RADIOACTIVE EFFLUENT REPORT

AND ENVIRONMENTAL MONITORING REPORT

OF

THE LA CROSSE BOILING WATER REACTOR

FROM

JANUARY 1, 1982 to JUNE 30, 1982

DAIRYLAND POWER COOPERATIVE

DOCKET NO. 50-409

TABLE OF CONTENTS

SECTION	PAC	E
	Tables	
	Figures ii	i
A	Radioactive Effluent Report	
1.1	Liquid Releases - January - June	
1.2	Airborne Releases - January - June 3	
1.3	Shipment of Solid Wastes Off-Site 5	
1.4	Supplemental Information to Effluent and Waste Disposal Report	,
В	Environmental Monitoring Report	
2.0	Introduction	
3.0	Sample Collection	
4.0	Results of the 1982 Semi-Annual Environmental Monitoring Survey 15	i
4.1	Penetrating Radiation	ì
4.2	Air Particulate	,
4.3	Precipitation and River Samples 16	,
4.4	Sediment Samples)
4.5	Milk Samples 16	,
4.6	Activated Charcoal Cartridges 16	5
4.7	Vegetation 17	7
4.8	Fish 1	7
5.0	Conclusions 1	7

TABLES

TABLE	PAGE
I-A I-B	Report of Radioactive Effluents - 1 1982 Liquid Releases
II-A II-B	Report of Radioactive Effluents - 3 1982 Airborne Releases
III	1982 - January - June Solid Waste Shipments
IA	Sample Frequency and Analysis of Radio- Environmental Samples
V	Radio-Environmental Samples Collected 19
VI	Quarterly Thermoluminescent Dosimeter dose Measurements in the LACBWR Vicinity 20
VII	Weekly Beta Air Particulates in the LACBWR Vicinity
VIII	Results of Analysis of River Water in the LACBWR Vicinity
IX	Results of Precipitation from the Vicinity of LACBWR
Х	Results of Analysis of Mississippi River Sediment in the Vicinity of LACBWR
XI	Results of Analysis of Milk Samples in the Vicinity of LACBWR
XII	Results of Composite Charcoal Filter Analysis
XIII	Isotopic Analysis of Vegetation Samples . 27
XIV	Fish Sample Activity in the Vicinity of LACBWR

FIGURES

FIGURE	PAGE
1	LACBWR Property Map
2	LACBWR Environmental Survey and Dose Assessment Locations

SECTION A RADIOACTIVE EFFLUENT REPORT

Table 1-A
REPORT OF RADIOACTIVE EFFLUENTS

To Course Builder House Bosses							
La Crosse Boiling Water Reactor Facility: Dairyland Power Cooperative	Docket 50-409						
I. LIQUID RELEASES	Units	Jan.	Feb.	Mar.	Apr.	May	June
 Gross Radioactivity (β,γ) 							
a) Total Release	Curies	2.47x10-1	8.39x10-2	1.66x10 ⁻¹	4.72×10-1	1.86	1.10
b) Average Concentration Released	uCi/ml	7.44x10-9	7.59x10 ⁻⁹	1.36x10 ⁻⁸	5.47×10 ⁻⁸	1 7/-10-/	5.33x10 ⁻⁸
c) Maximum Concentration Released	μCi/ml	7.44x10 ⁻⁹ 5.54x10 ⁻⁶	1 75×10	9.51x10	7.05x10 ⁻⁷	1.49x10 ⁻⁶	2.51x10 ⁻⁶
d) Percent of Allowable Limit	7	1.24-10-1	1.30x10 ⁻¹	3.19x10 ⁻¹	1.00	1.25	3.54×10 ⁻¹
2. Tritium				,			J. J4X10
a) Total Release	Curies	4.36	7.37	1.15×10 ¹	7.27	1.24	2.30
b) Average Concentration Released	uCi/ml	1.31x10-7	6.66×10-7	9.42x10	8.42×10-7	1.16x10-7	1.11x16-7
c) Percent of Allowable Limit	Z	4.38x10 ⁻³	2.22×10 ⁻²	3.14x10 ⁻²	2.81x10 ⁻²	3.88x10 ⁻³	3.72x10 ⁻³
3. Dissolved Noble Gases							
a) Total Release	Curies	1.68x10-3	3.49x10-3	8.09x10 10	1.17x10-2	1.17x10-3	1.91x10-3
b) Average Concentration Released	µC1/ml	5.06x10 **	3.16x10 2	6.57x10 2	1.36x10	1.10x10	9.22×10
c) Percent of Allowable Limit	z	1.69×10 ⁻³	3.16x10-10 1.00x10	8.09x10 ⁻³ 6.57x10 ⁻¹⁰ 2.02x10 ⁻²	4.49×10 ⁻²	3.66x10 ⁻³	3.07×10 ⁻³
4. Gross Alpha Radioactivity							
a) Total Release	Curies	6.48×10 ⁻⁵ 1.95×10,	4.05x10-5	6.00x10 ⁻⁵	1.50×10-4	2.30x10-3	8.55×10 ⁻⁴ 4.03×10 ⁻¹¹
b) Average Concentration Released	µCi/ml	1.95x10,	3.66x 0-12	4.91×10 ₄ -12	1.73×10 ₅	2.16×10 ₄	4.03x10 ⁻¹¹
5. Average Stream Flow	ft3/Sec	1.85x10	1.79x10,	3.57x10;	1.02×10°	7.92×10	45284
6. Volume of Liquid Waste to Discharge Canal	Liters	1.29x10	9.91x104	1.39x10	3.49x10	2.89x10	1.95x10 ³
7. Volume of Dilution Water	Liters	1.29x10 3.32x10	9.91×10 ⁴ 1.11×10 ¹⁰	1.39x10 1.22x10	8.63x109	2.89x10 ³ 1.07x10 ¹⁰	2.07
8. Batch Releases (only type at this facility)							
a) Total Number of Releases		12	8	10	27	21	15
b) Total Release Time	Hours	75.97	52.47	54.35	145.25	108.08	49.7
c) Maximum Release Time	Hours	16.17	10.75	9.13	8.0	10.42	6.33
d) Average Release Time	Hours	6.33	6.57	5.44	5.38	5.15	3.31
e) Minimum Release Time	Hours	0.33	1.25	0.52	2.33	2.33	0.50
9. Isotopic Releases		-4	_1	- 4			
Ba/La-140	Curies	3.87x10 2	5.48x10_5	6.40×10 ⁻⁴	3.04x10_3	7.12x10-4	4.53x10 ⁻⁵
Ce-141	Curies	3.36x10 2	4 72-10	,	4.44x10 3	1.61x10-2	4.93x10
Ce-144	Curies	3.36x10 ⁻² 1.28x10 ⁻³	3.94×10-5 1.47×10-3	3.73x10-4	2.57x10 ⁻³	91x10-2	2.01x10-2
Co-57	Curies	1.28x10 2	1.47x10	1.17x10-4	1.53x10_2	9.71x10-4	5.82×10 1
Co-58	Curies	7.00×10^{-3}	1.38x10	5.22x10-4	2.34×16-2	04x10 1	1.21×10
Co-60	Curies	8.82×10 ⁻²	3.49×10 ⁻²	3.70×10 ⁻²	1.44×10 ⁻¹	7.62x10 ⁻¹	5.10×10 ⁻¹

