NUREG/CR-5395
FEPRI/NP-6480)
BAW-2099

Vol. 11, Addendum

% Multiloop Integral System Test
l (MIST): Final Report

MIST Phase 1V Tests

¢repared tor
LS. Nuclear Regulaiony
Commission

and

Electric Power Rescarch Institute
and
ndh\li\k A Wilcox Owners ‘.lll\i;r

10229 900831 |
NURE G -
298 R ;:




AVAILABILITY NOTICE
Avaliability of Retersnce Matenals Ciied 11 NARC Putkostions

Mowt documents oited In NRC publioations wil be avaliable from one of the following souroes

1 The NAC Putiic Dooument Room, 2120 L Strest, NW, Lower Level. Washington, DC 20685

H The Superintendent of Doouments, U .8 Government Printing Office. P.O. Box 37082, Washington,
DC 20013-7082

3 The National Teohnica! Information Service, Springfeld, VA 22161

Although the listing that follows represents the majority of doouments ched In NRC publications, It is not
Intended to be exhaustive

Referenced documents avaliable for Ingpection and copying for & fea from the NRC Public Document Room
Inolude NRC ocorrespondence and internal NRC memworanda; NRC Office of inspection and Enforcement
bulleting, olroulare, information noticas, inspection and invastigation notices ; Licanses Event Reports, ven-

dor reports and correspondence. Commision papars. and applicant and licenses doouments and oeTe-
spondence

The folowing documents In the NUREG series are avaliable for purchase from the GPO Sales Program:
formal NRC stat! and contrastor reports. NRC-sponsored conferance proosedings, and NRC booklets and

broohures . Also avallable are Regulatory Guides, NRC regulations In the Code of Federal Regulations, and
Nuvlear Reguiatory Commission Issuanoces

Doouments avallable from the National Teohnical Information bervice nolude NUREG seriles reports and

technical reports preparad by other federal agencies and reports prapared by the Atomic Enargy Commis
slon. torerunner agenoy tu the Nuclear Regulatory Commiseion

Doouments avaliable from public and speciai technioal ibrarles include el open Nerature hems such as
books . journal and periodioal artioles, and transactions . Federal Register notices, federal and state legisia-
tion, and oongressional reports can usvally be obtained from thess lbraries.

Doouments such as theses, dissertations, foreign reports and transiations. and nan-NRC conference pro
ceedings are avallable for purchase from the organization sponaoring the publication chted

Single coples of NRC draht reports are avallable free, to the axtent of supply . upon written requoest 1o the

Office of Information Resources Management, Distribution Seotion, U.S. Nuclear Regulatory Commission
Washington, DC 20666

Coples of Industry codes and standards used in a substantive mannar In the NRC regulatory process are
maintained at the NRC Library, 7620 Norfolk Avenue, Bethesda, Maryland, and are avaliable there for refer-
once use by the pubke  Codes and standards are usually ccpyrighted and may be purchased from the

originating organization or, if they are American National Standards, from the Amarican National Standards
L Institute, 1450 Broadway, New York, NY 10018

DISCLAIMER NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government
Neither the United States Government nor any agency thereo!, or any of their employeas, makes any warranty,
expresed or Implied, or assumas any legal liability of responsibility for any third party's use, or the results of
such use, of any iInformation, apparatus, product or process disclosed In this repor, or represants that s use
by such third party woulc not infringe privately owned nghts

O —




Multiloop Integral System Test (MIST)

MIST Phase 1V Tests
Date Published: August 1990

Author

G. O, Gessler

Prepared by

Babcock & Wilcox
Nuclear Power Division
3315 Oid Forest Road

Lynchburg, VA 245060035

Babcock & Wilcox
Research and Development Division
Alliance Rescarch Center
1562 Beeson Street
Alllance, OH 44601

Prepared tor

Division of Systems Research
Ofttice of Nuclear Regu'atory Research
LS. Nuclear Regulatory Commission
Washington, DC J085S
NRC FINs BROOO, D734

Electric Power Research Institute
P.O. Box 10412
Palo Alto, CA 94303

Babcock & Wilcox Owners Group
P.O. Box 10935
Lynchburg, VA 245060935

[inal Repont

NURPG/OCR-5308
FPRINP-6ARD
BAW-20049

Val, 11, Addendum

A




ABSTRACT

The Multiloop Integral System Tesi (MIST) is part of a multiphase program
started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs)
specific to Babcock & Vilcox designed plants. MIST is sponsored by the U, §.
Nuclear Regulatory Commission, the Babcock & Wilcox Owvners Group, the Electric
Pover Research Institute, and Babcock & Vilcox. The unique features of the
Babcock & Wilcox design, specifically the hot Jleg U-bends and steam
generators, prevented the use of existing integral system deta or existing
integral facilities to address the thermal-hydraulic SBLOCA questions. MIST
and tvo other supporting facilities vere specifically designed and constructed
for this program, and an existing facility--the Once-Through Integral System
(OTIS)--vas also used. Data from MIST and the other facilities will be used
to benchmark the adequacy of system codes, such as RELAPS and TRAC, for

predicting abnormal plant transients.

The MIST Program is reported in 11 volumes. The program is summarized in
Volume 1; Volumes 2 through B describes groups of tests by test type, Velume 9
presents inter-group comparisons; Volume 10 provides comparisons between the
calculations of RELAP5/MOD 2 and MIST observations, and Volume 11 presents the
later Phase 4 tests. This Volume 11 addendum pertains to MIST natural

circulation tests.
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1. INTRODUCTION

in Phase IV an attempt was made to simulate a plant transient on MIST. The
purpose of such a test was to provide a 1ink between MIST and a plant such that
the differences could be attributed to the compesite effect of MIST atypicalities
due 10 scaling compromises. Such a 1ink would provide the code analyst and the
plant operator more confidence in MIST test results and minimize the number of
calculations necessary to relate MIST data to the plant. Many plant transients

were reviewed for the completeness of a data base and two were selected for
simulation,

The CR-3 “"Loss of Offsite Power" transient of June 16, 198] was simulated on
MIST. The test could n=t be used as & scaling transient because the attempt to
account for tne plant initial power at 100% was not successful.

Next the Rancho Seco "Loss of I1CS" event of December 26, 1985 was simulated.
However, the MIST secondary steam flow capacity was too smal)l to keep up with
the simulation and this test likewise was not successful.

The "MG considered then that the TM! Natural Circulation tests of October 7, 1985
would be a good candidate for the scaling test. After exhaustive review of
available data and & discussion vith TMI operations personnel BAW recommended

that severa)l short tests be performed to replicate phenomena observed at TMI
instead of a scaling test. The PMG agreed.

The review of the TMI-1 plant data and the reports that were written revealed
that there were two time pe” ‘ods of particular interest. During these times it
is believed that the plant w.s experiencing fiow interruption phenomena similar
to that observed during many of the MIST Phase 11! Mapping Tests and the MIST
Phase IV Tests. The observed occurrences were termed "cold leg temperature
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anomalies" (see Figure 1.1 for an example) in a draft report written by GPU where
it was postulated that they were caused by RCP seal leakage that impacted the
cold leg RTD {stratified counter-current flow).

It was decided that the MIST test would attempt to replicate this cold leg
temporature anomaly experienced during the period of natura) circulation testing
at TMI-1,

With the extensive instrumentation system on MIST it was expected that the
transient of interest could be dissected to provide a clear unambiguous
understanding of the cause of the cold leg temperature anomaly and the
sensitivity of the event to selected parameter changes on the MIST facility.

The PMG approved four additiona) tests which were designed to simulate phenomena

observed at the plants under single phase natura' circulation at low decay heat
power condition,

1. Test 4NCSM] - A simulation of one phase of the TMI-1 natura) circulation

test where the "cold leg temperature anomaly" was observed. The

objective of this test was to determine if the phenomena observed at
the TMI-1 plant could be simulated on the MIST facility.

2. Test 4NCVV] - A repeat of Test ANCSM1; however, the reactor vesse) vent
valves would be manually closed. The objective of this test was to
determine the effect of the reactor vessel vent valves on the flow
interruption phenomena.

3. Test 4NCHL1 - A repeat of Test 4NCSM1 with heat losses imposed in
seiected reactor coolant pumps. The objective of this test was to
determine the effect of this local hea. loss on the occurrence of back
flow in the cold legs.

4. Test 4NCLM] - A repeat of Test 4NCSM1, with ietdown and makeup flow
active. The objective of this test was to investigate the effect of
letdown and makeup flow on the observed phenomena.

Subsequent to the establishment of the trend of the MIST facility response
various potential operator actions were performed to determine the effect on
the MIST system response. These actions inc)uded high point vent actuations,
reactor coolant pump starts, PORV actuations and core power increases.
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This report provides the test specifications, the test conduct, the observations
obtained from each test, an explanation of the phenomena that cause the “cold
leg temperature anomaly," and a summary of the natural circulation test program.
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2. TEST SPECIFICATIONS

The specifications for the MIST Natural Circulation Tests have been extracted

from the MIST Natural Circulation Test Specifications BAW-2090 Rev.l August 1989
(Reference 1).

2.0, Test ANCSMI - Natural Circulation Simulation Test

Test 4NCSM1 ic a natural circulation transient that investigates the MIST
facility response to a controlled decrease in core power while attempting to
maintain all other boundary conditions constant. The reduction in core power

will be similar to the core power ramp used during the conduct of the TM]-1
natural circulation test on October 7, 1985,

2.1.1. Test Objectives

The objective of this test is to provide data and insight to the MIST facility
response for a controlled core power reduction during natural circulation
conditions. It is anticipated that flow interruption will occur and that the
phenomena observed in the cold Tegs and the hot legs in an actual plant will also
be observed in the MIST facility. Dependent upon the primary system response
variations in loop recovery procedures will be attempted.

2.1.2. Steady-State Pretest Conditions

The leop is to be in the natural circulation testing configuration, i.e., with
the venturi flowmeters installed and the turbine meters removed. The system is
to be held in steady-state conditions for at least ten or more minutes prior to

test initiation. The initial conditions for this steady-state period are listed
in Table 2.1. The initia) conditions attempt to simulate the conditions during
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one phase of the natural circulation tests conducted on October 7, 1985 at the
TMI-1 plant.

The primary system is to be in subcooied natural circulation. forward flow in
all four cold legs, at a core power level that results in hot leg temperatures
comparable to that experienced at the TMI-1 plant, approximately 577°F. Core
power augmentation is not used. The guard heaters are to be active and
controlling in the automatic mode. The steam generator sccondary pressures are
to be 965 psia. This pressure corresponds to a saturation temperature of 540°F.
The fluid temperature in all four cold legs, measured at the RCP inlet RTD,
should be approximately 540°F.

The steam generator secondary levels are maintained ai 20.7ft, 50% on the operate
range, using heated main feedwater. The use of heated main feedwater for the
MIST tests rather than auxiliary feedwater (as used during the TMI-1 natural
circulation tests) was necessitated as a result of the screening tests performed
on the MIST facility prior to the conduct of the MIST Natural Circulation Test
Program. The screening tests revealed that for the test conditions investigated
the cold lTeg temperature anomaly could not be produced on the MIST facility when
using auxiliary feedwater. The use of heated main feedwater, however, resulted
in the observance of the cold leg temperature anomaly.

The pressurizer is controlled to obtain approximately 2175 psia with a level
that is sufficient to accommodate the expected primary system volume contraction
while still providing pressurizer heater control necessary to maintain primary
system pressure. The pressurizer spray control valve is manually closed. The
PORV is in the automatic overpressure control mode as described in Appendix £
of referince 2. The presently installed PCRV c ifice, 0.040 in diameter,
(simulates a plant diameter of approximately 1 5/32 in) may be used. The RVVV's
are in the automatic independent control mode (open/close setpoints of 0.125/0.04
psi). The primary boundary systems are inactive. The core flood tanks are
isolated. The HPI/MU and LPI systems are off. The letdown (LD) line is closed.
The pressurizer surge line fluid temperature is to be within 5° of the hot leg
fluid temperature. As an indication of steady-state all fluid and metal
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temperatures are to be varying less than 5% /hr and 16%/hr, respectively. The
entire primary system, exception being the pressurizer, must be subcooled.

2.0.3. Test Initiation

The test is started after recording at least ten minutes of steady-state data.
The test is initiated by actuating the simulated TMI-1 core power ramp. The core
power ramp should start from the initial core power level determined in Section
2.1.2 followed by 1) a step change down to 1.5% power 2) a linear ramp down to
0.65% power in approximately five minutes and 3) then maintain the core power

constant at a value of 0.65% unti) the loop recovery attempts are performed.
No other actions are required.

2.1.4. Control During Testing and Test Termination

The primary system pressure is to be controlled by the pressurizer using the
pressurizer heaters. The pressurizer shouid attempt to maintain a constant
primary system pressure of approximately 2175 psia.

Note: When the primary loop flow interrupts, a core heat up will occur that
may cause an increase in primary system pressure. Therefore the
pressurizer heater power must decrease propoitionately in an attempt
to maintain a constant primary system pressure. If the core heat

up is of sufficient magnitude to repressurize the primary system to
a value greater than 2175 psia, verify that the pressurizer heaters

turn off.

The steam generator secondary level control is to maintain the levels of both
steam generators at 20.7ft throughout the entire transient. The steam generator
pressure control setpoint is to remain at 965 psia for both steam generators
throughout the entire tiansient. A decrease in the steam generator secondary
pressure can be expected when primary-to-secondary heat transfer ceases.

It is anticipated that the primary system will remain subcooled throughout the
entire transient. The pressurizer is the only primary system component that can
contain steam. The pressurizer must also contain a sufficient amount of 1iquid

inventory such that primary system pressure contro) is maintained throughout the
entire transient.

The test consists of three separate phases:
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Phase 1 - Test Initiation Through Flow Interruption

Phase 2 - Four Hour Hold Period
Phase 3 - Loop Recovery Attempts Through Test Termination

Specific control which applies during these phases of the test is described in
the following sections.

2.1.4.)1. Phase ] - Test Initiation Through Flow Interruption

This phase of the test should consist of only the core power ramp. As the core
power decreases the primary system temperatures will decrease thus resulting in
a contraction of the primary system liquid volume. It is anticipated that a
sufficient amount of liquid inventory will be available from the initial
pressurizer liquid inventory to accommodate the primary system contraction.
However, in the event that a sufficient amount of 1iquid inventory cannot be
maintained within the pressurizer to provide pressure control (due to the
contraction of the primary system fluid) inventory (makeup, MU) may be added to
the primary system through the MU nozzle (A2 cold leg HPI nozzle is to be used

for the MU nozzle). Add MU f ¢ to the primary system gradually in an attempt
to minimize primary loop perturbations. The maximum MU flow rate should be
equivalent to a plant flow rate of 20 gpm. Terminate the MU fluw when the

pressurizer level increases sufficiently to provide adequate margin for primary
system pressure control.

Phase 1 of the test is to continue until primary loop flow interruption or
intermittent primary loop flow is observed.

2.1.4.2. Phase 2 - Four Hour Hold Period

Subsecuent to primary loop flow interruption the test shall continue fur at least
4 hours such that the response of the test facility can be observed. During this

time no operator actions should be performed. Exceptions for taking operator
actions are as follows:




1. If facility design 1imits are approaches the loop operators may perform
:ha::vor actions are deemed necessary to prevent damage to the test
acility.

2. If additional primary system inventory 1is required to maintain

pressurizer pressure control during this time, MU flow may be actuated.

The MU flow rate restrictions previouslf discussed should be adhered

to. Primevy loop pressure control should be maintained by means of the

pressurizer, herefore, if the potential exists to uncover the

pressurizer leaters makeup flow rate may be increased above the

proviousl{ defined maximum (plant equivalent flow of 20 gpm) to maintain

or gradually increase the pressurizer level. The makeup flow rate under

these conditions shoulu be increased gradually until the pressurizer

level is maintained at a level which provides satisfactory pressure

control, however do not exceed a plant equivalent maximum makeup flow

rate of 190 gpm. Revert back to the previously defined maximum plant

equivalent makeup flow of 20 gpm when the pressurizer level can be
maintained.

