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1. INTRODUCTION

1.1 Purpose

The purpose of this report is to present the results of a
preliminary seismic stability evaluation of Sherman Dam performed
by Geotechnical Engineers Inc. (GEI).

1.2 Technical Approach

The analysis consisted of two parts:

a. Evaluation of the overall stability of the dam
under seismic loading.

b. Estimation of the movements of the dam that would
be caused by seismic loading.

1.3 Background

Sherman Dan is owned by New England Power Company and is
located near Monroe Bridge, MA, as shown in Fig. 1. The Yankee
Rowe Nuclear Plant is immediately adjacent to the left abutment
(looking downstream).

New England Power Company engaged C. T. Main, Inc. to per-
form an inspection of Shermar Dam in accordance with Federal
Energy Regulatory Commission (FERC) regulations. As part of the
inspection program, GEI was engaged to carry out a preliminary
field and laboratory program, as requested by C. T. Main, Inc.,
and to perform a seismic stability analysis.

The field exploration program consisted of six borings in
the dam and two borings in the left abutment. Also 19 piezom-
eters were installed. The principal intent of this program was
to establish the cross section of the dam at one (the highest)
section and to recover samples of the core and shell for labora-
tory testing. All data needed for analysis, but not obtained
from this preliminary program, were to be estimated based on data
available for Harriman Dam or based on past experience.

In particular, the dynamic shear moduli and damping ratios
in the core and shell of Sherman Dam were not measured. Also,
the shear strength of the glacial till shell was not measured
because the material was ton dense and/or too gravelly to yield
satisfactory undisturbed samples. However, these properties were
measured for Harriman Dam. Therefore, for the analysis of
Sherman Dam, conservative values of the shear strength of the
glacial till in the shell and the shear moduli and damping ratios
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in both the core and shell were estimated based on comparisons
with the data from Harriman Dam. Also, a sensitivity analysis
was made to evaluate the effect on the results of reasonable

variations in the shear moduli and damping ratios of the core.

1.4 Sources of Data

For Sherman Dam, summaries of construction records and
geotechnical data from field and laboratory investigations are
presented in two reports, which are available separately, namely
Main (1973)* and GEI (1982a). Geotechnical data from field and
laboratory investigations of Harriman Dam are presented in three
reports, which are available separately, namely GEI (198la), GEI
(1981b), and GEI (198lc).

Earthquake acceleration spectra used for the seismic analy-
sis were taken from Yankee Atomic Electric Co. (1981}.

¥See List of References in Section 6 of this report.
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2. SUMMARY AND CCNCLUSIONS

The preliminary seismic stability analyses were performed
for the maximum-height cross section of Sherman Dam.

The minimum factor of safety of the downstream slope is 1.3
and of the upstream slope is 2.0 against a flow slide triggered
by an earthquake. For this condition, a factor cf safety of 1.1
is adequate. For the analyses it was assumed that the core
ligquefied and that the shell had reached its minimum, or residual
strength. The peak strength of the shell was not used.

The deformations expected for two levels of earthquake
motion were estimated using finite element analyses. The earth-
quake assumptions and the results are:

Earthquake spectrum Yankee Composite NRC
Peak ground acceleration 0.1 g 0.2 g
Probability of being equaled 10-3 10-4
or exceeded in a given year
Calculated crest settlement 0.7 £t 1.3 £t
Calculated horizontal movement:
Upstream slope (midpoint) 0.4 ft 1,1 £%
Downstream slope (midpoint) 0.3 €% 0.8 ft

Deformations of these magnitudes would not he expected to
impair the overall integrity of Sherman Dam, particularly since
the minirum freeboard of the dam is 24 ft.

The analyses described above were based on data obtained in
the preliminary field and laboratory program for Sherman Dam
(GEI, 1982a) and on properties selected based on comparison with
Harriman Dam, as described in Section 1.3 and in the text of this
report.
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be distinguished from each other (GEI, 1982a). For analysis
purposes, these two zones were considered to be the same soil and
are referred to in this report as the "dumped shell" material.

In 1964, Sherman Dam was raised by constructing a new
section, composed of glacial till borrow, over the crest and
downstream slope. This section was compacted mechanically with
rollers and is designated as "rolled shell" in Fig. 2.

The simplified cross section used for the seismic stability
evaluation consists of three zones - the core, the dumped shell
and the rolled shell, as shown in Fig. 3.
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4. SEISMIC STABILITY

4.1 General

The first step in the seismic analysis of Sherman Dam is to
estimate the factor of safety against a flow slide resulting from
liquefaction of the soils comprising the dam.

