2.2 through 2.10.

For the same electrical setups described above, the source relays were shake-table tested
with both single-axis (separately in the front-to-back and vertical directions) and biaxial
(simultaneously in the front-to-back and vertical directions) multifrequency motions.
Vibration levels were increased up to the machine limit or until tripping or chattering was
observed.

Subsequently, both the source relays and the load devices were installed in a switchgear
cabinet which, in turn, was attached to the shake table. Single-axis (separately in the front-
to-back and vertical directions), biaxial (simultaneously in the front-to-back and vertical
directions) and triaxial (simultancously in the front-to-back, side-to-side and vertical
directions) multifrequency motions were applied. The vibration levels were increased until
tripping or chatter was observed or the machine limit was reached. The corresponding TRS
were obtained.

NUREG/CR-6169 6



Test Plan
23.2 Task 2

The objective of this task was to explore the variation of seismic capacities among specimens of the
same relay model. Three specimens of HMA124, SC and SVF (i.e., a total of nine relays) were selected for
this test (see Table 2.2 for relay descriptions and Figures 2.11 through 2.13 for electrical schematics). As
discussed in Section 2.2, during electrical testing, these relays were set such that they have comparable pickup
and dropout characteristics. During vibration testing, these relays were shake-table tested with single
frequency sine dwell motion at the 12 frequencies listed above for Task 1. The vibration level was increased
until a chatter duration of 2 ms or greater was detected for the weakest contacts, electrical conditions and
vibration directions established from earlier Series I vibration tests [3). The correspording vibration levels
were recorded.

233 Task3

The objective of this task was to obtain additional data to correlate the single frequency capacity sine
dwell input motion with the corresponding multifrequency response motion. Two specimens of HFAS] relay
model were selected for this purpose as shown in Table 2.2 and Figure 2.14 (SG relays were tested in the
earlier test series). The capacity limits were first established with the single frequency input motion. The
multifrequency motion was then applied and the TRS shape was adjusted to make it comparable with the
single frequency input motion curve (i.e., sine dwell input vs. frequency plot). The vibration level was
increased until the capacity level was established. The weakest electi.cal mode and the vibration direction
established in the Series | test program were used. The acceleration input and TRS data were recorded.

24 SUMMARY

A large number of test runs were conducted to explore the electrical pulse and the vibration levels
required to cause a trip or chatter. The corresponding pulse and vibration levels were recorded along with
selected tripping occurrence times and chatter durations. The results are discussed in Chapter 3.

7 NUREG/CR-6169
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Table 2.1 Specimens for Electrical Tests

Field Test Program
Model Nao. Manufacturer Quantity Description
LOR Electro-Switch 1 Lockout relay
WL Westinghouse 1 Lockout relay
DH3 Westinghouse 5 Medium voltage circuit
breaker
AM 12 R.500 General Electric 1 Medium voltage circuit
breaker
AKR 3200 General Electric 1 Low voltage circuit
breaker
SHK ITE 1 Medium voltage circuit
breaker
DB2S, 600 Westinghouse 1 Low voltage circuit
breaker
AK-25, 600 General Electric 1 Low voltge circuit breaker
150DHPS00 Westinghouse 1 Medium voltage circuit
breaker
Lahoratory Test Program
Model No. Manufacturer Quantity Description
LOR Electro-Switch 1 Lockout relay
WL Westinghouse 1 Lockout relay
HEA General Electric 1 Lockout relay
K1600 ITE 1 Low voltage circuit
breaker
1SHK ITE 1 Medium voltage circuit
breaker
SHK ITE 1 Medium voltage circuit
breaker
SG Westinghouse 2 Auxiliary relay
HFAS] General Electric 2 Auxiliary relay
HMAI11 General Electric 2 Auxiliary relay
A314X Square D 2 Auxiliary relay
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Table 2.2 Specimens for Vibration Tests*

Task Model Manufacturer Quantity Description
R No.
cO9 Westinghouse 1 Overcurrent relay (source)
IAC-51 General Electric 1 Overcurrent relay (source)
IAV.53 General Electric 1 Over/under voltage relay
(source)
1 SVF Westinghouse 1 Under voltage relay (source)
HFASI General Electric 1 Auxiliary relay (source)
HEA General Electric 1 Lockout relay (load)
LOR Electro-Switch 1 Lockout relay (load)
SHK ITE 1 Medium voltage circuit
breaker (load)
HMAI11 General Electric 1 Auxiliary relay (load)
HMA124 | General Electric 3 Auxiliary relay
2 SC Westinghouse 3 Overcurrent relay
SVF Westinghouse 3 Under voltage relay
3 HFAS] Geweral Electric 2 Auxiliary relay

*A detailed description of the relay models is provided in NUREG/CR-4867 [3] and in Figures

2.2 through 2.14

In this report, the relay model numbers except the HMA relays, are

frequently abt eviated 10 the first three characters for convenience.

a
§
y
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Table 2.3 Electrical Setups for Task 1

Electrical Setup
1

CO9 - 25 mamps

IAC - HEA (125 VDC)
IAV - LOR (125 VDC)
SVF - SHK (125 VDQ)
HFA - HMALI1 (125 VDC)

Electrical Setup
la

- 1 amp

- HEA (100 VDC)
- LOR (100 VDC)

- SHK (100 VDC)

-~ HMAL11 (100 VDC)

Electrical Setup
ib

- 150 mamps

- HEA (100 VDC)

- LOR (100 VDC)

- SHK (100 VDC)

- HMAL11 (100 VDC)