It should be noted that primary loop flow interruption is expected to occur,

It is expected that intermittent primary loop flow will also occur. If, during

this phase of the test, the core heat up is sufficient to cause an increase in

the primary system pressure allow automatic PORV actuation.
2.0.4.3. Phase 3 - Loop Recovery Attempts Through Test Termination
When the transient has reached 4 hours after flow interruption the primary system
pressure trend and primary Toop flow status sha'l be assessed. The loop operator
must first determine if primary loop flow (up the hot leg) exists in loop A and
/or Toop B. The loop operator must also determine if the primary system pressure
trend indicates that it is constant, has stabilized in a quasi-steady-state
condition, or is increasing. Depending upon the outcome of this assessment
various operator actions will be performed depending on the primary loop status
at this time. The primary loop status and the associated loop operator actions
are as follows:

1. Loop Status - Primary pressure trend is essentially constant and primary

Toop flow (up the hot legs) exists in both loops such that stable
natural circulation conditions are present in both loops.

o Operator Actions - None. Record 30 mimtes of steady-state data.
If both loops remain in the steady-state navural circulation condition
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the test may be terminated. If either loop exhibits interrupted flow
or intermittent flow during this 30 min period increase the core power
in an attempt to re-establish prin-ry Toop natural circulation. The
manner in which the core power is increased, i.e., steps or linear
ramps, and the final power level attained may be specified by the test
engineer. Primary pressure control should be maintained by means of
the pressurizer heaters, and if necessary letdown and makeup flow.
Then record an additional 30 minutes of data to determine if primary
l:op steady-state natural circulation is attained. Then terminate
the test.

2. Lju*}_ﬁljlyj - Primary pressure trend is either constant or has
stabilized in a quasi steady-state condition and primary loop flow (up
the hot legs) is interrupted or exhibits intermittent flow in either
loop.

) Qng:*&n:_Aglign; - Attempt to establish primary loop flow (up the
hot legs) by means of opening the hot leg U-bend high point vent(s)
(HPV). This is to be performed as follows:

a. Verify that sufficient pressurizer inventory exists such that
pressure control i1s maintained.

b. Determine primary loop flow status in both loop:

¢. Open the HPV of the lToop that indicates flow interruption (if both
Toops indicate flow interruption open both HPVs). Limit the time
the HPV(s) are open to approximately 15 minutes. Maintain a
sufficient amount of pressurizer inventory such that pressurizer
pressure control is maintained. If the pressurizer level
decreases sufficiently to impede pressure control close the
HPV(s), gradually add makeup to the primary system {1imiting MU
flow to a maximum of 20 gpm plant equivalent), allow the primary
system to stabilize after the addition of makeup and attempt to
establish primary loop flow via HPV actuation as diucussed
previously.

d. Close the HPVs when primary loop flow starts in an initially
interrupted loop. If stable natural circulation conditions are
attained in either loop after HPV actuvation rocord data for 30
minutes or until the pressurizer level becomes .ow. If flow in
both Toops is interrupted or intermittent, attemp! (for a second
time) to establish primary locp flow by opening the HPV(s) as
discussed above.

e. Subsequent to step (d) if primary loop flow remains interrupted
or intermittent in either loop increase core power in an attempt
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to re-establish primary loop natural circulation as discussed in
Loop Status 1.

3. Loop Status - Primary system pressure trend is increasing.

® Operator Actions - Allow the primary system pressure to increase to
the PORV setpoint and allow automatic PORV actuation. Subsequent to
the PORV actuation, or ir one hour has elapsed with the primary system
pressure trending towards the PORV setpoint bui the setpoint has not
been attained, open both hot leg U-bend HPVs and attempt to reduce
primary system pressure to the control preczure setpoint. If the
primary pressure does not decrease to the control pressure setpoint
with only the HPVs open, also initiate ietdown flow (minimum flow 45
gpm max imum flow 140 gpm plant equivalent). Note makeup flow (maximum
fiow rate of 190 gpm plant equivalent) may be actuated to maintain
pressurizer inventory whenever deemed necessary. Subsequent to
performing the operator actions under Loop Status 3 reassess the loop
status and perform the following actions:

. Loop Status - Primary pressure decreases to and is maintaining
approximately the control pressure setpoint.

® Qperator Actions - Close the HPVs and maintain the pressurizer
inventory approximately constant by adjusting makeup and ietdown flow
as necessary. Allow the primary system to stabilize for approximately
30 minutes, Then record data for an additional 30 minutes.

Subseguent to this perfora the core power increase as discussed in
Loop Status 1.

. Loop Status - Primary pressure cannot be reduced to the control pressure
setpoint,

o Qperator Actions - Terminate letdown flow and attempt Lo adjust makeup
flow (may exceed 190 agpm plant equivalent flow if necessary) to
maintain an approximately constant pressurizer inventory. If the
primary loop pressure incre es t¢ the PORV setpoint initiate full
HPI flow, record data for 3. .inutes then terminate the test. If the
primary loop pressure remz s stable or decreases record 30 minutes
of data. At this time close the HPVs and increase the core power as
discussed in Loop Status 1.

2.1.5. Acceptance Criteria

1. At least ten minutes of steady-state data is recorded at the specified
initial conditions.

Test initiation is performed as specified.




The specified boundary system control settings are maintained throughout the
test.

The primary system remains subcooled through 4 hours after flow interrup-
tion.

Test terminaticn is performed as specified.

A1T critical instrument data as specified in Appendix F reference 2 is
recorded at intervals of ten seconds or less throughout the test.
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Table 2.1. Test 4NCSMI Initial Conditions

Tolerance
Quantity Specification (+/-) Der1vedl

1. Primary Pressure 2175 psia 25
2. RC Pump Inlet Temperature 540F
3. Hot Leg Inlet Temperature 577¢
4. Core Exit SubcooHng2 71F
5. Core Power (3)
6. Pressurizer Level (4)
7. Surge !ine Temperature Hot Leg Temp., F 5
8. RVVVs Automatic Independent

(0.125 psi Open/0.04

psi Close)
9, Secondary Pressure 965 psia 10
10. Secondary Level5 20.7 ft 1
11. Main Feedwater Tempcrature5 420F
12. Fluid Temperature Gradients OF/hr 5
13. Metal Temperature Gradients OF/hr 15

iDerived quantities are for information only and should not be interpreted as
control specification.

2The primary system with the exception of the pressurizer is to be subcooled.

The value in the table corresponds to the subcooling attained with a hot leg
inlet temperature of S577F.

3The core power is to be adjusted to obtain a hot leg inlet temperature of
approximately 577F. DO NOT augment core power.

4The pressurizer level is to be sufficiently high to accommodate the primary
system contraction without adding inventory to the system if at all possible.
The pressuriczer heaters are to be active throughout the entire test and should
be set to control at 2175 psia.

5A11 levels are relative to the secondary face of the lower SG tube sheet.

6Themain feedwater temperature is effected by heat losses in the MIST secondary
system. This is the expected main feedwater temperature for the low power
levels and secondary flow rates at which this test will be performed.
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2.2. Test 4NCVV] - Natural Cir-ulation Simulation
Without Operable Vent Valves

Test 4NCVV] is a natural circulation transient that investigates the MIST

facility response to a controlled decrease in core power with the reactor vesse,
vent valves closed while cttempting to maintain a1l other boundary conditions
constant. The reduction in core power will attempt to simulate the core power

ramp used during the conduct of the TMI-1 natural circulation test on October
7, 1985.

2.2.1. Test Objective

The objective cof this test is to provide data ind insight to the MIST facility
response for a controlled core power reduc.ion during natural circulation
conditions when the reactor vessel vent valves are closed. This test in

conjunction with test 4NCSM1 should highlight the secondary flow path that is

established when the reactor vessel vent vilves are open and result in a

different facility response. It is anticipated that the phenomena observed in
the cold legs of the MIST facility will be different from that observed in an
actual plant and also that observed in the first test (4NCSM1) .

The effect of a reactor coolant pump start on the facility response will also
be investigated.

2.2.2. Steady-State Pretest Conditions

The steady-state pretest conditions are to be identical to those specified for

Test 4NCSM]1 with the exception of the reactor vessel vent valve control. For

Test 4NCVV] the reactor vessel vent valves are to be manually closed through the
entire test. The initial conditions are listed in Table 2.2.

2.2.3. Test Initiation

Test initiation is identical to Test 4NCSM1 as specified in Section 2.1.3.

2.2.4. Control During Testing and Test Termination

This test will also consist of three separate phases:

Phase 1 - Test Initiation Through rlow Interruption




Phase 2 - Hold Period
Phase 3 - Loop Recovery Attempts Through Test Termination

Control during the test is to be as specified 7or Test 4NCSMI through Phase 2.
Phase 2, however, may he terminated esclier than four hours after flow
interruption at the discretion of the te . ngineer when the trend in the test
facility response has been established. For this test the Phase 3 (Loop

Recovery Attempts Through Test Termination) will differ from those used in Test
4NCSM1 .

Upon <ompletion of the hold period (Phase 2) perform an assessment of the
anticipated primary and secondary system response to an RCP start. If it is
determined that facility design 1imits will not be exceeded start one RCP. It
should be noted that reactor coolant pump starts can result in a contraction of
the primary system fluid and a reduction in the pressurizer inventory should be
expected. Therefore prior to initiating an R(P start verify that a sufficient
amount of pressurizer inventory exists (add inventory by means of makeup flow
if necessary) such that pressurizer pressure control is ma.ntained subsequent
to the RCP start. After 15 minutes of operation start another RCP (this RCP
should be chosen to be in the opposite cold leg of the other loop). Obtain 15
minutes of data with two RCPs operating then terminate the test.

2.2.5. Acceptance Criteria
1. At least ten minutes of stcady-state data is recorded at the specified
initial conditions.

2. Test initiation is performed as specified.

3. The specified boundary system control settincs are maintained throughout the
test.

4. The primary system remains subcooled through Phase 2.

5. Test termination is performed as specified.
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A1l critical instrument data as specified in Appendix F reference 2 is
recorded at intervals of ten seconds or less throughout the test.




Table 2.2. Test 4NCVVI Initial Conditions

Tolerance

Quantity Specification (+/-) Derivedl
I. Primary Pressure 2175 psia 25
2. RC Pump Inlet Temperature 540F
3. Hot Leg Inlet Temperature ST7F
4. Core Exit Subcoo’ling2 71F
5. Core Power (3)
6. Pressurizer Level (4)
7. Surge Line Temperature Hot Leg Temp., F 5
8. RVVVs Manual Closed
9. Secondary Pressure 965 psia 10
10. Sece “ary Levels® 20.7 ft 1
11. Mai: _dwater Temperature6 420F
12. Fluid Temperature Gradients OF/hr 5
13. Metal Temperature Gradients OF/hr 15

lDerived quantities are for informacion only and should not be ‘nterpreted as
control specification.

21he primary system with the exception of the pressurizer is to be subcooled.
The value in the table corresponds to the subcooling attained with a hot leg
inlet tempecature of S77F.

3The core: power is to be adjusted to obtain a hct leg inlet temperature o
approximately 577F. DO NOT augment core power.

‘The prassurizer level is to be sufficiently high to accommodate the primary
systet: contraction without adding inventory to the system if at all possible.

The prossurizer heaters are to be active throughout the entire test and should
be set 1o cantrol at 2175 psia.

5A11 Tevels are relative to the secondary face of the lower SG tube sheet.

6Themain feedwater temperature is affected by heat losses in the MIST secondary
system. This is the expected main feedwater temperature for the low power
levels and secondary flow rates at which this test will be performed.
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2.3. Test 4NCHL]1 - Natural Circulation Simulation

Test 4NCHL]1 is a natural circulation transient that investigates the MIST
facility response to a controlled decrease in core power with intentionally
imposed local heat lcsses in the cold legs while attempting to maintain all other
boundary conditions ccnstant. The reduction in core power will attempt to
simulate the core power ramp used during the conduct of the TMI-1 natural
circulation test on October 7, 1985,

2.3.1. Test Objective

The objactive of this test is to provide data and insight to the MIST facility
for a cuntrolled power reduction during natural circulation conditions with
intentionally imposed local heat losses in the cold legs. Previous #IST test
results, eg 3004CC, have indicated that heat losses exist between the upper most
instrumented location in the cold leg suction pipes (approximately two feet below
the reactor coolant pump suction) and the upper most instrumented location in
the cold leg discharge pipes (at the reactor coolant pump discharge), i.e., heat
Toss caused by the reactor coolant pumps. These heat losses appear to contribute
to the flow interruption phenomena and the subsequent flow direction in the cold
legs. This test will impose additional heet loss near the reactor coolant pump
in one cold leg of each Toop. The cold lecs that will have the additional heat
loss imposed will be chosen based upon the observed results from Test 4NCSMI.
Present plans for increasing the heat Tosses are to increase the cooling water
flow to selected RCPs and/or shutting off the guard heaters in the upper region
of selected cold leg suction pipes. It is anticipated that Test 4NCHL1 will
highlight the cold leg temperature anomalies observed during low power natural
circulation conditions in actual plant transients.

The effect of actuating the high point vents and makeup flow during loop recovery
will be investigated. At the conclusion of the above the effect of a reactor
coolant pump start will also be investigated, if feasible.



2.3.2. Steady-State Pretest Conditions

The steady-state pretest conditions are to be identical tc ¢hose specified for
Test 4NCSM1. The increased heat lusses in two of the «o0ld legs may result in
cold leg temperatures at the reactor coolant pump inlet thai arc not within the
test specification tolerances. Therefore, for this test the cold leg fluid
temperature specificaticn will be applied at a lower elevation in the cold leg
suction pipe. The ir.tial conditions are listed in Table 2.3.

.28, 1 nitiation

Test initiation is identical to Test 4NCSMI.

2.3.4. Control During Testing and Test Termination

This test will also consist of three separate phases:

Phase 1 - Test Initiation through Flow Interruption

Phase 2 - Hold Period

Phase 3 - Loop Recovery Attempts Through Test Termination

Control during the test is to be as specified for Test 4NCSMI through Phase 2.
Phase 2, however, may be terminated earlier than four hours after flow
interruption at the discretion of the test engineer when the trend in the test
facility response has been established. For this test the Phase 3 (Loop Recovery
Attempts Through Test Termination) will differ those used in Test 4NCSMI.

2.3.4.1. Phase 3 - Loop Recovery Attempts Through Test Termination

Upon completion of the hold period (Phase 2) open both hotleg U-bend high point
vents (HPVs) and maintain the pressurizer inventory constant by means of makeup
flow (maximum 190 gpm plant equivalent). Observe the facility response for
approximately one hour or until the pressurizer inventory becomes low. Then
close the HPVs, terminate makeup flow and observe the facility response for
approximately 30 minutes. Note that the duration of the observation periods can
be altered based upon the discretion of the test engineer.




When the above is completed consideration should be given to performing another
reactor covlant pump start similar to that specified for Phase 3 of Tes: 4NCVVI.
This recovery procedure is contingent upon the results obtained during Test
4NCVV1 and should be performed at higher core and hot leg fluid tempera.ures.
If the reactor coolant pump start is to be performed, a core power increase (and
a loop stabilization period) may be required to attain the higher fluid
temperatures. The reactor coolant pump start should not result in challenging
any facility design limits.

2.3.5. Acceptance Criteria

8

At Teast ten minutes of steady-state data is recorded at the specified
initial conditions.

Test initiation is performed as specified.

The specified boundary system control settings are maintained throughout the
test,

The prime= cystem remains subcooled through Phase 2.
Test termination is perforrod as specified.

A1l critical instrument data as specified in Appendix F reference 2 is
recorded at intervals of ten seconds or less throughout the test.
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Table 2.3. Test 4NCHL] Initial Conditions

Tolerance
Quantity Specification (+/-) Derived’
1. Primary Pressure 2175 psia 25
2. RC Pump Inlet Temperature? 540F
3. Hot Leg Inlet Temperature S77F
4. Core Exit Subcooling® 71F
5. Core Power (3)
6. Pressurizer Level (4)
7. Suree Line Temperature Hot Leg Temp., F 5
8. RVVVs Auto. Indepon. (0.125 psi
Open/0.04 psy Close)
9. Secondary Pressure 965 psia 10
10. Secondary Levels6 20.7 ft 1
11. Main Feedwater Temperature7 420F
12. Fluid Temperature Gradients OF/hr 5
13. Metal Temperature Gradients OF/hr 15

lDerived quantities are for information only and should not be interpreted as
controi specification.