Year 1982

Table I-B

IQUID RELEASES (pg 2)	REF	PORT OF RADIOA	CTIVE EFFLUEN	TS		Year	r 1982	
. Isotopic Releases (Con't)		Units	Jan.	Feb.	Mar.	Apr.	May	June
G- 51		Curies	1.94×10 ⁻³	1.94x10 ⁻⁴	1.18×10 ⁻³	4.95x10 ⁻³ 2.22x10 ⁻¹	3.47x10-2	1.31x10
Cr-51		Curies	1.13×10-2	3 40×10-3	1.01×10 ⁻²	2.22×10 ⁻²	2.51x10 .	1.74x10
Cs-134		Curies	1 11-10	3.40×10^{-3} 3.42×10^{-2}	1.01×10 ⁻² 1.04×10 ⁻¹	2.15×10_2	1.42x10	1.31x10
Cs-137		Curies	4.57×10-4 3.61×10	1.77×10-4 7.45×10		1.05×10 *	1.17×10	1.31x10 4.21x10
Fe-59			2.61×10-4	7 45 10-4	5.78x10 ⁻⁴	5.00x10_4	4.23x10 ⁻⁴	
1-131		Curies		7.43X10	J. 70X10	5 42×10-4		
I-132		Curies	1 22 10-4	8.46x10-4	1.18x10 ⁻³	5.42×10-4 5.34×10	6.44x10 ⁻⁵	
I-133		Curies	1.33x10 ⁻⁴	8.46X10-4	6 3/-10-4	3.34810		
I-135		Curies	3	1.70x10-4 3.07x10-4	6.34x10 ⁻⁴ 2.02x10 ⁻⁴	2.38x10 ⁻²	2.71×10 ⁻¹	1.61x10
Mn-54		Curies	7.70x10 ⁻³	3.0/x10_4	2.02×10-4	2.38X10_4	2.71810	
Mo-99		Curies	4.60x10 ⁻⁴	5.64x10_4	9.78x10-4	1.24x10-3 1.72x10-3	5.38x10 ⁻²	1.99x10
Nb-95		Curies	4.60x10_5	1.08x10-3 1.61x10-5	4.44x10_3	1.72x10-3		1.99x10
Np-239		Curies	9.56x10_4	1.61x10_5	4.44x10-6 4.52x10-6 5.52x10-6 2.88x10-4	3.75×10 ⁻³	2.68x10 ⁻²	0 00 10
Ru-103		Curies	5.19x10_4	8.03x10_5	5.52x10_4	1.20x10 a	2.68x10_2	8.90x10_
Ru/Rh-105		Curies	9.56x10 ⁻⁵ 5.19x10 ⁻⁴ 9.27x10 ⁻³	3.86×10_4	2.88x10	2.40x10-3	1.32×10 ⁻² 2.45×10 ⁻²	1.26×10
Ru/Rh-106		Curies	1.13x10	3.81×10-4	2	2.94210-4	2-45x19	1.07x10
Sr-89		Curies	1.17×10-2	1.08x10_5	1.29×10	2-49×10-3	2.53×10_5	5.78×10 4.98×10
Sr-90		Curies	5.15x10	4.80x10 5	1.33x10 /	8-04x10	6.81x10	4.98x10
Sr-91		Curies		7.62x17	2 30v10	1.00x10_5	2.01x10 ⁻⁶ 3.42x10	
Sr-92		Curies	2.88×10 ⁻⁵	3.87×10-5	1.02x10	7.96×10-5	2.01x10_6	
Tc-99m		Curies	7 33v [[]	9-15×10	1.02x10 ⁻⁴ 1.66x10 ⁻³	4 88v10	3.42x10	
Xe-131m		Curies	1.53x10-4	3.59×10-4		1.24×10		7.76x10
Xe-133		Curies	1.53×10-4 8.74×10	3.59×10 ⁻⁴ 2.59×10	6.46×10 ⁻⁴ 2.31×10 ⁻³	3.97x10 =	1 36×10	7.76x10 5.94x10
Xe-133m		Curies		,	2.31x10 ⁻³	7.43×10	4.90×10 ⁻⁴	9.71×10
Xe-135		Curies	1.41×10 ⁻⁴ 1.79×10 ⁻³ 2.81×10 ⁻⁴	4.87×10 ⁻⁴ 5.56×10 ⁻⁵ 5.67×10 ⁻⁶	1.06×10 ⁻³ 5.03×10 ⁻⁴	2.67x10-4		
		Curies	1.79x10 ⁻³	5.56x10-4	5.03x10 ⁻⁴	3.05×10^{-3} 1.42×10^{-3}	2.56x10-2	1.81x10
Zn-65		Curies	2.81x10 ⁻⁴	5.67x10 ⁻⁵		1.42x10 ⁻³	3 52×10 *	1.22×10
Zn-95		Curies		1.63×10-6	1.34×10 ⁻⁷		3.90×10 ⁻⁶	5.53x10
Zr-97			1.89×10 ⁻⁵	2 03×10-5	1.34×10 ⁻⁷ 3.11×10 ⁻⁵		3.90x10 ⁻⁶ 5.63x10 ⁻⁵	1.81x10 1.22x10 5.53x10 4.48x10
Kr-85m		Curies	1.09x10	2.03x10 ⁻⁵ 3.53x10	J.11A10		J.03X10	4.40210
Kr-87		Curies		3.33X10				
Nb-97		Curies	9.56x10 ⁻⁵	5	1 21-10-5	3.51x10 ⁻⁵		
Ba-139		Curies		2.24×10-5	1.21×10-4			
Xe-135m		Civies		2.79×10-5	1.92×10-4			
Kr-88		Curies		6.47×10-5	7.02x10-5			
Rb-88		Curies		4.77×10 ⁻⁴	1.33×10 ⁻³	5		
I-134		Curies			-	9.98x10-5	6	-
Mn-56		Curies				6.79×10 ⁻⁶ 2.51×10	4.18x10 ⁻⁶	
Ce-143		Curies				2.51×10		-

