

# UNITED STATES NUCLEAR REGULATORY COMMISSION

WASHINGTON D.C. 20555-0001

VIRGINIA ELECTRIC AND POWER COMPANY

OLD DOMINION ELECTRIC COOPERATIVE

DOCKET NO. 50-338

NORTH ANNA POWER STATION, UNIT NO. 1

# AMENDMENT TO FACILITY OPERATING LICENSE

Amendment No. 178 License No. NPF-4

- 1. The Nuclear Regulatory Commission (the Commission) has found that:
  - A. The application for amendment by Virginia Electric and Power Company et al., (the licensee) dated July 16, 1993, as supplemented by letter dated November 15, 1993, complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the ALL), and the Commission's rules and regulations set forth in 10 CFR Chapter I;
  - B. The facility will operate in conformity with the application, the provisions of the Act, and the rules and regulations of the Commission;
  - C. There is reasonable assurance (i) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations;
  - D. The issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public; and
  - E. The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied.

 Accordingly, "the license is amended by changes to the Technical Specifications as indicated in the attachment to this license amendment, and paragraph 2.D.(2) of Facility Operating License No. NPF-4 is hereby amended to read as follows:

# (2) Technical Specifications

The Technical Specifications contained in Appendices A and B, as revised through Amendment No. 178, are hereby incorporated in the license. The licensee shall operate the facility in accordance with the Technical Specifications.

 This license amendment is effective as of its date of issuance and shall be implemented within 30 days.

FOR THE NUCLEAR REGULATORY COMMISSION

Herbert N. Berkow, Director Project Directorate II-2 Division of Reactor Projects - I/II Office of Nuclear Reactor Regulation

Attachment: Changes to the Technical Specifications

Date of Issuance: February 17, 1994

# ATTACHMENT TO LICENSE AMENDMENT NO. 178 TO FACILITY OPERATING LICENSE NO. NPF-4

# DOCKET NO. 50-338

Replace the following pages of the Appendix "A" Technical Specifications with the enclosed pages as indicated. The revised pages are identified by amendment number and contain vertical lines indicating the area of change. The corresponding overleaf pages are also provided to maintain document completeness.

| Remove Pages | Insert Pages |
|--------------|--------------|
| 1-4          | 1-4          |
| B 3/4 7-7    | B 3/4 7-7    |
| B 3/4 11-2   | B 3/4 11-2   |
| 5-1          | 5-1          |
| 5-2          | 5-2          |
| 6-13 b       | 6-13 b       |
| 6-15         | 6-15         |
| 6-20         | 6-20         |
| 6-24         | 6-24         |
| 6-26         | 6-26         |
|              |              |

#### ENGINEERED SAFETY FEATURE RESPONSE TIME

1.12 The ENGINEERED SAFETY FEATURE RESPONSE TIME shall be that time interval from when the monitored parameter exceeds its ESF actuation setpoint at the channel sensor until the ESF equipment is capable of performing its safety function (i.e., the valves travel to their required positions, pump discharge pressures reach their required values, etc.). Times shall include diesel generator starting and sequence loading delays where applicable.

#### FREQUENCY NOTATION

1.13 The FREQUENCY NOTATION specified for the performance of Surveillance Requirements shall correspond to the intervals defined in Table 1.2.

## FULLY WITHDRAWN

1.13a The control bank FULLY WITHDRAWN position shall be within the interval of 225 to 229 steps withdrawn, inclusive. Definition of the FULLY WITHDRAWN position for each specific cycle shall be documented in the rod insertion limit operator curve.

#### GASEOUS RADWASTE TREATMENT SYSTEM

1.14 A GASEOUS RADWASTE TREATMENT SYSTEM is the system designed and installed to reduce radioactive gaseous effluents by collecting primary coolant system offgases from the primary system and providing for delay or holdup for the purpose of reducing the total radioactivity prior to release to the environment. The system is composed of the waste gas decay tanks, regenerative heat exchanger, waste gas charcoal filters, process vent blowers, waste gas surge tanks and waste gas diaphram compressor.

#### IDENTIFIED LEAKAGE

#### 1.15 IDENTIFIED LEAKAGE shall be:

- Leakage (except CONTROLLED LEAKAGE) into closed systems, such as pump seal or valve packing leaks that are captured and conducted to a sump or collecting tank, or
- Leakage into the containment atmosphere from sources that are both specifically located and known either not to interfere with the operation of leakage detection systems or not to be PRESSURE BOUNDARY LEAKAGE, or
- Reactor coolant system leakage through a steam generator to the secondary system.

#### MEMBER(S) OF THE PUBLIC

1.16 MEMBER(S) OF THE PUBLIC shall include all individuals who by virtue of their occupational status have no formal association with the plant. This category shall include non-employees of the licensee who are permitted to use portions of the site for recreational, occupational, or other purposes not associated with plant functions. This category shall not include non-employees such as vending machine servicemen or postman who, as part of their formal job function, occasionally enter an area that is controlled by the licensee for purposes of protection of individuals from exposure to radiation and radioactive materials.

## OFFSITE DOSE CALCULATION MANUAL (ODCM)

1.17 The OFFSITE DOSE CALCULATION MANUAL (ODCM) shall contain the methodology and parameters used in the calculation of offsite doses resulting from radioactive gaseous and liquid effluents, in the calculation of gaseous and liquid effluent monitoring alarm/trip setpoints and in the conduct of the Environmental Radiological Monitoring Program. The ODCM shall also contain (1) the Radioactive Effluent Controls and Radiological Environmental Monitoring Programs required by Section 6.8.4 and (2) descriptions of the information that should be included in the Annual Radiological Environmental Operating and Annual Radioactive Effluent Release Reports required by Specifications 6.9.1.8 and 6.9.1.9.

## OPERABLE - OPERABILITY

1.18 A system, subsystem, train, component or device shall be OPERABLE or have OPERABILITY when it is capable of performing its specified function(s), and when all necessary attendant instrumentation, controls, normal and emergency electrical power sources, cooling or seal water, lubrication or other auxiliary equipment that are required for the system, subsystem, train, component, or device to perform its function(s) are also capable of performing their related support function(s).