20ependentupon the method used for increasing the heat loss either the RCP inet
temperature (RTD) or a fluid temperature (TC) in the lower region of the cold

leg suction pipe of the cold legs that have heat losses imposed will be used
for establishing the initial conditions.

3The primary system with the exception of the pressurizer is to be subcooled.

The value in the table corresponds to the subcooling attained with a hot leg
inlet temperature of S77F,

4Thecore power is to be adjusted to obtain a hot leg inlet temperature of
approximately 577F. DO NOT augment core power.

5The pressurizer level is to be sufficiently high to accommodate the primary
system contraction without adding inventory tc the system if at all possible.

The pressurizer heaters are to be active throughout the entire test and should
be set to control at 2175 psia.

6AH levels are relative to the secondary face of the lower SG tube sheet.

7Themain feedwater temperature is affected by heat losses in the MIST secondary
system. This is the expected main feedwater temperature for the low power
levels and secondary flow rates at which this test will be performed.



2.4, Test 4NCLMI - Natural Circulation Simulation
—kffects of Letdown and Makeup Fiow

Test 4NCLM] is a natural circulation transiert tnat investigates the MIST
facility response to a controlled decrease in core power with letdown and makeup
flow active while attempting to maintain all other boundary conditions constant.
The reduction in core power will attempt to simulate the core power ramp used
during th: conduct of the TMI-1 natural circulaticn test on October 7, 1985.
This test also simulates plant operator actions taken frequently during natural
circulaticn conditions.

2.4.1. Test Objective

The objective of this test is to provide data and insight to the MIST facility
response for a controlled core power reduction during natural circulation
conditions when letdown and makeup flow are active. This test in conjunction
with Test 4NCSM1 should provide insight on the effect of letdown and makeup flow
on flow interruption and flow direction subsequent to flow interruption.

The effect of actuating the highpoint vents with letdown and makeup flow active
during loop recovery will be investigated. At the conclusion of the above the
effect of a reactor coolant pump start with lTetdown and makeup flow active will
also be investigated, if feasible.

2.4.2. Steady-Staie Prete.t Conditions

The steady-state pretest conditions are to be identical to those specified for
Test 4NCSM1 with the exception of letdown and makeup flow. For Test 4NCLM1 the
letdown flow is to be active at a plant equivalent flow rate of approximately
45 gpm at test initiation. Similarly makeup flow is to be active and is to be

adjusted to a value that will maintain the pressurizer level approrimately
constant. The initial conditions are listed in Table 2.4.

2.4.3. Test Initiation

The test is started after recording at least ten minutes of steady-state data.



The test is initiated by actuating the core power ramp (as speciied for Test
4NCSM1) and subsequently increasing the makeup flow. The makeup flow is to be
manually fdincreased (the maximum allowable makeup flow is 190 gpm plant
equivalent) in an attempt to maintain a constant pressurizer inventory (the

essurizer inventory should decrease as a result of the primary loop fluid
contraction caused by the core power reduction). For operator guidance the test
results from Test 4NCSM1 should be used to estimate the makeup flow required to
account for fluid contraction during the early initiating events,

2.4.4. Control During Testing and Test Termination

The primary system pressure is to be controlled by the pressurizer using the
pressurizer heaters. The pressurizer should attempt to maintain a constant
primary system pressure of approximately 2175 psia.

The steam generator secondary level control is to maintain the levels of both
steam generators at 20.7 ft throughout the entire transient. The steam generator

pressure control setpoint is to remain at 965 psia for both steam generators
throughout the entire transient.

This test will also consist of three separate phases:

Phase 1 - Test Initiation Through Flow Interruption

Phase 2 - Hold Period

Phase 3 - Loop Recovery Attempts Through Test Termination

2.4.4.1. Phase 1 - Test Initiation Throuah Flow Interruption

Subsequent to attaining an approximately constant pressurizer inventory, i.e.,
the makeup flow is approximately balancing the letdown flow (plant equivalent
flow of 45 gpm) and primary system contraction, begin increasing the letdown flow
and simultaneously increase the makeup flow such that the pressurizer inventory
remains essentially constant. Letdown flow is to be maintained within plant

equivalent Timits of 45 gpm and 140 gpm. Makeup flow is also to be maintained
within the plant equivalent maximum of 190 gpm.




Since the makeup flow must account for both fluid contraction and the primary
system inventory loss as a result of the letdown flow, the loop operator is to
attempt te obtain as high a letdown flow as possible, i.e., the resultant letdown
flow may be less than the maxinum allowed letdown flow, while attempting to
maintain a constant pressurizer inventory by the addition of makeup flow.

As the transient progresses the effect of the fluid contraction (caused by the
core power ramp) should diminish. Therefore, in an attempt to minimize operator
actions and loop perturbations, the loop operator should attempt to attain the
highest Tetdown flow as possible and maintain pressurizer inventory essentially
constant as quickly as possible after test initiation. The control valve
positions for letdown flow should then remain fixed and adjustments should only
be made to the makeup flow for maintaining an approximately constant pressurizer
inventory. The results of Test 4NCSM1 should be used to estimate the expected
primary system contraction and aid in establishing the letdown flow rate for test
4NCLMI .,

This method for inventory control should continue through primary loop flow
interruption or when intermittent primary loop flow is observed.

2.4.4.2. Phase 2 - Hold Period

Subsequent to flow interruption the Toop operator should continue to attempt to
maintain an essentially constant letdown flow and maiitain an essentially
constant pressurizer inventory by means of makeup flow. The Phase 2 Hold Period
may be terminated at the discretion of the test engineer when the trend in the
test facility response has been established.

2.4.4.3. Phase 3 - Loop Recovery Attempts Through Test Termination

Upon completion of the hold period (Phase 2) an assessment of the capability of
makeup to maintain a constant pressurizer level with the present letdown flow
and two hot leg U-bend high point vents (HPV) open is to be performed. Adjust
the Tetdown flow as necessary such that when two HPVs are open the summation of
the letdown flow and the flow through the HPVs 's less than the maximum makeup
flow capacity (190 gpm plant equivalent). If an adjuscment in the letdown flow
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is required, attempt to maintain a constant pressurizer inventory by simul-
taneously adjusting the makeup flow. When the desired .<tGown flow is attained
no further letdown flow adjustments are to be performed until all the HPV
actuations, as described below, are completed.

It should be noted that the above may not be attainable. Preliminary estimates
indicate that the maximum makeup flow may be sufficient to maintain a constant
pressurizer inventory with one HPV open and minimum letdown fiow. Therefore,
when performing Phase 3 of this test the maximum makeup flow limitation is
rescinded. The makeup flow may be increased sufficiently to maintain a constant
pressurizer inventory with two HPVs open and a relatively high letdown flow
(greater than 70 gpm plant equivalent). The makeup flow should be injected into
the A2 cold leg, however, if flow limitations occur in the injection line a
second injection iine into the Al cold leg may be opened. Although this
procedure exceeds the maximum makeup flow, it does attempt to simulate the start
of a second HPI pump in an actual plant.

Phase 3 of this test is to be initiated when the desired letdown flow is attained
and when the pressurizer inventory is being maintained approximately constant
by means of the makeup flow. At this time open the hot Teg U-bend HPV in loop
B and adjust the makeup flow to maintain an approximately constant pressurizer
inventory. Observe the primary system response for approximately 30 minutes.
Then open the hot Teg U-bend HPV in loop A (both HPVs are now open) and adjust
the makeup flow to maintain an approximately constant pressurizer inventory.
Observe the system response for approximately 30 minutes. Then close the hot
leg U-bend HPV in Toop B and adjust the makeup flow to maintain an approximately
constant pressurizer inventory. Again observe the system response for
approximately 30 minutes.

Upon completion of the above close the hot leg U-bend HPV in loop A, maximize
the letdown flow (140 gpm plant equivalent flow) and adjust the makeup flow to
maintain an approximately constant pressurizer inventory. Subsequent to the
above consideration should be given to performing another reactor coolant pump




start similar to that performed for Test 4NC.'V], however, letdown and makeup flow
are to remain active.

2.4.5. Acceptance Criteria

At least ten minutes of steady-state data is recorded at the specified
initial conditions.

Test initiation is performed as specified.

The specified boundary system control settings are maintained throughout
the test.

The primary system remains subcooled through Phase 2.

Test termination is performed as specified.

A1l critical instrument data as specified in Appendix F reference 2 is
recorded at intervals of ten seconds or less throughout the test.




Jable 2.4. Test 4NCLM] Initial Conditions

Tolerance 1
Quantity Specification (+/-) Derived

Primary Pressure 2175 psia 25
RC Pump Inlet Temperature 540F
Hot Leg Inlet Tempergture S5T7F
Core Exit Subcooling 71F
Core Power (3)
Pressurizer Level (4)
Surge Line Temperature Hot Leg Temp., F
Letdown Flow 45 gpm Plant Equivalent -~
Makeup Flow (5)
RVVVs Auto./Indepen. (0.125 psi

Open/0.04 psi Close)
Secondary Pressuge 965 psia
Secondary Levels . 20.7 ft
Main Feedwater Temperature
Fluid Temperature Gradients OF/hr
Metal Temperature Gradients OF/hr

Pa—
WO~ S WM ~

— et e e s
o B PO -

lDerived quantities are for information only and should not be interpreted as
control specification.

2The primary system with the exception of the pressurizer is to be subcooled.

The value in the table corresponds to the subcooling attained with a hot leg
inlet temperature of 577F.

3The core power is to be adjusted to obtain a hot leg in’et temperature of
approximately 577F. DO NOT augment core power.

4The pressurizer level is to be sufficiently high to provide primary system
inventory control when makeup and letdown are active. The pressurizer level
is to be maintained at approximately this level throughout the entire test.

The pressurizer heaters are to be active throughout the entire test and should
be set to control at 2175 psia.

5The makeup flow is to be adjusted to maintain the pressurizer level appro-
ximately constant.

6A11 levels are relative to the secondary face of the lower steam generator tube
sheet .

Themain feedwater temperature is effected by heat losses in the MIST secondary
system. This is the expected main feedwater temperature for the low power
levels and secondary flow rates at which this test will be performed.




3. PERFORMANCE

The acceptability of each of Test 4NCSM1, 4NCVV], 4NCHL1, and 4NCLM] was
determined by examining toth the conduct of the test and the performance of the
measurement systems. The acceptance criteria for each test was defined in the
corresponding test procedure which was based on MIST Natural Circulation Test
specifications. Any condition, action, or measurement that did not meet the
acceptance criteria was evaluated for its impact on test acceptability. The
tests reported herein are only those that were determined to be acceptable. Any

specific deviations of these tests from the acceptance criteria are described
in this section.

The review of test conduct included the following checks for each test:

® System conditions and stability just prior to test initiation

® Test initiatinn actions

@ Test termination criteria

The impact of out-of-specification conditions or actions was assessed. The

deviations of those tests that were determined to acceptable are described in
Section 3.1.

The following pre-test and post-test data qualification checks were performed
for each test:

® The acquisition of the critical measurements

e The operation of the measurement systems within their calibrated range
of operation

@ Self-consistent measurements, considering both comparabie measurements
and derived quantities
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The appropriate measurement uncertainties were used to assess the individual
measurements. The impact of the individual out-of-specification conditions was

assessed. The deviations of the critical measurements of those tests that were
determined to acceptable are noted in Section 3.2.

2.1. _Conduct

A1l the tests specified were acceptable as performed. A1l initial conditions
were acceptable except as specified in section 3.1.1. Test initiations and
terminations were acceptable. Operation of the control systems and manual

interactions during the test transienis were acceptable for all the tests except
as noted below and discussed in Section 3.1.3,

In Test 4NCSM1, a sticky control valve in the A steam generator steam 1ine caused
the A-SG pressure and main feedwater to oscillate. Consequently, the primary
flow in the A-loop was oscillating by + 110 1bm/hr (14% of current flow rate),

and the A-1cop primary fluid temperatures were oscillating by + 0.4 deg F during
the pre-test steadv state period.

In all tests, ihe core power was acceptably controlled and remained within the
intended power decay curve, except for the first few scans after test initiation.

It is believed the observed deviations did not influence the course of the
natural circulation events.

Ten critical instruments were unavailable, during all tests, without sufficient

backup instrumentation as defined in the test procedure. These instruments

included eight guard heater control differential temperatures, the B-steam
generator downcomer differential pressure (DP) transmitter (only during Test

4NCSM1), and one fluid thermocouple in the A-SG. Approval to continue testing

without the differential temperatures was obtained through PMG transmittal 566,
606, and 716. The absence of the B-SG downcomer differential pressure
transmitter and the A-S5G fluid thermocoupie do not warrant a test repeat.

In Test 4NCHL1, the C4 cold leg venturi reverse flow differential pressure
transmitter (C4DP06) showed significant shift in its zero after the completion




of the test. However, this zero bias was known since the transmitter zero was
recorded for about 35 minutes during the test performance. The readings of
transmitter C4DPO6 were corrected using the recorded zero bias. The overall
uncertainty in the mass flow rate measurement based on C4DP06 was increased to
reflect the shift in the transmitter zero at pre- and post-test conditions.

In Test ANCLM]1, the differential pressure transmitters, which are listed in Table
3.2.3, were brought into service about 12 minutes after the RCP were turned off.
The absence of these instruments during this 12 minutes period does not warrant
a test repeat.

Significant deviation in the secondary mass closure was observed in Tests 4NCVV1,
4NCHL1, and 4NCLM] due to relatively long periods of steam generator inactivity.
During these periods, an offset in the B-SG feedwater measurement (within the
measurement uncertainty) at zero flow was integrated into total feedwater flow,
offsetting the overall mass closure.

3.1.1. Initial Conditions

Initial conditions for the natural circulation tests were defined by the
governing test procedures, ARC-TP-893, -894, -895, and -896. These initial
conditions are repeated in Table 3.1.1 along with the actual values from each
test. A1l initial conditions were met as expected. However, in Test 4NCSMI,
a sticky control valve in the A steam generator steam line caused the A-SG
pressure and main feedwater to oscillate. Consequently, the priwmary flow in the
A-1oop was oscillating by + 11¢ 1bm/hr (14% of current flow rate) and the A-loop
primary fluid temperatures were oscillating by + 0.4 deg F during the pre-test
steady-state period.

3.1.2. Test Initiation
The initiation actions in all the tests were acceptable as performed. A1l four
tests were initiated by triggering the core decay ramp.
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3.1.3. Cont).] During Testing

The performance of the automatic control syst;hs and manual interactions during
the test transients are described in this section. The controls for the core
power, steam generator secondary level and pressure, pressurizer heaters,
pressurizer fluid level, PORV, primary system subcooling, makeup flow, letdown
flow, high pressure injoction, reactor coolant pumps, reactor vessel vent valves,
and vent system performed acceptably for ali the tests in this group except as
noted in the following text.

Core Power

In all tests, the core power was acceptably controlled and remained within the
intended power decay curve, except for the first few scans after test initiation.
In Tests ANCSM1 and 4NCHL1, the actual core power was higher then the desired
power by 1.5-2.5 kW for the first 5 data scans (1 scan = 5 seconds). In Test
4NCVV1, the core power deviation was between 2.5 and 5 kW for the first 7 scans.
In Test 4NCLMI, the core power remained above the intended curve by 2.5 kW for
the first scan and 2.5 kW for the next 6 scans. This core power anomaly was due
to lack of proper tuning of the core power controller. It is believed that the

observed deviations did not influence the course of the natural circulation
events,

Steam Generator Secondary Level Control

The A and B steam generator secondary fluid levels were maintained at the desired
lTevel, 20.7 + 1 ft, during the entire duration of Tests 4ANCSM1, 4NCVV1, 4NCHLI,
and 4NCLM!. However, few isolated deviations were observed in Tests 4NCSM1 and
4NCLM1. The largest of these deviations occurred in Test 4NCSM] when the B steam
generator level dropped below the lower 1imit by 0.3 ft for 14 minutes towards
the end of the test.