					Table II-A			Year 198	32
Π.	AIF	RBORNE RELEASES	Units	Jan.	Feb.	Mar.	Apr.	May	June
	1.	Total noble gases	Curies	193.70	953.59	432.66	127.41		
	2.	Total halogens	Curies	193.70 8.78×10 ⁻⁵	953.59 3.65x10 ⁻⁴	3.79×10 ⁻⁴	3.81x10	2.68x10 ⁻⁴	3.01x10 ⁻⁵
	30	Total particulate gross radioactivity					3.00	2.002.0	JIOIALO
		(β,γ) with <8 day half-life	Curies						
	4.	COLUMN TATES THE COLUMN THE COLUM	Curies	6.30x10 ⁻¹	9.35×10 ⁻¹	1.44	9.93x10 ⁻¹	2.81x10 ⁻¹	2.57x10 ⁻²
	5.	Total particulate gross elphs							
		radioactivity	Curies	5.84×10 ⁻⁸	1.05x10 ⁻⁷	1 77×10 ⁻⁷	3.20x10 ⁻⁷	1.11x10 ⁻⁶	7.75×10 ⁻⁷
	6.		μCi/sec	555.84	2921.2	3739.8	4249.4		
	7.	Percent of applicable limit for:							
		a. Noble Gases	%	.75	1.62	.70	.36		
		b. I-131	7.	.08	.23	.08	.20	.20	.0098
		c. Particulates <8 day half-life (2)							
		d. Tritium	Z	.0006	.0006	.0008	.0006	.0002	.0001
	8.	Average Release Rates							
		a. Noble Gases	μCi/sec	72.3 -5	394.3 _4	161.5	49.2	5	6
		b. I-131 (2)	uCi/sec	2.50×10 ⁻⁵	1.17×10 ⁻⁴	4.16x10 ⁻⁵	1.02×10 ⁻⁴	9.24x10 ⁻⁵	3.94×10 ⁻⁶
		c. <8 day half-life particulates (2)	μCi/sec	-1					
		d. Tritium	µCi/sec	2.35×10 ⁻¹	3.87x10 ⁻¹	5.38x10 ⁻¹	3.83x10 ⁻¹	1.05x10 ⁻¹	9.91×10^{-3}
	9.			4	4	4	4		
		a. Gases	Curies	2.59x10 ⁴	5.90x104	6.15x10 ⁴	3.58x104	2.53x104,	2.07x10 ⁴ 1.03x10 ⁻¹
		b. I-131 (2)	Curies	8.02x10 ⁻²	1.24×10 ⁻¹	1.41x10 ⁻¹	1.32x10	1.23×10 ⁻¹	1.03x10
		C. Farticulates	Curies	5	5	5	5		
		d. Tritium	Curies	1.09x10 ⁵	1.65x10 ⁵	1.82×10 ⁵	1.76×10 ⁵	1.68x10	1.36x10 ⁵
	10.	Actual Releases							
		a. Gases					-6		
		Kr-85	Curies				4.00x10 ⁻⁶		
		Xe-133	Curies	50.81	192.3	76.0	24.5		
		Kr-88	Curies	15.4	82.1	38.3	11.3		
		Kr-87	Curies	5.98	36.9	17.7	4.89		
		Kr-85m	Curies	7.62	40.2	19.0	5.71	~-	
		Xe-138	Curies	1.37×10 ⁻¹	27.0	15.0	9.16x10-1		
		Xe-135m	Curies	6.33x10 ⁻¹	8.74	4.83	6.80x10 ⁻¹		
		Xe-135	Curies	110.4	551.5	254.5	77.5		
		Xe-133m	Curies	2.09	9.57	4.76	1.54 -1		
		Xe-131m	Curies	6.00x10 ⁻¹	2.78	1.18	3.56x10 ⁻¹		
		Xe-129m Kr-89	Curies						
		Xe-137	Curies	4.83x10 ⁻³ 1.47x10 ⁻²			3		
		VE-13/	Curies	1.4/x10	2.15	1.50	3.71x10 ³		

II. AIRBORNE RELEASES (Pg. 2)

10.	Actual Releases	Units	Jan.	Feb.	Mar.	Apr.	May	June
	b. Halogens I-131 I-133 I-135 I-132 I-134	Curies Curies Curies Curies Curies	6.47×10 ⁻⁵ 1.83×10 ⁻⁵ 3.04×10 ⁻⁶ 1.69×10 ⁻⁶	1.42x10 ⁻⁴ 1.61x10 ⁻⁴ 5.27x10 ⁻⁵ 3.85x10 ⁻⁶	1.15x10 ⁻⁴ 1.55x10 ⁻⁴ 1.09x10 ⁻⁶ 1.33x10	2.65x10 ⁻⁴ 6.41x10 ⁻⁵ 4.11x10 ⁻⁵ 5.50x10 ⁻⁶ 6.13x10	2.42x10 ⁻⁴ 4.17x10 ⁻⁶ 2.17x10 ⁻⁵	1.01x10 ⁻⁵ 9.89x10 ⁻⁷ 1.90x10 ⁻⁵
	c. Particulates Co-57 Ce-144 Ce-141 Ba+La-140 Cs-134 Cs-137 Cr-51 Mn-54 Fe-59 Co-58 Co-60 Zn-65 Zr-95 Nb-95 Ru-Rh-106 Ru-103 Cs-136 Sr-89(2)	Curies	1.50x10 ⁻⁷ 2.29x10 ⁻⁶ 4.90x10 ⁻⁷ 1.60x10 ⁻⁷ 1.00x10 ⁻⁶ 2.53x10 ⁻⁶ 4.22x10 ⁻⁶ 2.76x10 ⁻⁶ 1.01x10 ⁻⁶ 2.66x10 ⁻⁶ 2.24x10 ⁻⁶ 1.49x10 ⁻⁶ 1.66x10 ⁻⁶ 5.04x10 ⁻⁷ 8.20x10 ⁻⁷ 4.30x10 ⁻⁷	7.00x10 ⁻⁸ 2.32x10 ⁻⁴ 8.70x10 ⁻⁷ 3.38x10 ⁻⁶ 6.18x10 ⁻⁶ 4.30x10 3.77x10 ⁻⁵ 5.80x10 ⁻⁷ 7.11x10 ⁻⁶ 6.21x10 ⁻⁶ 5.80x10 ⁻⁷	7.00×10 ⁻⁸ 1.08×10 ⁻⁶ 1.08×10 ⁻⁷ 3.10×10 ⁻⁷ 4.20×10 ⁻⁷ 2.60×10 ⁻⁷ 2.25×10 ⁻⁶ 4.82×10 ⁻⁶ 2.07×10 ⁻⁷ 2.51×10 ⁻⁶ 2.63×10 ⁻⁷ 3.50×10 ⁻⁷ 7.80×10 ⁻⁷ 4.40×10 ⁻⁷ 7.10×10 ⁻⁷	6.25×10 ⁻⁶ 5.00×10 ⁻⁷ 7.53×10 ⁻⁶ 1.28×10 ⁻⁶ 1.88×10 ⁻⁶ 4.03×10 ⁻⁶ 3.31×10 2.95×10 ⁻⁶ 3.18×10 ⁻⁶ 2.06×10 ⁻⁷ 6.10×10 ⁻⁶ 1.15×10 ⁻⁶ 1.37×10 ⁻⁵ 5.60×10 ⁻⁷	2.70x10 ⁻⁷ 2.41x10 ⁻⁶ 	2.76x10 ⁻⁷ 1.02x10 ⁻⁶ 2.61x10 ⁻⁷ 2.24x10 ⁻⁶ 2.90x10 ⁻⁶ 8.50x10 ⁻⁶ 2.87x10 ⁻⁶ 2.95x10 ⁻⁶ 2.76x10 ⁻⁵ 3.38x10 ⁻⁷ 7.24x10 ⁻⁷ 3.10x10 ⁻⁷
	Sr-89(2) Sr-90(2) Mo-99	Curies Curies			J. J			1.17×10 ⁻⁶