Electrical Setup
2

CO9 - HEA (125 VDC)
IAC - LOR (125 VDC)
IAV - SHK (125 VDC)
SVF - HMAI1 (125 VDC)
HFA - 25 mamps

Electrical Setup
2a

- HEA (100 VDC)
- LOR (100 VDC)
- SHK (100 VDC)
- HMAL11 (100 VDC)

- 1 amp

Electrical Setup
2b

h-———-———-*———-m—ﬁ

- HEA (100 VDC)
- LOR (100 VDC)
- SHK (100 VDC)
- HMAL11 (100 VDC)

- 150 mamps

Electrical Setup
3

CO9 - LOR (125 VDCO)
IAC - SHK (125 VDC)
IAV - HMALI (125 VDC)
SVF - 25 mamps

HFA - HEA (125 VDC)

Electrical Setup
3a
- LOR (100 VDC)
- SHK (100 VDC)
- HMAL11 (100 VDC)
- 1 amp
- HEA (100 VDC)

Electrical Setup
3b

m

- LOR (100 VDC)

- SHK (100 VDC)

- HMAL11 (100 VDC)
- 150 mamps

- HEA (100 VDC)
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Table 2.3 Electrical Setups for Task 1 (Cont'd.)

Electrical Setup
4

CO9 - SHK (125 VDC)
IAC - HMAI1 (125 VDC)
IAV - 25 mamps

SVF -» HEA (125 VDC)
HFA - LOR (125 VDC)

Electrical Setup
4z

W

- SHK (100 VDC)

- HMAI1 (100 VDC)
- | amp

- HEA (100 VDC)
- LOR (100 VDC)

Electrical Setup
4b

- SHK (100 VDC)

- HMAL11 {100 VDC)
- 150 mamps

- HEA (100 VDC)

= LOR (100 VDC)

Electrical Setup
5

CO9 - HMALI1 (125 VDC)
IAC - 25 mamps
IAV - HEA (125 VDC)
SVF - LOR (125 VDC)
HFA - SHK (125 VDC)

Electrical Setup
Sa

- HMA11 (100 VDC)

- | amp
- HEA (100 VDC)
- LOR (100 VDC)

- SHK (100 VDC)

Eiectrical Setup

5b
S ———————— |

- HMAI11 (100 VDC)
- 150 mamps

- HEA (100 VDC)

- LOR (100 VDC)

- SHK (100 VDC)
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Electrical Test Results
CHAPIER 3
ELECTRICAL TEST RESULTS
31 INTRODUCTION

The electrical tests were conducted following the procedures described in Chapter 2. The test results
consisting of trip and chatter responses of breakers and relays subjected 10 electrical pulses are presented in
this chapter. An analysis of the test data including its use in planning the vibration tests is also provided in
this chapter.

33 FIELD TEST RESULTS

A total of eleven (11) low and medium voltage circuit breakers and two (2) lockout relays were tested
in the field. A DC power was applied to the trip solenoids and the resulting current-time oscilloscope traces
were recorded. The results are presented in Table 3.1. The trip voltage (DC), current and total trip time
are provided for each device. The time from application of the power to the solenoid to the occurrence of
the trip is called the "total trip time." Sample pictures of oscilloscope traces are shown in Figure 3.1. The
abscisa in the figure shows the total trip time (e.g., 55.8 ms for DH3) and the ordinate indicates the voltage
or current (e.g., 4.14 VDC or 4.14 amps for DH3).

The total trip time varied between about 20 and 60 ms for the breakers and lockout relays except
for the fast lockout relay LOR for which the trip time was 7.5 ms. This supports the earlier hypothesis that
the lockout relays (except fast ones) can be used as surrogates for circuit breakers so far as the trip
characteristics are concerned (Ref. Section 13.1.2). As expected, the solesoid requires a larger duration for
tripping at a lower voltage. For example, the total trip time for the AKR circuit breaker is 47.5 ms at 125
VDC and is 55.4 ms at 100 VDC. For the tested specimens, the increase in trip time is between about 5%
and 40% for a voltage drop from 125 VDC to 100 VDC.

3 LABORATORY TEST RESULTS

Three (3) lockout relays, three (3) circuit breakers and eight (8) auxiliary self-reset relay specimens
were tested with electrical pulses to determine the minimum pulse durations required for trips. The results
are presented in Tables 3.2 and 3.3. In addition to single pulses, repeated alternating (i.e., on and off) pulses
were applied to verify a possible reduction of the required pulse duration. Single pulse durations were
obtained at both 100% and 80% of the rated voliage.

The results indicate that for the tested breakers and lockout relays, the required single pulse duration
varies between 8 ms and 18 ms except for the fast lockout relay LOR for which the required pulse duration
is about 2 ms. An appreciable amount of reduction (15-30%) was observed when the pulses were repeated
with 1-ms pauses. The reduction quickly disappeared when the pause duration is increased to 3 ms.

The self-reset auxiliary relays required single "on" pulse durations of 1540 ms for a change of state.
The corresponding "off" pulses are of much shorter durations (i.e., about 25-33% of the "on” pulse durations).
The repeated alternating pulses have a much stronger influence on auxiliary relays than on the lockout relays
and circuit breakers.