Pr ]

Performance of steam pressure control was examined using the steam generator
secondary pressures, SIGPO1 and S2GP01. The steam pressure ir both generators
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was to remain constant at 965 + 10 psia during the entire transient in all tests.
The steam pressure control performance was effected by the primary loop response,

especially during flow reversal in the cold legs and by heat losses in the steam
generators.,

In Test 4NCVV1, the A and B steam generator secondary pressures were maintained

within the control Timits during the entire test, except during the test recovery

period following the activation of the RCPs. In this test, the primary loop flow

remained intact during the entire test supporting the primary-to-secondary heat
transfer in the steam generators.

In Tests 4NCHL1, the A and B steam yenerator secondary pressures continuously
drifted below the allowable control 1imit (955 psia) between 86 and 360 minutes.
In this period, the A and B secondary pressure dropped as low as 830 and 790
psia, respectively. During the test recovery period, the A and B secondary

pressures were restored to 965 + 10 psia after the natura)l circulation was
re-established in the A and B loop.

In Test 4NCLMI, the A and B steam generator secondary pressures dropped below
955 psia shortly after test initiation, and kept dropping until they reached
"537psia at 239 minutes. This pressure d-op was due to ambient heat losses from
the secondary exceeding the primary-to-secondary heat transfer rate.

In Test 4NCSM1, the B steam generator secondary pressure was maintained within

the expected control limits for the entire test. However, the A generator

pressure dropped below 955 psia during the first 50 minutes of the test and

between 270 and 324 minutes. In these perinds, the reduction in the A-Loop

primary flow reduced the primary-to-secondary heat transfer in the A generator
leading to the secondary pressure decrease.

It should be noted that none of the above deviations in the steam generator

secondary pressure was due to a malfunction in the steam generator pressure
controls.




Pressurizer Main Heaters

In all tests, the control of the pressurizer main heaters performed acceptably
as the primary pressure exceeded the setpoint of 2175 psia. Occasionally, the
main heater power was manually controiled to prevent the differential pressure
between the steam generator primary and secondary from exceeding 1500 psia. In
Tests 4NCSM1 and 4NCHL1, the pressurizer main heaters were tripped off on low
pressurizer level (19.4 ft) at about 271 minutes for Test 4NCSM1 and 250 minutes
for Test 4NCHLI.

Pressurizer Fluid Level

The pressurizer fluid level was maintained approximately constant (between 24
and 25.6 ft) during Test 4NCLMI by balancing makeup and letdown flows, as
intended. No control actions were required for the other tests.

Pilot-Operated Relief Valve (PORV)

In Tests ANCSM1, 4NCVV1, and 4NCHL] primary pressure remained below the 2350 psia
actuation pressure and the PORV remained closed, as required. During Test 4NCLM]
the primary pressure remained below 2350 psia, but the PORV was manually actuated
to prevent the differential pressure between the steam generator primary and
secondary from exceeding the generator design pressure 1imit, 1500 psid.

Primary System Subcooling
In all tests, the primary sysiem remained subcooled during the test duratior,
as expected.

Makeup Flow Control

In all tests, except 4NCLMI, the makeup flow was not to exceed 12 1b/hr during
the pressurizer fill. But if the pressurizer level had dropped below 19.4 ft
and more flow was needed to quickly restore the pressurizer inventory, the
allowable makeup flow was to be 116 1b/hr. As for Test 4NCLM1, the makeup flow
was not to exceed 116 1b/hr, and HPI flow into the Al & A2 cold legs was to be
used to supplement makeup flow during the HPVs opening.
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In Test 4ANCSMI, makeup flow was initiated at about 267 minutes at a flow rate
which exceeded 12 1b/hr in an attempt to restore the pressurizer inventory which
had dropped below 19.4 ft, as expected.

In Test 4NCHL], makeup flow was initiated at about 250 an. 300 minutes at a rate
of approximately 95 1b/hr. As the flow was initiated, the makeup flow exceeded
the maximum allowable limit (116 1b/hr) for several data scans.

In Test 4NCLM1, makeup flow was used to balance the leldown flow. When the hot
leg high point vent were activated the makeup flow was increased to its maximum
allowable 1imit (116 1b/hr), and then the A2 cold leg HPI flow was used to help
maintain the pressurizer inventory constant. The HPI flow was metered by the
same Micro Motion flowmeters as the letdown flow, HPMMO3 and HPMMO5. HPMMO3 was
overanged hetween 126 and 230 minutes, but HPMMOS was available for backup.

Makeup flow was not used in Test 4NCVVI.
Letdown Flow Control

In all tests, the letdown flow was maintained at or below 85 1b/hr as intended,
except for Test 4NCLMI. In this test, the letdown flow exceeded the 85 1b/hr
maximum allowable flow by about 3 1b/hr between 256 and 272 minutes. During this
period the letdown flow was intentionally maintained at 85 1b/hr.

High P re Indecti (HPL) F
The high pressure injection system was only used in Test 4NCLM1 during 126 and
230 minutes. In this period, HPI flow was injected in the A2 cold leg to

supplement the makeup flow system in order to maintain a stable pressurizer fluid
inventory. The HPI flow used was below that of head/flow characteristic curve.

r P ion

The C1 and C4 reactor coolant pumps were used in all tests, except 4NCSM], to
help restore natural circulation in the primary loop, as intended.
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Reactor Vessel Vent Valve Control

The reactor vessel vent valves (RVVVs) were set to automatic "“independent”

control mode for all tests except 4NCVV]1. In this test, the RVVVs were manually
closed, as intended, for the entire test.

In Test 4NCSM1, the RV'. Vs remained open (automatic control) throughout the entire
test. In Test 4NCL¥MI, all RVVVs remained opened from test initiation until the

RCP pumn bump, at which time the RVVVs were manually closed until test
termination.

In Test 4NCHL], all RVVVs r~~-~ined opened until test recovery. At about 337
minutes, the Al RVVV automatically closed as the differential pressure between
the reactor vessel and the RV downcomer dropped below 0.045 psid. The A2, Bl,

and B2 RVVVs were manually closed at about 345 minutes, as expected, in
preperation for the RCP pump bump.

Leak and Vent System Control

For all tests in this group, all leaks and vents were actuated in accordance to
the test procedure. None of the leaks or vents were actuated in Test 4NCVVI

because the natural circulation up the hot legs was maintained throughout the
entire test.

The orifice sizes of the vents that were utilized in the natural ciculation
tests are:

HPVs: 0.0155 inches, throat I.D.
PORV: 0.0400 inches, throat I.D.

The instrument fluciuation at zero flow for the HPVs and PORY flow meters were
less than + 0.75 and + 1.0 1b/hr, respectively.

Mass Closure
Primary mass closure (Pc) is defined as the ditference between the calculated

mass (using levels) and the indicated mass (using weigh tank measurements for
the letdown,vents, and time integration of makeup or HPI flow) divided by the




accumulated total mass of makeup or HPI added (HPMM25). Only in Test 4NCLM] a
cignificant amount of fluid was transferred across the primary loop boundary.
The (Pc) in Test 4NCLM] was 6.0%.

Secondary mass closure (Sc) is defined as the difference between the calculated
mass (using levels) and the indicated mass (using the time integration of feed
and steam flow rates) divided by the accumulated total mass of feedwater added.
The secondary mass closure for the natural circulation tests are:

Test S¢
4NCSMI] 0%
4NCVVI -14%
4NCHL] -32%
4NCLM] -32%

The deviation in the secondary mass closure was larger than usual due to
relatively long periods of steam generator inactivity. During these periods,
an offset in the B-SG feedwater measurement (within the measurement uncertainty)
at zero flow was integrated into total feedwater flow, increasing the value of
SLML21.

A1l primary and secondary mass balance calculations were performed at the end
of data acquisition. For reference, the governing relations are as follows:

pc o PLML20 - PLML22
HPMMZ 5

sc o SLML2U - SLML21
SFOR30 + SFOR31

x 100

x 100

where
PLML20 = Total primary mass using levels
PLML22 = Total primary mass using boundary flows

HPMM25 = Integrated total HPI flow
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SLML20 = Total secondary mass using levels

SLMLc] = Total secondary mass using boundary fiows

SFOR30 = Integrated A-SG total feedwater flow

SFOR31 = Integrated B-SG total feedwater flow
3.1.4. Termination

Test termination activities for all the tests in this group were specified to
be based on recording 30 minutes of steady-state data after re-establishing
natural circulation flow in both loops.

A1l tests in this group were terminated as specified in the technical procedure.

3.2. Instruments

Each of the four natural circulation tests used a common set of instrumentation.
The critical instruments in this set are defired in Table 3.2.1. The measure-
ments obtained from the instrumentation were checked to assure acceptable
operation during the tests. Checks on instrument measurements were performed
by computer-automated data qualification activities and manual examination of
the analysis plots. Data qualification activities for each natural circulation
test were performed at steady-state pre-test initial conditions, during the test
transient, and after test termination as summarized below:

—1ime of Performance _
Before During After

Check Purpose Test Test Test

NOREAD Definition of instruments not X X X
acquiring data

ANDCHK Calibration check of the Analogic X X
data acquisition system

ZEROS Zero check of instrument transmitters X X

RANGE Validity of instrument measurement X X X
as compared to expected range

CONSIS Instrumen* and derived quantity X X

consistency check



As a result of these manual and automatic data qualification checks appiied to
the measurements and derived quantities in the test data base, the critical
instruments identified in Tables 3.2.2 and 3.2.3 were determined to be invalid
during all or part of Tests 4NCSMI, 4NCVV1, 4NCHL1, and 4NCLM1. In most
instances, there was sufficient redundancy in the group of critical instruments
s0 that the individual failure did not violate the requirements of the Critical

Instrument List. In the other cases, the existence of the failed critical
instrument did not wirrant test repeat.

The critical instruments that were not available during all of the natural
circulation tests are listed in Table 3.2.2. Ten critical instruments were
unavailable without sufficient backup instrumentation as defined 'n the test
procedure. These instruments included eight guard heater control differential
temperatures, the B-steam generator downcomer differential pressure transmitter
(only during Test 4NCSM1), and one fluid thermocouple in the A-SG.

Approval to continue testing without the differential temperatures was obtained
through PMG transmittal 566, 606, and 716. The absence of the B-SG downcomer

differential pressure transmitter and the A-SG fluid thermocouple do not warrant
a test repeat.

In Test 4NCSM1, the control differential temperature for guard heater zone 3 was

not available for the last 78 minutes of the test. In this period, the guard

heater power was automatically turned off. This anomaly did not impact the test
performance, especially since 1. occured during the test recovery period.

Also in Test 4NCSM1, about 50 spikes were observed in the readings of PZTCO2

(pressurizer surge line horizontal temperature). These spikes were faulty

temperature measurements. Other than these spikes, PZTC02 readings wers as
expected in comparison to other thermocouple readings in the pressurizer.

Besides, PZTC02 did not show any abnormalities in Tests 4NCVV1. 4NCHL]
4NCLM] which were performed later.

, and
These spikes do not warrant a test repeat.

Table 3.2.3 lists the differential pressure transmitters in the primary loop
which were valved out of service during the RCP forced circulation in Tests




4NCVV], 4NCHL1, and 4NCLM] to avoid overanging and damaging them. The periods
during which these instruments were not available are:

Period - Minutes

Test from 1o
4NCVV] 100.0 132.7
4NCHL] 344.9 380.3
4NCLM] 238.2 282.7

It should be noted that in Test 4NCLM]1 the differential pressure transmitters,
which are listed in Table 3.2.3, were brought into service about 12 minutes after

the RCP were turned off. No significant events took place during this 12 minutes
period.

Prior to and after completion of the test, a "zerc" reading was obtained for all
differential pressure and pressure transmitters, mass flowmeters, weigh tank load
cells, and reactor core voltage and current measurements. The critical
‘nstruments that failed the zero check are listed in Table 3.2.4. The magnitude
of the failure was small enough such that measurement performance was not
degraded to a condition that warranted test repeat. However, one instrument
(C4DP06, C4 cold leg reverse flow venturi DP) showed significant shift in 34s
zero after the completion of Test 4NCHL1. The magnitude of the zero bias was
known since the transmitter zero was recorded prior to test initiation, during
the test performance and after the test was terminated. The C4DP06 transmitter
zero was recorded for a period of 35 minutes during the test when the reactor
coolant pumps were running. During the reactor pump bumps almost all primary
differential transmitters were zeroed to avoid over-ranging them. In computing
the reverse flow in the C4 could leg, the readings of transmitter C4DP06 were
corrected using the zero bias that was recorded during the test. The overall
uncavt inty in the mass flow rate measurement based on C4DP06 should be increased

by about 120 1b/hr to reflect the shift in the transmitter zero at pre- and post-
test conditions.




The instrumentation performance during these tests was fully acceptable based
upon this check.
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Table 3.1.1. Test Initial Conditions
. Actual Values
Parameter VIAB Units Desired Tolerance A4NCSM1  4NCVV]  4NCHL1 _ @NCLMI
Primary pressure RVGPOl1 psia 2175. + 25 2173.9 2175.0 2178.6 2175.6
Core power RVWMZ0 k¥ - 58.95 74.5 59.0 62.3
Pressurizer P7LV20  ft 27.,** (25. for + 5 26.8 26.8 26.9 25 "2
Tevel ANCLMI) and and and and
steady steady steady steady
Pressurizer PZTCO1 deg F HITCII + 5 2.6 4.8 4.7 2.7
surge Tine fluid
temperature
Fluid/Metal i deg F Varying less accept accept- accept- accept-
temperatures than 5 F/hr :le able able able
(Fluid), than 10
F/hr (Metal)
over a 30 minute
interval
Hot .eq Iniet HIRTOl deg F 577 il 577.8 578.2 576.9 576.1
Temperature MIRTO1 578 .5 578.8 577.6 576.6
RCPs Intet C1Ei01 deg F 540 ke 540.2 541.0 539.6 540.5
Temperature C2%701 544.7 541.3 540.7 540.9
£3x701 540.3 541.2 540.6 540.7
{4RT01 540.7 541.2 239.7 540.9
Subcooi ing RVRF20 deg F 71 atte 69.3 68.5 70.1 71.0
#1TC1
Letdown Flow ¥2** "2 1b/hr 28. (only Test + 2 KA NA NA 27.3

ANCLMT )




Table 3.1.1. TJest Initial Conditions {Cont'd)

~_Actual Yalues

System Parameter VIAB Units Desired Tolerance 4NCSMI ANCYYI 4NCHLI 4NCLE]

Secondary Pressure SIGPO1  psia 965 + 10 966.38 965.9 964 .8 965.0
S2G6PO1 965.34 965.8 965.3 966.9

Level SILV20 ft 20.7 1.0 20.3 20.1 20.3 19.9
S2L 720 20.0 19.9 20.1 20.3

Feedwater SFRT03 deg F 420 10 425.4 a24.7 4179 4]3.0
temperature SFRT04 421.9 423.5 B ) 410.]

*The core power must be adjusted so the hot ieg inlet temperature (HIRTOI and HZRT01) are about 577 ¢+ 10
deqg F.

s*pressurizer level must be varying less then + 0.6 feet per hour over the same time inter al used for
primary fluid temperatures.

s*+The following fluid and metal temperature measurements were used to define steady stare (minimum time
interval of 30 wminutes without test operator manual control adjustments):

Fluid: HIRTOl, HZRTO1, PIRTO2, PZRTO2.
Metal: PIMTOl, P2MTO1, CIMTO4, C2MTO4, C3MTO4, C4MTO4, RVMT24, RVMT2S.