Liquefaction occurs when a mass of soil loses a large per-
centage of its shear strength when subjected to undrained
monotonic, cyclic or shock loading, and deforms continuously
until the shear stresses acting on the mass are as low as the
reduced shear strength, which is referred to as the undrained
steady-state shear strength.

The loss in shear strength results from a disturbance (e.g.,
an earthquake) which converts the mass from a drained condition,
in which it can sustain the in situ shear stresses, to an essen-
tially undrained condition in which the shear resi:tance of the
mass is lower than the imposed shear stresses.

A flow slide results if liquefaction occurs in a suf-
ficiently large mass of the soil.

The procedure used for analyzing the potential for a flow
slide failure is as follows (GEI, 1982Dh):

a. Calculate the static driving shear stresses, 14,
in various zones of the dam and compare with the
undrained steady-state shear strengths, S;g.

b. Perform stability analyses using (1) the
undrained steady state shear strength, S,g, in
zones where 14 is greater than S,g (i.e., where
liquefaction is likely) and (2) appropriate
undrained or drained strengths (depending on gra-
dation of the soil) in zones where 14 is less
than S,g (i.e., liquefaction is not possible).

¢. Calculate the factors of safety from the stabil-
ity analyses.

4.2 Strength Parameters For Flow-Slide Stability Analysis

4.2.1 General

This section contains a summary of our selections for
strength parameters for the flow-slide stability analysis.
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A more detailed discussion of the selections is presented in
Appendix A.

4.2.2 Hydraulic Core

Estimated static driving shear stresses, T3, in the
hydraulic core were calculated from trial slip circle
stability analyses. Undrained steady-state shear strengths,
Syg, were estimated from the results of laboratory triaxial
tests. For most of the core, the estimated driving shear
stresses were higher than the estimated steady-state
strengths. Therefore, most of the core would be susceptible
to liquefaction. Hence, we assumed that the core would
liquefy, and based on the triaxial test data, we selected an
undrained steady-state shear strength (after liquefaction),
Sys = 700 psf. The selection of this value of Syg is
explained in more detail in Appendix A.

4.2.3 Dumped Shell

In this analysis, the term "dumped shell"™ will refer
to both the section of the shell that was dumped in place
during construction and the intermediate zone adjacent to
the hydraulic core, because samples from hcth of these zones
had similar physical composition and similar blowcounts
(GEI, 1982a).

No borings were performed in the upstream shell of
Sherman Dam \GEI, 1982a). Hence, no sanmples of the upstream
shell were obtained. Construction records show that the
upstreanm and downstream shells were constructed from the
same borrow soils and in the same manner. So, in this
analysis, the same stress-deformation properties were
assumed for the upstream and the downstream shells of
Sherman Dam.,

In the borings in the downstream shell, we were not
successful in obtaining undisturbed samples, despite ten
attempts during the field exploration program (GEI, 1982a).
Because of the lack of undisturbed samples, we estimated the
stress-deformation properties of the Sherman Dam shell based
on comparisons with the Harriman Dam shell.

The visual descriptions, the grain-size distribu-
tions, the method of placement of the materials, and the
blowcounts for the Sherman Dam shell are essentially the
same as those for the Harriman Dam shell (GEI, 1982a).
Therefore, we used results of tests on undisturbed samples
of the Harriman Dam shell to estimate the shear strengths of
the Sherman Dam shell.
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The undrained steady-state shear strength, S,s, of
the Harriman Dam shell material was estimated from Eﬁe
results of five tests on undisturbed samples (CZI, 1981b;
GEI, 198lc). The undrained steady-state shear strendth,
S;gs is the mininum shear strength during vndrained uni-
directional shear of a soil, and the strength is reduced to
this value only after very large shear deformation (GEI,
1902b).

Based on the data from Harriman Dam, we selected an
undrained steady-state shear stcength of S,, = 7,00¢ psf for
the Sherman Dam shell for use in the flow slide aralyses.
The selection of this value of S,5 is explained in more
detail in Appendix A. This is a conservetive estimate ~f
the strength of the Sherman ban shell for three reasons.
First, the undrained steady-rtate shear strength is the
minimum strength during undrained shzar. Second, in the
Harriman Dam shell, we attemnptad to take 93 tube sanples but
obtained only 45 samples with gr-ater than 7 in. of
recovery. Only 27 of those samples were acceptable for
laboratory testing. Hence, the tube samples of Harriman DJam
that were tested in the laboratory probably repr2cent the
looser and less gygravelly zones of the shell, and the average
strength of the shell probably is higher than chat obtained
from the tube samples. Third, in the Sherman Dam shell we
attempted to take ten tube samples and cobtained no samples
with greater than 7 in. of recovery. Thig suggests that the
Sherman Dam shell may be, on average, denser and/or more
gravelly, and hence stronger, than the Harriman Cam shell,.