⁽²⁾ Sr-89 and Sr-90 analyses are still in progress by ion exchange methodology in lieu of gravimetric methodology and will be presented in the 1982 annual report.

1982 January - June Radioactive Solid Waste Shipments

Shipment #	Type of Radioactive Material	Volume (m3)	Activity (Ci)	Mode of Transportation	Destination for Disposal
#1 (06-82-134	A) Dewatered Spent Condensat Spent FESW, Sea Inject., and Primary Clean-U Resins In A CNS 120 High Integr	1 p 8 8-	51.95	Chem Nuclear Sys. Sole Use Truck (USA 6601/B,B-120 Cask).	Barnwell, S.C.

^{*} Radionuclide composition of Shipment #1 radioactive material was composed f Co = 59.78%, Mn 54 = 11.11%, Co 58 = 9.39%, Cs 137 = 7.07%, Zn 65 = 2.79%, Fe 59 = 2.10%, Cs 134 = 1.90%, Yo 95 =1.04%, Ce 144 = 0.91%, Ru(Rh) 106 = 0.77%, Cr 51 =0.73%, Zr 95 =0.65%, Ru 103 = 0.54%, Ba 140 =0.44%, La 140 = 0.35%, Ce 141 =0.28%, I 131 = 0.06%, Co 57 =0.07%, and 1.35 nCi/g Transuranics.

1982 January - June

1.4 Supplemental Information to the Annual Effluent and Waste Disposal Report

Facility: La Crosse Boiling Water Reactor (LACBWR)

Licensee: Dairyland Power Cooperative, Docket No. 50-409

1) Regulatory Limits

LACBWR Technical Specifications for airborne effluents are limited to the following "Curie Release Rates", for various plant conditions, based on the MPC of the mixture (in μ Ci/cc) being discharged:

	Stack Blowers Operating	Maximum Release Rate				Yearly Average Release Rate					
Particulates and Halogens with Half-	1	2.4	х	103	х	MPC	2.4	х	10 ²	х	MPC
lives Greater than 8 days	2	5.1	х	103	х	MPC	5.1	х	102	х	MPC
All Other Radio-	1	1.6	Х	106	Х	MPC	1.6	х	105	х	MPC
active Isotopes (Gases)	2	3.4	Х	106	Х	MPC	3.4	х	105	х	MPC

The values expressed in Table II, Airborne Releases, Item 9,
"Allowable Total Releases", show the allowable yearly average releases based on actual plant conditions, i.e., one or two blower
operation whichever had occurred during the month, and any recalibrations which had been performed on the off-gas monitor.

LACBWR Technical Specification limits for liquid effluents are limited to 1 MPC value after dilution averaged over the year. The values reported in Table I, Liquid Releases, Items 1b and c; 2b and c; 3b and c; and 4b are based on dilution with plant site circulating water flow only. No credit is taken for further dilution in the mixing zone of the Mississippi River, shown as Item

5, Average Stream Flow.

2) Maximum Permissible Concentration (MPC)

The MPC used to calculate permissible release rates are obtained from 10 CFR 20, Appendix D, Tables I and II. In addition, the following values are used:

Tritium in Water = $3 \times 10^{-3} \mu \text{Ci/ml}$. Tritium in Air = $2 \times 10^{-7} \mu \text{Ci/ml}$.

3) Average Energy

The release rate limits for LACBWR are not based on average energy.

4) Measurement Methods

Liquid effluent measurements for gross radioactivity are performed by gamma analysis on a Ge-Li detector for each tank discharged. A composite sample is created by collecting representative amounts from each tank batch discharged and it is analyzed monthly for Tritium, Strontium 89 and 90, and Gross alpha activity. In addition, each tank is analyzed for alpha concentration and the higher of these two analyses is the basis for the values reported in Table I, Item 4. Airborne gaseous effluents are determined by gamma analysis on a Ge-Li detector of samples from the various flow paths. The analysis includes a determination of gaseous halogen content.

Airborne particulate and particulate halogen releases are determined by gamma analysis on a Ge-Li detector of weekly samples of stack discharges on glass fiber filter paper and charcoal cartridge absorbants.

5) Batch Releases

All airborne effluent releases at LACBWR are Continuous-Elevated Release point type releases.

All liquid effluent releases at LACBWR are Batch Releases and the relevant information is included in Table I, Item 8.

6) Abnormal Releases

No abnormal releases occurred during this reporting period at LACBWR.

7) Estimated Total Error

The values reported in Table I, II, and III contain the following estimated errors:

Counting Error ± 1 Standard Deviation
Sampling Volume Error ± 5%.

SECTION B

ENVIRONMENTAL MONITORING REPORT

2.0 INTRODUCTION

The La Crosse Boiling Water Reactor, also known as Genoa #2, is located on the east bank of the Mississippi River at Genoa, Vernon County, Wisconsin. The plant was designed and constructed by the Allis-Chalmers Manufacturing Company. It was completed in 1967 and has a generation capacity of 50 MW 165 Mw(th). The reactor is owned and operated by Dairyland Power Cooperative (DPC).

The reactor went critical in July 1967 and first contributed electricity to DPC's system in April 1968. After completing full power tests in August 1969, the plant has been operating between 60% and 100% of full power, with the exception of plant shutdowns for maintenance and repair. During the first half of 1982, the plant factor has been approximately 23%.

