(DRAFT)

TECHNICAL EVALUATION REPORT

WIND AND TORNADO LOADINGS (SEP, III-2)

YANKEE ATOMIC ELECTRIC COMPANY YANKEE ROWE NUCLEAR POWER STATION

NRC DOCKET NO. 50-029 NRC TAC NO. 41602

NRC CONTRACT NO. NRC-03-79-118

FRC PROJECT C5257 FRC ASSIGNMENT 14 FRC TASK 407

ch Contor

Franklin Research Center 20th and Race Street Philadelphia, PA 19103

Prepared for

Prepared by

Nuclear Regulatory Commission Washington, D.C. 20555 Author: D. Barrett R. Agarwal FRC Group Leader: D. Barrett

Lead NRC Engineer: D. Persinko

July 8, 1982

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

8209080570 820831 PDR ADOCK 05000029 P PDR Franklin Research Center A Division of The Franklin Institute The Benjamin Franklin Parkway, Phila., Pa. 19103 (215) 448-1000

CONTENTS

ection						T	itle									Page
1	INTR	ODUCTION	·		ι.									•		1
	1.1	Purpose	of Rev	view												1
	1.2	Generic	Issue	Baci	kgro	und			•							1
	1.3	Plant-Sp	pecific	Bad	ckgr	ound	•	•		۰.	•	•	•	•	•	2
2	REVI	EW CRITE	RIA.		•	۰.		•		•	•	•	•		÷	4
3	TECH	NICAL EVA	LUATIO	N		•	•								•	6
	3.1	General	Inform	natio	on	•										6
	3.2	Vapor Co	ontaine	er	•		•				•					8
	3.3	Primary	Auxili	ary	Bui	lding	9.	•			. '					9
	3.4	Diesel (Generat	or l	Buil	ding										10
	3.5	Control	Room	•	•	•	•	•	•	·	•		•	•	÷	11
4	CONC	LUSIONS	• •		\mathbf{x}		•	•	1	•		•			1	13
5	REFE	RENCES							•	÷		•				15
APPEN	DIX A	- VAPOR	CONTAI	INER	DES	IGN	REVI	EW C	ALCU	LATI	ONS					
APPEN	DIX B	- PRIMA	RY AUXI	LIA	RY B	UILD	ING	DESI	GN R	EVIE	W CA	LCUL	ATIO	NS		
APPEN	DIX C	- DIESE	L GENER	OTAS	R DE	SIGN	REV	IEW	CALC	ULAT	IONS					
APPEN	DIX D	- CONTRO	OL ROOM	1 DE	SIGN	REV	IEW	CALC	ULAT	IONS						

• • • •

*

-

FOREWORD

This Technical Evaluation Report was prepared by Franklin Research Center under a contract with the U.S. Nuclear Regulatory Commission (Office of Nuclear Reactor Regulation, Division of Operating Reactors) for technical assistance in support of NRC operating reactor licensing actions. The technical evaluation was conducted in accordance with criteria established by the NRC.

1. INTRODUCTION

1.1 PURPOSE OF REVIEW

In the Systematic Evaluation Program (SEP), licensees are required to establish the ability of Class I structures to safely withstand a high wind or tornado strike. After conducting an appropriate investigation, licensees report the conclusions in a safety analysis report (SAR). The purpose of this review is to provide a technical evaluation of the SAR prepared by the Yankee Atomic Electric Company (YAEC) for the Yankee Rowe Nuclear Power Station [1].

1.2 GENERIC ISSUE BACKGROUND

Some operating nuclear plants were designed on the basis of local building codes which did not consider the effects of the high wind speeds of tornadoes. Since the construction of these plants, research has led to an understanding of the various phenomena that occur during a tornado strike, and this knowledge has been incorporated into the definition of a design basis tornado (DBT) in Nuclear Regulatory Guide 1.76 [2]. Due to the concern regarding the extent to which older nuclear plants can satisfy DBT licensing criteria, the Nuclear Regulatory Commission (NRC), as part of the SEP, initiated Topic III-2, "Wind and Tornado Loadings," to investigate and assess the structural safety of existing designs against current requirements.

Licensees are required to prepare an SAR addressing the concerns of SEP Topic III-2. The SAR should identify the limiting elements of the structural design and specify the loading conditions and threshold wind speeds at which buildings and components fail. As part of Assignment 14, the Franklin Research Center (FRC) is assessing the adequacy and accuracy of the SARs. Typical items that are reviewed are the tornado load calculations and combinations, the structural acceptance criteria, and the method of analysis.

