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UESTION 2.

Section 1.3 Does the statistical core design methodology depend on using a
response surface model (RSM) and a Monte Carlo simulation or are these components
just BaW's choice? Isn‘t the key issue the propagation of errors through a
complex computer code? Since this methodology is applied to a generic 205 core,
will the RSM estimate apply without change to all specific analyses or will the
RSM be re-estimated in each case? If it is intended to apply to all, how will

it be justified in each case?

RESPONSE

The SCD methodology depends on a Response Surface Model (RSM) only to the point
of making the analyses feasible. The output DNBR uncertainties could have been
obtained via direct Monte Carlo runs with the LYNX1/2 code. To carry out 2000 -
3000 of these would be prohibitively expensive.

The objective of propagating input uncertainties, not errors, through a complex
computer code was therefore considered feasible with tne RSM technique only.

The questions to be answered were the following:

Suppose that a DNBR prediction is made with the LYNX1/2 code, under a

set of assumed core conditions. By what amount could this LYNX1/2 value

of DNBR vary as a result of uncertainties in the actual value of: channel
flow area, due to pin pitch and rod diameter (FA); fuel pin heat output,

due to stack diameter and enrichment (FQ); bypass flow (HB); spacing between
bundles (AB); radial peaking (Runc) and the correlation in critical heat

flux (CHFunC). The uncertainty due to modeling is treated through the Codeun‘.

The LYNX1/2 prediction for a core condition is considered to be the con-
ditional mean value of a distribution with the total DNBR uncertainty
evaluated as outlined above, equaling the standard deviation of that
distribution. The RSM is used only to obtain an estimate of = (DNBR),
at a specific core condition, not for replacing a LYNX1/2 prediction.

In developing the RSM, the ranges of the input parameters were carefully
chosen so as to bracket the operating parameters of all currently exist-
ing 205 plant designs. It is expected that for each plant the input un-
certainty distributions will be reviewed for applicability and compat-
ability to the results of BAW 10145P.
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QUESTION &.

Page 2-10. Why were two or three pin DNBR values averaged for UC or CR type

pins before the PSM was fit? Does this imply that the RSM predictions are for
the average of two or three pins? How does this affect the estimation of the
probability that a single pin exceeds a DNBR of 1.0? This appears to be a
fundamental issue.

RESPONSE

Different pin DNBR values were not averaged for input to the RSM: the adjacent
subchannel DNBR's on a single pin were the values so treated. Thus the RSM

is representative of an average DNBR value for a given peaking value which is
consistent with the physical configuration. A separate DNBR value exists for

a pin from a control rod and from a unit cell type, however. There were two
RSM's developed.

By establishing a one-to-one correspondence between peaking and the ONBR on

a given pin, the probability of exceeding a ONBR of 1.0 on a pin is a feasible
calculation. Please see the Response to Question 24 for a further discussion
of the use of multiple subchannel DNBR's on a single pin.






Page 2-30. There are only 48 points plotted. Where are the remaining?

RESPONSE

There are some input parameter combinations that differ case by case but yield
quivalent (or nearly so) ONBR values. This occurred in several cases among
the 56 points resulting from the runs shown in Table 2-5. Thus in plotting
the 56 LYNX versus RSM predictions the duplications were omitted, resulting

in having only 48 points shown in the Figure 2-8. A figure with a more
detailed scaling could accommodate the 56 points in total.



QUESTION 7.

Page 2-31. Figure 2-9 shows the MDNBR from the RSM model to systematically
overpredict. Is this always the case of the extremes? In general, the reason
the RSM does not agree with LYNX is because the RSM is incorrect; there is no
random variation. Can you demcnstrate that there is no systematic patterns in
the residuais?

RESPONSE

Figure 2-9 illustrates the one-at-a-time variations in DNBR, due to Q and
separately due to W. Other figures indicate similarly the variation due to
each of the other variables. [t cannot be said that the RSM overpredicts
systematically, not even in Figure 2-9. While the RSM overpredicts with
variations in W alone, it unuerpredicts with variations in Q alone. The
amount of model conservatism increases with power.

Note that the effects of Q and W essentially cancel each other or are mini-
mized when applied to actual operating cases in which Q and W move away from
nominal (center where the fit is perfect). In addition, the RSM is used only
for the assessment of sensitivities, it is applied to a case where Q = 112%
and for that case the model yields conservative predictions.

The RSM is not expected to replace LYNX, only to approximate it. The model
residuals are spread on both sides of the LYNX observations, without evidence
of any systematic pattern. The computer printout microfiche "RSMIOVT" is
enclosed for inspection.




QUESTION 8.

Page 3-2. Why is code uncertainty treated as multiplicative and correlation
uncertainty as additive?