**#2Those quantities were for informatior only and were net be used as control specifications




Table 3.2.1. Critical Instruments for the NC Test Series

Lomponent ____ Instrument Type Critical Instrumenis
Reactor Ammeter RVAMO 1
Vesse) DP Transmitter RVDPO] -09

Diff. Temperature RVDTO1-04,23

Pres. Transmitter RVGPO1

Limit Switch RVLSO01-04,09

Metal Thermocouple RVMTO0]-04 23
RVMTO05-2¢ (12 of 18)
RVMT24,25

Fluid Thermocouple RVTCO1,02,RVTC16-20
RVICO3-75 (9 of 13)
RVIC21-23 (2 of 3)

Voltmeter RVVMO]
Hot Legs DP Transmitter H1DPO1-15

H20PO1-16

Diff. Temperature H1DTO1-04
H20T01-04

Limit Switch HILSO01,H2LS01

Metal Thermocouple HIMTO1-04,h2MTO01-04

RTD HIRTO1 (or HITCO1)

H2RTO1 (or H2TCO1)
Fluid Thermocouple HITCO2-09 (5 of 8
H2TC02-09 (5 of 8
HI1TC10-12 (] of 3
H2TC10-12 (1 of 3
HITC13-19 (5 of 7
H2TC13-19 (5 of 7

SG-A DP Transmitter P1D0P04,S1DPO1,03
Diff. Temperature S1DT01-05
Pres. Transmitter P1GPO1,S1GPO]

Limit Switches S1L502,811L503
Metal Thermocouple SIMTO1-05, PIMTOl
RTD P1RTO1,02

Fluid Thermocouple P17C01-03,13-16,23-26,33-36 (10 of 15)
P17C18,27,28,37,38 (3 of §)
P17C09-12,19-22,29-32 (8 of 12)
S17C01,02,26 (2 of 3)
SiTC03-12 (7 of 10)
S1TC13-23,25 (8 of 12)
S17C24
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Iable 3.2.1. Critical Instruments for the NC Test Series (Cont’'d)

Lomponent _____Instrument Type Critical Instrumeets
SG-B DP Transmitter P2DP06,S2DP01,S20P12
S20P02-11 (5 of 10)
Diff. Temperature $20701-05
Pres. Transmitter P2GP0O1,S2GPO)
Limit Switches $21802, S2LS05
Metal Thermocouple S2MT01-05, P2MTO
RTD P2RT01,02
Fluid Thermocouple P27C01-13 Y of 13&
P2TC14-28 10 of 1
P2TC29-43 (10 of 1%
P2TC44-53 (7 of 10)
$27C01-08,55 (6 of 9)
$27TC09-19 (7 of 11)
527C20-33,54 (10 of 15)
S2TC34-53 (13 of 20)
Cold Legs DP Transmitter C1DPO1,C2DPO1
CnDP02-04,06-08 (n=1,2,3,4)
C20P09
Diff. Temperature CnDT01-03
Limit Switches CnlLS03,04,06
Metal Thermocouples CnMT01-03
RTD CnRT01,02
Fluid Thermocouple CnTCO2
CnTCO3-06 (3 of 4)
CnTCO7-10 (3 of 4)
CnTC11-14 (3 of 4)
RV Downcomer DP Transmitter CDPU1,02,04-08
Diff. Temperature UCDT01-03
Metal Thermocouple DCMTO1-04
RTD DCRTO]
Fluid Thermocouple DCTCO1-04,
DCTCO5-12 (5 of 8)
DCTC13-40 (19 of 28)
DCTC41-46 (4 of 6)
Pressurizer DP Transmitter PZDPO1,02
Diff. Tumperature PZDT01,03
Pres. Transmitter PZGPO]
Metal Thermucouple PZMT0!-03
RTD PZRTO1 (or PZTCO9)
FPuid Thermocoun'e PZTC01,02,09
PZTC04-08 (4 of §)
Wattmeter PZWMO4



Table 3.2.1. Critical Instruments for the NC Test Series (Cont'd)

Component

Instrument Type

Critical Instruments

HP]

Makrup

Single-Phase
Leak System

Two-Phase
Vent System

Letdown
System

Gas Addition
System

Feedwater
Circuit

Steam
Circuit

Miscel.

DP Transmitter
Flowmeter
Fluid Thermocouple

Flowmeter

Load Cell

Limit Switch

Fluid Thermoccuple
Flowneter

Load Cell

Limit Switch

| cowmeter

Fluid Thermocouple

Flowmeter
Fluid Thermocouple

DP Transmitter
RTD

DP Transmitter
RTD
Fluid Temperature

RTD Shunt
Reference Oven Tamp

HPDPO1
HPMMC1 - 05
HPTCO]

HPMMO3

VILCOl,02*
ViLS01,02,07
ViTCoz
VIMMO]

v2LCol -
V2LS03-
VZ2MMO ]
v2ichl-

VZMMO0?2

GATCO2-04 (1 of 3)

SFDPO1-06
SFRT03,04

SSDPO1-06
SSRT01,02

SSTCO01,03 (1 of 2) SSTCOZ,04 (1 of 2)

MSRFOI
MSTCO1-07

“These instruments were not used in the natura)l circulation tests.
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Instrument

Description

Backup
ANCSMI _ONCVVI 4NCHLI 4NCLMI  Available

C10701
ciproez
C1D703
€20703
€30703
C4DT01
C4b703
H1DTO1
PITCO9
P1TCIO
PITCII
PITCI2
PITC1A
P1TCIS
P1TC16
PITCI18
P1TC30
P1TC35
P21C01
P2iC12
P21C29
P2TC30

Guard heater zone
Guard heater zone
Guard heater zone
Guarc heater zone
Guard heater zone
Guard heater zone
Guard heater zone
Guard heater zone
Generator A primary
Generator A primary
Generater A primary
Generater A primary
Generator A primary
Generator A primary
Generator A primary
Generator A primary
Generator A primary
Generator A primary
Generator B primary

W e WW WO e

Gen-ator B primary
Generator B primary
Generator B primary

control-loop Al 2.60
control-loop Al 17.3
control-loop Al 23.46
control-loop Bl 23.46
Controi-loop A2 23.48
control-loop B2 2.59
control-Toop B2 23.47
control-loop Al 29.63
fluid temperature at
fluid temperature at
fluid temperature at
fluid temperature at
fluid temperature at
fluid temperature at
fluid temperature at
fluid temperature at
fluid temperature at
fluid temperature at
fluid temperature at
fluid temperature at
fluid temperature at
fluid temperature at

51.06 ft
50.56 ft
50.06 ft
49.06 ft
43.06 ft
39.06 ft
35.06 ft
23.06 ft
50.58 ft
39.08 ft
50.50 ft
49.50 ft
29.25 ft
29.25 ft

xnnxunnxxxuxnnxxxx;nxx

X
i
X

P e e D D M DK M D e D M O DE M M e »2

X
t
X

PO D M DM e B P D M DK M B D e DK e

Table 3.2.2. Critical Instruments sot Available for the Natural Circulation Test Series

L

B M O I M M M e M M D D DC M M e Du >

-

RiascB LR

YES
YES
YES
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Table 3.2.2. Critical Instruments Koy Availabl r 1 T «

Backup
Instrument Description ANCSM]  ANCVV] 4NCHL] ONCLM] Available
P27C32 Generator B primary f,: 3 temperature at 26.25 ft X X X X YES
pP27C38 Generator B primary fluid temperature at 14.25 ft X X X X YES
P27C40 Generator B primary fluid temperature at 14.25 ft X X X X YES
RVDTO1 Core inlet guard heater control LT 1.88 X X X X -
RVTCO7 Core fluid temperature (mid bundle) at 13.15 ft X X X X YES
S1DPO3 A-56 downcomer level DP 0.45 to 32.16 ft X NO

Xinstrument was not available during a test.

*Project Management Group approval for a modified quard heater control scheme that did not use these
instruments was obtained through PMG Transmittal Nos. 566, 606, and 716.

**This instrurment failed during the last 78 minutes of Test 4ANCSMI.

***These TCs are part of PITC09-12, 19-22, 29-32, where 8 1 s out of 12 are required. Therefore, one TC has
no backup.



Table 3.2.3. Critical Instruments Not Available During the Pump Bumps

These instruments were not available for part of the test. The Differential
pressure transmitters would have been overranged and possibly damaged by the high
differential pressures during the the RCP forced circulation, so they were valved
out of service to prevent damage.

Instrument Description
C1DPO3 Venturi low-range forward flow DP -0.52 to 0.58
C10P04 Venturi Mid-range forward flow DP -0.52 to 0.58
C10P06 Venturi Hi-range forward flow DP 0.58 to 1.69
C10PO7 Across RCP-Loop A' 23.8 to 24.30
C10P08 RCP to DC nozzle 24.30 to 20.94
C2DP03 Vanturi low-range forward flow DP -1.51 to 0.60
C20P04 Venturi Mid-range forward flow DP - 1.5]1 to 0.60
C2DP06 Venturi Hi-range forward flow OP 0.30 to 1.70
C20P07 Across RCP-Loo? Al 23.82 t, 24.30
C20P08 RCP to DC nozzle 24.30 tr 20.94
C20P09 Cold leg nozzle DP 24.3% to 15.53
C30P03 Venturi low-range forard flow DP -0.51 to 0.59
C3DP04 Venturi Mid-range forward flow DP -0.51 to 0.59
C3DP06 Venturi Hi-range forward flow DP 0.59 to 1.70
C3DP0O7 Across RCP-Loop Al ¢3.8 to 24.21
C30P08 RCP to DC nozzle 24.2]1 to 20.94
C4DPO3 Venturi low-range forward flow DP -0.53 to 0.59
C4DPO4 Venturi Mid-range forward flow DP -0.53 to 0.59
CanpPo6 Venturi Hi-range forward flow DP 0.59 to 1.70
c4DpPO? Across RCP-Loo? Al 23.8 to 24.32
C4DPos RCP to DC nozzle 24.32 to 20.94
DCDPO3 Downcomer circumferential DP & CL 20.94
DCDPO4 Venturi DP-HI flow range 5.41 to 6.79
DCDPOS Venturi DP-MiD flow range 5.41 to 6.79
DCDPO6 Venturi DP-low flow range 5.4]1 to 6.79
DCOPO7 Venturi DP-reverse direction 4.04 to 5.41
DCDPO8 Lower Downcomer lower-plenum DP 1.54 to -1.03
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Table 3.2.3. Critical Instruments Not Available Dyring the Pump Bumps (Cont’'d)

Instrument _Description
H1DPO1 Hot leg nozzle to U-bend DP 20.94 to 66.65
H1DPO2 Hot leg narrow range DP 20.94 to 23.5]
H1DPO3 Hot leg narrow range DP 23.51 to 27.92
H1DPO4 Hot leg narrow range OP 27.92 to 30.20
H1DPOS Hot 1.g narrow range DP 35.20 to 37.47
H1DPO6 Hot leg narrow range DP 42.48 to 44,73
H1DPO? Hot leg narrow range DP 49.76 to 52.0)
H1DPOB Hot leg narrow range DP 57.70 to 62.59
H1DPO9 Hot leg narrow range DP 62.59 to 64.83
H1DP10 Hot leg narrow range DP 64.83 to 66.65
H1DP11 Hot leg narrow range DP 64.83 to 66.65
H1DP12 Hot Teg narrow range DP 62.57 to 64.83
HI1DP13 Hot le) narrow range DP 53.10 to 62.57
H1DP14 OTSG-A inlet to U-bend DP 53.10 to 66.65
H2DPO1 Hot leg nozz ' to U-bend DP 20.92 to 66.61
H2DPO2 Hot le, narrow range DP 20.92 to 23.50
H2DPO3 Hot leg narrow rance DF 23 €2 to 27.89
H2DP04 Hot leg narrow range DP 27.89 to 30.14
H2DPOS Ho’ leg narrow range DP 35.17 to 37.43
H2DP06 Mot leg narrow range DP 42.44 to 44.69
H2DPO7 Hot leg narrow range DP 49.72 to 51.98
H2DPO8 Hot leg narrow range DP 57.68 to 62.56
H20P09 Hot leg narrow range DP 62.56 to 64.81
H2DP10 Hot leg narrow range DP 64.8] to 66.61
H2DP: | Hot leg narrow range DP 64 .81 to 66.61
YeOP12 Hot leg narrow range DP 62.56 to 64.8]
H20P13 Hot leg narrow range DP 53.09 to 62.56
H20P14 OTSG-B inlet to U-bend DP 53.09 to 66.6!
H20P16 Hot Teg nozzle DP 16.77 to 23.50
RVDPO1 Overall vessel fluid DP -1.03 to 29.00
RVDPO2 Upper core fluid DP14.49 to 16.77
RVOPO3 Core top to hot leg nozzle DP 16.77 to 21.25
RVDPO4 Hot leg to NVVWV 1ine fluid DP 21.25 to 24.15
RVDPO6 DP control for RVVV 1
RVDPO7 DP control for RVVV 2
RVDPO8 CP contral for RVVV 3
RVDPOQ DP control for RVVV 4
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Table 3.2.4. Instrument Zero Offset

Allowable Uncertainty Deviation Beyond
in Zero Reading Allowable Uncertainty

YTAB (#/- mVolts) (Volts) (Engineering Units)

C10P06
C4DPO3
C4DPO6

psid
psid
psia
4NCYV] C4DPO3 psid
4NCHL ] C1DPO6

C4DPO3

C40P06

psid
psid
psid

NCLM]  C4DPO3
Post-Test
4NCSM1  C4DPO3

HPMMO 2
HPMMO 5

o OO0 o o0 O

psid

0.0029 psid

no B&oum
oo
o >~
—

.6 T1b/hrwe

4NCYVI C4DPO3
HPMMO |
HPMMO3
VZNMO 1
V2ZMMO2
VZMMO3

4NCHL] C4DPO3
C4DPO6
SFDPO6
HPMMO3
HPMMO5
V2MMO2
V2MMO3

P=3

.0028 psid

e 5 % % 2O

.0029 psid
.0135 psid
.0458 psid
.54 1b/hr
.08 1b/hr
.20 1b/hr
.62 1b/hr

O BRONAWSD BB O S

4NCLM] C4DPO3
C4DP06
HPMMO 2
V2MMO2
VZMMO3

0036 psid
0213 psid
-0.475 ]bfhr
-0.23 1b/hr
.31 1b/hr

PR NWD DO ND NEOBOW

o oo
" ' L . ’
OO0 0000000




Taiie 3.2.4. Instrument Zero Offset (Cont’d) 4

Allowable Uncertainty Deviation Beyond
in Zero Reading Allowable Urcertaint
-lest VIAR (¢/- mNolts) {Volts) Ansmdmﬁm.m "
Post-Calibration After All Tests

vaLeol 0.85 mv offset 0.02 1bm ,

*These instruments were not used in the test indicated.

**These instruments had backup available.
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4. OBSERVATIONS

The intent of the MIST Natural Circulation Tects was to determine if the MIST
facility exhibits phenomena similar to those observed during actual plant natura)
circulation events and to determine the effect of selected parameter changes on
natural circulation in MIST. The MIST tests were expected to provide insight

into the better understanding of natural circulation and interruption at low
decay heat levels in an operating plant.

The phenomena observed during various plant natural circulation events was a
reduction of the fluid temperature in one cold leg of a loop to a value that is
less than the saturwcion temperature of the steam generator secondary in that
loop while the other cold leg fluid temperature appeared to remain at or near
the steam generator secondary saturation temperature. This phenomena did occur
both in ¢ ¢ Toop and both loops (see Appendixes A, B, and C).

The phenomena in MIST apparently occurs when an insufficient amount of natural
circulation driving head exists to maintain primary loop natural circulation (up
the hot legs) and a flow path via the reactor vessel veat valves is established.
This flow path causes back flow i.e., the flow cirection in one cold leg is
backwards w . ile the flow direction in the other colg leg of the same loop is
forward. The decrease in the cold leg fluid temperature occurs in the cold leg
that experiences back flow and appears to be caused by the heat losses in the
upper regions of the cold leg suction pipe and the reactor coolant pump.

The MIST natural circulation tests were initialized at essentially identical
primary and secondary systom conditions. Differences in the boundary conditions
were utilized for the four tests as discusse) in the following sections. The
tests were initiated in the same manner, i.e., a power ramp was used which was




similar to that in the TMI-] test. The conversion factors used for these tests
were:

MIST Core Power 1% Scaled Full Power « 33 KW
MIST Primary Flow 1% Scaled Full Flow = 1660 1bm/hr
MIST Secondary Flow 1% Scaled Full Flow = 138 1bm/hr

The observations from each test are presented in the following sections. Section 1
4.5 provides a detailed discussion of the "cold ley temperature anomaly" and itg
cause as observed in the MIST facility.