In addition, the solenoids of the lockout relays and circuit breakers were energized to determine the
corresponding trip times similar to what was obtained from field testing discussed in Section 3.2. The device

NUREG/CR-6169
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models (not the same specimens) that were tested both in the field and in the laboratory showed comparable
results. The results of the additional lockout relay (HEA) and circuit breakers (15 HK and AK 1600) are
included in Table 3.4 and discussed further in the following section,

34 DATA ANALYSIS

For any breaker or lockout relay, the trip time data shown in Table 3.1 are greater than the required
pulse duration presented in Table 3.2. This can be explained as follows: The total trip time consists of i)
the time required for the current to build up sufficiently so that the energy in the solenoid is adequate to
unlatch the tripping mechanism, and 2) the time required for the latch to complete the change of state. For
convenience, the first one can be termed as "energization time" and the second one "mechanical time" and
they can u* equated to the total time as follows:

Total trip time = energization time + mechanical time

The total trip times shown in Table 3.1, thus, represent the summation of the energization and mechanical
times. This phenomenon is further explained with the help of Figure 3.2.

On the other hand, the minimum time required by an electrical pulse to cause a trip represents only
the energization time. Once the latch is set in motion, it completes the change of state due to its inertia
alone imparted by the electromaguetic force built up in the solenoid during energization. Thus, the pulse
durations shown in Table 3.3 correspond to the energization time and do not include the mechanical time.
A comparison of the data in Tables 3.2 and 3.3 demoustrates that the energization time for a given lockout
relay or breaker is about a half of the total trip time.

The chatter duration required in a relay to cause a trip in a downstream lockout relay or breaker is
expected to be comparable to the energization time rather than the total trip time. Thus, for the purposes
of vibration testing, the data of primary interest are the pulse duration data which should be comparable to
the required chatter. Due to practical reasons, devices in the field could not be tested with pulses. The
required pulse time for these devices can still be calculated from the field test data provided they were tested
at two different voltage levels. The basic hypotheses in this calculation are as follows:

1. The time required to build up current until the latch is disengaged depends on the voltage
(DC) level but the time required to complete the change of state does not depend on
voltage.

2. The energy required to disengage the latch is the same regardless of the vo'tage level.

These two hypotheses provide adequate equations to calculate the two unknown variables, i.e., energization
time (or pulse duration) and mechanical time.

In order to verify the above hypotheses and the resulting formulas, four devices were tested to obtain
both the total trip time and minimum pulse duration. The calculated results match well with the test data
as shown in Table 3.4. The energization time or required pulse durations calculated for other devices are
also shown in Table 3.4,

35 SUMMARY

The following conclusions can be derived from the electrical test data:
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1. The minimum pulse duration required to trip a device is much less than the total time
required to change state. For many devices, the energization pulse time is about a half of
the total time, and for others the pulse time is even less than a half of the total time.

B The minimum pulse durations for most breakers (10-20 ms) are comparable 1o those for
most lockout relays. However, there are some fast lockout relays (less than 2 ms).
Therefore, to determine the effect of relav chatter (during vibration testing) most often
lockout relays (except the fast ones) can be used in place of breakers.

Further use and interpretation of the electrical test data are made after reviewing the vibration test
data in the next chapter.
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Westinghouse Breaker DH3, Specimen 1

“

( e7nsens 387 Zamy

Electro-Switch Lockout Relay LOR
Figure 3.1 Oscilloscope Voitage (Current)-Time Traces
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Figure 3.2 Current Build-Up vs. Trip Time
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Table 3.1 Field Tests of Breakers and Lockout Relays - Current and Trip Time Data

Trip Voltage

Breaker/Lockout Rated Voltage Current Total Trip Time
Relay DC) (DC) (amp) (ms)
E-S LOR 125 125 3.87 75
W DH3, Specimen 1 250 260 4.14 55.8
W DH3, Specimen 2 250 260 37 55.1
W DH3, Specimen 3 250 261 427 452
W DH3, Specimen 4 250 261 433 592
W DH3, Specimen § 250 261 347 545 |
GE AM 13.8-500 125 125 3.68 55.3*
i GE AM 13.8-500 125 115 328 54.5° 1I
GE AKR, 3200 125 125 1.52 475
GE AKR, 3200 128 100 0.96 554
W DB2S, 600 125 125 7.04 199
W DB2S, 600 125 100 5.04 212
GF AK-25, 600 125 125 1.84 25.2
I GE AK-25, 600 125 100 1.12 283 1
I W 150 DHP 500 125 125 288 486
W 150 DHP 500 125 100 232 533
W WL 12§ 125 296 18.4 |
W WL 125 100 1.84 23.7
I ITE SHK

*Test anomaly. Since an increase of trip time should have occurred for the lower voltage condition, one of
the two trip time recordings is in error.
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Table 3.2 Electrical Pulse Time Characteristics of Breakers and Lockout Relays

Breaker/Lockout Relay

Single "on" Pulse Duration (ms)

Repeated "on/off" Pulse
Duratioas (ms/ms)

100 VDC

125 VDC

100 VDC

125 VDC

E-S LOR

2

2

152

1572

15

W WL 16 12 132 112
GE HEA 10 8 8/1 6/1
92 mn
103 73
ITE K 1600 14 10 1172 992
ITE 15SHK
I ITE SHK

S TERARTT

*Test anomaly.

i3
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Table 3.3 Electrical Pulse Time Characteristics of Self Reset Auxiliary Relays

S e ——
Single “"on" Single "off" Repeated "on/off" Repestid  on/off”
Auxiliary Pulse Duration Pulse Duration Pulse Durations Pulse Durations
Relay (ms) (ms) for Pick-up for Drop-out {ms/ms)
(ms/ms)
100 125 100 125 100 125 100 125
vDC vDC vDC VDC vDC vDC vDC vDC

SG, w2.2° 24 19 5 6 n n

92 a2

123 53

134 7/4

14/5 85

14/6 9/6
1577
15/8
SG, w2-3* 23 18 5 6 6/1
1072
1273
13/4
g 14/5

*See NUREG/CR-4867 {3] for specimen identification numbers.
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Table 3.3 Electrical Pulse Time Characteristics of Self Reset Auxiliary Relays (Cont’d.)