1.3 PLANT-SPECIFIC BACKGROUND

The review of the Yankee Rowe SAR was begun in April 1982. Prior to that time, Yankee Atomic Electric Company (YAEC) responded to NRC requests for information by providing architectural-engineering structural drawings. Additional sources of information were a YAEC letter on the SEP structural topics [3] and the plant final safety analysis report [4]. The steel vapor container, the turbine building, the primary auxiliary building, and the diesel generator building are the safety-related structures that have been evaluated by YAEC and reviewed in the Yankee Rowe SAR. (The conclusions of this report arg summarized in Table 1.)

The original wind loading criteria of the Yankee Rowe structural systems were the structural load provisions of the American Standard Association code A58.1-1955 [5]. These provisions called for a graded wind load of 20 psf at an elevation less than 30 ft; 25 psf at an elevation between 50 ft and 99 ft; and 40 psf at an elevation between 100 ft and 499 ft. According to attachment B of Reference 3, the vapor container had been designed to withstand loads corresponding to windspeeds of 100 mph from any direction. The criteria for the review in this TER are stated in Section 2 of this report.

FRC was originally charged with auditing the design calculations supporting the conclusions of the Yankee Rowe SAR. However, these calculations were not provided by YAEC. Under a change in work scope for Assignment 14 but within the original budget and schedule constraints, FRC is to perform an independent tornado analysis for a limited sample of the Yankee Rowe Class I structures and components. The FRC analysis seeks to estimate the level of structural strength through approximate but conservative structural models (design review assumptions are stated in Sections 2 and 3 of this report and in the Appendices). The results of this additional analysis are to be used to assess the conclusions reported in the SAR.

Franklin Research Center

Table 1. Summary of Conclusions from Yankee Rowe Topic III-2 SAR*

Safety-Related	System	Wind Velocity (mph)
Steel Vapor Container	Structural	252
	Skin	>252
Turbine Building	Structural	158
	Skin	64
	Roof	161
Primary Auxiliary Building	Structural	192
	Skin	40
	Roof	165
Diesel Generator Building	Roof	190
	Skin	46

*Notes:

- The effect of atmospheric pressure changes and tornado-borne missiles are not considered.
- 2. Steady air flow is assumed.
- Specific details on the metal siding and decking are not available; capacities are based on strength of supporting members.

TER-C5257-407

2. REVIEW CRITERIA

The intent of code regulations is to ensure the safety of systems vital to the safe shutdown of a reactor. The General Design Criteria (GDC) of 10CFR50, Appendix A [6] regulate the designs of these safety systems; in particular, GDC 2 requires that structures housing safety-related equipment be able to withstand the effects of natural phenomena such as tornadoes. The design basis must consider the most severe postulated tornado as well as the combined effects of tornado, normal, and accident conditions.

Regulatory Guide 1.76 defines a DBT in terms of the parameters of maximum wind speed, maximum differential pressure, rate of pressure drop, and core radius, given with respect to geographical location. The specified magnitudes of these regional parameters are the acceptable regulation levels, but additional analysis may be performed where appropriate to justify the selection of a less conservative DBT. In Reference 7, the NRC established the tornado parameters to be used in the SEP study of the Yankee Rowe plant.

Regulatory Guide 1.117 [8] assists in the identification of structures and systems that should be protected from the effects of a DBT. This regulatory position is elaborated in the Standard Review Plan (SRP), Section 3.3.2 (NUREG-0800) [9]. The analysis presented in this report is of a representative sample of safety-related structural systems at the Yankee Rowe plant.

With the dynamic pressure and air flow assumptions from the SRP, Section 3.3.2, and with the aid of Reference 10, a velocity-pressure distribution model can be constructed from the DBT characteristics. The actual forces acting on a structure can be calculated from this model augmented by the experimental data reported in References 11 and 12. These forces arise from wind-induced positive and negative pressures as well as from differential pressures.

An additional tornado load is the impact of wind-borne missiles against structures. The potential missiles are identified in the missile spectrum of the SRP, Section 3.5.1.4 [13], while the particular missiles to be included in this study were identified by the NRC as part of the SEP assignment [7].

A Division of The Franklin Institute

-4-

References 14 and 15 assist in the determination of the structural effects of missile impact, while the guidelines of the SRP, Section 3.3.2 indicate acceptable combinations of impact effects with the loads resulting from wind and differential pressures.

Since the DBT is considered an extreme environmental event, tornadoinduced leads are part of the loading combinations to be used in extreme environme.tal design (see Article CC-3000 in the ASME Boiler and Pressure Vessel Code [16] and the SRP, Section 3.8.4 [17]). The structural effects of these loading combinations are determined by analysis; stresses are calculated either by a working stress or ultimate strength method, whichever is appropriate for the structure under consideration. The ASME Code specifications for an extreme environmental event permit the application of reserve strength factors to allowable working stress design limits, and also permit local strength capacities to be exceeded by missile loadings (concentrated loads) provided that this causes no loss of function in any safety-related systems.