4.2.4 Rolled Shell

Drained strengths corresponding to a friction angle
$ = 45° and zero cohesion were selected for the unsaturated
rolled shell, based on tests on similar soils from Harriman
Dam.

Drained strength is appropriate for tiae rolled shell
because it is above the water level, 2s illustrated in
Fig. 3.

4.2.5 Glacial Till Foundation Soil

Drained strengths ccrresponding to a friction angle
¢ = 40° and zero cohesion were selectea for the alacial
till beneath the dam. No test data were available for the
till., This value is a conservative estimate of the friction
angle of the undisturbed till.
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The till is dense enough that it is dilative and,
hence, its undrained strength would be greater than its
drained strength. However, negative pore water pressures
are required to mobilize this higher undrained strength.
These negative pressures should not be relied upon in the
stability analysis. Therefore, the drained strength, which
corresponds to zero induced pore pressure, is a reasonable
strength to use in the undrained stability analyses for the
portion of the trial surface in the glacial till foundation.

Results of Flow-Slide Stability Analyses

4.3.1 Method of Analysis

The flow-slide stability of the upstream and down-
Stream slopes during and after an earthquake was evaluated
using both circular-arc-slip-surface and sliding-wedge
analyses,

The circular-arc-slip-surface analyses were performed
using the computer program STABL2 (Siegel, 1975 and Boutrup,
1978). The program uses the modified Bishop method (a limit
equilibrium method of finite slices) and includes critical-
surface searching options.

The sliding-wedge analyses were performed by hand.

The reservoir elevation used in the stability analy-
sis was the maximum operating pool at E1 1000 (NEPCo datum).
Seepage pressures within the dam were estimated from the
piezometer readings taken when the pool was at El 999.

Analyses were performed for both the downstream and
upstream slopes using the strength parameters described in
Section 4.2,

4.3.2 Results For Downstream Slope

The results of the stability analyses of the
downstrean slope are summarized in Fig. 4. The minimum com-
puted factor of safety was 1.3. As shown in Fig. 4, the
critical surface was a sliding wedge with a horizontal sur-
face at the base of the dan.

4.3.3 Results For Upstream Slope

The results of the stability analyses of the upstrean
slope are summarized in Fig. 5. The minimum computed Ffactor
of safety was 2.0. As shown in Fig. 5, the critical surface
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was a circular arc which passed through the core. The
upstream slope would be expected to be less critical during
seismic loading, since the upstream slope is flatter.

4.4 Conclusions

The minimun computed factor of safety against a flow slide
is 1.3. For this condition, a factor of safety of 1.1 would be
adequate. As dissipation of excess pore-water pressures occurs
after the eacthquake, the drained shear conditions existing prior
to the earthquake will be re-established and the factcrs of
safety for static load conditions will become applicable again.

The strengths used to compute the factor of safety of 1.3
were the undrained steady-state strengths in the core and in the
shell. This strength is the minimum or "residual® strength

rather than the peak strength, which is often used in analyses of
this type.

We conclude that a flow slid2 cannot occur even if the core
liquefies.
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5. EVALUATION OF DEFORMATIONS DURING SEISMIC LOADING

5.1 General

Even though a dam may have sufficient resistance against an
earthquake-induced flow slide (as concluded for Sherman Dam in
Section 4), the dam will still undergo some deformations due to
the shear stresses and strains resulting from an earthquake.

The following procedure was used to evaluate the deforma-
tions during seismic loading:

1. Select the design earthguake input moticn.

2. Using a two-dimensional finite-element model,
calculate the shear stresses in the dam during
the seismic loading.

3. Using labouratory cyclic load test data, estimate
the strains that will result in various sections
of the dam as a result of the shear stresses
calculated in (2), above.

4. Integrate the strains calculated in (3), above,
to estimate deformations of the dam.

The analysis is summarized in this section and some of the
details are discusr 'd in Appendix C.