RESPONSE

The code uncertainty accounts for variability in approximating the LYNX code
with the RSM. DNBR variability in LYNX increases with increasing absolute
ONBR values. Treatment of code uncertainty as multiplicative takes this
variation with absolute ONBR level into account.

The correlation uncertainty, on the other hand, is a measure of the precision
of the CHF correlation itself about a specified constant DNBR level (1.0 in
this case). Treatment of correlation uncertainty must, therefore, be inde-
pendent of the absolute ONBR level calculated by the RSM and is thus treated
as additive.




QUESTION 9.

Where are the details of the least squares analysis for C, and C,? The exact
procedure and data used for the analysis is not clear. From Figures 3-4 and
3-5 it appears that data for DNBR range from 2.15 to 3.00, but yet the Monte
Carlo results produce ONBR values much lower. Is this a case of extrapolating
the model beyond the range of the data?

RESPONSE

The RSM was developed for a "typical"” pin using 56 various combinations of
the 9 input variables. For these, the DNBR (output) values range from .5 to
3.0, approximately. For each of these results it is feasible to make an ad-
Justment, an ircrease or decrease in DNBR, as a function of the difference in
local peaking only. Assuming that a core condition is kept constant, the
amount by which the DNBR is assumed to change, due to local peaking changes
alone, ic evaluated with the coefficients C, and C,. The details of the
computer calculation of the regression analysis for the C, value obtained

at Anom conditions are enclosed as "RSMI051". C, is estimated by the (LYNX-RSM)
deviation.

Figures 3-4 and 3-5 show example plots of ONBRs versus local peaking, for a
specific set of core conditions. The case shown is for nominal operating
cenditions whereas the Monte Carlo Analysis was done for the design case

(Q = 112%, etc.) shown in Table 3-6 as case 1.



QUESTION 10.

Section 3-2, Page 3-4. What is the function of SAMPLE and what do the input
arguments contain? Please explain all variables and constants used.

RESPONSE

The statements of the "SAMPLE" program are listed on Page 3-15 in Table 3-5.
The input arguments from case 1 Table 3-6 are: 0Q = 112%, P = 2205, T = 567.7,
A=1.67, Z=0.5. They can be read in line number 14 of Table 3-5 in the
equivalent, coded, units. The coded values are computed with the aid of
Table 2-6. The input "X" refers to the number of randomized variables which
is seven in this case, "C" is a feature which is not used in the run. The
constants are the coefficients of the RSM obtainec from Table 2-8. Other
inputs are: number of cases, N = 3000, as well as the means, standard devia-
tions or other needed parameters for the randomized variables from Table 3-4.
The form of the distribution (Normai, etc.) is also an input. An actual
computer run Microfiche is attached (ID: SAMPL 92) to aid in explaining.

The Tine No. 23 contains the constant (.062435) which is from equation B-2
of Page B-3 and represents the sensitivity of DNBR to interbundle area changes.

The constant of line No. 29 is (-.0453456) which is the value obtained from
equation 3-1 adjusting the RSM to the MPLP,

ak = 1.038164 (MPLP) - 1.02737 (pin peak of RSM cases) =

"

.010794 and

C, = - 4,201 from Table 3-3. Thus substituting into equation 3-1

A2.Cy = ADNBR = .010794 (- 4.201) = -.0453456.
The value of C; (equation 3-1) is 1.0 in this case and the value of C, of the
equation was not used because at 112% FOP the mode! was found to be 8 DNBR

points too conservative (lower than LYNX) and it was decided not to take credit
for this factor.
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QUESTION 11.

Page 3-8. Is ¢ the cumulative normal distribution? Can the assumption

of independence of all pins in the core be justified?

RESPONSE

In the nomenclature, ¢ is defined as the Normal distribution.

Precisely, when a variable X ~ N (u,0 ) then Z = X = 4 and Pr (Z < k) = #(0,1):

or Pr (Z < k) = jre- ] ZZ dZ. .

2

-

The assumption is made that the pins have equal variations about their mean
fur a fixed core condition, and that the means are conditional on that core

condition. These means are estimated from the LYNX1/2 Code for given assumed

core conditions.

The equations of Section 3.4 are applied at a fixed core condition: case 1
Table 3-6.

of

3



Page 3-10. The calculations for the estimates on this page should be

explizitly given as they form the final estimates.

RESPONSE

With the most limiting pin at the SCD limit of 1.30, the following estimates

are made:

a) The expected number of pins in ONB is less than 0.1% of the core
(54 pins = 0.1%).

i.e., using equation 3-13 and the values of Table 3-8 (4th column
bottom half).