The sources of criteria described above and other source documents used in the evaluation are listed below:

NRC Regulatory Guide 1.76, "Design Basis Tornado for Nuclear Power Plants" [2] NRC Regulatory Guide, 1.117, "Tornado Design Classification" [8] NUREG-0800, Standard Review Plan

Section 3.3.2, "Tornado Loadings" [9] Section 3.5.1.4, "Missiles Generated by Natural Phenomena" [13] Section 3.5.3, "Barrier Design Procedures" [18] Section 3.8.1, "Concrete Containment" [19] Section 3.8.4, "Other Seismic Category I Structures" [17] Section 3.8.5, "Foundations" [20]

AISC Specification for Design, Fabrication and Erection of Structural Steel for Buildings [21]

ACI-318-77, "Building Code Requirements for Reinforced Concrete" [22]

ASME Boiler and Pressure Vessel Code, Section III, Division 2 (ACI-359), "Standard Code for Concrete Reactor Vessels and Containments" [16]

NRC/SEB, "Criteria for Safety-Related Masonry Wall Evaluation," Structural Engineering Branch (1981) [23]

ACI-307-79, "Specification for the Design and Construction of Reinforced Concrete Chimneys" [24].

Franklin Research Center

-5-

3. TECHNICAL EVALUATION

3.1 GENERAL INFORMATION

Franklin Research Center

The structures included in this review are the primary auxiliary building, the diesel generator building, the control room and the steel vapor container supports. These structures are classified seismically as Category I Nuclear Safety Related. The plan of the building arrangement at the Yankee Rowe site is shown in Figure 1.

The DBT characteristics taken as a basis for analysis are (unit abbreviations are from the SRP, Section 3.3.2):

Maximum	wind speed	300 mph
Maximum	pressure drop	2.25 psi
Rate of	pressure drop	1.2 psi/sec
Core rad	dius	150 ft.

These characteristics yield a dynamic pressure of 230 psf. For application of this pressure to external flat surfaces of structures, the shape coefficients are 0.80 for windward walls (positive pressure), 0.50 for leeward walls (suction), and 0.70 for roofs (suction). Gust factors for tornado loadings are taken as unity.

The design basis missiles are C and F from the Standard Review Plan, Section 3.5.1.4 missile spectrum.

- Missile C: Steel rod: 1-in diameter, 3-ft length, 8-lb weight, 220 ft/sec velocity; strikes at all elevations.
- Missile F: Utility pole: 13.5-in diameter, 35-ft length, 1490-1b weight, 147 ft/sec velocity; strikes in a zone limited to 30 ft above grade.

The full effects of a tornado are experienced by the main structural members only if the skin of the building (walls, panels, roof decks, etc.) can properly transmit the associated loadings. For the purpose of analysis, the most conservative circumstances of integrity or failure of these elements are assumed. For instance, a steel roof deck may fail when subjected to the DBT differential pressure. However, even though the roof deck failure provides venting, the tornado loads are still assumed to exist so that the strength of other, stronger structural elements can be analyzed.

-6-

Figure 1. Site Plot Plan

For most structures, a wind flow field acting at an angle to the surfaces of a building is not as demanding as a frontal attack because the elements resisting lateral forces are oriented and framed so that the effects of adjacent wall loadings are uncoupled. Likewise, the action of windward face pressure and leeward face suction are uncoupled when their actions are resisted by separate structural elements. The most conservative loading cases are chosen accordingly.

The goal of analysis is to identify a structure's weakest members and to establish the threshold wind speed at which these members fail the structural acceptance criteria [17]. This wind speed limit rating depends on the postulated loading conditions. Once a limiting member is identified, the loading conditions used to determine subsequent limiting members are in some cases modified to account for failure of the weaker member. Therefore, conclusions about the strength of structural components are based on a supposition of sequential failure.

The following are typical assumptions for the structural modeling in this report:

- 1. No snow load exists during a tornado strike.
- 2. Thickened floor slabs can be used to transmit lateral loads.
- 3. Connections are designed in accordance with good engineering practice.
- Unless noted otherwise, steel roof decking is assumed to remain intact.

Additional assumptions are identified on the calculation sheets (see appendices).

3.2 VAPOR CONTAINER

3.2.1 Evaluation

The vapor container is a 125-ft diameter steel sphere with a skin thickness varying from 7/8 in to 3 inches. The sphere is suppoprted by 16 hollow steel columns with a diameter of 42 inches and a 7/8-inch wall thickness. The columns are connected at the equator of the sphere 85 feet 6 inches above the grade elevation of 1022 ft. The columns are interconnected and braced by 4-inch diameter steel rods. The vapor container houses a concrete structure which supports the reactor and acts as a radiation shield. The internal concrete structure is supported by eight concrete columns and is isolated from the vapor container by bellows located where the concrete columns pass through the steel shell.