The monitoring program at the LACBWR facility includes monitoring of liquid and gaseous releases from the plant as well as environmental samples of surface air, river water, rain water, sediment, milk, fish, vegetation and penetrating radiation.

The penetrating radiation is measured by thermoluminescent dosimetry (TLD).

The program is conducted to the extent necessary to ensure that releases of radioactivity to the environment do not result in radiation doses to the surrounding population, which exceed established radiation protection regulations.

This monitoring report includes the period from January 1, 1982 to July 1, 1982. The report includes a description of the environmental samples collected, analytical methods and the results from these analyses.

A map of the general vicinity surrounding LACBWR is provided for the reader so that he may determine the spatial relationship of the plant to the surrounding area. The map includes the plant boundary, roads, other generating plants, relation of the plant site to the nearest local community as shown in Figure 1.

Figure 2 is a map that pinpoints the location of the environmental sampling stations for surface air, rain water, milk, vegetation and TLD's. This map will allow the reader to determine the spatial relationship of the plant to the surrounding sampling stations.

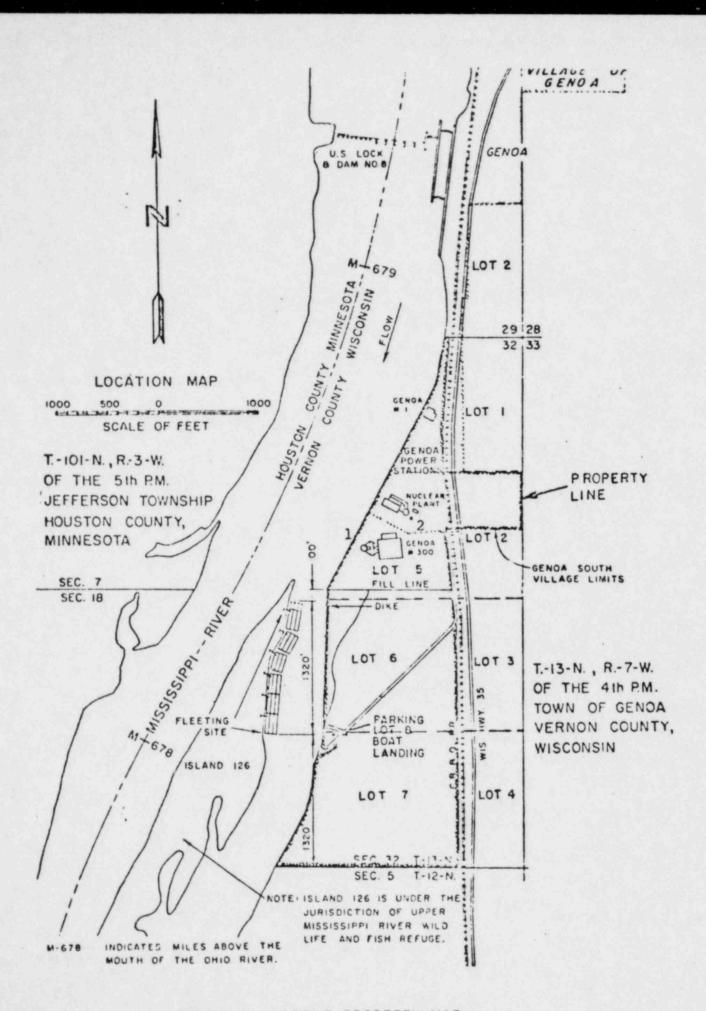
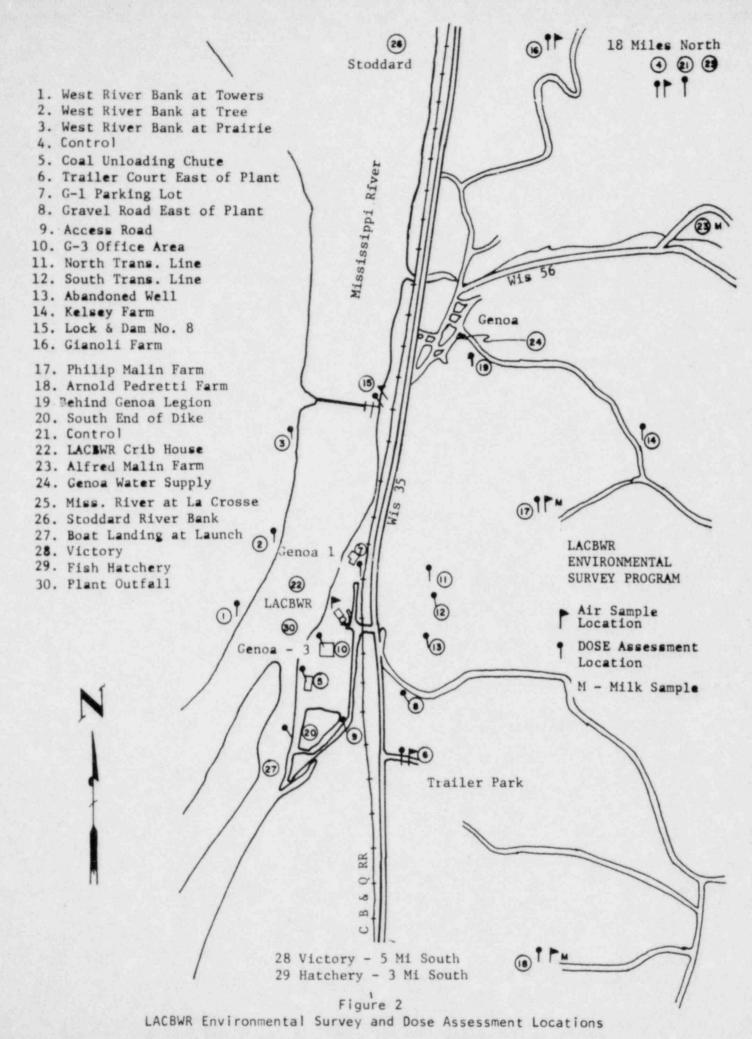



FIGURE 1 - LACBWR PROPERTY MAP

3.0 SAMPLE COLLECTION

The sampling frequency of the various environmental samples and the analyses performed on these samples are shown in Table IV. The number of various samples collected and analyzed during 1982 appear in Table V.

The penetrating radiation dose is measured by thermoluminescent dosimeters consisting of five lithium fluoride (LiF) chips.

The TLD's are located in the vicinity of the plant on poles, trees or adjacent to air samplers. The TLD's are collected, shipped and then analyzed by the Eberline Instrument Company.