5.2 Input Earthquake Motion

Two input earthquake motions were used in the analysis, each
conforming to one of the fullowing earthquake spectra:

l. The Yankee composite spectrum (Yankee, 1981).
2. The NRC response spectrum (NRC, 1981).

The Yankee composite spectrum has an estimated 10-3 prob-
ability of being exceeded in any given year (Yankee, 1981) and,
in our opinion, is a reasonably conservative design earthquake.
The more conservative NRC response spectrum has an estimated
107% probability of being exceeded in any given year and was
included for comparison purposes.

Input earthquake motions consisting of the Housner earth-
quake record (an artificial record) scaled to 0.l1g and 0.29 maxi-
mum ground accelerations were used in the analysis to represent
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the Yankee and NRC spectra, respectively. Conformance between
the scaled earthyuake records and the Yankee and NRC spectra is
illustrated in Fig. 6.

5.3 Computation of Earthquake Shear Stresses

Earthquake-induced shear ctresses in Sherman Dam were esti-
mated using the two-dimensional finite-element program FLUSH
(Lysmer et al., 1975), with the finite-element mesh shown in
Fig. 7. For this analysis, the required dynamic soil properties
(modulus and damping factors) were selected based on comparisons
to laboratory test data from samples of Harriman Dam, as
discussed in Appendix C. The input earthquake motion was applied
to the base of the dam as a horizontal motion.

Several finite-element analyses were performed to evaluate
the sensitivity of the analysis to the configuration of the core
and to the input moduli for the core. The analysis was rela-
tively insensitive to reasonable variations in these parameters,
as discussed in Appendix C. Hence, only the results for the core
configuration and soil properties judged to be most likely are
presented in this section.

In Fig. 8, the resulting values of maximum earthquake sheav
stress, for both the 0.l1g and the 0.2g earthquakes, are pluiteu
versus depth for vertical soil columns at three locations: (1)
the midpoint of the downstream slope, (2) the centerline of the
core, and (3) the midpoint of the upstream slope. Note that
these are the maximum earthquake shear stresses that will occur
for each element at some time during the earthquake and do not
necessarily occur simultaneously.

5.4 Computations of Strains and Deformations

We estimated accumulated strains due to earthquake loading
for individual finite elements by the following procedure:

l. Calculate cyclic triaxial test stresses com-
parable to the earthquake shear stresses from the
finite element analysis.

2. From laboratory data, estimate the amount of
strain that would have accumulated in a cyclic
triaxial test performed with these comparable
stresses.

3. Assume that the accumulated strain estimated in
Step (2) occurs in the elenent in the field.
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4. Correct L“e calculated stresses and strains for
any incompatibility that results from the
computations.

The maximum earthquake shear stresses, from the finite ele-
ment analysis, Tpay, shown in Fig. 8, occur only once during the
duration of the earthyguake. To compare these shear stresses to
the uniform cyclic shear stresses used in laboratory cyclic tri-
axial test, eguivalent average uniform cyclic shear stresses,
Taygs are computed using the relationship 1, = 0.65Tpaxe
TheSe_shear stresses are then used to calcufage the stress ratios
Tavg/oy, where ¢y is the effective vertical stress prior to the
earghquake. These stress ratios are used to determine comparable
cyclic triaxial test conditions.

From laboratory cyclic triuxial test data, plots of the
stress ratio T¢,/G¢c vs accumulated shear strain for seven cycles
of load were developed, where Tg, is the cyclic shear stress on
the potential failure plane and g¢. 1is the effective normal con-
solidation stress on the same plane. Separate plots were
constructed for the core and for the shell. The plot for the
core was based on cyclic triaxial tests on tube samples from the
core of Sherman Dam. Because no cyclic triaxial test data are
available for the shell of Sherman Dam, the plot for the shell
was based on cyclic triaxial tests on tube samples from the shell
of Harriman Dam. The use of the Harriman Dam data was based on
the inference that the stress-deformation properties of the
shells of the two dams are similar because of the similarity of
the physical composition, method of placement, and the blowcounts
(see Section 4.2.3). The development of these plots is discussed
in Appendix C.

The selection of seven cycles of load was based on a conser-
vative interpretation of a published relationship between earth-
quake magnitude and equivalent number of cycles at 0.65Tp,4 (sSee
Fig. 9). A maximum expected earthquake magnitude of 6.0 was
used, based on information in Yankee, 1981.

To estimate accumulated shear strains for the individual
elements in the dam the appropriate plots of stress ratio
Tfy/Ggc V8 accumulated shear strain were entered with Tg,/F¢c =
Tayg/dy (1.e., stress ratio in the cyclic triaxial test Com-
parable to stress ratio from the finite element analysis).