E. = 5.5897 x 3.8769 + 2.6462 + 1.7767 +

\
v

+ 2(1.1734) + 45.25 (.7621)
= 13.8895 + 2.3468 + 34.485 = 50.7213
b) The probability that the most power limiting pin avoids DONB is 0.976.

i.e., Figure 3-7 and equation on the Figure show that
Pr 2 > P ‘-30:1 = pr(z > - 2.0548)= .976
.146

-

The values from Table 3-8 can be found in the computer run "RELAQOAM" which

is attached as a Microfiche.



QUESTION 12-2.

Part II:

With the core at the design overpower conditions, the following estimates
are made:

a) Less than one pin is expected to be in ONB.

b)

i.e., calculations of equation 3-13, from Table 3-8 (4th column top half):

6 6,

£ = [}ooosae7 + 7166 x 1070 + 13247 x 107

+ .02278 x 10'5] +2 (.00919 x 10°%) + 45.25 (.00142 x 10°8) =
5.875719 x 10°% + 1 838 x 1078 + 6.4255 x 1078
= 5.8765 x 10'4

The probability that no pins will be in DNB is .999412.
i.e., calculations of equation 3-10, from Table 3-8 last column:

P.

"

"

(.999413) (.99999928) (.99999987) (.9299999977)

(.999999991)% x (.9%358)%°-2% -

(.9994121095) (.9999999321) = .9994120417

The probability that the most power limiting pin avoids DNB is .9999972.

i.e., Pr 2 1[?—lf}glé]= Pr (2> - 4.9315) = ,9999972



QUESTION 13.

Page 8-3. Why is such a simplified approach as sensitivity used for the
effect of AB in equation (B-2)?

RESPONSE

It is apparent from several questions that some confusion exists concerning
the various components and treatment of the pin peaking. The following
discussion is included to clarify the responses to this and subsequent

gquestions relating to pin peaking.

The DNBR on any pin is the result of (among other things) the specific power
output of that pin. The specific pin power of any pin in the core is calculated
using several different variables:

1) The average rated power of a pin in the core (3) and the corresponding
core power (Q).

2) The normalized (within core) radial peak (R) for the bundle which contains
that pin.

3) The normalized (within bundle) local peak (L) for the pin. The local
peak is a function of both the position of the pin in the bundle (alL)
and the local peaking gradient within that bundle (2A). The local peaking
gradient is primarily a function of bundle spacing (AB).

4) The hot channel factor on pin power due to manufacturing tolerances (FQ).

Thus
dpip * axQxRxL X FQ

The RSMs were developed for a speci’ic pin location in a specific bundle. Thus,

for each input point (to the RSM), Q, R, and FQ were determined by the

experimental design of the RSM. A fixed value of L corresponded to the RSM base loca-

tion within the bundle. Then, for any combination of input variables, a ONBR on the

RSM pin car be evaluated with the RSM. In order to determine DNBR values for

pins in that bundle other than the RSM pin, an adjustment based on the local

peaking value of the specific pin must be implemented. This is the al adjustment

of section 3.1. It is not an uncertainty. Thus by inputting Q, R, AL, FQ, and

the other non-peaking related variables into the RSM, the DNBR on any pin can

be evaluated.



Next we must consider uncertainty propagation through the RSM. No uncertainty
on Q is considered. Q is held at its conservative value in the analyses (ard
thus is completely deterministic). R is a deterministic variable in the
analyses, but its uncertainty Runc is treated as a random variable. FQ is a
random variable in itself (its mean, or deterministic value being 1.0). This
leaves the local peaking variable, L. It is deterministically treated as
discussed above using AL (i.e., each pin in the bundle has a specified L
differing by some AL from the base pin on which the RSM was developed). Its
uncertainty, arising from bundle area uncertainty (2A), is treated as the random
variable AB.

In answer to the specific question concerning equation B-2, a simple linear
sensitivity was used to maximize the effects of AB on the Statistical Design
Limit. This maximization was deemed to be appropriate since the AB uncertainty
is important in determining corewide protection.
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QUESTION 15.

Page 1-2, Paragraph 2. Much is said about the difference between the most
power limiting pin (MPLP) and the hot pin. There is nothing in the report
to indicate that the SCD actually determines the hot pin instead of using the
MPLP. When would this distinction be important and what are the implications
of using the SCD rather than the traditional design methods in this regard?

RESPONSE

In traditional analyses any pin-related uncertainties (such as FA and FQ)

are applied to the MPLP. In actuality each pin has a certain combination of
statistical uncertainties. Thus, for instance, a pin with only slightly less
power output than the MPLP could have a more severe level of the pin-related
uncertainties at any given time. This could cause that pin to have a lower
DNBR than the MPLP -- to become the "hot pin".

SCD, in essence, allows each pin to "see" its individual uncertainties when
determining core protection. Then, by considering the integral value of pins
that could approach DNB, the degree of core protection is determined. Thus the
assumption that the hot pin is always the MPLP is avecided in the SCD approach.