During a tornado strike, the steel sphere will be subjected to lateral loads which will induce bending moments and axial loads in the supporting steel columns. These columns are modeled as unbraced cantilevered posts which are checked for capacity and stability. The assumptions underlying the distribution of lateral force and the column analysis are given in Appendix A.

3.2.2 Conclusions

The supporting columns of the vapor container can safely withstand the tornado loadings.

3.3 PRIMARY AUXILIARY BUILDING

3.3.1 Evaluation

The primary auxiliary building is located on the south side of the vapor container. The walls and floors of the primary auxiliary building substructure are reinforced concrete. The superstructure is braced steel framing with a high roof at elevation 1065 ft 3 1/2 in and a low roof at elevation 1056 ft 6 in. The roof is 2 1/2 in steel decking, and the walls are 8-in-thick concrete blocks connected to the steel columns by strap anchors. The adjacent grade varies from elevation 1022 ft on the north side to elevation 1035 ft on the south side.

The wind loads are applied to the structure through the concrete block wall-column connections. The columns transmit this load to the roof steel and to the substructure. Bracing in the roof steel plan transmits the lateral forces to vertically braced frames.

The concrete block walls are analyzed as simply supported between floor levels. Since no steel reinforcement has been provided, equilibrium is maintained by tensile forces in the masonry bond. For the extreme environmental loading, strength factors are applied to the allowable stresses.

Franklin Research Center

-9-

The steel columns are modeled as simply supported and are subjected to combined bending and axial loads. The roof steel consists of beams running in the north-south direction supported by girders spanning in the east-west direction. The roof deck is assumed to remain intact with the roof beams and to transmit uplift loads to these beams. All design review calculations for this structure can be found in Appendix B.

3.3.2 Conclusion

The limiting members of the primary auxiliary building are the unreinforced concrete block walls which have limit ratings of 0.09 psi (49 mph) for differential pressure, 15.3 psf (77 mpt) for tornado dynamic pressure and 12.2 psf (56 mph) for high wind dynamic pressure. The 8W31 steel columns have a limit rating of 0.94 psi (162 mph) for differential pressure and 168 psf (256 mph) for tornado dynamic pressure. The limiting elements of the roof steel are the 12W27 beams which have a limit rating of 1.19 psi (183 mph) for differential pressure; the 10W21 beams which are rated at 1.29 psi (191 mph) for differential pressure; and the 16W36 girder which has a limit rating of 0.60 psi (130 mph) for differential pressure.

3.4 DIESEL GENERATOR BUILDING

Franklin Research Center

3.4.1 Evaluation

The diesel generator building is located south-west of the vapor container and is adjacent to the primary auxiliary building. The walls of the diesel generator building are 8-in-thick concrete blocks connected to steel columns by vertical and horizontal standard masonry galvanized iron anchors. The columns support the roof steel and the 1 1/2-inch steel roof deck. The top of the steel of the diesel generator building is at elevation 1037 ft 2 inch, but the accumulator tank room roof is at elevation 1056 ft 3 1/2 inch. The adjacent grade is at elevation 1022 ft.

The roof steel beams, steel columns, and concrete block walls are examined. The concrete walls are analyzed for bending and the roof beams are studied under uplift. The columns are subjected to axial and lateral loads. The design review calculations can be found in Appendix C.

-10-

3.4.2 Conclusion

The limiting members of the diesel generator building are the unreinforced concrete block walls which have limit ratings of 0.11 psi (55 mph) for differential pressure, 19.5 psf (87 mph) for tornado dynamic pressure, and 15.5 psf (63 mph) for high wind dynamic pressure. The limiting 8W17 steel column has a rating of 0.26 psi (85 mph) for differential pressure, 46.2 psf (134 mph) for tornado dynamic pressure, and 15.1 psf (80 mph) for high wind dynamic pressure. The limiting elements of the roof steel are the 8W17 beams which have a limit rating of 1.22 psi (186 mph) for differential pressure and 220 psf (313 mph) for tornado dynamic pressure; the 10W21 beams which have ratings of 0.88 psi (157 mph) for differential pressure and 181 psf (266 mph) for tornado dynamic pressure; and the 18W50 girder which has a limit rating of 0.33 psi (96 mph) for differential pressure, 67.9 psf (163 mph) for dynamic pressure, and 46.6 psf (133 mph) for high wind dynamic pressure.