Air samples are collected continuously at seven sites, six of which are within three miles of the plant and the seventh used as a control, located eighteen miles north of the plant in La Crosse, Wisconsin. Particulate air samples are collected at the rate of approximately 30 lpm with Gelman Air Samplers. The air filter consists of a glass fiber filter with an associated pore size of approximately 0.45 μ an activated charcoal CESCO type cartridge for iodine collection. The particulate filters are analyzed for gross beta activity with a low background internal proportional counter and the activated charcoal filter for $^{131}{\rm I}$.

River and rain water samples are collected monthly. River water samples above and below the plant site are collected and gross beta activity determined on a one-liter sample.

A four-liter milk sample is collected from three farmers in the vicinity of the plant on a biweekly basis during the grazing season. The milk samples are then analyzed for ^{131}I and ^{90}Sr , with a minimum sensitivity of 1 pCi/liter.

Fish samples are purchased on a monthly basis from commercial fishermen. The fish are from Pool #8 above the plant, and Pool #9 below the plant. These samples are analyzed by Ge(Li)-MCA gamma spectroscopy.

4.0 RESULTS OF THE JANUARY - JUNE 1982 RADIO-ENVIRONMENTAL MONITORING SURVEY

4.1 PENETRATING RADIATION

The thermoluminescent dosimeters are changed on a quarterly basis and analyzed for dose by the Eberline Instrument Corporation. The results of the analysis are shown on Table VI. The highest measured on-site dose from LACBWR operations was to the adjacent coal-fired power plant, Genoa #3, (Environmental Station #10). This dose was approximately 22.6 mRem/1st quarter and 22.8 mRem/2nd quarter. The average dose per quarter attributable to LACBWR operations at all off-site environmental stations during the year was <1 mRem/quarter. The maximum off-site dose at any location was 4 mRem/quarter and occurred at Station 11 (1st quarter).

4.2 AIR PARTICULATE

The gross beta-gamma activity concentrations from air particulate culate filters are shown in Table VII. The air particulate beta activity concentrations ranged from less than 0.14 pCi/m³ to 0.175 pCi/m³. The annual average concentration at the control location was 0.062 pCi/m³ while for the other six stations, the annual average concentration was 0.044 pCi/m³.

4.3 PRECIPITATION AND RIVER SAMPLES

The results of the gross beta activity measurements for river water and precipitation are shown in Tables VIII and IX, respectively. The river water samples taken above and below the plant generally exhibit similar patterns in activity over the year. Downstream samples were three times the upstream concentrations during May 1982. The highest measured concentrations of 17.96 pCi/l occurred in May at Victory on the Mississippi River.

The gross beta concentrations in precipitation samples taken during January to June 1982 ranged from <1 to 55.3 pCi/l (Lock and Dam #8).

4.4 SEDIMENT SAMPLES

Sediment samples ranged from 6.4 to 12.2 pCi/g with 60 Co being detected in addition to 40 K.

4.5 MILK SAMPLES

Milk samples were collected on a biweekly basis during the grazing season (May through September) from three dairy farms in the vicinity of LACBWR and analyzed for \$131\$I with a detection limit of 1 pCi/l. These samples are listed in Table XI.

4.6 ACTIVATED CHARCOAL CARTRIDGES

The analysis of the activated charcoal cartridges for 131I

was performed by counting each cartridge collected during a 1-week period and averaging the measured concentrations. Weekly average 131 I concentrations for the seven measurement locations are shown in Table XII. Average concentrations are 1.87 x 10 15 μ Ci/cc.

4.7 VEGETATION

No vegetation samples were collected during the period January 1 to June 30, 1982.

4.8 FISH

Fish samples were collected monthly above and below the plant discharge. The results of gamma spectral analysis of fish samples appear in Table XIV. There has been no significant accumulation of radionuclides of plant origin in fish in the plant vicinity.

5.0 CONCLUSIONS

The maximum off-site dose as determined by TLD was 4 mrem/ quarter. The average off-site dose as determined by TLD was less than 1 mrem/quarter. The dose to the general populations during 1982 was well within current regulations.

The concentration of radioisotopes found in the environmental samples collected during 1982 was found to be well within current regulations.

TABLE IV

SAMPLE FREQUENCY AND ANALYSIS OF RADIO-ENVIRONMENTAL SAMPLES

SAMPLE	FREQUENCY	ANALYSIS PERFORMED
TLD (LiF) Dosimeters	Quarterly	Dose in mrem
Particulate Air Glass Fiber Filters	Weekly	Gross Beta
Activated Charcoal Cartridges	Weekly	Gamma Spectroscopy (HPGe-MCA)
Water (River and Rain)	Monthly	Gross Beta
Milk	Biweekly during grazing season	131 _I and ⁹⁰ Sr
Vegetation	Twice per year	Gamma Spectroscopy
Sediment	Twice per year	Gamma Spectroscopy
Fish	Monthly	Gamma Spectroscopy

TABLE V

RADIO-ENVIRONMENTAL SAMPLES COLLECTED

JANUARY- JUNE 1982

TYPE OF SAMPLE	NUMBER OF SAMPLES
Penetrating Radiation (TLD's)	76
Air Particulate	182
River Water	0
Precipitation	1
Sediment	1
Vegetation	0
Milk	19
Charcoal Cartridge	175
Fish	8
Effluent Split W/ST. of WI.	5

TABLE VI

QUARTERLY THERMOLUMINESCENT DOSIMETER DOSE MEASUREMENTS IN THE LACBWR VICINITY

JANUARY - JUNE 1982

STATION NO.	lst QUARTER (mrem)	2nd QUARTER (mrem)	3rd QUARTER (mrem)	4th QUARTER (mrem)
Control 4	23.6 ± 6.3	16.9 ± 2.8		
Control 21	28.8 ± 4.1	21.4 ± 4.7		
1	23.6 ± 4.7	18.2 ± 2.3		
2	26.1 ± 6.5	20.5 ± 5.5		
3	24.2 ± 9.7	18.5 ± 4.9		
5	22.4 ± 5.5	17.1 ± 1.7		
6	24.2 ± 5.0	17.7 ± 1.8		
7	27.1 ± 4.3	27.2 ± 7.6		
8	25.4 ± 9.1	23.1 ± 2.4		
9	25.2 ± 2.6	22.8 ± 4.4		
10	48.8 ± 10.6	41.9 ± 8.1		
11	29.3 ± 7.4	20.5 ± 1.4		
12	26.5 ± 4.7	20.9 ± 2.1		
13	24.7 ± 4.5	21.4 ± 1.5		
14	*	22.8 ± 3.8		
15	21.7 ± 5.0	16.8 ± 2.0		
16	*	20.9 ± 4.2		
17	20.4 ± 5.6	18.3 ± 1.9		
18	25.3 ± 5.5	20.2 ± 5.2		
19	25.4 ± 6.8	23.1 ± 4.1		
20	25.6 ± 6.3	22.9 ± 2.1		

