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ABSTRACT

Recommcndations for the Heavy-Section Steel Technology Program's
investigation into the influence of crack depth on the fracture
toughness of a steel prototypic of those in a reactor pressure vessel
are inclue.d in this report. The motivation for this investigation lies
in the fact that probabilistic fracture mechanics evaluations show that

'

shallow flaws play a dominant role in the likelihood of vessel failure,
and shallow-flaw specimens have exhibited an elevated toughness compared
with conventional deep ..dtch f racture toughness specimens. Accordingly,
the actual margin of safety of vessels may be greater , nan that
predicted using existing deep-notch fracture-toughness resul**

The primary goal of the shallow-crack project is to investigate the
influence of crack depth on fracture toughness under conditions
prototypic of a reactor vessel. A limited data base of fracture

' toughness valuas will be assembled using a beam specimen of prototypic
reactor vessel material and with a depth of 100 mm (4 in.). This will
permit comparison of fracture-toughness data from deep-cracked and
shallow-crack specimens, and this will be done for several test
tempera' ares. Fracture-toughness data will be expressed in terms of the
st ress-intensi ty f actor and crack-t ip-opening di spl acement.

Results of this investigation are expected to improve the under-
standing of shallow-flaw be$.avior in pressure vessels, thereby providing
more realistic informatien for application to che pressurized-thermal
shock issues.

*
_ . . . . . . .
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' FOREWORD

s

The work reported here was 2rformed at Oak Ridge National Labora- I

- Lory under - the Heavy-Sec'; ion Steel Technology (HSST) Program, W. E.
Pennell, Program-Manager. The program is sponsored by the Of fice of -

)Nuclear - Regulatory Research of the U.S. . Nuclear Regulatory Commission '

(NRC). The technical monitor for the NRC is M. E. Mayfield.
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Strain Measure of Fracture Toughness of Steels, HSSTP-TR-3, Novem- -i

ber 1, 1969. ]
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.
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h
i
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REcolelENDATIONS FOR THE SHALIAf-CRACK PRACTURE 't00GHMESS j

TESTING TASK WITHIN THE HSST PROGRAM j
i

T. J. Theiss
,

l,
1. INTRODUCTION

4

5Conventionally, the fracture toughness of a material is determined
using specimens in which the crack depth is approximately one-half the :1

depth of the specimen (a/w = 0.5). This eliminates the. influence of the~

specimen- boundaries ' on the crack-tip region as . much as possible and '

iplane-strain value for the fracture toughness. Recent-provides a
attention. has been given to shallow-crack laboratory specimens in which -]

either the toughness near the surface is actually reduced, such as in '

certain weldments, or situations in which the structural application is I

known to possess shallow rather than deep cracks. In these cases, |

shal low-c rack specimens ~may yield more meaningful results than
conventional deep-notch - specimens. - Recent researcht,2 has shown'that

,

the fracture toughness of shallow-crack specimens can be significantly
'

higher than the toughness determined using conventional deep-notch'
specimens in materials whose stress-strain properties bound the
properties of reactor pressure vessel -(RPV) steel. Examination rt the
conditions governing the failure probability of an RPV shows that ;

'"
shallow, rather than deep,-flaws are of primary significance.3-5

The Heavy Section Steel Technology (HSST) Program-under contract to
the Nuclear - Regulatory Commission (NRC) is currently investigating the

f. material fracture toughness in the presence of shallow cracks-(typically.
L

referred to as the shallow-crack fracture toughness) under conditions as
! prototypic as practicable of a pressurized-water reactor (PWR) vessel . ,

This will involve the devel'opment of a limited data base of fracture
toughness results for both deep- and shallow-crack specimens at various |

temperatures. The testing is to be performed under conditions as close
as - possible to those outlined in the -applicable _ American Society of

;

Testing'and Materials (ASTM) standards.6-a The aim of this document.isl-

on the wiection of parameters that < are 3to_ provide recommendations
consistent with _' t he above guidelines for- the shallow-flaw test

program.
Specific topics addressed in this report are the (1) motivatica for

investigating the fracture toughness of shallow cracks, (2) specimen
geometry to be tested and the conditions under which the testing should
occur, (3) requirements for the testing facility and data acquisition
system, (4) matrix of tests to be performed, and (5) anticipated results
and benefits of.the program.
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2. MOTIVATION

Interest in the fracture toughness 1 of shallow cracks under RPV con-
ditions centers on two main points. First, recent investigt.ticns into
the influence of crack depth on fracture toughness in non-nuclear appli-
cations have shown a significant increase in the toughness of steels
containing shallow rather than deep cracks.1,2 The phenomenon of ele-

-

vated fracture toughness caused by shallow cracks appears to be because-

of the relaxation' of crack-tip constraint based on the proximity of a.
free surface. The-behavior of. shallow cracks in reactor grade material
(A533) has yet to be investigated; however, the stress-strain behavior
of A533 is bounded, by the steels that the University of Kansas used in-
shall ow-c rack - research.1,2 Therefore, it is anticipated that shallow-
crack A533 specimens will- exhibit elevated fracture toughness when
compared with~ conventional deep-crack specimens.

Probabilistic fracture mechanics evaluations of oper'ating nuclear
reactor vessels in the Integrated Pressurized Thermal Shock (IPTS)
studies have sho'n that shallow rather than deep cracks contribute tow

the calculated probability of vessel failure.3-5 These results are due
in part to the flaw distribution used in a probabilistic fracture
mechanics analysis that assumes more shallow than . deep flaws in a
reactor vessel. Other major factors include the negative, radiation-
damage gradient and the positive thermal gradient in the wall of the

pressurized-thermal-shock (PTS) scenario. A fracturevessel - during a
. toughness increase resulting f rom shallow cracks similar to those shown
in other applications 1,2 would have a substantial impact on the
probabilistic f racture evaluation of the -vessels governed by Regulatory
Guide 1.154.9

.is

2.1 PREVIOUS'lWVESTICATIONS

Research of shallow-crack testing has taken place at the University
of Kansas and at the Edison Welding Institute (EWI) in the United States
as well as at The Welding Institute (TWI) in the United Kingdom.
Research at the University of Kansas has involved two' very dif ferent
steels, A36 and A517, both showing an increase in fracture toughness for
shallow cracks.i,2 The EWI is also using A36 steel to. investigate the

televation in fracture toughness resulting from shallow-crack depths with
work directed toward modif yir.3 exiathib standards on f racture toughness
testing to include consideration of shallc.'-flaws.10-14

The:HSST' Program is using the experience gained by both the Univer-
sity of Kansas and EWI in the development of . the HSST ' shallow-crack
project. Dr. S. T. Rol fe, - who directed the investigations into the
fracture toughness of shallow cracks at the University of Kansas, is a
consultant to the' HSST shallow-flaw testing program. In addition, the.

NRC:is a corporate sponsor of the research at EWI and can benefit from
the experience and data of that program.