#### OPERATIONAL MODE - MODE

1.19 An OPERATIONAL MODE (i.e., MODE) shall correspond to any one inclusive combination of core reactivity condition, power level, and average reactor coolant temperature specified in Table 1.1.

#### PHYSICS TESTS

1.20 PHYSICS TESTS shall be those tests performed to measure the fundamental nuclear characteristics of the reactor core and related instrumentation and 1) described in Chapter 14.0 of the FSAR, 2) authorized under the provisions of 10 CFR 50.59, or 3) otherwise approved by the Commission.

#### PRESSURE BOUNDARY LEAKAGE

1.21 PRESSURE BOUNDARY LEAKAGE shall be leakage (except steam generator tube leakage) through a non-isolable fault in a Reactor Coolant System component body, pipe wall or vessel wall.

#### PROCESS CONTROL PROGRAM

1.22 The PROCESS CONTROL PROGRAM (PCP) shall contain the current formulas, sampling, analyses, tests and determinations to be made to ensure that the processing and packaging of solid radioactive wastes based on demonstrated processing of actual or simulated wet solid wastes will be accomplished in such a way as to assure compliance with 10 CFR Parts 20, 61, and 71, State regulations, burial ground requirements, and other requirements governing the disposal of the radioactive waste.

#### PURGE - PURGING

1.23 PURGE or PURGING is the controlled process of discharging air or gas from a confinement to maintain temperature, pressure, humidity, concentration or other operating condition, in such a manner that replacement air or gas is required to purify the confinement.

NORTH ANNA - UNIT 1

1-4

Amendment No. 16, 48, 120, 1746, 178

#### BASES

The service life of a snubber is evaluated via manufacturer input and information through consideration of the snubber service conditions and associated installation and maintenance records (newly installed snubber, seal replaced, spring replaced, in high radiation area, in high temperature area, etc...). The requirement to monitor the snubber service life is included to ensure that the snubbers periodically undergo a performance evaluation in view of their age and operating conditions. These records will provide statistical bases for future consideration of snubber service life. The requirements for the maintenance of records and the snubber service life review are not intended to affect plant operation.

#### 3/4.7.11 SEALED SOURCE CONTAMINATION

The limitations on sealed source removable contamination ensure that the total body or individual organ irradiation does not exceed allowable limits in the event of ingestion or inhalation of the source material. The limitations on removable contamination for sources requiring leak testing, including alpha emitters, is based on 10 CFR 70.39(c) limits for plutonium. Sealed sources are classified into three groups according to their use, with surveillance requirements commensurate with the probability of damage to a source in that group. Those sources which are frequently handled are required to be tested more often than those which are not. Sealed sources which are continously enclosed within a shielded mechanism (i.e., sealed sources within radiation monitoring or boron measuring devices) are considered to be stored and need not be tested unless they are removed from the shielded mechanism.

Specifications 3/4.11.1.1 through 3/4.11.1.3 have been deleted

#### RADIOACTIVE STORAGE

#### 3/4.11.1 LIQUID STORAGE

BASES

#### 3/4.11.1.4 LIQUID HOLDUP TANKS

The tanks listed in this Specification include all those outdoor tanks that are not surrounded by liners, dikes, or walls capable of holding the tank contents and that do not have tank overflows and surrounding area drains connected to the liquid radwaste treatment system.

Restricting the quantity of radioactive material contained in the specified tanks provides assurance that in the event of an uncontrolled release of the tanks' contents, the resulting concentrations would be less than the limits of 10 CFR Part 20, Appendix B, Table 2, Column 2, at the nearest potable water supply and the nearest surface water supply in an UNRESTRICTED AREA

Specifications 3/4.11.2.1 through 3/4.11.2.4 have been deleted.

#### 5.1 SITE

#### **EXCLUSION AREA**

5.1.1 The exclusion area (site boundary) shall be as shown in Figure 5.1-1.

#### LOW POPULATION ZONE

5.1.2 The low population zone shall be as shown in Figure 5.1-2.

#### MAP DEFINING UNRESTRICTED AREAS FOR RADIOACTIVE GASEOUS AND LIQUID EFFLUENTS

5.1.3 Information regarding radioactive gaseous and liquid effluents, which allows identification of structures and release points as well as definition of UNRESTRICTED AREAS within the SITE BOUNDARY that are accessible to MEMBERS OF THE PUBLIC, shall be as shown in Figure 5.1-1.

#### 5.2 CONTAINMENT

#### CONFIGURATION

- 5.2.1 The reactor containment building is a steel lined, reinforced concrete building of cylindrical shape with a dome roof and having the following design features:
  - a. Nominal inside diameter = 126 feet.
  - b. Nominal inside height = 190 fcet, 7 inches.
  - c. Minimum thickness of concrete walls = 4.5 feet.
  - d. Minimum thickness of concrete roof = 2.5 feet.
  - e. Minimum thickness of concrete floor pad = 10 feet.
  - f. Nominal thickness of the cylindrial portion of the steel liner = 3/8 inches.
  - g. Net free volume = 1.825 x 106 cubic feet.
  - h. Nominal thickness of hemispherical dome portion of the steel liner = 1/2 inch.

Figure 5.1.1

Map Defining Unrestricted Areas for Radioactive Gaseous and Liquid Effluents

SYSAAC

Notes:

Gaseous Releases ×

2. Vent - Vent & B and other release points considered ground level releases.

Liquid Release to the Discharge Canal Liquid Release to the Unrestricted Area

Buoy Barriers

Site Boundary - Area at or beyond which is unrestricted for gaseous effluents.