QUESTION 16.

Page 1-4, Figure 1-1 (also Figure 4-5 on page 4-15). These identical figures
do not "stand alone" nor are they supported by adequate text. Even a thorough
reading of the report does not make clear the relationships between the
traditional and the statistical core design. Apparently the use of the SCD
permits an increase in the margin for maneuvers from 24 units to 37 units.

[s this the "payoff" for use of the SCD? In addition, the relationship
between the traditional approach's 22-unit compounded thermal-hydraulic
uncertainty and the SCD 12-unit compounded thermal-hydraulic uncertainty

penalty needs to be quantified and given explicitly.

RESPONSE

a)

Figure 1-1 is, indeed, an illustration of the "payoff" for the use of

SCD. It illustrates the difference in techniques by considering a specific
design case. The DNBR values to the far right and left of both bars

are identical, since they are the best estimate DNBK (2.13 for the case
illustrated) and the true limiting DNBR (1.0) respectively. Between these
two values are uncertainties, penalties, and margins. This is where the
two analyses differ.

In traditional analyses, we start with a nominal LYNX1/2 model (which
unmodified would result in a DONBR of 2.13) and modify it to include radial
uncertainty and densification penalty (19 DNBR "points" or "units"), the
power variation (29) and all of the compounded thermal-hydraulic uncertainties
(22). The resulting minimum DNBR for a traditional analysis is 1.43.
Then, starting from the true limit DNBR (1.0), we add the CHF correlation
uncertainty (14) and the added thermal-hydraulic penalty (5) to define a
lower Thermal Design Limit (1.19). When.the 1.43 is compared with the
1.19, we are ieft with the margin (23 points). For different design
cases (such as peaking protection or off-normal core condition cases),
some or all of this margin will be used.

In the SCD analysis we again start with a nominal LYNX1/2 model, but

modify it to include only the power variation (29) and part of the compounded
thermal-hydraulic uncertainties (12). We get (for the illustration case)

a minimum DNBR of 1.72.



At this point five (5) sets of uncertainties are still to be accounted

for: the radial uncertainty, the remaining part of the thermal-hydraulic
uncertainties, the CHF correlation uncertainties, the code uncertainty,

and the added thermal-hydraulic uncertainty. All of thesz uncertainties
(except for the last which is essentially a contingency penalty) are then
combined using the SCD techniques resulting in the combined SCD Uncertainty
Penalty (30). When added to the 1.0 true DNBR limit, the 1.30 Statistical
Design Limit (SOL) results. Finally, we directly apply the added thermal-
hydraulic penalty (5) as in the traditional method to arrive at the 1.35
Thermal Design Limit (TDL). When the 1.72 minimum ONBR that resulted from
the modified LYNX1/2 analysis is compared to the TDL of 1.35, we obtain the
margin for the SCD analysis (37 points).

Thus, the SCD technique has 13 points more margin (37 - 24 = 13) available
for different design cases than the traditional technique. All of the
separate uncertainties are accounted for in each technique either in
obtaining the LYNX1/2 minimum DNBR or in obtaining the Thermal Design Limit.
The difference is that, in SCD, some of the uncertainties in the LYNX1/2
minimum ONBR in the traditional analysis have been transferred for use in
obtaining the TDL. The margin gain - 13 DNBR points - is *‘ae "payoff".

The compounded thermal-hydraulic penalty in the traditional analysis
consists of seven (7) parts: the pressure uncertainty (P), the
temperature uncertainty (T), the inlet flow factor uncertainty (FF),

the hot channel factor on pin power (FQ), the hot channel factor on channel
flow area (FA), the uncertainty on core bypass flow (NB), and the bundle
flow area uncertainty (AB). These seven (7) compounded uncertainties
result in the 22 point reduction in DNBR. For the SCD analysis, these
uncertainties are divided. P, T, and FF are retained as compounded
uncertainties for determining the LYNX1/2 minimum ONBR. FQ, FA' W, and AB
are statistically treated in determining the Statistical Design Limit.
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QUESTION 183.
Page 2-4, Section 2.2.2. HKow are the uncertainties in the core inlet

flow distribution handled in the SCD?

RESPONSE

As stated in Section 2.4, Page 2-8, Paragraph 3, the inlet flow distribution
uncertainty remains in the thermal-hydraulic analyses. Hence the treatment

of this uncertainty with SCD methods is the same as with traditional methods.
The uncertainty is applied to the power limiting bundle to produce an iniet
flow which is five percent (5%) less than the core average inlet flow. This
reduction in flow on the power limiting bundle is based on the results of flow
testing ot a one-sixth scale model of the reactor vessel at B&W's Alliance

"esearch Center.
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