*Missing Data

TABLE VII

WEEKLY BETA AIR PARTICULATES IN THE LACEUR VICINITY

COLLECTION DATE 1982	STATION #4 (LACEWR PLANT) pCi/M ³	STATION #6 (TRAILER COURT) pCi/M ³	STATION #7 (DAM #8) pci/m ³	STATION #16 (GIANOLI FARM) pCi/M ³	STATION #17 (MALIN FARM) pCi/M ³	STATION #18 (PEDRETTI FARM) pCi/M ³	CONTROL (LA CROSSE OFFICE) pci/M ³
1 /05 /02							
1/05/82	0.071 ± .026	0.051 ± .011	0.060 ± .011	0.076 ± 0.14	0.021 ± .021	0.068 ± .012	0.039 ± .012
1/12/82	0.101 ± .022	0.008 ± .008	0.057 ± .009	0.084 ± .012	No Sample	0.083 ± .010	0.085 ± .012
1/19/82	0.052 ± .019	0.021 ± .008	0.029 ± .008	0.064 ± .012	0.022 ± .010	0.046 ± .009	0.057 ± .011
1/27/82	0.102 ± .018	0.060 ± .008	0.041 ± .007	0.067 ± .010	0.049 ± .013	0.049 ± .008	0.088 ± .014
2/02/82	0.070 ± .022	0.040 ± .010	0.045 ± .010	0.072 ± .013	0.047 ± .023	0.019 ± .009	0.050 ± .011
2/09/82	0.072 ± .018	0.015 ± .008	0.031 ± .008	0.075 ± .012	0.055 ± .020	0.052 ± .008	0.050 ± .009
2/16/82	0.085 ± .018	0.056 ± .009	0.054 ± .008	0.083 ± .011	$0.054 \pm .017$	$0.052 \pm .008$	0.090 ± .010
2/23/82	$0.041 \pm .017$	0.020 ± .008	$0.041 \pm .008$	$0.050 \pm .011$	$0.053 \pm .019$	0.058 ± .009	0.057 ± .008
3/02/82	$0.055 \pm .019$	0.028 ± .009	$0.062 \pm .011$	$0.023 \pm .010$	$0.037 \pm .019$	$0.045 \pm .009$	0.037 ± .008
3/09/82	0.074 ± .019	0.039 ± .008	$0.057 \pm .008$	0.082 ± .012	0.037 ± .018	0.044 ± .008	0.074 ± .011
3/16/82	0.026 ± .019	0.043 ± .009	0.038 ± .009	0.029 ± .011	0.064 ± .024	0.028 ± .008	0.041 ± .009
3/23/82	0.037 ± .014	0.016 ± .007	0.030 ± .007	0.017 ± .007	0.022 ± .014	0.016 ± .006	0.031 ± .007
3/30/82	0.056 ± .015	0.018 ± .006	0.039 ± .006	0.051 ± .011	0.035 ± .015	0.043 ± .007	0.051 ± .008
4/06/82	0.076 ± .020	0.026 ± .009	0.050 ± .010	0.045 ± .011	0.037 ± .019	0.030 ± .008	0.057 ± .012
4/14/82	0.068 ± .018	0.031 ± .006	0.049 ± .008	0.067 ± .008	0.047 ± .013	0.066 ± .007	0.047 ± .008
4/21/82	0.044 ± .019	0.024 ± .009	0.051 ± .009	0.030 ± .010	0.020 ± .018	0.032 ± .009	0.038 ± .010
4/28/82	0.032 ± .018	0.033 ± .009	0.045 ± .009	0.059 ± .011	0.058 ± .018	0.052 ± .009	0.073 ± .011
5/05/82	0.057 ± .022	0.025 ± .010	0.034 ± .009	0.048 ± .012	0.045 ± .021	0.038 ± .009	0.024 ± .011
5/12/82	0.047 ± .021	0.023 ± .009	0.044 ± .009	0.052 ± .011	0.047 ± .019	0.045 ± .009	0.039 ± .010
5/19/82	0.038 ± .019	0.023 ± .012	0.044 ± .009	0.043 ± .011	0.030 ± .016	0.042 ± .009	0.098 ± .023
5/26/82	0.027 ± .018	0.023 ± .009	0.058 ± .009	0.034 ± .011	0.023 ± .014	0.014 ± .008	0.063 ± .017
6/02/82	0.031 ± .019	0.025 ± .011	0.040 ± .009	0.032 ± .010	0.025 ± .020	0.033 ± .012	0.053 ± .026
6/09/82	0.021 ± .019	<.0089	0.025 ± .011	0.064 ± .010	0.021 ± .019	0.023 ± .020	0.121 ± .044
6/16/82	0.043 ± .021	0.026 ± .012	0.033 ± .012	0.025 ± .011	0.043 ± .021	0.032 ± .012	0.175 ± .061
6/23/82	0.5.27 ± .019	0.027 ± .012	0.039 ± .011	0.033 ± .010	0.050 ± .019	0.053 ± .012	0.032 ± .011
6/30/82	0.024 ± .018	0.031 ± .013	0.039 ± .011	0.037 ± .010	0.040 ± .019	0.038 ± .012	0.044 ± .012

TABLE VIII

RESULTS OF ANALYSIS OF RIVER WATER

IN THE LACBUR VICINITY (pCi/1)

COLLECTION DATE	ABOVE THE PLANT SITE DAM #8	BELOW THE PLAN	VICTORY
01/27/82	8.19 ± 2.09	8.79 ± 2.10	5.66 ± 2.05
02/23/82	11.1 ± 2.77	12.3 ± 3.07	5.14 ± 1.71
03/23/82	5.18 ± 2.05	8.82 ± 2.25	6.57 ± 2.17
04/21/82	6.77 ± 1.64	10.06 ± 1.67	6.10 ± 1.91
05/19/82	<5.63	5.15 ± 2.03	17.96 ± 2.62
06/23/82	8.34 ± 1.80	10.78 ± 2.61	6.92 ± 2.62

TABLE IX

RESULTS OF ANALYSIS OF PRECIPITATION

FROM THE VICINITY OF LACBUR (pCi/1)

COLLECTION DATE	STATION #15 (DAM #8)	STATION #17 (MALIN FARM)	STATION #18 (PEDRETTI FARM)
01/27/82	55.3 ± 2.38	10.86 ± 1.39	7.30 ± 1.35
02/23/82	33.2 ± 2.26	No Sample*	No Sample*
03/23/82	36.1 ± 2.23	19.5 ± 2.14	13.9 ± 2.12
04/21/82	4.23 ± 1.25	7.29 ± 1.32	<1.35±
05/19/82	3.87 ± 1.18	5.69 ± 1.26	2.97 ± 1.19
06/23/82	4.92 ± 1.38	19.79 ± 2.23	6.25 ± 1.25

^{*} Precipitation volume not significant.