Land Maximum Member of the Public Occupancy = 336 hrsyear Lake Maximum Member of the Public Occupancy = 2232 hrs/year

Meteorological Tower FD. Site Borindary (Children Area)

#### e. Radioactive Effluent Controls Program

A program shall be provided conforming with 10 CFR 50.36a for the control of radioactive effluents and for maintaining the doses to MEMBERS OF THE PUBLIC from radioactive effluents as low as reasonably achievable. The program (1) shall be contained in the ODCM, (2) shall be implemented by operating procedures, and (3) shall include remedial actions to be taken whenever the program limits are exceeded. The program shall include the following elements:

- Limitations on the operability of radioactive liquid and gaseous monitoring instrumentation including surveillance tests and setpoint determination in accordance with the methodology in the ODCM,
- Limitations on the concentrations of radioactive material released in liquid effluents to UNRESTRICTED AREAS conforming to ten times 10 CFR Part 20, Appendix B, Table 2, Column 2,
- Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM.
- 4) Limitations on the annual and quarterly doses or dose commitment to a MEMBER OF THE PUBLIC from radioactive materials in liquid effluents released from each unit to UNRESTRICTED AREAS conforming to Appendix I to 10 CFR Part 50,
- 5) Determination of cumulative and projected dose contributions from radioactive effluents for the current calendar quarter and current calendar year in accordance with the methodology and parameters in the ODCM at least every 31 days.
- 6) Limitations on the operability and use of the liquid and gaseous effluent treatment systems to ensure that the appropriate portions of these systems are used to reduce releases of radioactivity when the projected doses in a 31-day period would exceed 2 percent of the guidelines for the annual dose or dose commitment conforming to Appendix I to 10 CFR Part 50.
- 7) Limitations on the dose rate resulting from radioactive material released in gaseous effluents to areas at or beyond the SITE BOUNDARY shall be limited to the following:
  - a) For noble gases: Less than or equal to a dose rate of 500 mrem/yr, to the total body and less than or equal to a dose rate of 3000 mrem/yr, to the skin, and
  - b) For Iodine-131, Iodine-133, Tritium, and all radionuclides in particulate form with hair-lives greater than 8 days: Less than or equal to a dose rate of 1500 mrem/yr, to any organ.

# ANNUAL REPORTST

6.9.1.4 Annual reports covering the activities of the unit as described below for the previous calendar year shall be submitted prior to March 1 of each year. The initial report shall be submitted prior to March 1 of the year following initial criticality.

#### 6.9.1.5 Reports required on an annual basis shall include:

- a. A tabulation on an annual basis of the number of station, utility, and other personnel (including contractors) receiving exposures greater than 100 mrem/yr and their associated man-rem exposure according to work and job functions, 2/e.g., reactor operations and surveillance, inservice inspection, routine maintenance, special maintenance (describe maintenance), waste processing, and refueling. The dose assignments to various duty functions may be estimated based on pocket dosimeter. TLD, or film badge measurements. Small exposures totalling less than 20 percent of the individual total dose need not be accounted for. In the aggregate, at least 80 percent of the total whole body dose received from external sources should be assigned to specific major work functions.
- b. The complete results of the steam generator tube inservice inspections performed during the report period (Reference Specification 4.4.5.5.b.).
- c. The results of specific activity analysis in which the primary coolant exceeded the limits of Specification 3.4.8. The following information shall be included: (1) Reactor power history starting 48 hours prior to the first sample in which the limit was exceeded; (2) Results of the last isotopic analysis for radioiodine performed prior to exceeding the limit, results of analysis while limit was exceeded and results of one analysis after the radioiodine activity was reduced to less than limit. Each result should include date and time of sampling and the radioiodine concentrations; (3) Clean-up system flow history starting 48 hours prior to the first sample in which the limit was exceeded; (4) Graph of the I-131 concentration and one other radioiodine isotope concentration in microcuries per gram as function of time for the duration of the specific activity above the steady-state level; and (5) The time duration when the specific activity of the primary coolant exceeded the radioiodine limit.

<sup>1/</sup> A single submittal may be made for a multiple unit station. The submittal should combine those sections that are common to all units at the station.

<sup>2/</sup> This tabulation supplements the requirements of §20.2206 of 10 CFR Part 20.

## MONTHLY OPERATING REPORT

6.9.1.6 Routine reports of operating statistics and shutdown experience, including documentation of all challenges to the Reactor Coolant System PORVs or safety valves, shall be submitted on a monthly basis to the Director, Office of Management and Program Analysis, U. S. Nuclear Regulatory Commission, Washington, D. C. 20555, with a copy to the Regional Office of Inspection and Enforcement, no later than the 15th of each month following the calendar month covered by the report.

# ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

6.9.1.8 The Annual Radiological Environmental Operating Report covering the operation of the unit during the previous calendar year shall be submitted before May 1 of each year. The report shall include summaries, interpretations, and analysis of trends of the results of the Radiological Environmental Monitoring Program for the reporting period. The material provided shall be consistent with the objectives outlined in (1) the ODCM and (2) Sections IV.B.2, IV.B.3, and IV.C of Appendix I to 10 CFR Part 50.

<sup>\*</sup> A single submittal may be made for a multiple unit station.

#### ANNUAL RADIOLOGICAL EFFLUENT RELEASE REPORT\*

6.9.1.9 The Annual Radioactive Effluent Release Report covering the operation of the unit during the previous calendar year shall be submitted by May 1 of each year. The report shall include a summary of the quantities of radioactive liquid and gaseous effluents and solid waste released from the unit. The material provided shall be (1) consistent with the objectives outlined in the ODCM and PCP and (2) in conformance with 10 CFR 50.36a and Section IV.B.1 of Appendix I to 10 CFR Part 50.

A single submittal may be made for a multiple unit station. The submittal should combine those sections that are common to all units at the station; however, for units with separate radwaste systems, the submittal shall specify the releases of radioactive material from each unit.