The shallow-crack fracture toughness investigations at the Univer-
sity of Kansas are summarized to illustrate the basis for interest in
shallow-crack testing under RPV conditions. ,2,15 TF 2 specimens used in
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,

the shallow-crack work at the University of Kansas were fabricated from-
i . A36 and A517 steel, using the single-edge-notch - bending (SENB).' con-

figuration, , and were tested in three point bending. Both square - and ,

L = rectangularj cross sections - were tested "d ng specimens of . three dif-
ferent thicknesses- B (31.8, ; 25.4, and:12.7 mm)., Four= depths' W (12.7,

' 25.4,-- 31.8,- and . 63.5: mm) were used. The specimen span S was equal = to -
R 4W. Figure-1 illustrates the s pec i men s -' u s ed . -The source plates used
l- for the ' specimens were in the as-rolled condition, and the specimens

were cut such that the tests were conducted in the L-T orientation. The
source- plates exhibited no' significant microstructural differences

,

between the surface and centerline positions.
'

specimen caused byAn increase in the fracture .oughness of a
shallow flaws was found to take place at temperatures in the transition
region of the crack-tip-opening-displacement (CTOD)' temperature transi- ,

tion curve (Fig. 2). Testing at temperatures within the lower shelf of
the toughness curve indicted that for shallow cracks no increase in
f racture -toughness was present. In other words, elevated fracture
toughness caused by shallow cracks _ takes place-at temperatures at which
the failure mode is primarily brittle, but is preceded by small amounts~

| of ductile tearing. The plastic zone at the crack tip for.the shallow ,

!
|: flaws is quite large because of the high stresses required to initiate

theLshallow flaw. Thus the use of elastic plastic fracture mechanics is ;

required.'
4

,
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! SPECIMEN SIZES (THICKNESS, B X DEPTH, W)
s

| 12.7 mm (0.5 in.) X 12.7 mm (0.5 in.)
|. 25.4 mm (1.0 in.) X 25.4 mm (1.0 in.)
! 31.8 mm - (1.25 in.) X 31.8 mm (1.25 in.)
L 12.7 mm (0.5 in.) X 25.4 mm (1.0 in.)

31.8 mm (1.25 in.) X 63.5 mm (2.5 in.)

Fig. 1. Beam specimens used for shallow-crack research at the,

L University of Kansas.
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Finite-element - analyses indicated that the cause of. the elevated
toughness is : geometry dependent rather than- a material propertvl that
is, the crack-tip constraint of a: deep crack is different f rom- the-
constraint- of a' shallow crack.- The plastic zone around the crack tip -
was found to be distinctly dif ferent for flaws having an a/w ratio ofJ

0.15~ (a = 4.8 mm) or less, as opposed to deep flaws. For the shallow |
flaws, the plastic zone surrounding the crack tip interacted with the-

specimen surface from which the crack extends well before the formation
of a - plastic hinge.- For deep cracks, the opposite was truet a plastic
hinge was formed before the pl astic zone interacted with the crecked-
f ace of the specimen. Figure 3 shows shallow- and deep-cracked speci-
mens and the developing plastic zones for comparison. The distinction
between sha' low- and deep-crack behavior depends on the material

-involved but generally occurs at a/w ratios between 0.15 and
0.20.16-22 The deepest. absolute crack depth, a, that has experimentally
shown a shallow-crack f racture toughness increase is 10 r:m (0.39 in.).22 q

The results of the shallow-crack research at the University of i
N san show that the fracture toughness increase for shallow cracks com-
pn. h conventional' deep-cracked fracture specimens is significanti

in ' .ansition region. Figures 4 and 5 show the elevated toughness -
o f t...e shallow-crack specimens in terms of CTOD. A36 material is a low-
strength, high-strain-hardening material, while A517 is a high-strength,
low-strain-hardening material. For A36 material, the critical' CTOD.for
shallow-crack specimens was -2.5 times the CTOD for deep-crack
specimens 3,15 in the transition region. The A517 specimens showed au

CANbOWO943544 ETO

.
- :f

'

> r m t- -

3.m r 4

k ;\
'

qfi|CRAG '

qTIP |
.

\

s. , 40 .

.

aw = 0.50 aw = 0.20 aw = 0.15
i

s - li!h,iji '''
- - -

- YlELDED REC 10NS AT 4 is
A e.c' . '

E CTOD = 0.025 mm 7#
(1.0 mils) ;1

P"1 CTOD = 0.053 mm j

(2.1 mils)
' '

A CTOD = 0.109 mm i?
(4.3 mits) j

W = 31.8 mm (1.25 in.) aw = 0.10 aw = 0.05

Fig. 3. Von Mises stress distributions for 2-D plane-strain A36
steel specimens.
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Fig. 4. CTOD vs temperature for A36 specimens with a/w ratios of
0.15 and 0.50.
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even more pronounced effect with CTOD for the shallow specimens as high
as 4 times that of the deep-cracked specimens.2 The normalized crack
depth, a/w, for the shallow-crack specimens fi am A36 and A517 .e.aterial
was 0 15. The absolute crack depths, a, for which the shallow-crack
effect was observed were 4.8 mm (0.19 in.) fer the A36 specimens and
3.8 mm (0.15 in.) for the A517 specimens. The stress-intensity factor

K is related to the square root of the CTOD, which means that the A36
sbilow-crack specimens exhibited an -60% increase in K3; in the A517
specimens, K fr shallow cracks would be twice that ok deep cracks.

JcThe temperature range in which the shallow-crack elevated toughness took
place was roughly within the transition range for each steel. The
temperature at which tearing took place was ~20*C (36*F) lower in the
shallow : rack specimens than in the deep-crack specimens for both
steels.

One of the primary goals of the shallow-crack research at EW1 is
the inclusion of shallow-crack testing in the various American and
British standards on fracture toughness t e s t i ng .10- l '' The testing

program at EWI therefore differs somewhat from that at the University of
Kansas. The material being used for the shallow-crack tests at EW1 is
A36, but several very different specimen configurations are being used,
including SENB specimens, single-edge-notch tension (SENT) specimens,
and a single-edge-notch arc-bending (SENAB) specimen. The SENAB speci-
mens are oriented in the L-S direction, using multiple geometries (B =
B, B = 28, B- 3B) in which B = 25 mm. Because the research at EW1 is
in progress, results are preliminary, but they also show an increase in
the fracture toughness measured for a specimen when it is tested with a
shallow rather than deep crack.

2.2 PROBABILISTIC FRACTURE MECilANICS EVALUATIONS

To understand the significance that elevated 'racture toughness of
shallow flaws would have with respect to the safety of PWR vessels,
recent I?TS studies need to be considered.3-5 The IPTS studies evalu-
ated the g robability of vessel failure (through-the-wall crack) caused
by PTS tot three operating nuclear facilities. Many probabilistic
fracture-mechanics calculations were performed for each vessel by
randomly varying parameters such as fracture toughness (K E

ic' la'

RTNDT ), material chemistry (percentage of copper and nickel), and
o

radiation damage (fluence, ARTNDT) fr 8Pecified thermal and pressure
transients. The probability of failure per event was then defined as
the number of failures divided by the total number of v!;ulations. In

this way, conditions that have a relatively strong influence on the
overall probability of vessel failure are determined and evaluated.
Likewise, a small number of pressure and thermal transients showing the
greatest likelihood of resulting in vessel failure (i.e., dominant
transients) can be identified and examined further.