4.1. Observations of Test 4NCSMI

During the initialization period heat losses across the reactor coolant pumps

were apparent. This was exhibited by a positive temperature difference of !
approximately 8F between the reactor coolant pump suction and discharge (Figure ?
4.] through 4.4, See 1). Also during the initialization period the reactor
vessel vent valves were open. This can be observed by comparing the summation .
of the four cold leg flow rates and the downcomer flow rate (Figure 4.5, See 1) ]
or by observing that the fluid in the cold legs is heated prior to entering the
core region, 1.e., fluid from the core exit mixes with the fluid entering the
downcomer from the cold legs (Figure 4.6, See 1).

The test was initiated by actuating the core power ramp (Figure 4.7, See 1) while
all other boundary conditions remained constant. The effect of decreasing the
core power was a decrease in the core exit and hot leg fluid temperatures (Figure
4.8, See 1) and resulted in an increase in the core region and hot leg fluid
density. The increase in the fluid density resulted in a decrease in the primary f
loop (up the hot leg) natural circulation driving head, therefore a decrease in
the cold leg tlow rates occurred (Figures 4.9 and 4.10, See 1). The reduction
in primary loog (up the hot leg) flow can be observed by summing the flow rate
in both cold 1:9s of a given loop (Figures 4.11 and 4.12, See 1). Also, by
comparing the summation of the four coid leg flow rates with the downcomer flow
rate, it co. b2 observed that flow from the reactor vessel through the reactor



vessel vent valves exists during the entire test time shown (Figure 4.5). Thus
the reactor vessel vent valves are open.

The reduction in the primary loop flow rate in conjunctien with the heat loss
in the reactor coolant pumps resulted in an ‘n ~eased positive temperature
difference between the reactor coolar’. pump suction and discharge fluid
temperatures (Figures 4.1 through 4.4, See 2). These figures also show that
during this time the reactor coolant pump suction temperature remains approxi-
mately equal to the steam generator saturation temperature while the discharge
temperature decreases. This is indicative of a decreasing cold leg flow rate
with flow in the forward direction and heat losses present between the two
temperature measurement locations.

The existence of a secondary flow path (via the reactor vessel vent valves) in
conjunction with the decrease in the primary Toop (up the hot leg) natural
Circulation driving head and the physically induced natural circulation driving
head in the cold legs (reactor coolant pump heat loss) resulted in back flow in
the A2 cold leg (Figure 4.9, See 2). The forward flow in the Al cold leg
similarly increased (Figure 4.9, See 3) as the back flow from the A2 cold leg
entered the Al cold leg suction pipe. The primary Toop (up the hot leg) flow
rate in each loop can be inferied by suumi~g the flow rate throuch the cold legs
of each loop. The summation of the flow rates through the B cold legs indicates
that primary loop flow exists in the B loop (Figure 4.12, See 2). i'owever, the
summation of the flow rates through the A cold legs indicates that priwary loop
flow interrupted in the A loop (Figure 4.11, See 2). The interruption ¢f the
primary loop flow in the A loop can also be inferred from the decrease in the
steam generator A secondary pressure (f gure 4.13, See 1).

4.1.1. Facility Hold Period

Subsequent to the flow interruption the test procedure required that no operator
actions be performed for four hours (through approximately 250 minutes) such that
the response of the MIST facility could be observed. The transient response is
provided on Figures 4.14 through 4.25.



As can be observed from these figures, the primary system established new steady-
state natural circulation conditions with forward flow of approximately 800 1b/hr
in each B cold leg (Figure 4.17). The Al colu leg flow stabilized at approxi-
mately 1050 1b/hr (forward flow) while the A2 cold leg stabilized in reverse
flow at approxim=te;y 435 1b/hr (Figure 4.16) The fluid contraction (caused
by the reduction in the primary loop fluid temperstures as a result of the core
power decrease) was essentially completed at the end of the fcur hour period.
The stabilization of the primary loop fluid temperatures (Figures 4.18 through
4.24) and relatively constant pressurizer level (Figure 4.25) confirms that the
fluid contraction was essentially complete.

4.1.2. Operator Actions and Loop Recovery Period

Subsequent to the four hour hold period the 1oop operator opened the A 1nop high
point vent (Figure 4.26, See 1) in an attempt to re-establish forward low in
the A2 cold leg. When the A loop high point vent was opened hotter fluid from
the pressurizer was discharged through the pressurizer surge line into the A hot
leg and an increase in the A hot leg temperature was observed (Figure 4.27, See
1). The response of the B hot leg temperature was not effected by the
pressurizer discharge (Figure 4.28, See 1) since the pressurizer surge line is
connected to the A hot Teg. When the A Toop high po‘nt vent was opened the
primary loop flow rate in the A loop initially increased (figure 4.29, See 1)
and the primary loop flow rate in the B loop initially decreased (Figure 4.30,
See 1). Although the primary loop flow rate in the A loop increased at this time
forward flow was not established in the A2 cold leg (Figure 4,31, See 1). Thus
the increase in the A loop primary flow rate occurred via the Al cold leg (Figure
4.31, See 2). The reduction in the B loop primary flow rate appears to be
distributed equaliy between both B cold legs (Figure 4.32, See 1). Appr ximately
four minutes after the A loop high point © it was opened the primary loop flow
rate decreased in loop A (Figure 4.29, See 2) and increased in loop B (Figure
4.30, See 2).

The A loop high point vent remained open for approximately 13 minutes. During
this time the primary system pressure decreased (Figure 4.33, See 1). The
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pressurizer inventory also decreased (Figure 4.34, See 1) and the pressurizer
heaters turned off when the pressurizer heater low level trip setpoint was
attained, thus causing the loss of pressurizer heater control.

The lToop operators immediately established makeup flow (Figure 4.35, See 1) in
an attempt to regain pressurizer level. The makeup flow was injected into the
A2 cold leg discharge pipe downstream of the reactor coolant pump discharge RTD.
When the makeup flow was actuated the fluid temperature at the reactor coolant
pump discharge decreased (Figure 4.36, See 1). The fluid temperature at the
reactor coolant pump suction also decreased (Figure 4.36, See 2). The observer
response of these cold leg fluid temperatures indicate that they responded to
changes in the makeup flow rate, i.e., back flow continued in the A2 cold leg.
Primary loop flow, however, eventually stopped in the A loop (Figure 4.29, See
3) while the makeup flow was active. Makeup flow was terminated (Figure 4.35,
See 2) when a sufficient amount of inventory existed in the pressurizer. When
the makeup flow was terminated primary Toop flow in the A loop was re-estab)ished

(Figure 4.29, See 4) but the flow direction in the A2 cold leg continued in the
reverse direction (Figure 4.31, See 3).

T:e loop recovery procedure for Test 4NCSM] was to increase the core power to
approximately the initial value (Figure 4.37, See 1). The core power increase
resulted in an immediate increase in the primary Toop natural circulation driving
head. The primary loop flow rate in both loops increased (Figure 4.29, See §

and Figure 4.30, See 3) and forward flow was re-established in the A2 cold leg
(Figure 4.31, See 4).

Subsequent to the core power increase primary system temperatures increased and
caused a primary system 'iquid inventory expansion. The primary system pressure
then began to increase (Figure 4.33, See 2). The loop operators initiated
letdown flow (Figure 4.38, See 1) to maintain the primary system pressure at
epproximately 2175 psia. The letdown 1ine was located in the Bl cold leg suction
pipe. The actuation of letdown flow did not have any apparent effect on the
primary system response. Test 4NCSMI wi: terminated approximately 350 minutes
after test initiation,
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NATURAL CIRCULATION SIAULATION TEST
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Figure 4.1 Steam Generator A Saturation Temperature and Cold Leq Al Reactor Coolant
Pump Suction and Discharge Temperature
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NATURAL CIRCULATION SIRULATION TEST

TEST: 4ANCSH] _E9A 2ERO-FTINE:- 24 -AUG-1989 15:26:42 54
c2r1@1 fold Leg BI RCP Suction
C2R182 [o1d Leg B1 RCP Discharge
ot S2RF 28 Eteam Generator B Saturation
< | >
."\ - — — ‘*: A_ H
R
~ L T pp—ar = e N e
3 . » Tl
.'. - ,#M"J
Mows
4
- 2 iﬂ-
4 il i
s ’8 40 (8. 86 10Q 120 1490
1INt fIinutes

Figure 4.2 Steam Generator B Saturation Temperature And Cold Leg B1

Reactor Coolant Pump Suction And Discharge Temperature
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Figure 4.5 Downcomer Flow Rate And The Summation COf The Flow Rate
In A1l Four Cold Legs
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Figure 4,11

Summation Of The Al And A2 Cold Ley Flow Rates
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Figure .12 Summation Of The Bl And B2 Cold Leg Flow Rates
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2.2, Observations of Tesi 4NCVV]

During the initialization period heat losses across the reactor coolant pumps
was also apparent (Figury 4.29 through 4.42, See 1). Since the cold leg flow
rates for this test were greater than those for Test 4NCSM1, the temperature
difference between the reactor coolant pump suction and discharge are less for
Test 4NCVV] (approximately 5F) than for Test 4NCSM] (approximately 8F),

For Test 4NCVV] the reactor vessel vent valves were mwnually closed for the
entire test. The effect of the closed reactor vessel vent valves can be observed
on the initial conditions: the downcomer flow rate was approximateiy equal to
the summation of the four cold leg flow rates (Figure 4.43, See 1), the fluid
in the cold legs was not heated prior to entering the core region (Figure 4.44,
Se¢ 1) and a higher core power (compared to the other natural circulation iests
vhere the reactor vessel vent valves were open) was required to achieve the
specified ccre outlet fluid temperature (Figure 4.45, See 13

The test was initiated by actuating the core power ramp (Figure 4.45, See 2).
The core power decrease resulted in a decrease in the core exit and hot leg fluid
temperatures (Figure 4 46, See 1) thus an increase in the core region and hot
leg fluid density occurred. The increase in the fluid density resulted in a
decrease in the primary loop (up the hot leg) natural circulation driving head
en a decrease in the cold leg flow rates occurred (Figures 4.47 and 4.48, See
1).  The reduction in the primary loop flow (up the hot leg) can again be
observed by summing the flow rate in both cold leys of a gi-en loop (Figures 4.49
and 4,50, See 1).

The .eduction in the primary loop flow rate in conjunction with the heat loss
in the reactor ccolant pumps resulted in an increased positive temperature
difference bvtween the ieactor coolant pump suction and discharge fluid
temperature (Figure 4.39 through 4.42, See 2). The response of Test 4NCVVI
through the initial portion of the test was similar to that of Test 4NCSMi.

Although reactor coolant pump heat losses existed and a decrease in the primary
Toop natural circulation d~iving head accurred, the secondary flow path (via the
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reactor vessel vent valves) did not exist for Test 4NCVWV1. The cold leg flow
rates decreased to a mininum of approx 'mately 400 15/hr in Al and A2 cold legs
(Figure 4.47, See 2) and approximately 500 1b/hr in the Bl and B2 cold legs

(Figure 4.48, See 2). subsequently the flow rate i each of the cold legs
increased (Figure 4.47 and 4.48, See 3).

The flow in each of the four cold legs was in the forwar4 direction throughout
this entire period. Therefore without the potential for a secundary flow path,

f.e., via the reacter vessel vent valves, primary loop flow interrvption and flow
revers.l in the cold leg did not occur.

4.2.1. Facility Hold Period

The response cf the MIST facility was then observed until new steadv state
natural circulation conditions were attained {through appruximately 100 minutes).
During this time no operator actions were performed. The transient response s
provided in Figure 4.5]1 through 4.63. As can be observed from these plots, the
primary system established new steady-state natura) circulation cenditions with
forward flow of approximately 830 1b/hr in each cold leg (Figures 4.54 and 4.55),
The fluid contraction was nearly complete at approximately 100 minutes and can
be observed by the stabilization of the primary loop fluid temperatures (Figures
4.56 tnrough 4.62) and the relatively constant pressurizer leve) (Figure 4.63),

4.2.7._ Operator Actions and Loop Recovery Period

At aprsrximately 100 minutes the loop operator started the Al reactor coolant
pump. The downcomer flow rate (Figure 4.64, See 1) increased to approximately
30000 1b/hr (note that the cold leg venturi meters are over ranged for pumps
operating conditions). The reactor coolant pump start resuitad in a rapid
convergence of all primary loop fluid temperatures (Figure 4.65 through 4.68,
See 1), a slight increase in the primary system pressure (Figure 4.51, See 1)
and an increase o approximately 30 psi in the steam generator A pressure (Firure
4.52, See 1). Ducing the tirme tnat the Al reactor coolant pump was operating
the hot leg B 7luid temperature did not trend with the core sutlet temperature
(Figure 4.68, See 2). The hot leg B fluid temperature however does appear to
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trend with the steam generator B saturation temperature (Figure 4.40, See 3).

Therefore backflow existed in the B loop while the Al reactor coolant pump was
operating.

Approximately 15 m-nutes after the Al react r coolant pump was started the loop

operator started the B2 reactor cool»={ pump. the downcomer f ow rate increased
to approximately 68000 1b/hr (Figure 4.64, See 2). Agai, a~ increase in the
primary system pressure was observed (Figure 4.5], See 2). The steam generator
B pressure also increased (rigure 4.52, See 2). When the B2 reactor coolant pump
war started the hot leg B fluid temperature increased and then trended with the

core 2utlet temperature (Figure 4.68, See Z) thus indicating the existence of
forward flow in loop B.

Both the Al and the B2 reactor coolant pumps were turned off approximately 15
minutes later (Figure 4.64, See 3). Natural circulation conditions were re-

established and the test was terminated approximately 170 minutes after test
initiation,




Figures for Test 4NCVVI]

Natura)l Civculotion Test With The
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4.3. Observations of Test 4NCHL]

In an attempt to highlight the effect of the heat losses in the reactor coolant
pump region on the flow reversal in the cold legs, Test 4NCHL] imposed additional
heat 1oss in one selected cold leg in each loop. The additional heat loss was
obtained by increasing the cooling water flow rate to the selected reactor
coolant pumps and also turning off the guard heaters in the upper region of the
selected cold leg suction pipes. The normal cooling water flow rate to each
roactor coolant pump was approximately 5 gpm. For jest 4NCHL] the cooling water
rlow rate in the reactor coolant pumps A2 and Bl was maintained at § gpm while
th2 cooling water flow rate in reactor coolant pumps Al and B2 was increased to
19 gpm. Thus a decrease in the Al and B2 reactor coolant pump sink temperature
wis chtained. The MIST reactor coclant pumps are of a canned rotor design and
therefore seal leakage does not occur. Similarly the guard heater in the up~--
regions of the Al and B2 cold leg suction pipe were turned off.

The selection of the Al and B2 cold leg was based on observations from numerow
screening tests performed in preparation for the MIST Natural Circulation Test ‘ng

Program wherein it was shown that these two cold legs did not exhibit flow
reversals,

As in the previous tests .uring the initialization period heat losses were
apparent across the reactor coolant pumps (Figure 4.69 through 4.72, See 1).
Also, as shown for Test 4NCSM1, the reactor vessel vent valves were open (Figure
4.73 and 4.74, See 1). The test was initiated by actuating the core power ramp
(Figure 4.75, See 1) again maintaining al) other boundary conditions constant.
The initial response for Test 4NCHL] was similar to that observed for Test
4NCSM1, 1.e., a decrease in the core exit and hot leg fluid temperatures (Figure
4.76, See 1) and a decrease in the primary loop (Figure 4.77 and 4.78, See 1)
and cold leg flow rates (Figures 4.79 and 4.80, See 1) occurred,

As observed in the previous natural circulation tests the reduction in the
primary loop flow rate in conjunction with the heat loss in the reactor coolant
pumps resulted in an increased positive temperature difference between the

& )



reactor coolant pump suction (which remained approximately equal to the steam

generator saturation temperature) and discharge fluid temperatures (Figure 4.69
through 4.72, See 2).

Again the combination of the existence of a secondary flow path via the reactor
vessel vent valves, the reduction of the primary loop natural circulation driving

head and the heat lesses ia the reactor coolant pumps region of the cold legs

resulted in primary loop flow interruption and the establishment of backflow in
the cold legs.