- a. Records and drawing changes reflecting facility design modifications made to systems and equipment described in the Final Safety Analysis Report.
- b. Records of new and irradiated fuel inventory, fuel transfers and assembly burnup histories.
- c. Records of facility radiation and contamination surveys.
- d. Records of radiation exposure for all individuals entering radiation control areas.
- e. Records of gaseous and liquid radioactive material released to the environs.
- f. Records of transient operational cycles for those facility components identified in Table 5.9-1.
- g. Records of reactor tests and experiments.
- h. Records of training and qualification for current members of the plant staff.
- i. Records of in-service inspections performed pursuant to these Technical Specifications.
- j. Records of Quality Assurance activities required by the QA Manual.
- Records of reviews performed for changes made to procedures or equipment or reviews of tests and experiments pursuant to 10 CFR 50.59.
- 1. Records of meetings of the SNSOC.
- m. Records of meetings of the System Nuclear Safety and Operating Committee to issuance of Amendment No. 30.
- n. Records of the service lives of all hydraulic and mechanical snubbers required to be OPERABLE by Technical Specification 3.7.10 including the date at which the service life commences and associated installation and maintenance records.
- o. Records of secondary water sampling and water quality.
- P. Records of Environmental Qualification which are covered under the provisions of Paragraph 6.13.
- Records of analyses required by the radiological environmental monitoring program that would permit evaluation of the accuracy of the analysis at a later date. This would include procedures effective at specified times and QA records showing that these procedures were followed.
- r. Records of reviews performed for changes made to the OFFSITE DOSE CALCULATION MANUAL and the PROCESS CONTROL PROGRAM.

#### 6.11 RADIATION PROTECTION PROGRAM

Procedures for personnel radiation protection shall be prepared consistent with the requirements of 10 CFR Part 20 and shall be approved, maintained and adhered to for all operations involving personnel radiation exposure.

# 6.12 HIGH RADIATION AREA

6.12.1 In lieu of the "control device" or "alarm signal" required by paragraph 20.1601 of 10 CFR 20, each high radiation area in which the intensity of radiation is greater than 100 mrem/hr but less than 1000 mrem/hr shall be barricaded and conspicuously posted as a high radiation area and entrance thereto shall be controlled by requiring issuance of a Radiation Work Permit." Any individual or group of individuals permitted to enter such areas shall be provided with or accompanied by one or more of the following:

- a. A radiation monitoring device which continuously indicates the radiation dose rate in the area.
- b. A radiation monitoring device which continuously integrates the radiation dose rate in the area and alarms when a preset integrated dose is received. Entry into such areas with this monitoring device may be made after the dose rate level in the area has been established and personnel have been made knowledgeable of them.
- c. An individual qualified in radiation protection procedures who is equipped with a radiation dose rate monitoring device. This individual shall be responsible for providing positive control over the activities within the area and shall perform periodic radiation surveillance at the frequency specified by the facility Health Physicist in the Radiation Work Permit.

6.12.2 The requirements of 6.12.1, above, shall also apply to each high radiation area in which the intensity of radiation is greater than 1000 mrem/hr, but less than 500 rads/hr at one meter from a radiation source or any surface through which radiation penetrates. In addition, locked doors shall be provided to prevent unauthorized entry into such areas and the keys shall be maintained under the administrative control of the Shift Supervisor on duty and/or the Plant Health Physicist.

<sup>\*</sup>Health Physics personnel shall be exempt from the RWP issuance requirement during the performance of their assigned radiation protection duties, provided they comply with approved radiation protection procedures for entry into high radiation areas.

#### 6.13 DELETED

6.14 PROCESS CONTROL PROGRAM (PCP)

## 6.14.1 Changes to the PCP:

- 1. Shall be documented and records of reviews performed shall be retained as required by Specification 6.10.2.r. This documentation shall contain:
  - a) Sufficient information to support the change together with the appropriate analyses or evaluations justifying the change(s) and
  - b) A determination that the change will maintain the overall conformance of the solidified waste product to existing requirements of Federal, State, or other applicable regulations.
- Shall become effective after review and acceptance by the SNSOC and the approval of the Plant Manager.

# 6.15 OFFSITE DOSE CALCULATION MANUAL (ODCM)

Changes to the ODCM: -

- a. Shall be documented and records of reviews performed shall be retained as required by Specification 6.10.2.r. This documentation shall contain:
  - Sufficient information to support the change together with the appropriate analyses or evaluations justifying the change(s) and
  - 2) A determination that the change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR Part 50 and not adversely impact the accuracy or reliability of effluent, dose, or setpoint calculations.
- Shall become effective after review and acceptance by the SNSOC and the approval of the Plant Manager.
- c. Shall be submitted to the Commission in the form of a complete, legible copy of the entire ODCM as a part of or concurrent with the Annual Radioactive Effluent Release Report for the period of the report in which any change to the ODCM was made. Each change shall be identified by markings in the margin of the affected pages, clearly indicating the area of the page that was changed, and shall indicate the date (e.g., month/year) the change was implemented.

6.16 DELETED



# UNITED STATES NUCLEAR REGULATORY COMMISSION

WASHINGTON, D.C. 20555-0001

VIRGINIA ELECTRIC AND POWER COMPANY

OLD DOMINION ELECTRIC COOPERATIVE

DOCKET NO. 50-339

NORTH ANNA POWER STATION, UNIT NO. 2

AMENDMENT TO FACILITY OPERATING LICENSE

Amendment No. 159 License No. NPF-7

- 1. The Nuclear Regulatory Commission (the Commission) has found that:
  - A. The application for amendment by Virginia Electric and Power Company et al., (the licensee) dated July 16, 1993, as supplemented by letter dated November 15, 1993, complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act), and the Commission's rules and regulations set forth in 10 CFR Chapter I;
  - B. The facility will operate in conformity with the application, the provisions of the Act, and the rules and regulations of the Commission:
  - C. There is reasonable assurance (i) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations;
  - D. The issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public; and
  - E. The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied.

 Accordingly, the Ticense is amended by changes to the Technical Specifications as indicated in the attachment to this license amendment, and paragraph 2.C.(2) of Facility Operating License No. NPF-7 is hereby amended to read as follows:

# (2) Technical Specifications

The Technical Specifications contained in Appendices A and B, as revised through Amendment No. 159 , are hereby incorporated in the license. The licensee shall operate the facility in accordance with the Technical Specifications.

 This license amendment is effective as of its date of issuance and shall be implemented within 30 days.