Because of the large difference between the deformabiliities
of the hydraulic core and of the dumped shell, the nethod
described above leads to the case where the accumulated strains
in elements of the core are significantly higher than the accumu-
lated strains in immediately adjacent elements of the shell. 1In
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reality this incompatibility of accumulated strains in adjacent
elements cannot occur and will be prevented by load transfer from
the more deformable core to the less deformable shell. 1In this
analysis, when the calculated strains were incompatible, an esti-
mate of the load transfer and of the resulting compatible strains
and stresses was made by hand computation, as described in
Appendix C,.

In Fig. 10, the calculated accumulated shear strains (with
compatibility corrections, where required) for both the 0.lg and
the 0.2g earthquake are plotted versus depth for the same three
vertical soil columns used in Fig. 8. For the 0.lg earthquake,
all of the calculated strains are less than 1.5 percent, and for
the 0.2g earthquake the strains are generally less than 3 per-
cent.

Calculated accunulated horizontal displacements at the mid-
points of the upstream and downstream slopes were deteirmined by
integrating the accumulated strains in Fig. 10, and the results
are summarized in Table 1.

A calculated accumulated crest settlement was determined by
integrating the accumulated strains in Fig. 10 for the vertical
column through the crest, assuming that these strains represent
maximum shear strains inclined at an angle of 45° from the ver-
tical with Moisson's ratio, v = 0.5 (i.e., undrained conditions),
and the results are presented in Table 1. (Use of any other
orientation for the assumed direction of the maximum shear
strains would yield a smaller calculated crest settlement.)

5.5 Conclusions

The estimated horizontal deformation and crest settlements
resulting from either the 0.1g or the 0.2g earthquake are pre-
sented in Table 1. The maximum estimated movement in any direc-

tion is 1.3 ft. Such movement should have a minor effect
because:

1. The freeboard of the dam is about 24 ft, even at
the maximum reservoir operating level of El1 1000.

2. Although significant transverse cracking of the
dam is not expected as a result of the estimated
deformations, the widely graded dumped shell
materials would be self-healing, even if trans-
verse cracking should occur.

It is concluded that Sherman Dam has adequate seismic
resistance for either the 0.1 g or 0.2 g earthguake.
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TABLE 1 - CALCULATED ACCUMULATED DEFORMATIONS(1l) oF
SHERMAN DAM DURING SEISMIC LOADING

Input Earthguake Motion Calculated Accumulated Deformations
Crest Settlement{4)  Horizontal Displacements at Midpoint of
Slope(3), ft

- ft Upstream Downstream
Housner with 0.19 maxi- 0.7 0.4 0.3
mum ground acceleration

Housner with 0.29 maxi- 1.3 1:1 0.8

mum ground acceleration

NOTES: (1) Accumulated deformations were calculated for the maximum height cross section
of the dam, based on shear stresses from a finite element analysis and stress-
deformation properties from laboratory tests (see Section 5 of the text).

(2) Crest settlement was calculated by integrating estimated shear strains in a
vertical soil column through the dam assuming that the shear strains occur on
a plane inclined at 45° from the vertical (see Section 5.4 of the text).

(3) Horizontal displacements were calculated by integrating estimated shear
strains in vertical soil columns through the dam (see Section 5.4).

Project 82917
Geotechnical Engineers Inc. Mar:h 31, 1982
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APPENDIX A

SELECTION OF STRENGTH PARAMETERS
FOR FLOW SLIDE STABILITY ANALYSES

Al Hydraulic Core

The range of undrained steady state shear strength, Syg+ in
the hydraulic core of Sherman Dam was estimated from the results
of laboratory triaxial tests performed on samples obtained in the
field and laboratory studies (GEI, 1982a), as explained in
Appendix B.

For an ideal homogeneous soil deposit there is a unique
relationship between S,5 and dry unit weight, termed the steady
state line, such that S;,g5 increases with increasing density,
and for any given dry unit weight there is one value of S,g. For
most real soil deposits, there is sufficient inhomogeneity that
there is a band of steady state lines, as illustrated in
Appendix B for the Sherman Dam core, and, consequently, for any
given density one would estimate a range of S,q.

Based on the band of steady state lines and on the
individual, in-situ dry densities (corrected for density changes
during sampling and testing, see GEI, 1982a) measured in the tube
samples of the core, ranges of S,q were estimated and are plotted
versus the depths of the tube samples in Fig. Al.