Single "on” Single "off” Repeated "on/off" Repeated "on/off"
Auxiliary Pulse Duration Pulse Duration Pulse Durations Pulse Durations
Relay (ms) (ms) for Pick-up for Drop-out
{ms/ms) (ms/ms)
100 125 100 128 100 125 100
vDC vDC vDC vDC vDC vDC vDC
HFAS' GES-3* 2I(NC) | 17(NC) 14 16 3/2(NC) 92(NC)
37 30 9/1 7
172 1172
233 123
29/4 16/3
HFAS1,GES-2* 40 32 14 16
HMAL1, GE7-2* 20 15 K 5
17* -
16° 5
o &

* See NUREG/CR-4867 [3] for specimen identification numbers.

" Mounted vertically

¢ Using 400-foot long leads.
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Table 33 Electrical Pulse Time Characteristics of Self Reset Auxiliary Relays (Cont’d.)

* See NUREG (CR-4867[3] for specimen identification numbers

¢ Bouncing observed.

Single "on" Single "off” Repeated "on/off" Repeated "on/off"
Pulse Duration Pulse Duration Puise Durations Pulse Durations
{ms) (ms) for Pick-up for Drop-out
{ms/ms) (ms/ms)
100 125 100 125 100 125 100 125
vDC vDC vDC vDC vDC vDhC vDC vDC
HMA11,GE7-3" 10(NC) 8(NC) 7 3/1
21 15 4 5 112 6/2
133 1273
1(NT) T(NC) 6/1
14 9
14 13
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Table 3.4 Electrical Pulse Trip Time Characteristics of Breakers and Lockout Relays

Trip Time (ms)

Pulse
Breaker/Lockout Relay DC Voltage Tested Calculated

| w wi 125 120 120
| 100 16.0 16.0

I'TE SHK i25 13.0 128
100 170 i74

i I'TE 1SHK 125 14.0 13.0
100 180 176

ITE K 1600 125 10.0 100
100 140 40

GE AKR, 3200 125 - 216
| 100 - 295

| GE HEA 125 80 78
i 100 10.0 105

i W DB-25, 600 125 - 50
100 . 64

W 150 DHP 500 125 136
‘ LA 183

GE AK-25, 600 125 : 53
100 28. BS
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CHAPIER 4

VIBRATION TEST RESULTS
4.1 INTRODUCTION

The vibration tests were ~onducted following the procedures described in Chapter 2. Electrical
chatter or change-of-state time history data were recorded in addition to the vibration level data. The results
are presented in this chayp. or for the three iusks described in Chapter 2.

42 TASK 1 TEST DATA

The chatter of the source relays and trip or chatter of the load devices were observed at various
vibration levels, frequencies and directions. The chatter detection data and the vibration data are separately
presented in the following sections. Some general observations such as the effects of contact current on
source relay chatter and voltage drop on load devices are also presented.

4.2.1 Chatter/Trip Data

The chatter of source relays caused tripping of lockout relays and the breaker. The most common
type of time relationship between the source relay chatter and load device (i.e., breaker or lockout relay) trip
is shown in Figure 4.1A. The source relay initiates chatter at t, (i.e., temporary change-of-state) as the
vibration continues and the load device trips a few milliseconds later at t,. But the source relay remains in
the alternate state for a few more milliseconds before it returns to its original electrical state at t,, and the
load device remains tripped. Therefore, the duration required to cause the trip after initiation of the chatter
(Le., a) is less than the chatter duration (i.e., b). Thus, in comparison with the electrical test data reported
in Chapter 3, "a" is similar to the "total trip time" of the breakers and lockout relays.

On the other hand, sometimes the trip of the load device occurred at t, after chatter in the source
relay stopped at t, as shown in Figure 4.1B. In this case, the duration required to cause trip after initiation
of chatter (i.e., a) is longer than the chatter duration (i.e., b). Thus, in this case "a" represents the total trip
time and "b" represents a duration similar to or longer than the energization time or pulse duration as
described in Chapter 3.

Examples of the above two types of chatter-trip relationships along with a few other more complex
situations are shown in Figures 4.2 through 4.71. The effects of the source relays on LOR, HEA, and SHK
are respectively shown in Figures 4.2 through 4.62. For example, as shown in Figure 4.2, in an integral circuit
with the output of the source relay CO9 controlling the operation of the lockout relay LOR, the lockout relay
trips 6.25 ms after initiation of the source relay chatter. The source relay returned 1o its original state after
149.5 ms. At occasions, several small-duration chatters preceded the long duration chatter that caused the
trip (e.g., Figure 4.27).

For HMAL11, which is an auxiliary relay and does not have a trip mechanism, the source relay induced
chatter in it (instead of a trip). Effects of the source relays on HMA11 are shown in Figures 4.63 through
4.71. For example, as shown in Figure 4.63, in a circuit where tue output of the source relay IAV controls
the operation of the load relay HMAI1, the load relay initiates chatter 25.75 ms after initiation of the source
relay chatter.
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Some of the chatter history data are presented in Table 4.1. The durations required to cause tripping
of the LOR and HEA lockout relays and SHK breaker since initiation of chatter of the respective source
relays (i.e., "a" in Figure 4.1) are extracted from various test runs. The mean values of the required durations
for each load device are also shown. For comparison purposes, the results from the electrical tests are also
presented. The following major observations are made from these data:

. The required trip time (i.e, "a" in Figure 4.1) for a given lockout relay or breaker is
independent of the source relay.