FOR THE NUCLEAR REGULATORY COMMISSION

B.C. Buckley for Herbert N. Berkow, Director Project Directorate II-2

Division of Reactor Projects - I/II Office of Nuclear Reactor Regulation

Attachment: Changes to the Technical Specifications

Date of Issuance: February 17, 1994

# ATTACHMENT TO LICENSE AMENDMENT NO. 159

# - TO FACILITY OPERATING LICENSE NO. NPF-7

# DOCKET NO. 50-339

Replace the following pages of the Appendix "A" Technical Specifications with the enclosed pages as indicated. The revised pages are identified by amendment number and contain vertical lines indicating the area of change. The corresponding overleaf pages are also provided to maintain document completeness.

| Remove Pages | Insert Pages |
|--------------|--------------|
| 1-4          | 1-4          |
| B 3/4 7-7    | B 3/4 7-7    |
| B 3/4 11-2   | B 3/4 11-2   |
| 5-1          | 5-1          |
| 5-2          | 5-2          |
| 6-14 b       | 6-14 b       |
| 6-15         | 6-15         |
| 6-20         | 6-20         |
| 6-23         | 6-23         |
| 6-24         | 6-24         |
| 6-25         | 6-25         |
|              |              |

#### ENGINEERED SAFETY FEATURE RESPONSE TIME

1.12 The ENGINEERED SAFETY FEATURE RESPONSE TIME shall be that time interval from when the monitored parameter exceeds its ESF actuation setpoint at the channel sensor until the ESF equipment is capable of performing its safety function (i.e., the valves travel to their required positions, pump discharge pressures reach their required values, etc.). Times shall include diesel generator starting and sequence loading delays where applicable.

#### FREQUENCY NOTATION

1.13 The FREQUENCY NOTATION specified for the performance of Surveillance Requirements shall correspond to the intervals defined in Table 1.2.

#### FULLY WITHDRAWN

1.13a The control bank FULLY WITHDRAWN position shall be within the interval of 225 to 229 steps withdrawn, inclusive. Definition of the FULLY WITHDRAWN position for each specific cycle shall be documented in the rod insertion limit operator curve.

# GASEOUS RADWASTE TREATMENT SYSTEM

1.14 A GASEOUS RADWASTE TREATMENT SYSTEM is the system designed and installed to reduce radioactive gaseous effluents by collecting primary coolant system offgases from the primary system and providing for delay or holdup for the purpose of reducing the total radioactivity prior to release to the environment. The system is composed of the waste gas decay tanks, regenerative heat exchanger, waste gas charcoal filters, process vent blowers, waste gas surge tanks and waste gas diaphram compressor.

#### IDENTIFIED LEAKAGE

- 1.15 IDENTIFIED LEAKAGE shall be:
  - a. Leakage (except CONTROLLED LEAKAGE) into closed systems, such as pump seal or valve packing leaks that are captured and conducted to a sump "acting tank, or
  - b. Leakage into the containment atm; phere from sources to the oth specifically located and known either not to interfere with the operation systems or not to be PRESSURE BOUNDARY LEAKAGE, or
  - c. Reactor coolant system leakage through a steam generator to the secondary system.

#### MEMBER(S) OF THE PUBLIC

1.16 MEMBER(S) OF THE PUBLIC shall include all individuals who by virtue of their occupational status have no formal association with the plant. This category shall include non-employees of the licensee who are permitted to use portions of the site for recreational, occupational, or other purposes not associated with plant functions. This category shall not include non-employees such as vending machine servicemen or postman who, as part of their formal job function, occasionally enter an area that is controlled by the licensee for purposes of protection of individuals from exposure to radiation and radioactive materials.

# OFFSITE DOSE CALCULATION MANUAL (ODCM)

1.17 The OFFSITE DOSE CALCULATION MANUAL (ODCM) shall contain the methodology and parameters used in the calculation of offsite doses resulting from radioactive gaseous and liquid effluents, in the calculation of gaseous and liquid effluent monitoring alarm/trip setpoints, and in the conduct of the Environmental Radiological Monitoring Program. The ODCM shall also contain (1) the Radioactive Effluent Controls and Radiological Environmental Monitoring Programs required by Section 6.8.4 and (2) descriptions of the information that should be included in the Annual Radiological Environmental Operating and Annual Radioactive Effluent Release Reports required by Specifications 6.9.1.8 and 6.9.1.9.

#### OPERABLE - OPERABILITY

1.18 A system, subsystem, train, component or device shall be OPERABLE or have OPERABILITY when it is capable of performing its specified function(s), and when all necessary attendant instrumentation, controls, normal and emergency electrical power sources, cooling or seal water, lubrication or other auxiliary equipment that are required for the system, subsystem, train, component, or device to perform its function(s) are also capable of performing their related support function(s).

#### OPERATIONAL MODE - MODE

1.19 An OPERATIONAL MODE (i.e., MODE) shall correspond to any one inclusive combination of core reactivity condition, power level, and average reactor coolant temperature specified in Table 1.1.

#### PHYSICS TESTS

1.20 PHYSICS TESTS shall be those tests performed to measure the fundamental nuclear characteristics of the reactor core and related instrumentation and 1) described in Chapter 14.0 of the FSAR, 2) authorized under the provisions of 10 CFR 50.59, or 3) otherwise approved by the Commission.

#### PRESSURE BOUNDARY LEAKAGE

1.21 PRESSURE BOUNDARY LEAKAGE shall be leakage (except steam generator tube leakage) through a non-isolable fault in a Reactor Coolant System component body, pipe wall or vessel wall.

#### PROCESS CONTROL PROGRAM

1.22 The PROCESS CONTROL PROGRAM (PCP) shall contain the current formulas, sampling, analyses, tests and determinations to be made to ensure that the processing and packaging of solid radioactive wastes based on demonstrated processing of actual or simulated wet solid wastes will be accomplished in such a way as to assure compliance with 10 CFR Parts 20, 61, and 71, State regulations, burial ground requirements, and other requirements governing the disposal of the radioactive waste.