The region of concern in a reactor vessel with respect to crack
initiation and propagation during PTS loading is the beltline region
(the area of greatest radiation damage). Within the beltline region,

three subregions are considered: axial welds, circumferential welds,

.. .. .. .
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and plate segments. - 'In most vessels, welds are more susceptible to :
radietion damage than' plate segment s. However, plate segments occupy a

,

much larger area than welds. Thus, axial.. welds and plate segments both
have a . strong -influence on the likelihood of failure. (The. above
discussion applies only' to vassel8 fabricated using plates- rather than
ring forgings' beer.use ring-forged vessels have no axial welds. Plate
vessels constitute ~70% of the PWR vessels in the United States.) |

Flaw. depths which were <20% of the wall thicknes; of the vessel
.were assumed to be two dimensional (2 D) (i.e., infinitely long). . This
assumption ' was made because short, shallow flaws ' tend to grow on the
surface to become long,-shallow cracks (in the absence of cladding)23 -
and because long, shallow flaws are essentially 2 D.

The majority of flaws that initiated during the various PTS events-
simulated in the IPTS studies were <l3 mm (0.5 in.) deep as illustrated

-

in Figs. 6-8. These results are due in part to the flaw distribution
used in a probabilistic fracture mechanics analysis that . assumes more - !

shallow than deep flaws in a reactor vessel.. Other major factors
include the negative radiation damage gradient and the positive thermal '

gradient during a ~ PTS scenario in the wall of the vessel. Thus, the
shallow flaws in these vessels contribute more tc the likelihood of r

vessel failure than do deep flaws. A histogram showing the percentage
.
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of cracks that. resulted in c initiation for a dominant' transient in the j
Calvert - C11'f s IPTS study ~is shown in Fig. 6. Similar histograms.for |'the Oconee i and H. B. Robinson studies are shown in Figs. - 7 'and 8,
respectively. -While these~ histograms are not all-inclusive, they
clearly indicate . that for the dominant transients L shown, flaws <13 mm-
(0.5 in.) deepj have a significant impact on the probability of vessel-~

failure.= -

Examin' tion of the results of the -IPTS studies 3-5 shows that-~95%a

of - the initial initiations for all three plants toot place within the

relative temperat.sre (T - RTNDT) range from -50 to 50*C (-58 to-122*F) :
assuming 32 effective full power years (EPPYs). This trend is illus-
trated in Fig. 9.
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Fig. 9. Histogram _ of percentage' of total initiations' vs relative
temperature at initiation for Calvert Cliffs Unit 1.

2.3 BENEFITS
<

.

To -illustrate the potential benefits ass _ociated with an elevated-
t'oughness of shallow cracks, the conditions of potential flaws in a
reactor vessel need to be summarized.- The material of ' construction of
the' majority of plate-formed PWR vessels in this country is A533 grade B
class'I steel. A set of Charpy curves for unirradiated A533 mate' rial

(
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taken -- f rom- HSST Plate 13A in thel T-L orientation is shown in Fig.L10. !
The transition region.of this material in the T-L direction is roughly '

betweenc-100 and 20*C (-150 and 68'F). Cleavage initiation values were
,

recorded at temperatures as high as 24*C.2%, A. toughness curve for HSST
Plate 13A is shown in Fig. 11. The nil-ductility reference temperature ;y

,

,
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- - for this particular plate is -23*P (-10*F).2% .The wall thicknesscs:in a
= PWR vessel : range typically from 203 to 280 mm (8 to 11 in ) thick.26..

Axially oriented flaws in C vessel are sitrated in the L-S direction
using standard ASTM conventions (pig, 12),

. The ' substantial benefits that could be realised with- an elevated
toughness caused by shallow flaws in a reactor vessel are obvious. when-
che research at : the University of Kansas,1,2 the IPTS studies,3-5 and
the conditions in an RPV are considered jointly. Significant increar,es - k

(between 60 and' 100%) in K caused by shallow cracks were- found forJc
both A517 and A36 material.- A36 steel is a low-strength, high-strain-
hardening material, while A517 is a high-strength, low-strain-hardening _
material. The strength and strain hardening of A533-is-between that of.
A36 and A517 (Fig. 13).2,24 Therefore, it is anticipated that a-sig-~
nificant increase'in the tour,hness of shallow flaws in A533 takes place.
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Fig. 13. Comparison of stress-strain curves for A36, A517, and
A533 steels.

I PTf, studies 3-5 indicate that a substantial portion of all the flaws
that are predicted to initiate during the dominant transients for the
three plants considered were 13 mm (0.5 in.) deep or less. Specimens !

with crack depths about 5 mm (0.2 in.) deep have exhibited shallow-crack
behavior in A36 and A517 steel .1,2 The deepest crack with an elevated
tbughness due to a shallow-crack effect foend in the literature is
-10 mm (0.4 in).22 It is therefore anticipated that a large portion of
the flaws of interest in an RPV could exhibit a shallow-flaw ef fect. i

As discussed previously, the temperature range of interest T-
RT in an RPV is roughly between -50 and 50*C (-58 and 122*F).NDT
Assuming'that RT for the T-L and' L-S orientations is similar (-23*C),NDT
the temperature range applicable to vessels- is -73 to 27*C (-100 - to
80*F) using unirradiated A533 material. Thus the temperatures of
interest in an RPV are largely within the range of temperatures at which' ,

an elevated toughness = as a result of shallow cracka is anticipated.
-

Furthermore, the-toughness vs temperature function assumed in'the proba-
bilistic evaluations was found to strongly influence vessel failure.

-This means that the toughness for a large portion of the cracks that
were predicted to initiate could be significantly higher than considered
in the IPTS studies. Thus the understanding of.the behavior of shallow
flaws in a reactor will lead to a better assessment of the risk ofvessel' f ailure during- a PTS event. It is anticipated that the HSST
shallow-crack program will show suf ficient conservatism in the present

-treatment of shallow flaws to -allow modification of Regulatory Guide
1.154,9 which currently dictates the content and format of PTS analysis.

._- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -
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3. SPECIMEN DEFINITION

iBecause the, goal' of the HSST shallow-crack program is to investi-
gate the fracture toughness of shallow cracks in flawed reactor vessels,
the test specimen for this project must be as prototypic as practicable
of RPV conditions. Furthermore, to isolate and quantify the influence .

of crack depth on the toughness of a specimen, applicable ASTM standards ,

should be followed as closely as possible. The national standards .!
!considered in-the HSST shallow-crack effort include ASTM E399, Standard

Test Method for Plane-Strain Fracture. Toughness of Metallic Materialsis
ASTM E813, Standard Test Method for J A Measure of Fracture

ASTM E1290, Standard Test Ne,thod for Crack-Tip Opening *

Toughnessl 7 and
Displacement (CTOD) Fracture Toughness Measurement.s

3.1. CEONETRY

t

!The specimen configuration chosen for testing shallow cracks in the '
HSST shallow-crack project is the SENB specimen with a straight-through
crack (as opposed to surface crack). The bend specimen better simulates
the varying stress field in a reactor wall under PTS conditions. In

addition, shallow flaws are much better suited to investigate in a~ bend' *

specimen then in a compact tension speciment thus, the majority' of
previous shallow-crack work has utilized SENB specimens.l 2,10 The
straight-through notch simulates the infinitely long, 2-D crack. To _1

maintain consistency with ASTM standards, the beams will be tested in
three point bending.6-e