3.5 CONTROL ROOM

3.5.1 Evaluation

The control room is located inside the auxiliary building, which is north of the vapor container. The control room floor slab is at elevation 1052 ft 8 in, while the roof slab is at elevation 1070 ft 2 in. The adjacent grade elevation is 1021 ft. The south wall of the auxiliary building is 3 ft thick reinforced concrete up to elevation 1052 ft 5 inches, where, at the control room level, the wall thickness increases to 4 ft. The east and west walls are 4 ft thick reinforced concrete between elevations 1050 ft 8 in and 1066 ft. The west and south walls are exposed to the atmosphere. The east wall is common with the heating boiler room, while the north wall is common with the turbine building.

The east and west control room walls are supported on reinforced concrete piers. The area bounded by the piers is enclosed by concrete block. For the loadings considered in this review, the concrete block walls are structurally independent of the piers and the reinforced concrete walls. The reinforced concrete roof of the control room is a series of 3-ft-deep precast concrete beams supporting a roof slab.

-11-

A Dimision of The Franklin Institute

The west side wall transfers lateral loads to the concrete piers and is examined in bending. The piers are subjected to bending by the lateral tornado loads and are modeled as cantilever beams fixed at grade level. The review calculations and analysis can be found on pages D-1 to D-11 of Appendix D.

3.5.2 Conclusion

The west side reinforced concrete wall can withstand all of the tornado loadings. The limiting elements are the concrete piers which have a rating of 0.51 psi (120 mph) for differential pressure and 91.6 psf (189 mph) for tornado dynamic pressure.

4. CONCLUSIONS

The results of the tornado structural analysis for the vapor container supports, the primary auxiliary building, the diesel generator building, and the control room are summarized in Table 2.

Table 2. Strength Summary of the Structural Components Analyzed (a)

Structure	Element(b)	Cause of Failure(C)	Wind Speed (mph)
Vapor Container	Supporting Steel Columns		
Primary Auxiliary Building	Concrete Block Wall(d)	2 3 1	49 56 77
	8W31 Columns	2 1	162 256
	16W36 Roof Girders	2 1	130 219
	12W27 Roof Beams	2	183
	10W21 Roof Beams	2	191

a. The ratings of some structural components are not definitive but are estimates based on approximate modeling.

- b. Note that this table does not imply that all inadequate elements have been identified or that the most limiting element of the design has been found. Structural details not included in this review are windows, doors, and roof decks.
- c. Key: 1 = tornado dynamic pressure; 2 = differential pressure; 3 = high wind dynamic pressure. Tangential wind speeds are listed for differential pressure failures.
- d. The concrete block wall ratings are given for tension stress normal to bed joint in unreinforced block walls.

Table 2 (Cont.)

Structure	Element (b)	<u>Cause of Failure</u> (c)	Wind Speed (mph)
Diesel Generator	Concrete Block Wall (d)	2	55
Building		1	87
	PH17 Columns	2	2.0
	owi/ columns	3	80
		2	85
		1	134
	18W50 Roof Girder	2	96
		3	133
		ĩ	163
	10W21 Roof Beam	2	157
		1	266
	8W17 Roof Beams	2	186
		ĩ	313
Control Poor	Painforgad Congrata	2	120
CONCLOT ROOM	Reinforced Concrete	2	120
	Piers	1	193
	Reinforced Concrete		
	Wall Between Elevations 1052 ft and 1066 ft		

While not specifically reviewed, additional areas of concern are the waste disposal and fuel storage buildings. The north wall of the control room, while not exposed to the atmosphere, is masonry block construction which will be subjected to differential pressure loadings with failure of the siding and the roof deck of the turbine building. And as a final note, if the primary ventilation stack were to fail and fall, it would have the potential to impact safety-related structures.

5. REFERENCES

- Yankee Atomic Electric Company (YAEC) Letter with Attachments to NRC Subject: Yankee Rowe SEP Topic III-2 Wind and Tornado Loadings March 1982 (Received at FRC on March 25, 1982) Docket No. 50-029
- "Design Basis Tornado for Nuclear Power Plants" NRC, April 1974 Regulatory Guide 1.76
- 3. R. H. Groce Letter with Attachments to Office of Nuclear Reactor Regulation (NRC) Subject: Additional Information Systematic Evaluation Program Structural Topics - Yankee Rowe September 6, 1979 Docket No. 50-029
- Yankee Rowe Nuclear Power Station Final Safety Analysis Report
- 5. "Building Code Requirements for Minimum Design Loads in Buildings and Other Structures" New York: American Standards Association, Inc., 1955 ASA A58.1-1955
- Code of Federal Regulations, Title 10, Part 50 Appendix A, "General Design Criteria"
- E. J. Butcher (NRC) Letter to S. P. Carfagno (FRC) Subject: Tentative Work Assignment P April 23, 1981
- "Tornado Design Classification" NRC, Rev. 1, April 1978 Regulatory Guide 1.117
- 9. Standard Review Plan Section 3.3.2; "Tornado Loadings" NRC, July 1981 NUREG-0800
- McDonald, J. R., Mehta, K. C., and Minor, J. E.
 "Tornado-Resistant Design of Nuclear Power Plant Structures" Nuclear Safety, Vol. 15, No. 4, July-August 1974