#### **PURGE-PURGING**

1.23 PURGE or PURGING is the controlled process of discharging air or gas from a confinement to maintain temperature, pressure, humidity, concentration or other operating condition, in such a manner that replacement air or gas is required to purity the confinement.

NORTH ANNA - UNIT 2

1-4

Amendment No. 31, 114, 130,

# 3/4.7.11 SEALED SOURCE CONTAMINATION

The limitations on sealed source removable contamination ensure that the total body or individual organ irradiation does not exceed allowable limits in the event of ingestion or inhalation of the source material. The limitations on removable contamination for sources requiring leak testing, including alpha emitters, is based on 10 CFR 70.39(c) limits for plutonium. Sealed sources are classified into three groups according to their use, with surveillance requirements commensurate with the probability of damage to a source in that group. Those sources which are frequently handled are required to be tested more often than those which are not. Sealed sources which are continuously enclosed within a shielded mechanism (i.e., sealed sources within radiation monitoring or boron measuring devices) are considered to be stored and need not be tested unless they are removed from the shielded mechanism.

#### 3/4.7.12 SETTLEMENT OF CLASS 1 STRUCTURES

In order to assure that settlement does not exceed allowable values, a program has been established to conduct a survey of a specified number of points at the site on a semiannual basis. The first survey was conducted in May 1976 to establish baseline elevations for most of the points. Where applicable, the baseline elevations of points established subsequent to the May 1976 survey have been adjusted to the May 1975 survey by an evaluation of the settlement records of settlement points on the same structure or on nearby structures. Baseline elevations for points established on dates other than May 1976 are indicated in Table 3.7-5. Additional surveys will be performed semiannually. The determination of the elevation of the points shall be by precise leveling with second order Class II accuracy as defined by the U.S. Department of Commerce National Oceanic and Atmospheric Administration, National Ocean Survey, 1974. When any settlement point listed in Table 3.7-5 is inaccessible during a survey, comparison to allowable settlement shall be based on settlement of other points on the same structure or on nearby structures having similar foundation conditions. When any settlement point listed in Table 3.7-5 is dislocated or replaced, a documented review of the settlement records of points on the same structure and additionally points on nearby structures having similar foundation conditions shall provide a new reference elevation for the point that reflects the estimated settlement since the baseline survey. If the total settlement or differential settlement exceeds 75 percent of the allowable value, the frequency of surveillance shall be increased as dictated by the engineering review. Measurements of certain points are required to be performed at least once per 31 days for the first five years of facility operation to provide additional settlement information.

Specifications 3/4.11.1.1 through 3/4.11.1.3 have been deleted

#### BASES

# 3/4.11.1.4 LIQUID HOLDUP TANKS

The tanks listed in this Specification include all those outdoor tanks that are not surrounded by liners, dikes, or walls capable of holding the tank contents and that do not have tank overflows and surrounding area drains connected to the liquid radwaste treatment system.

Restricting the quantity of radioactive material contained in the specified tanks provides assurance that in the event of an uncontrolled release of the tanks' contents, the resulting ocncentrations would be less than the limits of 10 CFR Part 20, Appendix B, Table 2, Column 2, at the nearest potable water supply and the nearest surface water supply in an UNRESTRICTED AREA

Specifications 3/4.11.2.1 through 3/4.11.2.4 have been de'eted.

#### 5.1 SITE

#### **EXCLUSION AREA**

5.1.1 The exclusion area (site boundary) shall be as shown in Figure 5.1-1.

#### LOW POPULATION ZONE

5.1.2 The low population zone shall be as shown in Figure 5.1-2.

#### MAP DEFINING UNRESTRICTED AREAS FOR RADIOACTIVE GASEOUS AND LIQUID EFFLUENTS

5.1.3 Information regarding radioactive gaseous and liquid effluents, which allows identification of structures and release points as well as definition of UNRESTRICTED AREAS within the SITE BOUNDARY that are accessible to MEMBERS OF THE PUBLIC, shall be as shown in Figure 5.1-1.

#### 5.2 CONTAINMENT

#### CONFIGURATION

- 5.2.1 The reactor containment building is a steel lined, reinforced concrete building of cylindrical shape with a dome roof and having the following design features:
  - a. Nominal inside diameter = 126 feet.
  - b. Nominal inside height = 190 feet, 7 inches.
  - c. Minimum thickness of concrete walls = 4.5 feet.
  - d. Minimum thickness of concrete roof = 2.5 feet.
  - e. Minimum thickness of concrete floor pad = 10 feet.
  - f. Nominal thickness of the cylindrial portion of the steel liner = 3/8 inches.
  - g. Net free volume = 1.825 x 106 cubic feet.
  - h. Nominal thickness of hemispherical dome portion of the steel liner = 1/2 inch.

#### DESIGN PRESSURE AND TEMPERATURE

5.2.2 The reactor containment building is designed and shall be maintained for a maximum internal pressure of 45 psig and a temperature of 280°F.

Figure 5.1.1

Map Defining Unrestricted Areas for Radioactive Gaseous and Liquid Effluents

Notes:

Gaseous Releases X 1. Process Vent - 157.5 Ft. 2. Vent - Vent A & B and other release points considered ground level releases. Liquid Release to the Discharge Canal

Liquid Release to the Unrestricted Area

Site Boundary - Area at or beyond which is unrestricted for gaseous effluents. **Buoy Barriers** 

Land Maximum Member of the Public Occupency = 336 hrs/year Lake Maximum Member of the Public Occupancy = 2232 hrsyear

Meteorological Tower ake Anna 18 Site Boundary (Exclusion Area)

#### b. In-Plant Radiation Monitoring

A program which will ensure the capability to accurately determine the airborne iodine concentration in vital areas under accident conditions. This program shall include the following:

- (i) Training of personnei,
- (ii) Procedures for monitoring, and
- (iii) Provisions for maintenance of sampling and analysis equipment.