Stability analyses were performed for the three potential
slip surfaces illustrated in Fig. A2. From these analyses, the
static driving shear stress, tg3, which could drive a flow slide
failure, at points A, B, and C in the core were calculated.
These shear stresses were plotted versus depth in Fig. Al and a
relationship between static driving shear stress and depth was
constructed.

From Fig. Al, it is seen that in most cases in the core the
static driving shear stresses, 14, exceed the undrained steady
scatc shear strength, S;5. Consequently, it is our opinion that
the design earthquake could trigger liquefaction of most of the
hydraulic core. For the stability analysis we selected an
undrained steady-state shear strength of S,g = 700 psf. This
is approximately a median value of the range of undrained
steady-state shear strengths shown in Fig. Al if the two
largest values of S;g are excluded. It is reasonable to
exclude these two high values because a few isolated pockets of
stronger soil will not contribute significantly tc the
resistance against a flow slide. It should be noted that the plot
in Fig. 1 is a semilogarithmic plot and, hence, these two highest
Syg values are much larger than the other 13 values.
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Nine consolidated-undrained triaxial compression (R) tests
were performed on undisturbed tube samples of the Harriman Dam
shell ‘GEI, 1981b). Steady-state strength data were obtained
from five of these tests. However, the void ratios of the speci-
mens as tested were significantly lower than the void ratios of
the same samples when removed from the ground. Because the
steady-state strength is quite sensitive to void ra“io changes,
the steady-state strengths measured in the tests had to be
corrected for void ratio changes to estimate the steady-state
strengths in the field. The correction was based on recent
research (GEI, 1982b) which has shown that for several soils with
similar but slightly different gradations the steady-state lines
are nearly parallel but may be shifted up or down in terms of
void ratio. To determine the slope and shape of the steady-state
line, R tests were performed on compacted specimens of the
Harriman Dam shell. To correct_tl~ undrained steady-state shear
strengths measured in the five R tests on undisturbed samples for
the measured void ratio changes, we assumed that the steady-state
line for each specimen is parallel to the steady-state lines
determined from the compacted specimensz.

The steady state line from the compacted specimens and the
uncorrected and corrected undrained steady-state strengths from
the five undisturbed specimens are shown in Fig. A4.

Based on the five corrected strengths from the Harriman Dam
shkell samples, we selected an undrained steady state shear
stcength of S, = 2,000 psf for the Sherman Dam shell for use in
the flow slide analyses. We believe this is a conservative esti-
mate of the strength of the Sherman Dam shell for three reasons.
First, the undrained-steady st.te shear strength is the minimum
strength during undrained shear. Second, in the Harriman Dam
shell, 93 tube samples were attempted while only 45 samples with
greater than 7 in. of recovery were obtained and only 27 of those
samples were acceptable for laboratory testing. Hence, the tube
samples of Harriman Dam that were tested in the laboratory may
reprecent the looser and less gravelly zones of the shell.
Therefcre, the average strength of the shell may be higher than
that obtained from the tube samples. Third, in the Sherman Dam
shell ten tube samples were attempted and no samples with greater
than 7 in. of recovery were obtained. This suggests that the
Sherman Dam shell may »e, on average, denser or more gravelly,
and hence stronger, than the Harriman Dam shell.

A3 Rolled Shell

The rolled shell in Sherman Dam is above the phreatic sur-
face and a drained strenoth is appropriate. A friction angle
$ = 45° with zero cohesion was selected based on laboratory tests
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of similar soils from Harriman Dam (GEI, 198la,b). The high
friction angle of this material is attributable to its high den=-
Slity and low confining stress.

A4 Glacial Till Foundation Soil

No strength test data are available for the glacial till
foundation soil at Sherman Dam. Based on experience with similar
glacial tills we believe that a drained strength with a friction
angle ¢ = 40° and zero cohesion is a reasonably conservative
estimate of the strength of the glacial till beneath the dam.
The ‘.11l is dense enough that it is dilative and, hence, its
undrained strength would be greater than its drained strength.
However, negative pore water pressures are reqguired to mobilize
this higher undrained strength. These negative pressures should
not be relied upon in the stability analysis. Therefore, the
drained strength, which corresponds to zero induced pore pres-
sure, is a reasonable strength to use in the undrained stability
analyses.
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APPENDIX B

DETERMINATION OF UNDRAINED STEADY STATE SHEAR
STRENGTHS FOR HYDRAULIC CORE OF SHERMAN DAM

The following undrained triaxial compression (R) tests
were performed on samples of the hydraulic core of Sherman Dam:

l. Three tests (R-1 through R-3) on undisturbed
samples consolidated to stresses comparable to the
in situ stresses.