. The chatter data from the vibration tests compare well with those from the electric tests.
For example, for the breaker, the mean trip time from the vibration tests was about 34 ms
and that from the electrical tests was about 30 ms.

. The electromagnetic (or pulse) time data also match well between the two tests. For
example, with the HEA lockout relay, the required chatter duration of the IAC was about
7 ms compared to the 8-ms pulse duration data from the electrical tests (Figure 4.25). The
total trip times in this example are 11 ms and 14 ms.

All the data presented above were obtained from electrical performance results at various frequencies
for single frequency tests and from multifrequency vibration tests.

42.2 Vibration Data

The vibration level data corresponding to the chatter, trip or highest capacity were recorded. The
results are discussed for the single frequency and multifrequency tests in the following sections.

4221 Single Frequency Vibration Data

The source relays were vibrated on the shake table to obtain trips on the load devices which were
initially located on a stationary stand. The vibration ievel was adjusted until a trip occurred in the target load
device. The highest vibration level achieved without a trip in the load device is considered the capacity of
the source relay as long as its function is limited to provide electrical signal only to the particular load device.
Thus, the capacity of a source relay was determiged in terms of each of the load devices. In addition, its
capacity was measured based on the conventional 2-ms criterion. The capacity levels of the source relays
obtained from the single frequency tests are prescuted in Figures 4.72 through 4.81. For each source relay,
the capacity levels are shown in terms of its ability to chatter for a duration of 2 ms or greater, 1o <ius 2
chatter in the auxiliary load relay HMAL11 for a duration of 2 ms or greater, and to trip the breaker SHK or
lockout relays LOR and HEA. The capacity level was obtained at each of the following frequencies:

1,25, 5,75, 10, 125, 15, 20, 25, 30, 40, and S0 Hz.

The highest amplitude of the sine dwell input motion at each frequency corresponding to each
acceptance criterion is plotted in the above figures and, for presentation purposes, a curve is drawn
connecting these discrete points at the tested frequencies. At some frequencies, a chatter of the source relay,
or a chatter or trip of the ioad device was not observed even when the source relay was vibrated up to the
limit of the shake table. For these cases, the source relay capacity levels are shown as the nominal machine
vibration limits. For presentation purposes, a slight separation is maintained between the capacity curve and
the nominal machine limit curve so that they can be distinguished.
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The single frequency capacity levels were established in both the front-to-back and vertical directions.
[he source relays were in their operating modes and load devices were at their rated voltage of 125 VDC,

All the capacity data presented in these figures are the relative capacity levels in that they represent
the capacity levels of particular source relay specimens relative to the five acceptance criteria shown on each
figure. None of these capacity curves should be construed as the real capacity of any of these relay models.

The capacity data presented in Figures 4.72 through 4.81 indicate that the capacity of a source relay
based on a load device trip could be lower than the conventional 2-ms-based capacity levels. For example,
in Figure 4.81, the IAV relay successfully withstood the vertical motion without a 2-ms chatter up to 1.8g to
1.3g at frequencies between 5 Hz and 10 Hz. However, the corresponding capacity level when measured in
terms of tripping of the SHK breaker was only 0.5 g. This is particularly a paradox for the breaker since it
requires a total trip time of above 30 ms.

A probable explanation of this appareat anomalous chatter duration and capacity comparison is that
another variable, namely the ability of contact to interrupt current, is involved. The tripping devices are
operated by 125 VDC coils which are inductive devices. The current from a DC source flows continuously
in one direction and is very difficuit to interrupt, as compared to the current from a 60 Hz AC source. The
source relay contacts have low mass, move slowly, and have relatively small gaps with low forces holding them
open. If vibration causes contact closure for a sufficient duration to initiate excitation of the trip device coil,
inductive current will persisi. As sour.e contacts begin to part, an arc develops ionizing the gap. The gap
increases in size, but ionization continues, current continues and the trip device continues the tripping until
it interrupts its own current, removing the voltage from the source contact gap and extinguishing the arc.
The source relay contacts which caused tripping of the trip devices were unable to interrupt the current in
many cases and had to rely on the load device itself to open the circuit. This condition is the same in the
field and is considered to be normal behavior under vibration for this type of circuit with a DC control
voltage.

It is also possible that there are electromagnetic forces involved but evaluation of their direction and
magnitude will require additional research.

4.2.2.2 Multifrequency Vibration Dara

The multifrequency capacity TRS plots at a damping value of 5% are shown in Figures 4.82, 4 .83,
and 4.84. Similar to the single frequency capacity results discussed in Section 4.2.2.1 above, the TRS data
represent the relative capacities of the source relays corresponding to a 2-ms chatter criterion or a load device
trip. The capacity TRS of CO9 for the 2-ms chatter criterion is comparable to those for a load device trip
(Figure 4.82). But, for IAC aud IAV relays, the capacity TRS based ou the chatter data are substantially
higher than those based on the load device trip data. The above results were obtained from shaking of the
source relays while the load devices were located on a stationary stand.