Test 4NCHL] differed from Test 4NCSM]1 in that both the A and B loops indicated
flow interruption with the A loop interrupting first and the B loop interrupting
approximately 5 minutes later (Figure 4.77 and 4.78, See 2). Backflow was
established in the Al cold leg (Figure 4.79, See 2) while the flow in the AZ cold
leg was in the forward direction (Figure 4.79, See 3). Similarly backflow was
established in the B2 cold leg (Figure 4.80, See 2) while the flow in the Bl cold
leg was in th2 forward direction (Figure 4.80, See 3). Flow direction can also
be inferrec from the reactor coolant pump suction and discharge temperatures as
discussed in Section 4.5.1. Therefore when the temperature difference between
the reac.or coolant pump suction and discharge becomes negative a flow reversal

has occurred (Figure 4.72, See 3). A similar response can also be observed for
the Al cold leg (Figure 4.69, See 3).

Significantly the flow reversals occurred in the two cold legs that had increased
heat losses imposed as a boundary conditions, i.e., cold legs Al and B2.

4.3.1. Facility Hold Period

Subsequent to the flow interruption no operator actions were performed for
approximately four hours and the response of the MIST facility was observed.
The transient response can be observed on Figures 4.8]1 through 4.93. As can be
observed from these figures the primary cystem exhibited a continuous cooling
trend over this period (Figures 4.86 through 4.391). Primary loop flow appears
to have been maintained throughout the period. The flow rate in the A2 cold leg
stabilized at approximately 1060 1b/hr in the forward fiow direction and the Al




cold leg flow rate stabilized at approximately 330 1b/hr in the reverse flow
direction (Figure 4.84). The Bl cold leg flow rate also stabilized at
approximately 1060 1b/hr in the forward flow direction and the B2 cold leg flow

rate stabilized at approximately 360 1b/hr in the reverse flow direction (Figure
4.85).

4.3.2. Operator Actions and Loop Recovery Perio

Subsequent to the hold period the loop operator opened both the A and th. B loop
high point vents (Figure 4.94, See 1) . The primary system pressure rapidly
decreased (Figure 4.81, See 1) and the pressurizer inventory decreased rapidly
(Figure 4.92, See 1). The dischavae of hotter fluid from the pressurizer
increased the hot leg A fluid tempera vre (Figure 4.90, See 1), primary flow in
the A Toop increased and forward flow \as established in the Al cold leg (Figure
4.84, See 1). The response of the B 1oop appears to be similar to that observed

in Test 4NCSM]1 in that when the A loop flc« .ncreased the B loop flow decreased
(Figure 4.85, See 1).

The rapid reduction in the pressurizer ievel at this time necessitated the

actuation of makeup flow (Figure 4.95 , See 1). The resultant effect of (1)
the increase in the flow through the core, reduction in the core outlet
temperature (Figure 4.91, See 1), (2) the injection of cold makeup fluid into
the A2 cold leg, reduction in the core inlet temperature (Figure 4.91, See 2),
and (3; the closure of the high point vents (Figure 4.94, See 2) was a decrease
in the primary loop natural circulation driving head and reverse flow was re-
established in the Al cold leg (Figure 4.84, See 2).

The loop operator then began decreasing the makeup flow rate (Figure 4.95, See
2). The effect of the reduction and subsequent termination of makeup flow was
a decrease in the A2 cold leg natural circulation driving head and a reduction
in the A2 cold leg flow rate occurred (Figure 4.96, See 1). The primary loop
in the A loop then interrupted (Figure 4.97, See 1) and the core exit
tuawverature began a heatup (Figure 4.98, See 1). The termination of makeup flow,
« «nterruption of A Toop primary flow and the mixing in the downcomer of hotter




fluid from the core exit via the reactor vessel vent vaives resulted in an
increase in the core inlet teuperature (Figure 4.98, See 2). The increase in
the core region rluid temperatures resulted in an increase in the natural
circulation driving head that eventually established forward flow in the Al cold
leg (Figure 4.96, See 2). Both the Al and the A2 cold legs cuntinued flowing
in the forward direction through the remainder of the natural circulation phase
of the test. However, at approximately 300 minutes the loop operator again
actuated makeup fiow (Figure 4.95, See 3) in an attempt to increase pressurizer
Tevel. The makeup flow again caused a reduction in the core region fluid
temperatures (Figure 4.98, See 3), an increase in the A2 cold leg (makeup
injection location) flow rate (Figure 4.96, See 3) and a reduction in the Al cold
leg flow (Figure 4.96, See 4). The Al cold leg flow rate then began increasing
(Figure 4.96, See 5) and trended with reductions in the makeup flow rate. When
the makeup flow was terminated (Figure 4.95, See 4) the A2 cold leg flow rate
decreased and both the Al and A2 flow rates became equal (Figure 4.96, See 6).

At approximately 305 minutes the loop operator noticed the primary system
pressure was increasing (Figure 4,99, See 1) and initiated letdown flow (Figure
4.100, See 1) in an attempt to maintain the specified primary system pressure
of 2175 psia. The letdown line was located at the low point of the Bl cold leg
suction pipe. While the letdown flow was active, through approximately 321
minutes, the cold leg Bl flow rate decreased continuously (Figure 4.101, See 1).
The flow direction in the B2 cold leg, as deduced by the negative temperature
difference across the reactor coolant pump (Figure 4.102) remained in the reverse
flow direction and the reverse flow rate increased slightly (Figure 4.101, See
2).

At approximately 322 minutes the loop operator increased the core power
approximately 5 Kw (Figure 4.103, See 1) and the flow rate in the Al, A2 and Bl
co’d legs increased (Figure 4.96, See 7 and Figure 4.101, See 3). The flow
direction in the B2 cold leg remained in the reverse flow direction as indicated
by the reactor coolant pump suction and discha-ge temperatures (Figure 4.102)
and the venturi flow meter (Figure 4.101, See 4).
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The loop operator increased the core power further (Figure 4.103, See 2) and,
when the core power attained approximately 31 Kw, forward flow was es*blished
in the B2 cold leg (Figure 4.102, See 1 and Figure 4.101, See 5). As .he core
power was increased the pressure in both steam generators began increasing

(Figure 4.104 See 1) and indicates an increase in primarv-to-secondary heat
transfer occurred.

The core power was then maintained constant and at approximately 345 minutes thc
Al reactor coolant pump was starteu. The primary system temperature response
was similar to that observed following the pump start in Test 4NCVV1, Section
4.2.2. The primary system pressure, however, increased approximately 40 psi
(Figure 4.99, See 2). A second reactor coolant pump (B2) was started approxi-
mately 15 minutes later. the primary system pressure then increased at a greater
rate (Figure 4.95, See 3). the primary system pressure attained a maximum value
of approxin tely 2350 psia (this was the PORV setpoint, but the PORV did not
1ift) and then began decreasing (Figure 4.99, See 4).

Approximately 15 minutes later both reactor coolant pumps were tripped and the
MIST facility established new steady state conditions with forward flow of
approximately 900 1b/hr in each cold leg. The test was terminated &t approxi-
mately 423 minutes after test initiation.
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4.4. Observations of Test 4NCLMI

In an attempt to determine the potential effect of letdown and makeup flow on
the flow reversal in the cold legs, Test 4NCLM] was initialized wi .h letdown and
makeup flow active. Makeup flow was injected into the col¢ leg A2 discharge pipe
and letdown flow was removed from the cold leg Bl suction pine. At test
initiation the makeup flow was increased and then maintaincd constant while the
letdown flow was adjusted to maintain approximately a constant pressurizer leve)
through the facility hold period of the test

As in the previous tests heat losses were ap,arent across the reactor cool.nt
pumps during the initialization period (Figure 4.105 through 4.108, See 1).
Also, as shewn for the other tests where the reactor vessel vent valves were
operable, tre reactor vessel vent valves were open for Test 4NCLM] (Figure 4.109
and 4.110. see 1).

During the initialization period the letdown flow rate was approximately 28 1b/hr
(Figure 4.111, See 1), which is equivalent to an actual plant letdown flow of
45 gpm, and the makeup flow rate was approximately 30 1b/hr (Figure 4.112, See
1), which is equiva’ent to an actual plant makeup flow of 49 gpm.

The test was initiated by actuating the core power ramp (Figure 4.113, See 1)
and by increasing the makeup flow (Figure 4.112, See 2). All other boundary
conditions with the exception of letdewn flow were maintained constant.

The initial response for Test 4NCLM1 was similar to that observed for Tests
4NCSM1 and 4NCHL1, i.e., a decrease in the core exit and hot leg fluid
temperatures (Figure 4.114, See 1) and a decrease in the primary loop (Figures
4.12° and 4.116, See 1) and cold leg flow rates (Figures 4.117 and 4.118, See
1) occurred.

As observes” in the previous natural circulation tests the reduction in the
primary ioop flow rate in conjunction with the heat 1oss in the reactor coolant
pumps resulted in an increased positive temperature difference between the
reactor coolant pump suction (which remained approximately equal to the steam
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generator saturation temperature) and discharge fluid temperatures (Figure 4,105
through 4.108, See 2).

Again the combination of the existence of a secondary flow path via the reactor
vessel vent valves, the reduction of the primary Yoop natural circulation driving
head and the heit losses 1a the reactor coolant pump region of the cold legs
resulted in yrimary loop flow interruption and the establishment of backflow in
the cold legs.

Test 4NCLM] differed from Test 4NCSM1 in that both the A and B loops indicated
flow interruption and 4iffered from Test ANCHL] in that the flow reversal in the
B Toop occurred in the Bl cold leg (occurred in the B2 cold leg for Test 4NCHL1) .
The A loop again interrupted first and the B loop interrupted approximately 4
minutes later (Figures 4.115 and 4.116, See 2). Backflow was established in the
Al cold Teg (Figure 4.117, See 2) while the flow in the A2 cold leg was in the
forward direction (Figure 4.117, See 3). Similarly backflow was established in
the Bl cold leg (Figure 4.118, See 2) while the flow in the B2 cold leg was in
the forward direction (Figure 4.118, See 3). As discussed in Section 4.5.1, the
flow direction can also be deduced from the reactor coolant pump suction and
discharge temperature, (Figures 4.105 through 4.108).

The occiurrence of backflow in the Al and Bl cold legs appears to be related to
the boundary conditions at test initiation, i.e., makeup and letdown flow were
active. Past experiences, Test 4NCSM1 and numerous screening tests, reveaied
that the A2 cold leg consistently exhibited flow reversal. Test 4NCLM1 ho.-ever
injected makeup (cold water) into the A2 cold leg discharge pipe. The injection
of the cold water at this location aids the positive natural circulatizi driving
head in the A2 cold leg. Therefore, when the core power was reduced the prii.ary
loop natural circulation driving head dec.eased, the combination of heat loss
in the reactor coolant pump region and reactor vessel vent valve flow would be
more prone to establish backflow in the cold leg without makeup injection (Al).

For Test 4NCSM1 backflow was not observed in either the Bl or B2 cold leg. The
existence of letdown flow, removed from the Bl cold leg, will reduce the flow
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rate through the Bl cold leg. The reduced flow rate and the heat loss in the
reactor cuoclant pump region will therefere result in lower fluid temperatures
in the Bl reactor coolant pump region. Therefore, when the core power was
reduced the primary loop natural circulation driving head decreased, the colder
fluid in the Bl reactor coolant pump region in conjunction with the flow through
the reacto, vessel vent valves wouid be more prone to establish backflow in cold
leg Bl.

The makeup flow also effected the core inlei temperature during the conduct of
this test. Wher. compared to Test 4NCSM1 the core inlet temperature during tes:
initialization was approximately 4F lower for Test 4NCLM1. When Test 4NCLM! was
initiated the makeup flow rate was increased (Figure 4.112, See 2) and a
corresponding reduction in the core inlet temperature was observed (Figure 4.110,
See 2). The reduction in the core inlet temperature can be observed to propagate
to the core outlet temperature (Figure 4.110, See 3). The reduced core region
fluid temperatures resuits in a reduction in the primary loop natural circulation
driving head. Therefore, the makeup flow appears to have reduced the primary
Toop natural circulation driving head sufficiently to cause flow interruption
in the B Toop.

Approximately one minute after backflow occurred in the Bl cold leg, the loop
operator increased the letdown flow rate to approximately 44 1b/hr, plant
equivalent 70 gpm (Figure 4.111, See 2). The increased letdown flow did not
resul* in any apparent effect on the primary system response.

4.4.1. Facility Hold Period

Subsequent to the flow interruption no operator actions, with the exception ot
changes in letdown flow to maintain an approximately constant pressuriier level,
were performed for approximately 2 hours. The transient response can be observed
on Figures 4.119 through 4.131. As can be observed from these figures the
primary system exhibited a continuous cooling trend over this period (Figures
4.124 through 4.129). The cooling trend exhibited by Test 4NCLM] exceeds that
exhibited by Test 4NCHL1. The increased cooling rate appears to be directly
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related to the reduction in the core inlet temperature as a result of the
injection of makeup flow.

Primary loop flow appears to have been mainta‘ ned throughout the pericd. The
flow rate in the A2 cold leg stabilized at approximately 1090 1b/hr in the
forward flow direction and the Al coid leg flow rate stabilized at approximately
370 1b/hr in the reverse flow direction (Figure 4.122). The B2 cold leg flow
rate stabilized at approximately 1000 1b/hr in the forward flow direction and

the Bl cold leg flow rate stabilized at approximately 350 1b/hr in the reverse
flow direction (Figure 4.123).

4.4.2. Operator Actions and Loop Recovery Period

Subsequent to the hold period the loop operator decreased the letdown flow rate
(Figure 4.111, See 3) to 44 1b/hr (a plant equivalent flow of 70 gpm which is
the maximum flow rate through one letdown cocler), and opened the hot leg B high
point vent (Figure 4.132, See 1). An anticipated decrease in the pressurizer
Tevel (Figure 4.133, See 1) necessitated an increase in ‘he makeup flow rate
(Figure 4.112, See 3). The increased makeup flow resulted in a decrease in the
core inlet temperature (Figure 4.129, See 1). Although the hot leg B high point
vent was open the hot leg A fluid temperature responded immediately to the
decrease in the core exit temperature (Figure 4.134, See 1) while the hot leg
B fluid temperature 1agged and decreased at a lower rate (Figure 4.114, See 2).
These hot leg fluid temperature responses indicate the predominant flow path was
by way of the A loop. The reduction in the coce reyion fluid temperatures
resulted in a decrease in the primary loop flow rates (Figures 4.115 and 4.116,
See 3) and a reduction in the priwary-to-secondary heat transfer occurred as
observed by the decreasing steam generator pressures (Figure 4.120, See 1).

At approximately 168 minutes the loop operator opered the hot leg A high point
vent (Figure 4.135, See 1), both hot leg high point vents were open. Again an
antizipated decrease in the pressuricer level (Figure 4.136, See 1) necessitated
an increase in the makeup flow rate (Figure 4.137, See 1). The increased makeup
flow resulted in a further decrease in both the core inlet (Figure 4.129, See
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2) and the core exit temperature (Figure 4.129, See 3). The reduction in the
core region fluid temperatures resulted in a further decrease in the primary loop
flow rates (Figures 4.138 and 4.139, See 1). The reduction in the primary loop
flow rate can also be observed in { ¢ response of both hot leg fluid tempera-

tures, 1.e., do not readily respond to he reduction in the core exit temperature
(Figure 4.140 and 4.14], See 1).

At approximately 180 minutes the test facility design limit for primary-to-
secondary pressure differential was approached and the loop operator cycled the
PORV to decrease the primary system pressure (Figure 4.119, See 1). WNumerous
PORV actuations were required through the remainder of the test (Figure 4.119,
See 2) as the test facility primary-to-secondary pressure differential design

Timit was approached. The PORY actuations did not effect the transient response
other than reducing the primary system pressure.

The cold leg venturi flow meters ind cated that the primary loop flow reversed
during this period with the reversal occurring first in loop B (Figure 4.139,
See 2) and then in loop A (Figure 4,138, See 2). The stabilization of the loop
B hot leg temperature while the core exit temperature decreased (Figure 4.14],
See 2) implies that fluid from the core exit did not traverse the hot leg. The
B high point vent was open at this time and the stean generator B saturation
temperature was greater than the core region fluid temperatures thus the steam
generator became the heat source for the B loop at this time and therefore the
potential for primary loop flow reversal .xists. Similar conditions occurred
at approximately 180 minutes in loop A. Further examination of all the primary
loop fluid temperatures is warrarted to cenfirm this observation.