2. Six tests (R-4 through R-6 and R-12 through R-14)
on undis 1irbed samples consolidated to stresses
much higher than the in situ stresses.

3. Five tests (R-7 through R-11) on specimens com-
pacted from soil taken from the undisturbed
samples.

The results of the individual tests have been presented in a pre-
vious report (GEI, 1982a).

In the first set of tests (R-1 through R-3), it was found
that when the in situ stresses were reapplied to the specimens,
they consolidated to dry unit weights varying from 4 pcf to 7 pcf
densey than the in situ densities. The stress-strain curves in
these three tests would be described as weakly to moderately
dilative. However, because of the density changes, the stress-
strain curves and stress paths of these specimens are not repre-
sentative of the in situ soil, and, in particular, the degree of
dilativeness is not representative of in situ conditions.

Recent research (GEI, 1982a) has suggested that the most
reliable steady-state strength data can be obtained from
undrained compression tests on highly contractive specimens.
Consequently, to obtain steady-state data from the undisturbed
samples, the second set of tests described above was performed at
stresses sufficiently higi so that the specimens were contrac-
tive. The estimated steaiy-state points are plotted in Figs. Bl
and B2 in plots of shear stress (log scale) vs dry unit weight
and effective minor principal stress (log scale) vs dry unit
weight.

To extend the steady-state data to densities comparable to
the field densities, the third set of tests described above was
performed on specimens compacted from a batch sample of soil made
by mixing similar soils taken from the same tube samples used
for the previous R-tests, as described in a previous report (GEI,
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1982a). These specimens were contractive over a wide range of
densities and resulted in the steady-state data shown in Figs. Bl
and B2 for reconstituted specimens.

The data from the tests on the undisturbed and reconstituted
specimens were combined to develop the bands of steady-state
lines shown in Figs. Bl and B2. This interpretation of the data
was based on the premise demonstrated in recent research (GEI,
1982b), that, for soils of similar mineralogical composition but
with slightly different gradations, the steady state lines will
have the same slopes but will vary in their positions in plots
such as those in Figs. Bl and B2. The widths of the bands in
these figures reflect the inhomogeneity of the hydraulic core.

To estimate the undrained steady state shear strength for a
particular sample, Fig. Bl is entered with an estimate of the
in situ dry density. For example, if the estimated in situ dry
density is 86 pcf, the estimated range of undrained steady state

shear strength is S;g = 600 psf to 1100 psf, as illustrated in
Fig. Bl.
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APPENDIX C

SOME DETAILS OF THE EVALUATION OF STRAINS AND
DEFORMATIONS DURING SEISMIC LOADING

i 4 General

This appendix contains discussions of some of the details of
four items referred to in Section 5 of the text, namely:

1. Selection of dynamic soil properties
2. Accumulated strain data

3. Stress redistribution due to computed strain
incompatibility

4. Sensitivity analyses

C2 Selection of Dynamic Soil Properties

For input to the two-dimensional finite-element program
(FLUSH), dynamic soil properties, consisting of an initial value
of shear modulus, an initial value of damping and variations of
these properties with shear strain, must be selected for each
finite element in the mesh.

Because no dynamic soil property data are available for
Sherman Dam, the dynamic properties selected for the shell and
the core were based on the results of resonant column and small-
strain cyclic triaxial tests on undisturbed specimens from
Harriman Danm, which were presented in GEI (198la). The dynanmic
soil properties measured in tests on the Harriman Dam shell were
used directly for the Sherman shell because of the inferred simi-
larity in stress-deformation properties of the two materials
based on similarities in physical composition. method of
placenent, and in blowcounts (GEI 1982a). The dynamic soil pro-
perties measured in tests on specimens from the core of Harriman
Dam were corrected for use in this analysis, to account for the
lower densities measured in the core of Sherman Dam. The correc-
tions were made according to relationships presented in Hardin
and Richart (1963) and Kim and Novak (1981).

C3 Accumulated Strain Data

Relationships between accumulated strain after seven cycles
of load and cyclic stress ratio were developed from the results
of laboratory cyclic load tests on undisturbed samples. The
vyclic stress ratio is defined as Tfy/Tgcs where Tgy is the
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cyclic shear stress on the potential failure plane and 3gc is the
effective normal consolidation stress on the same plane.

