NRC PDR

UNITED STATES
 NUCLEAR REGULATORY COMMISSION

WASHINGTON, D. C. 20555

OCT 31978

Docket Nos. 50-369 and 50-370

Mr. William 0. Parker, Jr.
Vice ${ }^{\text {nresident, Stean Production }}$
Duke Power Company
P. O. Box 2178

422 South Church Street
Charlotte, North Carolina 28242
Dear Mr. Parker:
SUBJECT: CRITERIA FOR PIPING MODELLING TECHNIQUE - STRUCTURAL OVERLAPPING (NC GUIRE NUCLEAR STATION, UNITS 1 \& 2)

We have completed our review of the methods which you use in modelling piping systems for static and dynamic system analysis for the Mc Guire Nuclear Station. We have concluded that this technique (structural overlapping) may be used in an acceptable fashion provided that the following considerations are satisfied:

1. Since the validity of the method is improved as the overlap region takes on the characteristics of a rigid section*, a section of a piping systen shall be defined as an overlap region if the following requirements are satisified:
a. The section contains a minimum of four (4) restraints in each of three perpendicular directions.
b. The restraints in the section are so spaced that the pipe span between any two restraints, taken as simply supported beams, have a fundamental natural frequency (bending and torsion) not less than 33 Hz .
c. In lieu of the criterion in 1 b , a dynamic analysis of the overlap region should be made with pinned boundaries extended beyond the overlap region either to the next actual support or to a span length equal to the largest span length within the region. The fundamental frequency determinea from this analysis should be greater than 33 Hz .
[^0]Mr. William 0. Parker, Jr.
2. If a subsystem natural frequency falls in close proximity to a response spectrum peak, this peak value should be applied in the stress evaluation.

Although the criteria used for Mc Guire is acceptable and may be continued to be applied on this plant; for all other Duke Power plants undergoing licensing review we shall require a commitment that whenever this technique is employed in the future the requirements listed above be adopted and documented in the appropriate safety analysis report.

Sincerely,

Robert Baer, Chief
Light Water Reactors Branch No. 2
Division of Project Management
cc: See next page

```
Nr. Willian O. Parker, Ur.
Vice President, Steam Production
Duke Power Company
P. 0. Box }217
422 South Church Street
Gnarlotte, North Caroliraa }2824
cc: Mr. W. L. Porter
    Duke Povier Company
    P. O. Box 2178
    422 South Church Screet
    Charlotte, North Carolina 28242
    Mr. R. S. Howard
    Power Systems Division
    West ingiouse Electric Corporation
    P. O. f.ox 355
    Pittsbargli, Pennsylvania 15230
    Mr. E. J. Keith
    EDS Nuclear Incorporated
    220 Montzonery Street
    San Francisco, Czlifornia 94104
    Mir. J. E. Houghtaling
    liJS Corporation
    2530 Con:tryside Bonlevard
    Clearwator, Florida 33j15
    Nr. Josse L. Riloy, President
    The Carcilna Environmental Study Group
    254 Herley Place
    Charlotte, florth. Carolina 28207
    J. Micisel Ricuarry, 111, Esq.
    Debevoice u Liberman
    700 Sivitham Butlding
    806 15th Strect, N. ...
    Washington, D. C. 20005
    Shelley Blum, Esc.
    418 Lav Butlding
    730 Eist. Trade Street
    Charlutte, Morth Carolina 20202
```

Mr. William O. Parker, Jr.
cc: Robert M. Lazo, Esq., Chairman Atomic Safety and Licensing Board U. S. Nuclear Regulatory Conmission Washington, D. C. 20555
Dr. Emeth A. Luebke Atomic Safety and Licensing Board U. S. Nuclear Rogulatory Conmission Washington, D. C. 20555
Dr. Cadet H. Hand, Jr., Director Bodega Niarine Lab of California P. 0. Box 247
Bodega Bay, California 94923

[^0]: *A section may be considered rigid when subjected to seismic excitation if its natural frequencies are greater than 33 Hz .