Subsequently, both the source relays anc the load devices were instalied in a switchgear cabinet, and
the entire assembly was shake-table tested with multifrequency input motion (Figure 4.85). The electrical
setups were the same as before (i.e., five setups as shown in Table 2.3 in Chapter 2). The purpose of using
the cabinet was to amplify the input motion through a switchgear cabinet structure but this does not
necessarily represent any realistic switchgear configuration since the cabinet was reinforced with thick angle
irons at four corners and other locations. Moreover, the breaker barrier box cover was removed to reduce
amplification and torsion in the structure. Thus, the mass was not necessarily representative of any switchgear
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cabinet in the field. Iu spite of stiffening of tbe cabinet structure and reduction of mass, the cabinet was
damaged at several locations including anchorage weld and required repair several times.

The control TRS data representing the shake table motion, i e., the TRS of the input motion applied
at the base of the cabinet, are shown in Figures 4.86 through 4.100. These data represent the highest
vibration levels at the cabinet base at which the particular source relays did not chatter for a duration of 2
ms or greater, did no: trip a load device or did not cause a load device to chatter for a duration of 2 ms or
greater. For example, as shown in Figure 4.86, when installed in the switchgear cabinet, the overcurrent
relay CO9 chattered for a diration of 2 ms or greater at #n input motion much stronger than the motion
required for CO9 1o trip a load device located at a suitahle place on the same cabinet. Unlike all other
information presented earlier, these TRS plots were obtained for each of the three orthogonal directions in
incoherent triaxia! tests (i.e., three axes were excited s.uiultaneously).

4.2.3 Influence of Monitoring Current on Relay Chatter

The electrical discontinuity (or continuity) in a relay is measured by drawing current from the relay
contact in a monitoring circuit. In an effort to determine the influence of this monitoring current on the
chatter characteristics of the relay during a vibration test, the electrical discontinuity was monitored during
the test with three different current levels (1 amp, 150 milliamps and 25 milliamps) by varying the resistance
of the monitoring circuit. For the tested operating modes of the relays, aithough there seems to be a
tendency for longer chatter at a higher carrent level, no definite ruie can be established from the test data.
For example, Table 4.2 shows data for COSY, IAV and IAC relays obtained during single frequency sine dwell
tests. For CO9 relay, the data suggest that a larger monitoring current level indicates chatter of longer
durations and greater number of events. However, this trend is not necessarily supported by the data for the
IAV and IAC relays. In fact, the chatter data for IAV at 25 mamps and 150 mamps support contrary
arguments. However, an observation can be clearly made from these and other chatter data thai the chatter
characteristics can be influenced by varying the nionitoring current,

4.2.4 lnfluence of Drawing Monitoring Current on Trip

The outputs of the source relays were connected to the load devices 10 determine the trip. At the
vibration level when the load devices tripped, the test was repeated by drawing current from the source relay
contact in a high-resistance parallel circuit (i.e., low current) to determine the chatter duration required for
the trip. Most often the load device tripped at the repeat test (at the same vibration level) when contact
chatter was monitored, but at other times it did not trip and required a higher input motion for trip.
Therefore, there seems to be a tendency for requiring a slightly higher input motion to trip a joad device
when monitoring current is drawn from the source relay coutact in a parallel circuit.

4.2.5 Influence of Voltage Drop in Load Devices

Certain vibration tests were repeated by dropping voltage from the rated value of 125 VDC to 100
VDC. The highest vibration level at which the load device did not trip or the lowest level at which it tripped
seems not to be appreciably influenced by the voltage drop. On many occasions, there were slight increases
in the required motion at the lower voltage. Similarly, at many other tests, either there were no changes or
slight reductions at the lower voltage.

On the other hand, the electrical tests consistently demonstrated that the total rip time or the pulse

duration is appreciably greater with a voltage drop to 100 VDC (e.g., Table 3.1). This means that a higher
vibration level would have been required to cause a trip at 100 VDC. But the vibration data do not
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consistently support this hypotbesis. One possible explanation is that once a chatter level is reached the

Charactenistics are very nonlinea, and the exact chatter duration is unpredictable
4.3 IT'ASK 2 TEST DATA

Ihree specimens of each of HMA124, SC and SVF were tested with single frequency sine dwell input
mouon in their respective weakest modes. The results are presented in Figures 4.101 through 4.106. As
mentioned earlier, these relays had been tested in the first series of testing and the results were reported in
NUREG/CR-4867 [3]. However, at that time, the relays were tested as they were received from the
manufacturers. In the current test program, the specimens of the same relay model were adjusted following
the maaufacturer’s specifications to achieve the same electrical characteristics, i.e., pick-up and drop-out
voltage

[he data for HMAI124 show reasonable comparison in the front-to-back direction (Figure 4.101)
In the vertical direction, the data for specimens 1 and 3 are comparable but both are substantially lower than
the capacity data for specimen 2 at most frequencies (Figure 4.102). In spite of this difference, these results
show a much better consistency than what had been observed in the earlier test program [3)

On the other hand, *he test data for SC presented in Figure 4.103 and 4.104 show wide differences
among the specimens. During the earlier physical inspection in the electrical testing laboratory, specirnen
I was suspected to be different. Even if the data for specimen 1 are ignored, the difference between
specimens 2 and 3 is enormous especiaily in the vertical direction®. For example, specimen 2 has a capacity
of around 0.5 g at frequencies up 1o 30 Hz whereas specimen 3 was successfully tested to the machine limit
(ie., 2.5 g between 5 Hz to 20 Hz) without any chatter

For the SVF relays, the front-to-back data cannot be used to compare the differences since all three
specimens reached the machine limit. In the vertical direction, they all indicated chatter even at the lowest
acceleration level up to 30 Hz. Beyond 30 Hz, specimens 2 and 3 indicated slightly larger capacities. Thus,
the SVF relays seem to have demonstrated reasonably consistent performance.