TABLE X

RESULTS OF ANALYSIS OF MISSISSIPPI RIVER SEDIMENT

IN THE VICINITY OF LACBUR (pCi/g)

COLLECTION DATE SAMPLE LOCATION	Sample 1 04/02/82 Lock & Dam #8	Sample 2 04/02/82 Boat Launch Area	Sample 3 04/02/82 Outfall
ISOTOPE			
60 _{Co}	-	2.14×10 ⁻¹	5.98
137 _{Cs}	1.51x10 ⁻²	2.54×10 ⁻¹	4.50x10 ⁻¹
40 _K	6.35	9.63	5.71
134 _{Cs}		8.28×10 ⁻³	2.76x10 ⁻¹
54 _{Mn}	-	-	2.11x10 ⁻¹
58 _{Co}	_	_	4.78×10 ⁻²

RESULTS OF ANALYSIS OF MILK SAMPLES IN THE

VICINITY OF LACBUR (pCi/1)

Collection Date	Station #16 (A. Malin Farm)		Station #17 (P. Malin Farm)			on #18 ti Farm)
	131 _I	90 _{Sr}	131 _I	90 _{Sr}	131 _I	⁹⁰ sr
04/06/82	<1.0		<1.0		<1.0	
04/20/82	<1.0		<1.0		<1.0	
05/04/82	<1.0		<1.0			
05/19/82	<1.0		<1.0		<1.0	
06/02/82	-		<1.0		<1.0	
06/16/82	<1.0		<1.0		<1.0	
06/23/82	<1.0		<1.0		<1.0	

NOTE: -- Indicates No Sample

The results for Sr^{90} are unavailable at this time. These results will be reported in the annual report.

TABLE XII

RESULTS OF COMPOSITE CHARCOAL FILTER ANALYSIS FOR AIRBORNE 131

COLLECTION	131 AVERAGE CONCENTRATION
DATE	(µCi/cc)
01/05/82	1.89 E-15
01/12/82	2.32 E-15
01/19/82	1.95 E-15
01/27/82	4.76 E-15
02/02/82	3.16 E-15
02/09/82	3.76 E-15
02/16/82	6.78 E-16
02/23/82	7.60 E-16
03/02/82	1.51 E-15
03/09/82	1.03 E-15
03/16/82	1.21 E-15
03/23/82	1.33 E-15
03/30/82	1.25 E-15
04/06/82	1.89 E-15
04/14/82	3.06 E-15
04/21/82	3.03 E-15
04/28/82	6.01 E-16
05/05/82	9.37 E-16
05/12/82	1.23 E-15
05/19/82	2.30 E-15
05/26/82	1.50 E-15
06/02/82	1.49 E-15
06/09/82	1.90 E-15
06/16/82	5.81 E-16
06/23/82	2.31 E-15
06/30/82	2.26 E-15

TABLE XIII

ISOTOPIC ANALYSIS OF VEGETATION SAMPLES

(pCi/g)

There were no samples collected during January to June for 1982.

TABLE XIV FISH SAMPLE ACTIVITY IN THE VICINITY OF LACEWR

1-	mi	1 -	- 1
(P	CI	10	31

1	2	3	4	5	6
02/01/82	01/31/82	02/20/82	02/20/82	03/08/82	03/08/82
	THE KIND OF		1.6		
6.85 E-3 8.10 E-3 9.31 E-2 7.97 E-2 3.13 E-2 1.62 E-2 9.54 E-3 3.40 E-2 * 1.50 E-2	* 5.44 E-2 4.15 E-3 6.09 E-3 1.23 E-2 * * 2.51 E-2	3.85 E-3 * 5.05 E-2 * 1.83 E-2 7.09 E-3 1.65 E-2 3.18 E-2 *	1.31 E-3 * 6.30 E-2 8.27 E-3 * 6.49 E-3 * 9.98 E-3	1.80 E-3 * * 4.98 E-2 * 8.67 E-2 *	1.76 E-3 * 1.97 E-2 8.71 E-3 * 4.83 E-2 *
7 04/27/82	8 04/27/82	9	10	11	12
2.23 E-1 6.54 E-2 2.28 E-1 1.53 9.24E-2 2.00 E-2 2.47	6.80 E-2 * 7.85 E-2 4.07 E-1 1.54 E-2 1.82 E-2 2.02 4.27 E-3 8.28 E-2				
	6.85 E-3 8.10 E-3 9.31 E-2 7.97 E-2 3.13 E-2 1.62 E-2 9.54 E-3 3.40 E-2 * 1.50 E-2 2.23 E-1 6.54 E-2 2.28 E-1 1.53 9.24E-2 2.00 E-2 2.47 *	02/01/82 01/31/82 6.85 E-3	02/01/82 01/31/82 02/20/82 6.85 E-3 * 3.85 E-3 8.10 E-3 * * 9.31 E-2 5.44 E-2 5.05 E-2 7.97 E-2 4.15 E-3 * 3.13 E-2 6.09 E-3 1.83 E-2 9.54 E-3 * 1.65 E-2 3.40 E-2 * 3.18 E-2 * * * 1.50 E-2 2.51 E-2 * * * * * 1.50 E-2 2.51 E-2 * * * * * 2.23 E-1 6.80 E-2 * 2.28 E-1 7.85 E-2 * 1.53 4.07 E-1 * 9.24E-2 1.54 E-2 * 2.00 E-2 1.82 E-2 * 2.47 2.02	02/01/82 01/31/82 02/20/82 02/20/82 6.85 E-3 * 3.85 E-3 1.31 E-3 8.10 E-3 * * * 9.31 E-2 5.44 E-2 5.05 E-2 6.30 E-2 7.97 E-2 4.15 E-3 * 8.27 E-3 3.13 E-2 6.09 E-3 1.83 E-2 * 1.62 E-2 1.23 E-2 7.09 E-3 6.49 E-3 3.40 E-2 * 3.18 E-2 * * * * * 1.50 E-2 2.51 E-2 * 9.98 E-3 7 8 9 10 04/27/82 * 9.98 E-3 7 8 9 10 04/27/82 * 9.98 E-3 7 8 9 10	02/01/82 01/31/82 02/20/82 02/20/82 03/08/82 6.85 E-3

^{*} Indicates none detected.