At approximately 196 minutes the B high point vent was closed (Figure 4.135, See
2). To maintain an approximately constant pressurizer level the makeup flow was
also reduced (Figure 4,137, See 2). The reduction in the makeup flow resulted
in an increase and then a stabilization of both the core inlet and outlet
temperature (Figure 4,129, See 4). At approximately 227 minutes the A high point
vent was closed (Figure 4.135, See 3), the letdown flow rate was increased to
ts maximum value, plant equivalent flow of 140 gpm (Figure 4.142, Zee 1) and
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the makeup flow was reduced (Figure 4.137, See 3) to maintain an approximately
constant pressurizer inventory. The reduction in the makeup flow again resuited
in an increase in the core inlet and outlet temperature (Figure 4.129, See 5).
The flow direction in the cold legs did not change (A2 7nd B2 forward flow, Al
and Bl reverse flow) and flow through the reactor versel vent valves existed
throughout this phase of the test Figures 4.143 through 4.145),

At approximately 238 minutes the Al reactor coolant pump was start., °'

S are
4.146, See 1) and primary loop fluid temperatures rapidly converced (Figure

4.140, See 2 and Figure 4.14]1, See 3). As discussed in Section 4.2.2 reverse
Toop flow occurred in loop B. Approximately 15 minutes later a second reactor
coolant pump (B2) was stz ted (Figure 4,146, See 2) and forward 1o0p flow as
discssed in Section 4.2.2 was established in loop B. Both reactor coolant pumps
were tripped at approximately 268 minutes (Figure 4.146, See 3). Subsequent to
the coastdown of the reactor coolant pumps the primary system re-established
steady-state natural circulation in both loops as observed by the primary loop
fluid temperatures (Figure 4.140, See 3 and Figure 4,141, See 4) and the cold
leg flow rates (Figures 4.143 and 4.144, See 1). The core power was not
increase’ for this test (Figure 4.147) therefore the mixing of the primary fluids
by the reactor coolant pump opecation resulted in the estab)ishment of sufficient
loop natural circulation driving heads upon tripping of the reactor coolant
pumps. At approximately 274 minutes the 'oop operator terminated makeup (Figure
4.137, See 4) and letdown (Figure 4.142, See 2). Natural circulation flow
continued in both loops and the test was terminated at 300 minutes.




Figures for Test 4NCLMI]

Natural Circulation Test With
Letdown and Makeup Flow Active
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BATURAL CIRCULATION SIRULARTION EFFECTIS OF LETDOURN AND AAXEY
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Figure 4.138

Symmav,~n Of The Al And A2 Cold Leg Flow Rates
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Figure 4.141 Core Exit, Hot Leg B And Cold Leg Bl Coolant Pump Suction Temperatures
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4.5. Observation of the "Cold Leg Temperature Anomaly"
P ing the Mist Natural Circulation Tests

A comparison of the cold leg temperature response of Lhe MIST facility with that
observed during the conduct of the TMI-1 Natural Circulation Tests on October
7, 1985, was performed. For reference purposes the response of the TMI-] plant
is provided in Appendix A. The intent of this comparison was to determine if
the MIST facility exhibits the same phenomena as an acty ! plant, 1.e., "cold
leg temperature anomaly", and to determine the cause of the phenomena.

The "cold leg temperature anomaly" as observed at the TMI-1 plant was detected
by cold leg RTDs. The cold leg RTDs are located in the cold leg suction pipe
(upstream of the reactor coolant pump suction) in the TMI-1 plant. The plant
instrumentation ccnsists of RTDs in each cold leg (4), RTDs in each hot leg (2)
and incore thermocouples (which provide indication of the core exit temperature).
The MIST facility has thermocouples or RTDs located in similar locations. In
addition to the above the steam generater saturation temperature is also
available at buth the actual plant and the MIST facility. The MIST plant similar
instruments were used in the identification of the "cold leg temperature
anomaly". Test 4NCSM]1 was used to identfy the existence of and the cause of
the phenomena associated with the "cold leg temperature anomaly". Figures 4,148
through 4.150 provide temperature information for the B loop and Figures 4.151
through 4.153 pro.ide temperature information for the A loop, An examination
of the cold le;, fluid temperature response reveals the following:

o Bot’ B cold leg fluid temperatures respond in a similar manner and are
a.proximately equal to the steam generator B saturation temperatures.

The Al and A2 cold leg fluid temperatures respond in a different manner
from each other and from that observed in the B loop.

The A loop cold leg fluid temperatures are not equal to the steam
generator A saturation temperature.

The cold leg A2 fluid temperature indicates a rapid reduction of

approximately 23F (Figure 4.152, See 1) followed by a rapid increase of
approximately 30F (Figure 4.152, See 2).




® Subsequently the response of both B cold leg fiuid temperatures stabilizes
at the steam generator B saturation tempera.ure, whereas the response of
both A cold leg fluid temperatures oscillate for a period of time and then
stabilize at a value that is less than tte steam generator A saturation

temperature.
The fluid temperature response exhibited by che cold legs in the A loop, in
particular the A2 cold leg, indicates that the "cold leg temperature anomaly"
observed in actual operating plants also occurs in the MIST facility.

4.5.1. Phenomena That vause the "Cold Leg Temperature Anomaly"

The cause of the observed "cold leg terperature anomaly" can be deduced by
examining additional instrumentation aviilable on the MIST facility but not
available on operating plants. As discussed previously (Section 4.1) heat losses
exist in the vicinity of the reactor coolant pumps. This heat loss can be

observed by the decrease in the fluid temperature between the suction and

discharge side of the pump during the steady-state initialization period of the
test (Figures 4.154 through 4.157, See 1).

The reduction in the primary loop driving head (caused by the decrease in the
core power) resulted in a decrease in the cold leg flow rates (Figure 4.158 and
4.159, See 1). The reduced cold leg flow rate in conjunction with the reactor
coolant pump heat loss results in a reduction in the fluid temperature at the
reactor coolant pump discharge (Figures 4.154 through 4.157, See 2).

When the primary loop flow interrupted in the A loop backflow developed in the
AZ cold leg (Figure 4.158, See 2). When backflow nccurred in the A2 cold leg
the fluid that resided in the cold leg discharge, which was at a lower
temperature (Figure 4.156, See 3) than the fluid in the cold leg suction side
of the pump (Figure 4.156, See 4), was displaced backwards through the reactor
coolant pump and into the celd leg suction pipe. The colder fluid is observed
in the cold leg suction as a rapid decrease in the reactor coolant pump suction
temperature (Figure 4.156, See 5), i.e., a "cold leg temperature anomaly" is
observed. The fluid temperature at the reactor coolant pump discharge is
observed to increase (Figure 4.156, See 6) and attains a value that is
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essentially equal to the core outlet temperature (Figure 4.160, See 1). This
fluid temperature response is indicative of the flow of fluid from the core exit
through the reactor vesse! vent valves into the downcomer and backflowing into
the A2 cold leg discharge pipe. As the warmer fluid from the core exit flows
backward in the A2 cold leg it is observed to increase the reactor coolant puny
suction temperature (Figure 4.156, See 7). The oscillatory response of the
reactor coolant pump suction fluid temperature (Figure 4.156, See 8) is
indicative of the effect of the reactor coolant pump heat losses to decreases
and increases in the reverse flow rate.

The flow direction in each cold leg can also be inferred from the temperature
difference across the reactor coolant pump when heat losses are present. A
positive temperature difference between the reactor coolant pump suction and
discharge is indicative of flow in the forward direction, whereas a negative
temperature difference is indicative of flow in the reverse direction. Figures
4.154 through 4.157 show that the temperature difference across the reactor
coolant pump is always positive (forward flow) in cold legs Al, Bl and B2,
however, cold leg A2 (Figure 4.156) is initially positive (forward flow) and
subsequently becomes negative (backflow). These flow directions can be confirmed
by the venturi flow meters (Figure 4.158 and 4.159).

Although the previous discussion was associated with Test 4NCSM1, an examination
of the figures provided for Sections 4.2 through 4.4 will reveal the following:
- The "cold leg temperature anomaly" was observed in cold legs Al and B2

for Test 4NCHL1 (occurred in the two cold legs which had imposed excessive
heat Toss in the reactor coolant pump region).

- The "cold leg temperature anomaly" was observed in cold legs Al and Bl
for Test 4NCLM1 (occurred in the cold leg that did not have makeup flow
injection, Al, and occurred in the cold leg that had ietdown flow, Bl).

- The "cold leg temperature anomaly" did not occur in the test that had the
reactor vessel vent valves manually closed, 4NCVVI.

Appendix B and C provide temperature responses for natural circulation transients
that occurred at the Oconee 1 and the Crystal River 3 plants respectively. The
"cold leg temperature anomaly" was also apparent during these events.
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Figures for the Observation of the
“Cold Leg Temperature ".omaly"
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Figure 4.148 MIST Plant Similar Temperature Indications - Loop B
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Figure 4.149 MIST Plant Similar Temperature Indications - Loop B




BATURAL CIRCULATION SIRVLATION TEST
TEST: 4MCSARI_EOA 26BO-TIRE: 24-AUG-1989 15:26:42 54

ol 4 Y e
C2RIB1} (old Leg Bl RCP Suction

~{ C4RTB1 § Ccld Leg B2 RCP Suction

S2RF 28] Steam Generator B Saturation

66

1At Si1nut>

Figure 4.150 MIST Plant Similar Temperature Indications - Loop B
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Figure 4.151 MIST Plant Similar Temperature Indications - Loop A
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Figqure 4.153 WIST Plant Similar Temperature Indications - Loop A
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T8 SUMNARY

The MIST Natural Circulation Tests confirmed that the MIST facility exhibits
phenomena similar to those observed during actual plant natural circulation
events. The "cold leg temperature anomaly" that was first identified during the
natural circulation testing conducted at the TMI-1 plant (Appendix A) and
subsequently observed during natural circulation transients that occurred at

other plants, e.g., Oconee 1, Appendix B and Crystal River 3, Appendix C, was
replicated on the MIST facility.

The key observations from the MIST natural circulation tests are:

The MIST Natural Circulation Tests showed that the “cold leg temperature

anomaly" was a flow interruption followed by backflow in the cold leg(s)
and was caused by a combination of the following:

- & reduction 1 the primary loop (up the hot legs) natural circulation
driving head.

- Heat loss in the vicinity of the reactor coolant pump.

The existence of a flow path from the core exit to the cold leg nozzle
by way of the reactor vessel internal vent valves.

Makeup and letdown flow, by themselves, cennot induce flow reversal.
Makeup and letdown can influence the location of the reversal in a
situation that is otherwise marginal.

Core Power Increase - increase in core power by as little as 0.5% of full
power restores forward flow.

High point vent actuation - did not provide conclusive results in regard
to restoration of forward flow in loop with open HPV,

Reactor coolant pump restart may lead to primary pressure increase or

decrease, depending on core power level and fluid conditions at the time
of restart.




Note: The MIST test did not address the impact of increased SG heat
removal on the reestablishment of a natura! circulation driving

head.
This phase of the MIST program exhibited similar flow interruption phenomena that
were particularly observed during the MIST Phase 111 Mapping Tests and the MIST
Phase IV Small Break LOCA Tests. The MIST Natura) Circulation Tests provide
insight into the flow interruption phenomena and, since the primary system was
maintaine. in single phase ligquid conditions for these tests, have shown that
phase separation in the hot legs was not necessary for the occurrence of primary

Toop flow interruption. Simultaneous with the flow interruptions, core cooling
was not interrupted for the conditions tested.

Screening tests were performed to establish the MIST boundary conditions
necessary to demonstrate the cold leg phenomena observed during plant transients.
The results of the screening tests and the four formal tests indicated that the
primary system response was highly dependent upon the boundary conditions and
facility operator actions. The screening tests indicated that any parameter that
influences the fluid density in the cold legs can have an effect on the system

response. Several dominant parameters found to affect cold leg flow
reversal/interruption in MIST were:

6 Rate of change of core power

- Abrupt power decrease necessary for occurrence (for conditions tested).

- Atypically high elevation tube wetting with cold AFW in MIST prevented

flow reversal. Main feedwater reproduced cold leg flow reversal
phenomena.

® Steam generator Tevel
- No flow reversal with AFW at anv level tested in MIST,

- Cold leg flow reversal was sensitive to level with main feedwater

operation. 50% on Operate Range appears to be a thresho.d of one loop
vs. two loop reversal/interruption,




The observations and results of the MIST Natural Circulation Test: are of course

limited to the particular conditions tested. The atypicalities or MIST due to
scaling compromise must be considered.

The MIST single phase natural circulation tests did exhibit a considerable degree
of similarity to actual plant transients. The MIST natural circulation test
results provide insights which should be considered in the preparation of
training packages for natural circulation cooldown.
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APPENDIX A

Data Plots from the TMI-1 Natural
Circulation Test October 1985
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APPENDIX B

Data Plots from the Oconee 1 Transient
That Occurred on January 3, 1989
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APPENDIX C

Data Plots from the Crystal River 3 4
Loss of Offsite Power Transient g
That Occurred on June 16, 1989 %




(4 930) 3INNLYNIINIL

sSvL—CZ: €1 68/91/9

JAN1IVE3dAS1 SO




BIBLIOCARAPH!C DATA SHEET | st o4
(S0 mtructions 0n the reverse ;

1 . — T TS o ooz W £ B R ————— e v
3 TITLE AnD SUBTITLE mmw s

BAW.- 2099

Multiloop Inegral System Test (MIST). Final Repon s e RERORT PUB L e
MON T g VEAR

MIST Phase IV Tests AUGUST l 1990

4 FINOR GRANT NUMBE

BROOO & D1734

£ TYPRE OF REPORTY

Ri AUTHOR(S

G. O. Geissler Technical

7. PERIOD COVERES (1nsiuser Dares

June 1986-March 1988

B PERFORMING DRGANIZATION - NANME AND ADDRESS 111 WHE provite Division Ofice or egion U8 Nuclear Regularory Commission. ane mailing widenss. I contractur. provite
nane SAE mumbing soitiress

Babcock & Wilcox
Babcock & Wilcox Research & Development Division
Nuclear Power Division Alliance Pesearch Center
3315 Ol¢ Forest Road 1562 Beeson Street
Lynchburg, VA 24506-0935 Alliance, OH 44601

9 SPONSORING ORSANIZATION - NAME AND ADDRESS (/1 MR tvpe “Seme o aboe

if contractor provide NRC Division. Ofice or Region U S Nuchewr Regulatory Comvmigion

*Bivision of Systems Research Electric Power Research Instiiute  Babcock & Wilcox
Office of Nuclear Regulatory Research P. O. Box 10412 Owners Gn();p
U. §. Nuclear Regulatory Commission Palo Alto, CA 94303 P. O. Box 10935

Washington, DC 20555 Lynchburg, VA 24506-0035

10 SUPPLEMENTARY NOTES

1. ABSTRALT (200 words o s

The Multiloop Integral System Test (MIST) is pant of a multiphase program started in 1983 10 address
small-break loss-of-coolant accidents (SBLOCAs) specific to Babeock and Wilzox designed plants MIST is
sponsored by the U. S. Nuclear Regulatory Commission, the Babcock & Wilcox Owners Gmu&.’mc Electric
Power Research Institute, and Babcock and Wilcox. ‘The unique features of the Babeock and Wilcox design,
specifically the hot leg U-bends and stecm generators, prevenied the use of cxm'm' integral system data or
existing integral facilities to address the thermal-hydraulic SBLOCA questions. MIST and two other
supporting facilities were specifically designed anc: constructed for this gmgram. and an existing facility--the
Once Through Integral System (OTIS)--was also used. Data from MIST and the other facilities will bz used t0
benchmark the adequacy of system codes, such as RELAPS and TRAC, for predicting abnormal plant
transients.

The MIST program is reported in 11 volumes. The program is summarized in Volume 1; Volumes 2
through 8 describes groups of tests by test type; Volume 9 presents inter-group comparisons; Volume 10
provides comparisons between the calculations of RELAPS/MOD2 and MIST observations, and Volume 11
presents the later Phase 4 tests. This Volume 11 addendum pertains to MIST natural circulation tests.
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