To better simulate the conditions of a shallow flaw'in the wall of
a reactor vessel, the specimen depth W and thickness B should be large
enough to simulate the stress state in a vessel wall. PWR vessel walls
are nominally 203 to 280 mm thick (8 to 11 in.). ~ Beams near the size of
vessel walls are much too large for multiple specimen testing and are
not necessary to meet the program goals. A 100-mm-deep (4-in.) beam-has
been selected for' use in the HSST shallow-crack project (see Fig. 14).
This size is large enough to accurately simulate.the-stress state in a - C

flawed vessel wall but small enough that' existing facilities can be used
-for testing. ASTM standards 6-8 allow beams of either rectangular-(W =
2B) or square (W = B) cross sections to be used' (i.e., 50 by 100 mm or
100 by 100 mm). For the HSST shallow-crack . program, rectangular beams
(50 by 100 mm) will be used for the majority of tests. The rectangular
specimen is of suf ficient size to give valid K results with a - deepyc ;

crack at lower shelf temperatures. The rectangular beams are easier to y

handle than the' larger square beams. A limited number of square beams
will be tested for comparing the two beam sizes.

The beam span S for the rectangular specimen.will be equal to 4W,
as defined'in the ASTM standards;6-s however, to adequately test a beam
with a square cross section (100 by 100 mm) the span of the beam S
between the supports may need to be extended beyond the span of 4W. An

extended span of 6W, or 610 mm (24 in.) is currently being considered to
produce sufficient bending within the beam to ensure failure within the

'l

*
.
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Fig. 14. IISST shallow-crack specimen.
.

capacity of the testing machine. Final beam design and' equations '

relating the toughness of the specimen to the recorded data can ; be
determined for the extended beam with the same accuracy as those used ,

!

L for the standard span beam from finite-element analysis. This deviation
from the standards should not negatively impact the test procedures or
outcome of the tests..

if

| +

3.2 METALLURCY

!
The flaws of interest in the ilSST shallow-crack study are axially

oriented cracks in the weld and plate material. Flaws are generally
more likely to exist in weld materiali however, plate' material must also,

' '

.be considered because of the larger area of plate. and the increased
radiation damage in higher copper plate sections. The shallow-crack

N- fracture-toughness elevation appears to be dependent on the geometry of
p the specimen (i.e., differences in crack-tip constraint)l . 2 and not ons
'

the metallurgy of the cracked material . For those reasons, specimens-C for the llSST shallow-crack testing are to be cut from the surface of'
t.
'

IfSST Plate 138, which is A533 grade B class 1 steel plate material. The
specimens are to be cut from the surface of the source plate to maintain
consi stency wi th- an RPV plate. Previous characterization of IISST Plate

!
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i13A reveals that there is very little microstructural difference between
t he - . surf ace and center portions of the plate. h Therefore, it is-

' anticipated that an'y f racture toughness dif ferences quantified in the 1-

shallow-crack tests = will be due to the depth of the crgk and not
because of any metallurgical surface effects of the plate material.

To maintain consistency with the conditions-of an RPV, specimens
for this p oject will' be cut with the cracks oriented in the L-S orien- ,

tation (Fig. 11). This orientation was chosen .- over weaker material
orientations because of the dominance of axially oriented flaws in |
reactor vessels in the IPTS studies.3-5 The ilSST shallow-crack program
is interested in the initiation toughness of shallow, infinitely long
flaws through the thickness of the wall of a reactor vessel. The
influence of cladding vill not be considered for the ilSST shallow-crack
project.

Figure 14 is a schematic of the specimen location within the source |

plate and the llSST shallow-crack specimen geometry.

3.3 SPECIMEN PREPARATION

Hul t i pl e specimens will be tested as a part of the llSST shallow- ,

crack project, and all will be f abricated from existing A533 material. i

The fabrication process includes cutting blank specimens from the center.-

portion of the plate, surf ace machining the specimens to the require-
ments of' ASTM E399,6 and inserting the starter notch from which a
fatigue crack ~ vill be grown. Side grooving of the specimens is not
anticipated.

Once the specimens have been fabricated, they will be instrumented '

so that they.can be fatigued until a suitable crack is grown from the
starter' notch. The fatigue precracking will take place in the same
testing machine as the fracture toughness tests. The fatigue crack

on the surface of the specimen.growth 'wil'1, be . detected. visually
Fatigue precracking will take = place at room temperature and involve
~100,000 cycles'for.each specimen and is discussed further in Sect. 6.1.

Af ter the appropriate crack depth in a specimen has been reached,
the conditions for that particular test will be set. The specimen will
be ' cooled to the appropriate test temperature, . and the. instrumentation
will be checked. Once the test conditions are met, load will be applied
to the specimen at a specified rate until the test is concluded. Tests-
at lower temperatures are expected . to result in crack initiation and
catastrophic, failure of the specimen. Tests at higher temperatures that
resul t . - in more ductility may require the use of the single-specimen

. elastic compliance technique (ASTM Ell 52)2s for determining the fracture
toughness.
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'4. TEST f/CIi.ITY REQU1REMENTS

;

To successfully complete the HSST shallow-crack project, several
.

requirements. hat i been established for the test facilities. The primary
concern of the test facility is adequate load capacity for -- testing -
shallow-cracked beams. Due to the large amounts of scatter in the - ;

material toughness of the specimens in this project, limit-load calcula- '

tions were used to predict the load requirements for the various beam
specimens considered for use-in the project. Limit-load calculations |are simple, 2-D analyses based on the development of a fully plastic

,

zone across the net cross sectional area, ignoring the influence of the ~j
crack tip in the beam. Therefore, the limit load of the net section of .

a beam should provide a conservative estimate of the load requirements- I

of a cracked-beam test. Details of the limit-load calculations along j
.with computations for the- 100-mm (4-in.) beams are given in the |Appendix. Results of ' the calculations indicated that for the . square

]100-mm ' (4-in. ) beam with a span of 610 mm (24 in.), a maximum load no :

greater than 1 HN -(220 kip) would be required. The HSST Program has- i
available for its use on the shallow-crack - project either 'a n Instron 1

2,4-MN (550-kip) testing machine or a 1-MN (220-kip) HTS test machine. |
The beam fixture for the shallow-crack tests must also meet special~ q

requirements. The guidelines concerning roller size, material hardness, i

etc., detailed in the ASTH' standards, will be followed for the beam fix-
1

ture.6-8 In addition, the span of the fixture should be adjustable so J
K that the shallow-crack project can retain a degree:of flexibility. .The l

beam fixture should be designed so that the interfaces between, the >

specimen and ' the required instrumentation and cooling system pose' no
difficulties.