#### c. Secondary Water Chemistry

A program for monitoring of secondary water chemistry to inhibit steam generator tube degradation. This program shall include:

- identification of a sampling schedule for the critical variables and control points for these variables.
- (ii) Identification of the procedures used to measure the values of the critical variables.
- (iii) Identification of process sampling points, which shall include monitoring the discharge of the condensate pumps for evidence of condenser inleakage.
- (iv) Procedures for the recording and management of data,
- Procedures defining corrective actions for all control point chemistry conditions, and
- (vi) A procedure identifying (a) the authority responsible for the interpretation of the data, and (b) the sequence and timing of administrative events required to initiate corrective action.

#### d. Post-Accident Sampling

A program which will ensure the capability to obtain and analyze reactor coolant, radioactive iodines and particulates in plant gaseous effluents, and containment atmosphere samples under accident conditions. The program shall include the following:

- Training of personnel.
- (fi) Procedures for sampling and analysis,
- (III) Provisions for maintenance of sampling and analysis equipment.

# e. Radioactive Effluent Controls Program

A program shall be provided conforming with 10 CFR 50.36a for the control of radioactive effluents and for maintaining the doses to MEMBERS OF THE PUBLIC from radioactive effluents as low as reasonably achievable. The program (1) shall be contained in the ODCM, (2) shall be implemented by operating procedures, and (3) shall include remedial actions to be taken whenever the program limits are exceeded. The program shall include the following elements:

- 1) Limitations on the operability of radioactive liquid and gaseous monitoring instrumentation in uding surveillance tests and setpoint determination in accordance with the methodology in the ODCM,
- Limitations on the concentrations of radioactive material released in liquid effluents to UNRESTRICTED AREAS conforming to ten times 10 CFR Part 20, Appendix B, Table 2, Column 2,
- Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM,
- 4) Limitations on the annual and quarterly doses or dose commitment to a MEMBER OF THE PUBLIC from radioactive materials in liquid effluents released from each unit to UNRESTRICTED AREAS conforming to Appendix I to 10 CFR Part 50,
- 5) Determination of cumulative and projected dose contributions from radioactive effluents for the current calendar quarter and current calendar year in accordance with the methodology and parameters in the ODCM at least every 31 days.
- 6) Limitations on the operability and use of the liquid and gaseous effluent treatment systems to ensure that the appropriate portions of these systems are used to reduce releases of radioactivity when the projected doses in a 31-day period would exceed 2 percent of the guidelines for the annual dose or dose commitment conforming to Appendix I to 10 CFR Part 50,
- 7) Limitations on the dose rate resulting from radioactive material released in gaseous effluents to areas at or beyond the SITE BOUNDARY shall be limited to the following:
  - a) For noble gases: Less than or equal to a dose rate of 500 mrem/yr, to the total body and less than or equal to a dose rate of 3000 mrem/yr, to the skin, and
  - b) For Iodine-131, Iodine-133, Tritium, and all radionuclides in particulate form with half-lives greater than 8 days: Less than or equal to a dose rate of 1500 mrem/yr, to any organ.

- 6.9.1.2 The startup report shall address each of the tests identified in the FSAR and shall include a description of the measured values of the operating conditions or characteristics obtained during the test program and a comparison of these values with design predictions and specifications. Any corrective actions that were required to obtain satisfactory operation shall also be described. Any additional specific details requested in license conditions based on other commitments shall be included in this report.
- 6.9.1.3 Startup reports shall be submitted within (1) 90 days following completion of the startup test program, (2) 90 days following resumption or commencement of commercial power operation, or (3) 9 months following initial criticality, whichever is earliest. If the Startup Report does not cover all three events (i.e., initial criticality, completion of startup test program, and resumption or commencement of commercial power operation), supplementary reports shall be submitted at least every three months until all three events have been completed.

# ANNUAL REPORTS1/

- 6.9.1.4 Annual reports covering the activities of the unit as described below for the previous calendar year shall be submitted prior to March 1 of each year. The initial report shall be submitted prior to March 1 of the year following initial criticality.
- 6.9.1.5 Reports required on an annual basis shall include:
  - a. A tabulation on an annual basis of the number of station, utility, and other personnel (including contractors) receiving exposures greater than 100 mrem/yr and their associated man-rem exposure according to work and job functions, 2/e.g., reactor operations and surveillance, inservice inspection, routine maintenance, special maintenance (describe maintenance), waste processing, and refueling. The dose assignments to various duty functions may be estimated based on pocket dosimeter, TLD, or film badge measurements. Small exposures totalling less than 20 percent of the individual total dose need not be accounted for. In the aggregate, at least 80 percent of the total whole body dose received from external sources should be assigned to specific major work functions.

<sup>1</sup> A single submittal may be made for a multiple unit station. The submittal should combine those sections that are common to all units at the station.

<sup>2)</sup> This tabulation supplements the requirements of §20.2206 of 10 CFR Part 20.

- b. The complete results of the steam generator tube inservice inspections performed during the report period (Reference Specification 4.4.5.5.b.).
- c. The results of specific activity analysis in which the primary coolant exceeded the limits of Specification 3.4.8. The following information shall be included: (1) Reactor power history starting 48 hours prior to the first sample in which the limit was exceeded; (2) Results of the last isotopic analysis for radioiodine performed prior to exceeding the limit, results of analysis while limit was exceeded and results of one analysis after the radioiodine activity was reduced to less than limit. Each result should include date and time of sampling and the radioiodine concentrations; (3) Clean-up system flow history starting 48 hours prior to the first sample in which the limit was exceeded; (4) Graph of the I-131 concentration and one other radioiodine isotope concentration in microcuries per gram as a function of time for the duration of the specific activity above the steady-state level; and (5) The time duration when the specific activity of the primary coolant exceeded the radioiodine limit.

#### MONTHLY OPERATING REPORT

6.9.1.6 Routine reports of operating statistics and shutdown experience, including documentation of all challenges to the Reactor Coolant System PORVs or safety valves, shall be submitted on a monthly basis to the Director, Office of Management and Program Analysis, U.S. Nuclear Regulatory Commission, Washington, D.C. 20555, with a copy to the Regional Office of Inspection and Enforcement, no later than the 15th day of each month following the calendar month covered by the report.

# ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

6.9.1.8 The Annual Radiological Environmental Operating Report covering the operation of the unit during the previous-calendar year shall be submitted before May 1 of each year. The report shall include summaries, interpretations, and analysis of trends of the results of the Radiological Environmental Monitoring Program for the reporting period. The material provided shall be consistent with the objectives outlined in (1) the ODCM and (2) Sections IV.B.2, IV.B.3, and IV.C of Appendix I to 10 CFR Part 50.

<sup>\*</sup> A single submittal may be made for a multiple unit station.

#### ANNUAL RADIOLOGICAL EFFLUENT RELEASE REPORT\*

6.9.1.9 The Annual Radioactive Effluent Release Report covering the operation of the unit during the previous calendar year shall be submitted by May 1 of each year. The report shall include a summary of the quantities of radioactive liquid and gaseous effluents and solid waste released from the unit. The material provided shall be (1) consistent with the objectives outlined in the ODCM and PCP and (2) in conformance with 10 CFR 50.36a and Section IV.B.1 of Appendix I to 10 CFR Part 50.

A single submittal may be made for a multiple unit station. The submittal should combine those sections that are common to all units at the station; however, for units with separate radwaste systems, file submittal shall specify the releases of radioactive material from each unit.

#### ADMINISTRATIVE CONTROLS (Continued)

- Records of reactor tests and experiments.
- h. Records of training and qualification for current members of the plant staff.
- Records of in-service inspections performed pursuant to these Technical Specifications.
- j. Repords of Quality Assurance activities required by the QA Manual.
- k. Recoords of the service life of all hydraulic and mechanical snubbers required to be operable by Technical Specification 3.7.10 including the date at which the service life commences and associated installation and maintenance records.
- Records of review performed for changes made to procedures or equipment or reviews of tests and experiments pursuant to 10 CFR 50.59.
- m. Records of meetings of the SNSOC.
- n. Records of meetings of the System Nuclear Safety and Operating Committee to issuance of Amendment No. 11.
- o. Records of secondary water sampling and water quality.
- p. Records for Environmental Qualification which are covered under the provisions of Paragraph 2.C(4) (3) of License No. NPF-7.
- q. Records of analyses required by the radiological environmental monitoring program that would permit evaluation of the accuracy of the analysis at a later date. This would included procedures effective at specified times and QA re∞rds showing that these procedures were followed.
- Records of reviews performed for changes made to the OFFSITE DOSE CALCULATION MANUAL and the PROCESS CONTROL PROGRAM.

#### 6.11 RADIATION PROTECTION PROGRAM

Procedures for personnel radiation protection shall be prepared consistent with the requirements of 10 CFR Part 20 and shall be approved, maintained and adhered to for all operations involving personnel radiation exposure.

#### 6.12 HIGH RADIATION AREA

6.12.1 In lieu of the "control device" or "alarm signal" required by paragraph 20.1601 of 10 CFR 20, each high radiation area in which the intensity of radiation is greater than 100 mrem/hr but less than 1000 mrem/hr shall be barricaded and conspicuously posted a high radiation area and entrance

thereto shall be controlled by requiring issuance of a Radiation Work Permit.\* Any individual or group of individuals permitted to enter such areas shall be provided with or accompanied by one or more of the following:

- a. A radiation monitoring device which continuously indicates the radiation dose rate in the area.
- b. A radiation monitoring device which continuously integrates the radiation dose rate in the area and alarms when a preset integrated dose is received. Entry into such areas with this monitoring device may be made after the dose rate level in the area has been established and personnel have been made knowledgeable of them.
- c. An individual qualified in the protection procedures who is equipped with a radiation dose rate monitoring device. This individual shall be responsible for providing positive control over the activities within the area and shall perform periodic radiation surveillance at the frequency specified by the facility Health Physicist in the Radiation Work Permit.

6.12.2 The requirements of 6.12.1, above, shall also apply to each high radiation area in which the intensity of radiation is greater than 1000 mrem/hr, but less than 500 rads/hr at one meter from a radiation source or any surface through which radiation penetrates. In addition, locked doors shall be provided to prevent unauthorized entry into such areas and the keys shall be maintained under the administrative control of the Shift Supervisor on duty and/or the Plant Health Physicist.

<sup>\*</sup>Health Physics personnel or personnel escorted by Health Physics personnel shall be exempt from the RWP issuance requirement during the performance of their assigned radiation protection duties, provided they comply with approved radiation protection procedures for entry in high radiation areas.

# 6.13 PROCESS CONTROL PROGRAM (PCP)

# Changes to the PCP:

- a. Shall be documented and records of reviews performed shall be retained as required by Specification 6.10.2.r. This documentation shall contain:
  - 1) Sufficient information to support the change together with the appropriate analyses or evaluations justifying the change(s) and
  - 2) A determination that the change will maintain the overall conformance of the solidified waste product to existing requirements of Federal, State, or other applicable regulations.
- Shall become effective after review and acceptance by the SNSOC and the approval of the Plant Manager.

# 6.14 OFFSITE DOSE CALCULATION MANUAL (ODCM)

# Changes to the ODCM:

- a. Shall be documented and records of reviews performed shall be retained as required by Specification 6.10.2.r. This documentation shall contain:
  - Sufficient information to support the change together with the appropriate analyses or evaluations justifying the change(s) and
  - 2) A determination that the change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR Part 50 and not adversely impact the accuracy or reliability of effluent, dose, or setpoint calculations.
- Shall become effective after review and acceptance by the SNSOC and the approval of the Plant Manager.
- c. Shall be submitted to the Commission in the form of a complete, legible copy of the entire ODCM as a part of or concurrent with the Annual Radioactive Effluent Release Report for the period of the report in which any change to the ODCM was made. Each change shall be identified by markings in the margin of the affected pages, clearly indicating the area of the page that was changed, and shall indicate the date (e.g., month/year) the change was implemented.

6-15 is DELETED