In summary, although many relay models are expected to show reasonably consistent capacity levels
(e.g., variation by a factor of two) among specimens, some other rzlays can produce remarkable variations

(e.g., variation by a factor of seven) in their capacity levels among specimens. Thus, testing of a single
specimen can be very misleading. A focussed and careful inspection of relays in the energized state indicated
physical differences in armature engagement conditions and air gap in the maguetic circuit. However, all
these relays procured by BNL are con'mercially available relays and not Class 1E devices.

44 TASK 3 TEST DATA

In order to correlate the single frequuency input motion data with the multifrequency TRS at the
capacity levels, two specimens of HFA were tested with both single frequency sine dwell and multifrequency
motions. The multifrequency motion was adjusted such that the TRS plots maiched with the respective single
frequency input shape with an aim to achieving a constant multiplier. The relay specimens were tested for
ihe controlling electrical mode and vibration direction. The results are presented in Figures 4.107 and 4 108,
For the sine dwell input curve, the major capacity values (between S Hz and 30 Hz) wer + within the machine

I'he comparison in the horizontal direction could not be made for specimens 2 and 3 due to Limitations
of the shake table
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limit and thus were useful. Multifrequency capacity tests were repeated with several time histories and thus
| . I }
more than one capacity TRS were obtained

I'he ratios of the multifrequency TRS at a damping value of 5% to the sine dwe!l input motion
amplitude was computed at discrete frequencies and the resulting curves over the frequency of interest are
shown in Figure 4.109. Multiple plots for the same specimen correspond to the respective capacity TRS data
For most frequencies, the ratio is between 2 and 3 and the mean value is about 2.7 in the frequency range
of 5-30 Hz. This ratio is similar to what had been obtained from the earlier test series for another relay

model, i.e., SG relay H;

In summary, a multiplication factor between 2.5 and 3.0 seems 1o be reasonable to convert the single
frequency sine dwell capacity input data to the corresponding multifrequency capacity TRS at a damping

value of 5%
45 CONCLUSIONS

A large number of vibration test runs were conducted with various electrical and vibration parameters
in independent and integral circuit configur=dons. The data show a wide variation of results. However, for

many electrical parameters, it is difficult to establish any definite trend. A summary of the general
observations is presented in the next chapter
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Vibration Test Results
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Vibration Test Results

Figure 4.85 Switchgear Cabinet Test Specimen on Shake Table
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Figure 4.103 Comparison of Specimen Capacities - SC, Sine Dwell Amplitude, Front-to-Back Direction,
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Figure 4.104 Comparison of Specimen Capacities - SC, Sine Dwell Amplitude, Vertical Direction, Non-Operating
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Figure 4.105 Comparison of Specimen Capacities - SVF, Sine Dwell Amplitude, Front-to-Back Direction,
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Figure 4,106 Comparison of Snecimen Capacities - SVF, Sine Dwell Amplitude, Vertical Direction, Operating
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Vibration Test Results
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Vibration Test Results

Table 4.1 Source Relay Chatter Required for Load Device Trip

LOR Trip History

Source Relay Duration Required for LOP? Trip Mean Value Electrical Test
Since Initiation of Source Relay Data
Chatter (ms)
m
COY Chatter 6,7,7
6.5 ms 5 ms
IAC Chatter 7,7,6,5,7 (2 ms pulse)
IAV Chatter 6,6.6,7'7.
HEA Trip History
Source Relay Duration Required for HFA Trip Mean Value Electrical Test
Since Initiation of Source Relay Data
Chatter (ms)
m
CO9 Chatter 12,16,10,37%,11,11,15
1AC Chatter 11,9 152 ms 14 ms
IAV Chatter 15,26,10,10,11,13,15,10,17, (8 ms pulse)
12,21,10,26,27,11,21,30
SVF Chatter 38*

* Not included in calculating the mean value

SHK Trip History
Source Relay Duration Required for SHK Trip Mean Value Electrical Test
Since Initiation of Source Relay Data
Chatter (ms)

CO9 Chatter

36, 38
IAC Chatter 60*,32,35,35,43,36 33.8 ms 29.7 ms
IAV Chatter 32,32,32,34,32,33,33,31,33,31,31 L
SVF Chatter 61*

* Not included in calculating the mean value
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Vibration Test Results

Table 4.2 Influence of Monitoring Current

CO9, Single Frequency Sine Dwell Test

Monitoring Current 1 amp 150 mamps 25m amps
Input Motion 181¢g 208¢g 204 g
Maximum Chatter Duration 20 ms 5 ms 4 ms
Total Number of Chatter 2 2 ms 249 55 29

| Occurence of First Chatter Event 5.724 sec 4.159 sec 6503 sec

IAV, Single Frequency Sine Dwell Test

Monitoring Current 1 amp 150 mamps 25 mamps
Input Motion Level 142 g 163 g 1.63 g
Maximum Chatter Duration 467 ms 3ms 78 ms
Total number of Chatter = 2 ms 33§ 1 295
Occurrence of First Chatter Event 11.240 sec 35.708 sec 9.052 sec

IAC, Single Frequency Sine Dweli Test

Monitoring Current 1 amp 25 mamps
Input Motion 239g 209¢
Maximum Chatter 6 ms S ms
Duration

Total nuruber of Chatter 48 201

2 2 ms

Occurrence of First 16913 sec 7.191 sec
Chatter Event
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5.1

Summary and Conclusions
CHAPTER 5§
SUMMARY AND CONCLUSIONS
INTRODUCTION

A large number of electrical and vibration tests were performed 10 address the four basic issues listed

in Sections 1.3 and 1.4 of Chapter 1. The test procedures and the data are presented in Chapters 2, 3 and
4. Some specific observations are also made in presenting the data. A summary of the general observations
is presented in this sectic  The extent to which the data address the objectives is also discussed in this

chapter.