- 11. "Wind Forces on Structures" New York: Transactions of the American Society of Civil Engineers, Vol. 126, Part II, 1962 ASCE Paper No. 3269
- 12. "Building Code Requirements for Minimum Design Loads in Buildings and Other Structures" New York: American National Standards Institute, 1972 ANSI A58.1-1972
- 13. Standard Review Plan Section 3.5.1.4, "Missiles Generated by Natural Phenomena" NRC, July 1981 NUREG-0800
- 14. Williamson, R. A. and Alvy, R. R. "Impact Effect of Fragments Striking Structural Elements" Holmes and Naruer, Inc. Revised November 1973
- 15. "Full-Scale Tornado-Missile Impact Tests" Palo Alto, CA: Electric Power Research Institute, July 1977 Final Report NP-440, Project 399
- 16. ASME Boiler and Pressure Vessel Code, Section III, Division 2 "Standard Code for Concrete Reactor Vessels and Containments" New York: American Society of Mechanical Engineers, 1973 ACI-359
- 17. Standard Review Plan Section 3.8.4, "Other Seismic Category I Structures" NRC, July 1981 NUREG-0800
- 18. Standard Review Plan Section 3.5.3, "Barrier Design Procedures" NRC, July 1981 NUREG-0800
- 19. Standard Review Plan Section 3.8.1, "Concrete Containment" NRC, July 1981 NUREG-0800
- 20. Standard Review Plan Section 3.8.5, "Foundations" NRC, July 1981 NUREG-0800

- 21. "Specification for Design, Fabrication and Erection of Structural Steel for Buildings" New York: American Institute of Steel Construction, 1978
- 22. "Building Code Requirements for Reinforced Concrete" Detroit: American Concrete Institute, 1977 ACI 318-71
- 23. Criteria for Safety-Related Masonry Wall Evaluation NRC, Structural Engineering Branch, 1981
- 24. "Specification for the Design and Construction of Reinforced Concrete Chimneys" American Concrete Institute, 1979 ACI 307-79

APPENDIX A

STEEL VAPOR CONTAINER

Project Page 026-65257-01 A-3 Franklin Research Center By Date Ch'k'd Date Rev. Date A Division of The Franklin Institute RA JUNIE'82 GTB 6-83 Title ASSUME FE= 0.6 x 32 = 19.2 $\frac{f_a}{F_a} + \frac{f_b}{(1 - f_e/F_e)F_b} \leq 1.0$ $Fe' = \frac{12\pi^2 E}{23(k!/R)^2} = \frac{43.611}{23(k!/R)^2}$ $f_{6} = \left(1 - \frac{f_{a}}{F_{a}}\right) \left(1 - \frac{f_{a}}{F_{a}}\right) F_{6}$ = (,616)(.854)(19.2) fb = 70.10 Ksi For EACH Column, where $I = T/64 (d_0^4 - d_1^4)$ do = 42" $= \frac{\pi}{64} \left[(42)^4 - (40.25)^4 \right]$ d,= 40.25" = TT/64 [3111696.0 - 2624602.5) = TT/64 [487093.5] I= 23910, 146 m.

Project Page 026 - (5257 - 0/ Date Ch'k'd A-4 Franklin Research Center By Date Rev. Date A Division of The Franklin Institute The Benjamin Franklin Parkway, Phila, Pa. 19103 RA CTR 1-87 15127 Title BENDING CAPACITY Of Column, $M = \frac{f_0 I}{y}$ = (10,10)(23910.145) M = 11500.13 K- IN. M = 958.34 K-ft. CALCOLATION of LOADING ON EACH COLUMN, - Outer Diameter of Sphere = 125 ft. Projected Area = ITd2 = 12271.846 ft2

Project Page 026-65257-01 A-5 Franklin Research Center By Ch'k'd Date Date Rev. Date A Division of The Franklin Institute RA The Benjamin Franklin Parkway Phila, Pa 19103 UNE'77 GTB 6-82 Title SUPPOSE SUPPORTS Are GOOD for w pst, R = (6380)(20×22)(125) = 3.509 × 10° Force = 12271.846 w 18. Drag Coeff. = 0.2 F= CD. g. A. -Shear on each Column, V = Force = 12771.846 w 16 16 : V = 766.9900 125 V = 0,76699 W Kips