Cyclic test results from nine cyclic triaxial (CR) tests on
anisotropically consolidated (K. = §1¢/G3¢ = 2.0) undisturbed
specimens from the dumped shell of Harriman Dam were used to eva-
luate strains accumulated in the shell of Sherman Dam during
earthquake loading. The data were plotted in GEI (1981lb) in
terms of 1¢,/Gfc vs accumulated shear strain after seven cycles,
and this pfxt is reproduced herein as Fig. Cl.

Cyclic test data from five anisotropically consolidated
(Ko = 2.0) and two isotropically consolidated (Kc = 1.0) speci-
mens from the core of Sherman Dam were used to evaluate the accu-
mulated shear strains in the hydraulic core. The cyclic triaxial
test results are plotted in Fig. C2 in terms of cyclic stress
ratio Tgy/Tfc vs accumulated shear strain after seven cycles.

Although the test results showed that the cyclic resistances
of the anisotropically consolidated specimens of the Sherman Dam
core were generally greater than the cyclic resistances of
isotropically consolidated specimens, and that the cyclic
resistance generally decreased with increasing minor effective
consolidation stress, the variations due to these factors appear
to be less than that due to inhomogeneities among the different
samples. Consequently, different relationships for different
minor effective consolidation stresses (as used for the shell)
could not be developed for the core. Instead, the curve plotted
in Fig. C2, which represents a conservative bound to all of the
test data from the Sherman Dam core, was used to calculate the
accumulated shear strains in the core.

C4 Stress Redistribution due to Computed Strain Incompatibility

As stated in Section 5.4 of the text, in some cases the
large differences between the deformabilities of the hydraulic
core and of the dumped shell 'ead to incompatibility in the
computed strains at the boundaries of the two zones, when the
computed strains are determin>d directly from Figs. Cl and C2 and
the earthguake shear stresses calculated in the finite element
analysis. The following hand-calculation procedure was used to
estimate compatible strains due to redistribution of shear
stresses from the more deformable core to the less deformable
shell.

At a given depth in the hydraulic core the earthquake shear

stress ratio, Tayg/3,, was computed based on the results of the
finite-element analysis. From the curve plotted in Fig. C2, the
accumulated shear strain corresponding to the computed normalized
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earthquake shear stress was determined by equating Tgy/By =
Tavg/3y. Similarly, the accumulated shear strain in {he shell,
at the came depth, immediately adjacent to the core, was deter-
mined from the earthquake shear stress calculated in the finite
element analysis and from Fig. Cl. If the accumulated strain in
the shell was less than in the core, shear stress was subtracted
from the core and added to the shell, and the accumulated strains
redetermined from Figs. Cl and C2. Using this method the strain
in the core was decreased and the strain in the shell was
increased until the accumulated strains calculated for the core
and for the shell adjacent to the core were equal and therefore
compatible.

CS Sensitivity Analyses

Analyses were performed to evaluate the sensitivity of the
finite-element analysis to variations in (1) the modulus of the
core and (2) the size of the core.

According to the relationships presented by Hardin and
Richart, 1963, and Kim and Novak, 1981, the moduli determined
from tests on the Harriman Dam core should be multiplied by
about 0.65 to correct for the lower densities in the Sherman
Dam core. To evaluate the sensitivity of the analysis to this
correction factor, analyses were performed with Sherman Dam
core moduli equal to 0.50 times and 1.00 times the values mea-
sured on the Harriman Dam core samples. Both analyses were
pecformed with the Housnet earthquake record scaled to a maxi-
mum ground acceleration of 0.1g. As shown in Fig. C3, this
variation in core modulus had no significant effect on the
calculated earthquake shear stresses. The other analyses
presented in this report were performed with a core modulus of
0.65 times that determined from the Harriman Dam core samples.

Sensitivity analyses were also performed to evaluate the
effect of core size. Three sizes, small, medium, and large, as
shown in Fig. C4, were considered. We believe these three sizes
cover the reasonable range of expected core size, based on the
borings and on the construction records. The analyses for all
three sizes were performed with the Housner earthquake record
scaled to a maximum ground surface acceleration of 0.1lg. As can
be seen in Fig. C4, there is some variation of earthgquake shear
stress with changes in core size. However, the variations are
not large enough to significantly affect the final calculated
deformations. Therefore, the other analyses presented in this
report were performed with the medium size core, which is our
best estimate of the actual core configuration.
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