32

SUMMARY
The major observations from the electrical and vibration test data are as follows:

‘The duration of an electrical signal (i.c., pulse) required to cause a trip in a circuit breaker or lockout
relay is much less than the actual trip time of these devices. The required signal duration can be
estimated from trip times obtained at least at two different voltage levels. The larger the difference
in the voltage level is, the better is the estimate.

The minimum pulse duraions required to trip low and medium voltage circuit breakers are
comparable to those for most lockout relays, except the fast lockout relays.

The effect of alternating signals (i.e., "on” and "off" pulses) is more pronounced on self reset auxiliary
relays than circuit breakers or lockout relays.

In an integral circuit with a source relay, where the electrical signal is generated through the relay
contact, a lockout relay, or a low or medium voltage circuit breaker consistently requires the same
current duration for a change of state regardless of the source relay model.

The vibration capacity of a source relay in terms of an undesirable trip of a circuit breaker or lockout
relay could be less than that based on a 2-ms chatter criterion. A possible explanation is the inability
of the source relay contact to interrupt the current in a DC circuit and reliance on the trip device
itself to open the circuit.

A siguificant influence of electrical parameters, such as voltage in the trip coil or monitoring curreot
in the chatter detection circuit, on the vibration capacities of the source relays has been observed.
However, a definite trend could not be established. In other words, a combination of such
parameters can produce one result (e.g., high or low seismic capacity) for a particular relay whereas
another combination can produce a substantially different result for the same relay.

In a vibration test with increasiaz mouon at each test, once some amount of chatter (e.g., 2 ms or
less) is observed it is unpredictable what chatter duration will be observed at a slightly higher level.
This could be very large (e.g., 100 times) or just the same.

Relay chatter (and consequently tripping of a breaker or a lockout relay receiving signal from this

relay) occurring at a particular vibration level can absolutely disappear at a higher level and may not
recur even up to the shake table vibration limit.
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Summary and Conclusions

9. The vibration capacity of a relay model can vary from specimen to specimen. For most reiays the
variation is less than two-fold. However, for some other relays, the variation could be very large
(eg., S to 7 times). The deviation seems to stem from physical differences such as armature
engagement conditions and air gap in the magoetic circuit’.

10. The multiplying factor required to convert single frequency sine dwell capacity input motion 1o the
respective TRS at a damping value of 5% is in the range of 2.5 to 3.0 for two auxiliary relay models
tested in the current and the previous test programs.

53 COMPARISON WITH OBJECTIVES

The extent to which the data presented in this report and the observations made above address the
issues listed in Chapter 1 can be summarized as follows:

1. Relay chatter acceptance criteria

The test data adequately address the issue and indicate that a relay vibration capacity should best
be obtained by representing the appropriate circuit during testing. In the absence of that, the
ca- ity based on the conventional 2-ms chatter criterion is generally acceptable but could be
substantially higher than what would have been obtained in an integral circuit.

2. Relay chatter associated with breaker

The test program adequately addresses this issue. The trip time for a low or medium voltage circuit
breaker is much greater than 2 ms. However, this does not increase the vibration capacity of the
source relay providing DC signal to the breaker possibly due to inability of the source relay contacts
to interrupt the current. Most lockout relays can be used for vibration testing in an integrated circuit
test in lieu of the heavy low or medium voltage breakers since these lockout relays exhibit similar
tripping characteristics.

3 Capacity variation among specimens of the same model

This issue has been sufficiently addressed. The test data show variation up to 100% for most relays
and 700% for some others. Physical differences in relays (non-class 1E) seem to be the explanation.

4. Additional data for single frequency to multifrequency conversion factor

This issue has also been addressed to the desired extent, i.e., data for an additional relay. So far the
data support a multiplication factor of 25 - 3.0 for two relay models.

54 CONCLUSIONS

The major conclusion is that the relay vibration capacity can be significantly influenced by any of the
large number of electrical and vibration parameters that are used for testing. It is extremely difficult in an
integral circuit to distinguish and quantify the effect of each parameter especially since most phenomena are
influenced by more than one parameter and since the monitoring circuits are also affected by some of these
parameters. Any further focusing on these parameters will probably not provide any more reliable insights.

*All test specimens were non-class 1E relays. Such physical differences may not exist in class 1E relays.
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Summary and Coaclusions

‘iherefore, from a practical standpoint, it is believed that a reasonable confidence can be achieved if the
following recommendations are implemented in a relay test program:

Test multiple specimens. Three mayv be a reasonable balance as suggested by the IEEE Std. [4).
Test electrical conditions representing field applications.

Test i an integral circuit. Most lockout relavs can be used instead of low or medium voltage
breakers for this purpoce. In an independent test, do not take advantage of the fact that devices such
as low or medium voltage circuit breakers require a chatter duration much greater than 2 ms. A
capacity level based on the 2-ms chatter criterion can be unconservative even for a medium voltage
breaker.

Test with progressively higher vibratory motion, i.¢., all vibration levels (with a reasonable separation
between consecutive levels) below the capacity level should be covered since the performance of a
relay is not linear and it may chatter at a lower level. A successful test at only one level does not
necessarily demonstrate the vibration-withstanding capability of the relay at all lower levels.
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