A cooling system that will cool, record, and control.the specimen
test temperature is required. An eavironmental chamber will be con-
structed surrounding the cracked area of the beam and cooled with nitro- d

gen vapor, or the specimen' will be immersed in 'a liquid bath. The +

temperature will be controlled and recorded -by using ' thermocouples
attached to the - specimen and connected with a data acquisitioni and
control system. .The temperature accurac'y will be within or better than

1- the requirements of ASTM E399.6
The shallow-crack tests at lower temperatures will likely culminate

'in catastrophic failure of the specimen. Therefore, the test facility
.

must provide = adequate protection of test personnel and equipment. |
Restraint devices attached to each end of the specimen will be de'igned-s
to capture the specimen ends upon failure. In ' addition, a shield placed
around the' test area of the testing machine will protect personnel from

- small object s that might be thrown during a test. The test fecility
will also be designed to protect the instrumentation and other equipment
during a test. 4

'In addition to loading the specimens to the point of crack initia-
tion, the test facility will also be used to fatigue precrack the speci-
mens. Fatigue precracking is the most expedient method of growing an
initial notch into a sharpened crack suitable for testing according to

,

ASTM E399.6 As a result, the test f acility must be capable of with-
standing large numbers of load cycles (-100,000 cycles / specimen).

- _ --_ . .,.. . -_ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - . . _
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5. DATA ACQUIS4' TION REQUIREMENTS g

y?

'The HSST shallow-flaw project requires that the fracture toughness
of ' the specimens be determined in terms of J-integral and CTOD. Frac-
ture tests in-the' transition region usuall) dictate that both elastic

- and elastic plastic fracture toughness expressions be utilized. For i

nuclear applications, toughness is conventiontilly expressed in terms of i

and J (elastic plastic). Quite _ of ten, calcu- i
. K .(elastic)
la$ ions performe$ or Jy Ic

are in terms of J , then converted and expressed in
e ''

/T T', where E' 'i e theterms of K,je according to the expression KJc 4=

plane-strain elastic modulus. CTOD, however, can be. calculated for'both
elastic and elastic-plastic cases. Previous shallow-crack work at both
the University of- Kansasi,2 and EWIl0-l4 has umen.in terms of CTOD.f

Previous fracture mechanics cleavage evaluations by the- HSST " p;; ram
have been in terms of K or K These toughness express.ons are usedyc je.
because- they can be applied to a flawed structure where CTOD cannot. ;

Toughness measurements in terms of CTOD and the J-integral will provide t

comparisons with previous shallow-crack work and data that are appli-
cable to flawed reactor pressure vessels.

To . calculate the - f racture toughness, the following data must be' i

collected and recorded. The load as measured.by the load cell is neces-
sary for all ' toughness ' measurements.6-8 Crack-mouth-opening displace- |

'

ment ' (CMOD) is needed for both- K and CTOD measurements 6,8 and isJc
usually recorded using a clip gage located at the mouth of the starter .
notch. CHOD can also be used to monitor crack growth iuting the fatigue- '

precracking phase of.the specimen tests. The vert.ic a". load-line' dis- >

placement ( LLD) . is used for J-integral? determination and typically
measured -.with a linear variable differential transformer (LVDT) (see

)
Fig. 15). The plastic rotation,fac'.or defined as the point of rotation
aheadc of'' the crack front for a cracked specimen is used to determine

- CTOD from CMOD. The rotation factor has been determined both analyti-
- cally with 3-D finite-element analysist,2 and experimentally using a
dual clip-gage approach 27-30 or the n-factor approach 15- for shallow- ,

crack beams. It is currently anticipated that the HSST shallow-crack
i

ORNL DWG 90-3620 ETD
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Fig. 15. Measurement requirements during testing.
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program' will determine the. rotation f actor- analytically by- finite- "

element analysis and experimentally using the a-factor approach.
Care must be taken in placement of the clip gage (s)- at. the. crack *

mouth to prevent the placement of the clip gage (s) f rom influencing the .

recorded ' data. For shallow cracks the region near the crack tip for - '

location of any L instrumentation is very small, requiring that special
clip gage attachment techniques be developed. Section 6.1 contains more
information concerning clip gage attachment.

,

To adequately size the required instrumentation, elastic plastic '

calculations have been performed on both deeply cracked- and shallow- .

crack beams to estimate the beam response as a function cf applied i
load. Details ~ of these calculat ioris are given ~ in the Appendix. The.

.

estimates were performed for square and - rectangular specimens -with
normalized c' rack depths a/w of 0.50 and 0.125. The CMOD at the specimen
limit load was found to vary between -0.9 mm.(35 mils) for the shallow-

,

cracked, rectangular case and 2. 2 mm (86 mils) for the deep-cracked,
square specimen. The LLD'at the limit load increases as the crack depth
decreases and varies between 5.6 and 1.9 mm (220 and 76 mils) for the
shallow,' square and deep-crack rectangular specimen,;respectively.

Accuracy and sensitivity requirements for.the data acquisition sys-
tem (including . instrumentation) are given in the various ASTM stan-

,

dards.6-8 -These requirements will be met or exceeded. The data acqui-
sition system will record and reduce data.during the fatigue precracking
procedures . as well as during the fracture toughness evaluation tests.
This data acquisition system can be assembled primarily from existing
flSST equipment.

.
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6. PROJECT EVOLUTION

The evolution of the HSST shall ow-c ra ck program is described in
thisz chapter.. The program is designed to investigate shallow-crack
specimens that .are as prototypic as practicable to an RPV. To p'roperly
apply the experimental results to pressure vessels, the HSS.T shallow-
crack project needs to have an analytical understanding of shallow-flaw-
behavior in test: specimens and actual reactor vessels. The joint

analytical and experimental comparisnns will provide insight into

- shallow-crack behavior not available by either an analytical or experi-
mental study alone.

As 'with most experimental research programs, certain testing tech- |
1

niques must be developed and verified in this project to investigate the
influence of shallow cracks in reactor vessels. Ilowever, in addition to
the development of shallow-crack testing technology under conditions
pratotypic of an RPV, the HSST Program anticipates producing a' data base
of shallow-crack fracture toughness values. To meet these objectives,
the HSST shallow-crack project is divided into two experimental phasest
a - development phase and a production phase. During the development
phase ' the experimental - techniques necessary for shallow-crack testing

,

will be established and six verification tests conducted. Once the
- testing . capabilities - are confirmed, the toughness of shallow cracks j

'

under conditions simulating an RPV will be compared with the toughness
of ' deep-cracked epecimens as a part of the production phase of the
project.

i
6.1 ANA1.YTICAL SUPPORT

Currently three separate analytical mvestigations are planned as,a
part of the HSST shallow-crack program. Thenc investigations are neces- .

sary to plan the experimental test matrix (Sect. 6.3) -and apply the -}

experimental' data to RPVs. Initially, the crack depths of interest in i

the , program need to be investigated analytically. Specifically, h'ow ,

shallow cracks will scale between different-sized specimens is uncertain Li

at. Lhis time. The HSST shallow-crack test specimen will be analyzed-
with different crack depths to distinguish the cracks depths that
exhibit shallow-crack behavior and the toughness - elevation that is !