APPENDIX B

PRIMARY AUXILIARY BUILDING DESIGN REVIEW CALCULATIONS

	Project 026 - C5257 - 01					Page B-1		
A Division of The Franklin Institute The Benjamin Parkway, Phile, Pa. 19103	RA	JUNE 82	Ch'k'd MLP	Date 6/02	Rev.	Date		
DELALADY MIXILLARY	BUIL NING	- VANKER	REN	F				

THE PRIMARY AUXILIARY BUILDING IS BASICALLY A STRUCTURAL STEEL STRUCTURE WITH CONCRETE BLOCK WALLS. IN THIS ANALYSIS ROOF DECKING, ROOF BEAM, STEEL COLUMNS AND CONCRETE BLOCK WALLS HAVE BEEN EXAMINED.

WE ASSUME THAT CONCRETE BLOCK WALL TRANSFERS ALL THE LOAD IN THE LATERAL DIRECTION ON TO STEEL COLUMNS BEFORE IT FAILS. NO DETAILS & PROPERTIES ARE AVAILABLE FOR CONC. BLOCK WALL. ASSUMED SECTION PROPERTIES HAVE BEEN USED IN THE ANALYSIS FOR CONC. BLOCK WALL AND STEEL ROOF DECKING ALSO.

ROOF STEEL BEAM & STEEL DECKING ANMAYZED FOR UPLIFT PRESSURE CASE. EVEN AFTER FAILURE, DECKING ASSUMED TO BE TRANSFERRING LOAD TO BEAMS.

Franklin Barrach Control	Project 02 G -	15257-01			Page B-2
A Division of The Franklin Institute The Benjamin Franklin Parkway, Phila, Pa. 19103	By RA	APRIL'82	Ch'k'd MLP	Date 6/52	Rev. Dat
STEEL ROOFING - PRIMARY	AUXIL	ARY BUILD	ING.	YAN	KEE ROWE
THE ROOF PLAN COL. LINES 6-8, C	BETWEEN LONSISTS	COL. LINE DF STEEL	S 3 DEC	5 AN	Q
SUPPORTED BY ST.	EEL BE	AMS. THE	STEEL	DE	cking
15 21/2" THICK.	WE AS	UME STEEL	DECK	WILL	REMAIN
PARTIALLY INTACT T	DTHE	BEAM AND	TRANS	FER I	LEASS.
BEAMS 12 WF 27 SUPPORTS	AREA 0	F 17.5' X 8.	625'		
UNBRACED	LENGTH	FOR UPLIFT C	ASE	15 1°	7.51
FOR F	y=36 km	FROM AZ	sc		
MANUAL	BEAM A	LLOWABLE MO	MENT	GRAP	HS.
	MOMEN	T M = 35	.5 K-	ft.	
: ALLOWA	BLE LO	AD/UNIT LEI	VGHT V = 8N l^2	1	
		$\omega = \frac{8x}{0}$	35 5		
		= 0.927	3469 1	cips/8	f
		= 927	. 3469	they's	f.
THIS	SUPPOR	T LATERAL	LENT	H= 8.	6254
	: PRESS	URE p=1	07.52	Py	
Increase steel allon	rable by	1.6 for	Tonne	do	
: Al	lowable	pressure =	172.	0321	m

	Project 020	G- C5257-01	Page B-3
A Division of The Franklin Institute The Benjamin Pranklin Parkway, Phila, Pa. (9103	RA	APRIL'82 MLP	Date Rev. Date
Title STEEL RODFING - PRIMARY	AUXILIARY	BUILDING Y	ANKEE ROWE
10 WF 21			
SUPPORTS	AREA OF	15' × 7.5'	
UNBRACED L	ENGHT FOR	UPLIFT CASE IS I	5'
FOR Fy = 36k	ksi FROM	AISC MANUAL,	BEAM
ALLOWABLE	MOMENT G	RAPHS, WE GET	
4	LIDWABLE MU	MENT = 24.5 K-H	
		U	
. ALLOWABLE	LOAD / UNIT	LENGHT $W = \frac{8N}{12}$	1
		. W= 8x 24.5	
		(15)2	
		= 0.87111 k	-1/t.
		= 871.111 %	ps/ft
THE LATERAL SI	UPPORT LENG	GHT HERE IS 7.5	5'
	:. PRESS	URE $p = 116.148$	2 P.Y.
Increase steel a	llowable s	tress by 1.6	for Tomado.
	:. Allo	wable pressure =	1.6×116.1482
			185.837 pm
U16x36 5xx=56.5105, RT=1.91	·N, d/AF = 5.3	0 10-1 + R= 21.75'	1 1
1.5-66 F8 = 170×103 = 8.10	451 × 44		×56.5= 490.4 ×··~
(21.75×12/1.31)2	A	NO WITH LORDS AT 1/3 P	= 40.9 K. FT DOINTS R= 5.40K
$\frac{1.5-7}{(21.75 \times 12)(5.30)} = 3.6$	5 K S +	PLUS 1/6 (.0+0) (21.75) SUPPORT AREX = 7.59 X	$z = 7.4 \text{ K} \cdot \text{Fr}$ r = 113.79'
		1 ALLOW P = 47.5	5F + 10 PSF D.W.