anticipated at each crack depth. These analyses will also provide
pretest information for proper instrumentation, etc..1 The second investigation is to determine the influence of specimen :

thickness on: thet fracture toughness of the HSST specimens. Both rec-

tangular- (50 by 100 mm) and square (100 by 100 mm) specimens will be ;

tested, although . the majority of the tests will be conducted with the i

rectangular specimens. Both specimens need to be analyzed to compare |

the specimen response' with a shallow-cracked reactor vessel. In addi-
tion, the specimen analyses at the University of Kansas were used to ;

'

determine the plastic rotation f actor used in the interpretation of the
' fracture toughness data.1,2 This same approach is planned for the HSST
shallow-crack specimens (Chap. 5).

|

-- i
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The third ana' 3 cal' investigation will determine how the data col-
lected' in the list u low-crack program should be applied to a reactor .jvessel. Specific 6: .y, the influence of the difference between the
reactor; wall *hickness.and the test specimen width on the shallow-crack i
behavior needs to be investigated. The specimen width of 100 mm (4 in.) 4

was1 chosen - because it is believed that a 100-m beam'is large enough to [isolate the tip of a relatively deep crack from the edges of the speci- '

men allowing direct compari son of a shallow crack between the . test
-specimen and the wall of an RPV. In other words, if cracks 10 mm :

3

(0.4 in.) or less in depth show an elevated toughness in tht. test speel-
men, then cracks 10 mm deep or less are expected to show a similar- !

toughness elevation for a reactor vessel wall. However, this is.an
important consideration and needs investigation and confirmation.

6.2 DEVEI4PMENT PHASE
i

The development phase of th. HSST shallow-crack program has the
objective of developing the necessary experimental - techniques for the
testing of shallow-crack A533 specimens and subsequently-to verify these
testing capabill.ies with six preliminary or '.'s ha ked own" tests. The
development phase of the project is to take place concurrently with the o

analytical = studies described previously. Currently, the two identified
]topics that need investigation before any shallow-crack testing can take I

place are (1) fatigue precracking of the beam and (2) application of the
instrumontation to the speri::... Fatigue precracking is necessary to-
sharpen the initial notch in a fracture toughness specimen. The ASTM

t . . standards (E399,6.E813,7 E1290s) contain specific - requirements concern-
| Ing the cyclic load levels that can be used to fatigue the notch and the '

3
"

shape of the sharpened flaw. These requirements are necessary to-ensure
that the fatigue precrack is representative of flaws found in engineer-
ing structures and that the specimen produces fracture toughness values
comparable with other fracture testing.

[ Fatigue precracking a shallow crack is more difficult than-for a
| . conventional specimen. Obviously, the starter notch from which .the
E crack emanates must be much smaller for a shallow-flaw specimen. The 1L load level must not exceed certain . limits during the final stages of- '

| fatigue crack growth, increasing the number of load cycles required.'

Furthermore, because the beams are 50 to 100 mm thick (2 to 4 in.), the
it ASTM requiremer ts -a concerning the profile of the crack f ront' (i .e. , I

s

I - straightness) are more difficult to meet. In fact, the chevroned notch
) technique which is used to produce a straight fatigue precrack, cannotJ 'be used for shallow flaws because the depth of the chevron (-30 mm) is

greater than the depth of the shallow crack.
L

.The mos t- promising method of fatigue precracking a straight crack
' involves the use of electron discharge machining (EDM) for notching the
specimen. llsing EDM techniques, very small notches (~0.2 mm) of - any
depth can be inserted. Because the notch root radius is very small, the
notch will be cut close to the desired final crack depth, allowing the
' fat.igue precrack to be grown in fewer cycles and resulting in a straight i

; crack front. The development beams will be examined following testing

1.
'

p:

i
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toL observe the crack profile and any edge- ef fects prevalent during
' fatigue precracking.

The second task requiring developmental work before any
shallow-crack- testing is the attachment of the instrumentation to the
specimen. In particular, as mentioned in Chap. 3, the attachment of the

' clip gage (s). used to measure CMOD is.more dif ficult with a shallow-crack
specimen than with a conventional fracture specimen. In any fracture

specimen, the application of the instrumentatior, must not influence the
recorded datal therefore, the clip gage is located in a zone near the
crack mouth where the gage will not affect the actual opening of the
crack. This_" dead zone" is a function of the depth of the crack and is
very small for shallow cracks.

Numerous ideas are being considered concerning the problem of
attaching the insttumentation to the shallow-crack ' specimen, including
(1) small holes drilled very close to the crack mouth in the beam to
hold a fixture to which the clip gage (s) are attached, (2) a mounting
bracket with the instrumentation attached to it that is welded to the
edge of the crack on the specimen, or (3) very small knife edges
machined into the mouth of the crack for attaching the clip gage (s).

The development phase of the llSST shallow-crack project will cul -
series of preliminary tests for the purpose )f validatingminate in a

'the testing techniques necessary for shallow-crack tests. These tests

are not designed to produce.any shallow-crack data but rather to evalu-
ate the test facilities and develop procedures to assure that the data
produced subsequently in the project will be acceptable shallow-crack

There are several objectives for the shakedown tests in additiondata.
to validating the development activities described previously. The

compliance of each different specimen needs tu be measured in the test-
ing machine .to accurately set the proper load rate specified in the
applicable ASTM standards.6-e Each component of the testing facility
and data acquisition system will be checked for proper operation during
the shakedown tests. Test procedures based on the results of the pre-
liminary -tests will be written for the production phase of the llSST
shallow-crack project.

At present,-it is planned to include six specimens as verification
tests. These tests are to include at least two deep-cracked specimens
and two shallow-crack specimens that will be tested at a ten.perature to

- ensure no prior stable crack growth. The remaining tests will be-con-
ducted with a dif ferent shallow-crack depth and/or a higher temperature
to investigate the behavior of a more ductile specimen.

6.3 PRODUCTION PilASE

Once the shakedown tests have been completed, the production phase
of the ilSST shallow-crack project can begin with the goal of determining
under simulated RPV conditions the fracture toughness of shallow-cracked
specimens. The matrix of Lesta to produce- the liSST shallow-crack f rac-
ture toughness data base involves the test temperatures to be con- '
sidered, the crack depths tested, and the number of tests to be con- '

ducted at each condition. Recommendations made for the shallow-crack

1!
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tes: matrix to provide sufficient data for use in the consideration of
~

flaws in reactor. pressure vessels are given below.
The- temperature- range of interest in. the llSST . shallow-crack

inve~stigation is primarily dictated by the application of the data to
RPVs. This temperature range has previously. been given as roughly-
between T - RTNDT = -50 and 50*C (-58 and 122*F)., Assuming an RT I"NDTthe L-S orientation similar to that in the T-L orientation, the tempera-
ture range of interest is roughly -73 to 27'C (-100 to 80*F), which is
close to the anticipated lower transition range for A533.

As ' described above, the specimen tests vill take place at tempera-
tures applicable to reactor vessels. The lower limit of the temperatura
range will be in the lower-shelf region where shallow-cracked specimens
and deep-cracked specimen have identical Lough 11ss values. At least one
set of shallow- and deep-crack specimens s ., .ld be tested at s' lower-
shelf temperature to - show that there ia no increase in the fracture
toughness' for ' shallow cracks at the lower shelf. Testing will take qplace at increasing temperatures until the material becomes too ductile j
to-initiate in cleavage. The temperature interval between tests will be

I
reduced as d.e temperature increases because of the rapid toughness
increase a- a function of temperature. The actual temperature values
used in zLe liSST shallow-crack program will be chosen 'when the L-S
material characterization has taken place. It is anticipated that at-
least four, and probably as many as six, different test temperatures
will be selected.

TF 9 crack depths to be considered in the test matrix cannot be
conclusively determined until the analytical stuiy described in Sect.
6.2 has been completed. However, specimens with a crack depth roughly
half the specimen width (a/w - 0.5) should be t ested first under identi-
cal conditions to' those planned. for the shallow-crack depths so thet a
direct influence of . crack depth on f racture toughness can be measured.
The' minimum crack depth of interest in the IISST shallow-crack program !
a = 5 mm (0.2 m) will be tested next. This depth represents a practical )
lower limit of the crack depths that initiated in the IPTS studies 3-5
and is roughly the same as the absolute crack depth used in the shallow-

,

crack studies at the Un'iversity of Kansas.1 An-additional depth'to be i
| Lested will be determined once the crack depths exhibiting shallow J

effects ~are determined analytically for the llSST specimen and the
i: application of the llSST shallow crack data to a reactor vessel has been ;

'

| investigated. Currently, testing three crack depths (including the lH deep-crack case) is-anticipated.
|

Replicate tests need to be performed in any fracture toughness test - i
program because of the data scatter associated with tests of this type. 1

The shallow-flaw tests seem to produce data with even more scatter than
i

conventional toughness specimens. Based on the experience at the ;

University' of Kansas and EWI, it is recommended that at least three-
specimens be tested at each condition.1,2,to-is When the data set from . ;

the identical tests is analyzed, additional replicate tests at selected i
conditions can be performed if necessary. !

The test matrix just described will be conducted using rectangular f(50- by 100-mm) specimeas and consists of ~60 tests, liowever, a limited
number of tests will be conducted using square (100- by 100-mm)

i

e
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specimens for comparing the two specimen thicknesses. It is anticipated ,

that t he fracture toughness of. the specime will be independent of the |
!beam thickness 1' however, this assumption will be investigated. The

conditions of the square specimen tests will be. determined based on the'-
results of the rectangular specimen tests. Current plans are to test .;
approximately ten square specimens.

6.4 MATERI AL CilARACTERIZATIOli AND AVAI! ABILITY

Characterization of the source plate for. the HSST shallow crack ?

n and will need itests has tak'en place primarily in the T-L orientation
to be performed in the same orientation as axially oriented flaws in a ,

reactor vessel (L-S) before the development of the shallow-crack data
'

base. Material characterization will involve (1) determination of the
stress-strain relationship in the L-S orientation, (2) location of the
lower transition region by producing a toughness-temperature transition j

curve in the L-S orientation, and (3) Charpy V-notch (CVN) testing at
two different plate thicknesses in the L-S orientation. The- .

characterization will take place using conventional fracture toughness
specimens such as compact-tension fracture, tensile, CVN impact, and. i

drop weight specimens.
The test matrix detailed in the preceding sec' tion requires testing r

at four to six different temperatures and three different crack depths,
with three to six specimens tested at each condition. Approximately 60
tests would be conducted using the rectangular specimens with 10
additional square specimen tests. Therefore, an important consideration
in this program is the availability of prototypic reactor-grade

. material.
IlSST Plate 13A has been extensively characterized and used as ' a i

c<rirce plate for several test series including the first six wide plate. J

Leete." A cut-up plan of IISST Plate 13A is shown in Fig. 16. No

material from llSST Plate 13A is available for use in the shallow-crack
~

' '
tests; however, llSST Plate 13B is a companion plate to llSST Plate 13A
and . is available as a source of material for the llSST shallow-crack
specimens. IISST plates 13A and 13B are the.two halves of flS5T Plate 13, :

'

which was cut for shipping purposes. The two plates .are. roughly the
same size. IISST Plat 6. 13B has only been used as a source plate for ,

WP-1.7 and -1.8.38 The remains of WP-1.7 and -1.8 will be used for the j~

shallow-crack tests first, then test material will be cut f rom - the
remainder of Plate 13B. Because ilSST Plates 13A and 13B are originally

.from the same plate, the characterizations should be equivalent. i

Assuming that the equivalent . of 80 rectangular specimens will be
needed for the entire production . phase of the project,- a plate with an
area of more than 2 m2 (22 ft2) would be required. IlSST Plate 13B con-
tains 10 m2 (109 ft2) of usable material. Because characterized reactor
material is scarce, it may be necessary to conserve material and not use
homogeneous beam specimens.

Two alternatives are currently being considered to conserve llSST
Plate 13B. The first option is the use of a welded composite beam in

| which the test coupon taken from IISST Plate 13B is welded to a pair of'

i
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reusable end arms [see Fig. 17(a)). The second alternative is the use
of a 914-mm (36-in.) beam, all f rom HSST Plate 13B, f rom which three
tests could be performed [see Fig. 17(b)]. The HSST prograni has prior
experience with using welded composite specimens for large tests.r= j. . ."

It is not necessary to use HSSt Plate 138 for the preliminary i

(shakedown) testel instead, remaining wide plate materlat from the WP-CE ;

series of test:32 has been identified as source material for the pre- '

liminary tests. This material is prototypic of that found in a reactor"

vescel but is not as plentiful nor as well characterised as HSST Plate e

13A or 138. Because only six preliminary tests are to be conducted, t

homogeneous beans, rather than welded composite beams, will be used in j

the verification tests of the HSST shallow-crack project.
t

,

ORNL DWG 90 3764 ETD |

TEST COUPON FROM HSST PLATE 138 i

o
i

L

WELD ,

i
'

REUSABLE END ARMS

(*)

!
'

914 mm (36 in.) TOTAL LENGTH

229 mm j | I

to in.) : i ; s

[ [ [
O O O O O O

|: SPECIMEN NO.1 : c SPECIMEN NO. 3 :

: SPECNEN NO.2 :

lb) .

Fig. 17. Alternative methods for conserving A533 material.
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7. ANTICIPATED DATA APPLICAT1001 f

i

The primary goal of the llSST shallow-crack project is to investi- [
gate fracture toughness values for shallow flaws under conditions proto- ;

typic of an RPV. If the investigation progresses as expected, then a :
limited fracture toughness data base for shallow cracks will be |

developed. The fracture toughness data base can then be used in either I
deterministic or probabilistic f racture mechanics evaluations including i

further probabilistic f racture mechanics evaluations of reactor plants :

concerning plant-life extension (i.e., the NRC PTS rale)8 and/or modifi- - f
cation of the ASME Sect. XI rules for fracture mechanics evaluation of '

reactor vessels.33 Specific licensing issues that will be af fected sig- !

nificantly by this study include the PTS, plant-life extension, and r
!reactor vessel support.

The !!SST shallow-crack fracture toughness data base and the experl-- |ence gained in producing it should play a key role in any effort to i

modify the current standards 6-s on fracture toughness testing to include !
shallow cracks. The llSST Program will interface with the appropriate i

national standards committees on the issue of shallow-flaw testing to t

Igain , review of the project by the standards committees and to provide
the llSST experience to the committees for their use in modifying the
standards to include shallow-flaw testing. ;

As a part of the production of a data base of shallow-flaw f racture i

toughness values, this project will produce results that are of interest i

in other areas of the llSST Program. Task 11.6 (Crack Initiation) of the
llSST Program 'Is divided into three subtasks 6.1, Constraint Effectst
6.2, Metallurgical Inhomogeneityl and 6.3, Shallow-Crack Fracture Tough- -

ness Testing. Presently, shallow-crack fracture toughness values are |
believed to depend on the geometry of the crack-tip region and the ;

proximity of a free surface (i.e., varying degrees of crack-tin con-
straint). The analytical work in support of the development of a i

shallow-flaw data base will further the understanding of the root cause -

of=the shallow-crack fracture toughnes= elevation. Because the con- ,

straint of a shallow-flaw differs fwa a deep flaw, the data and
'

analyses from this project can be used to enhance the general under-
;

standing of the influence of constraint on initiation toughness. ;

Task 11 . 6 . 2 is concerned with the metallurgical inhomogeneity
(including anisotropy) of large plates such as those used in reactor -

vessels. The characterization of IISST Plate,13B in the L-S orientation

for the shallow-flaw work will supplement characterizations in other ;

directions of the same plate. Comparisons can then be made that will be
used to quantify the anisotropy of a large plate in terms of crack
initiation 'f racture toughness. Quantifying the anisotropy in a large
plate will lead to a better understanding of the degree of conservatica
built into present requirements for the fracture 'oughness of reactor ;

vessel plates.

-
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4. SUMMAgY

Recommendations for the HSST shallow-crack program have been pre-
sen'ed. .The motivation for initiating this profect is that proba-t

bilistic fracture mechanics evaluations 3-5 show that flaws 10 mm deep or
less rather than deeper flaws in reactor vessels have more impact on the
probability of vessel failure. Furthermore, it is anticipated that

shallow cracks in reactor vessel steels will exhibit an increase in
toughness similar to that in the structural steels tested previously, in
which case the impact on both the deterministic and probabl} 4' ic

fracture mechanics evaluations of reactor vessels would be substantist.
The primary goal of the HSST shallow-crack project is to itvesti-

gate the behavior of the fracture toughness for shallow cracks under
conditions prototypic of an RPV. To meet this goal a beam specimen is
defined with a depth 'W) of 100 mm (4 in.) fabricated from A533 material
with a crack oriented in the same direction as in an RPV.

The requirements of the test facility and data acquisition system
ate detailed. A load capacity of 220 kip is required to test the
defined specimen. The data to be collected during the tests include
load, LLD, and CMOD. These data will allow the fracture toughness to be

y , and CTOD.6-sexpressed in terms of KThe evolution of tk#, Ke project has been planned and detailed in this
report. The development' phase of the program will develop and verify
the technology aecessary for testing shallow-crack beams. A data base
of shallow-crack f racture toughness values will be obtained as part of
the production phase of the project. The proposed test matrix consists
of four to six test tempetatures and three crack depths, with three to
six specimens to be tested at each condition. Unresolved issues within
the program have been identified with suggested solutions.

Results of the HSST shallow-crack program, in addition to the
development of a shallow-c. rack data base, include participation in the
efforts to modify current ASTM standards 6-s to include shallow-crack
test specimens, explanation of the underlying cause of the shallow-crack
f racture . toughness elevation, study of the influence of crack-tip con-
straint on initiation toughness, and investigation of the orientation
differences in the fracture toughness of large plates. All of these
results are directed toward the resolution of key licensing issues
facing the NRC at this time as well as expanding the basic understanding
of crack initiation,

i
;

4
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Appendia-

LINIT-IDAD CALCULATIONS AND SPECIMEN RESPONSE

Details of the limit-load calculations used to determine the load
requirements and elastic plastic calculations to estimate the response
of the beam for specimens being considered 8r. the HSST shallow-crack
program are inct.uded in this Appendix. The calculations were performed
using the Handbook on Elastic-Plastic Fracture Analysis.1

Simple linear bending theory was used for the limit-load calcula-
tions. The plastic limit loads for plane stress and plane strain condi-
tions are respeatively given by

1.072 o B (W - a)2
p0 Y

L S

and

1.456 o B (W - a)2
t Yp -

'L S

where
I
j o = yield stress,

B = specimen thickness,
W = specimen width,

a = crack depth,
S = span of specimen.

|

The square specimen geometry was considered as B = W = 100 man (4 in.).'

The span was 610 mm (24 in.), and the yield stress, 471 MPa (68.3 kel).
Results' of these calculations for multiple crack depths are given

in Table A.1. Three-dimensional finite-element calculations performed

| ,

for the EWI shallow-crack program 2 showed that the actual plastic limit
load for the cracked specimen analyzed was very well approximated by the
plane-stress, uncracked beam limit load. These calculations show that a
load capacity of 1 MW (220 kip) should be adequate for testing the HS8T
shallow-crack specimens.

Calculations were also performed to determine the CMOD and the LLD
of the HSST beam specimens as a function of applied load. The three
specimens considered were (1) a square beam (100 by 100 mm) with a deep
crack (a = 50 nn), (2) a deeply cracked rectangular beam, (3) a shallow-
crack square beam, and (4) a shallow-crack rectangular beam. The

____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . - __ _
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iTable A.1. Limit loads computed for HSST
square specimen (100 by 100 mm)

' for various crack depths,

i
!

Limit load
(MW (kip)] |of,

p' p' I

L L |
.

0 0.867 (195) 1.179 (265)
0.063 0.765 (172) 1.036 (223)
0.125 0.667 (150) 0.903 (203)
0.188 0.574 (129) 0.778 (175)
0.500 0.217 (48.8) 0.295 (66.3)

f

i

shs11owest crack depth that can be considered using the llandbook is _

'

e/w = 0.125. Calculations are based on use of the Ramberg-Osgood formu- i

let.on of the stress-strain curve. Input for the calculations includedA-

the geometry of the specimens, standard material properties (E, v, o ),
TheCNODand the Ramberg-Osgood coefficients (a = 3, n = 10, for A533).

and LLD at the specimen limit load for the plane-strain conditions is
summarized in Table A.2. The approximate maximum expected CMOD is
2.2 mm (86 mils) for the deep-crack square specimen, and the maximum 3

expected LLD is 5.6 mm (220 mils) for the shallow-crack square specimen. |

'l

Table A.2 CHOD and LLD for four potential
llSST configurations at the ,

plane-strain limit load

CHOD LLD

(mm (mils)} (mm (mils)} ;

1. Deep crack, square beam 2.2 (86) 3.9 (153)' |
'

2.- Deep crack, rectangular beam 1.3 (53) 1.9 (76)-
3. Shallow crack, square beam 1.5 (59) 5.6 (220)
4. Shallow crack, rectangular beam 0.9 (35) 2.8 (110)

-

,

4
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