	Project O	26-65257-0	21		Page A .	-5
A Division of The Franklin Institute The Benjamin Franklin Park-ay, Phila, Pa. 19103	BYRA	APRIL 82	Ch'k'd MLP	Date	Rev.	Date
Title STEEL COLUMNS - PRIMARY	AUX.	BLDG.		/30		
Column B WF 31						
Unbraced length.	1056.5-	1039.5 = 1	7 ft.			
Section propert	ies:					
Area = 9.12 in d = 8 in. Ixx = 110 in 4 Iyy = 37 in 4 Fr = 2.21 in	г Г _{хх} = : Гуу *	3.47 in. 1.61 in.				
$\min_{\mathbf{r}} \frac{kl}{r} = \frac{(17 \times 10^{-1})}{1.6}$	12)	*				
= 126	T > Ce	for Fy : 3	36 × 51			
$\frac{l}{r_{-}} = \frac{(17 \times 12)}{2.21}$	= 92.	3 < 119√	G W	HEN	G=1-0	2
USE $F_b = \frac{12 \times 10^3 G_b}{Ld/4}$	AS co	MP. FLANGE #	ea = Ti t	ENSIO REA.	N FLA	NGE
- Fg = 25.4647K	si > 0.	6Fy				
	÷.	Use Fz = 0	·6 ×36	,		
Axial load on col	umn (3)	Eb) =	21.6ks			
Wt. of steel deck	+ wt. o	of steel beam	s + live	100	9	
Wt. of deck = (16 x 8.6 Self wt. of beam. 20×2 Live load = (16 x 8.625)	$(25) \times 4.7$ + $(30/2) =$ × 40 = 3	7 = 658.2 69 Ibs. 5520 Ibs.	6 165.			
	TOTAL = 6	247.26165	= 6.2	5 KI	P5	

The	nklin Research Control	Project	26-65257-0		Page B-6
A Div The Ber	nkiin Kesearch Center Ision of The Franklin Institute namin Franklin Parkway, Phila, Pa. 19103	BYRA	APRIL 82 M	k'd Date	Rev. Date
Title STEEL	COLUMNS - PRIMARY	AUX. BLD	÷,		
	$fa = \frac{6.25}{9.12} = .685$				
	$F_{\alpha} = \frac{12\pi^2 E}{23\left(\frac{\kappa l}{r}\right)^2} =$	$\frac{12 \pi^2}{23}$ (12	$\frac{29 \times 10^3}{(6.7)^2} = 9.3$	K51	
	$\frac{f_a}{F_a} = \frac{.685}{9.3} =$.074			
	$\frac{f_a}{F_a} + \frac{f_b}{F_b} = 1.0$				
	$\frac{f_{\rm D}}{F_{\rm D}} = 1.0 - \frac{f_{\rm A}}{F_{\rm A}} =$	1.007	4 = . 926		
	for Fo (.926) =	(21.6)(.92	(6) = 20.0016	cri	
	for MIY	7-	- d/2		
	$M = \frac{f_b \cdot I}{d/2}$	= <u>(20.0016)</u> (⁸ /2	$\frac{(110)}{3} = 550$	044 K- 10. 37 K·ft.	
	$M = \frac{W l^2}{B}$				
	$W = \frac{BM}{2^2}$	8 ×45-83	Ž - 1.2688 ×1	f+	
			= 1268.8416	\$/\$+	
	pressure 126	8.8 = 79.	303 psf.		
I	ncrease steel allow	-ables by Alloweble	g 1.6 for Toma pressure = 1	10 ·6 × 79.303	3 = 126.885p

Page B-7 Project 029-65257-01 Franklin Research Center BYRA Date Ch'k'd Date Rev. A Division of The Franklin Institute The Benjamin Franklin Parkway, Phila, Pa. 19103 Date JUNE 82 MLP 6/92 Title PRIMARY AUX. BLDG. STEEL COLUMNS -Calculation of corresponding wind speeds for Steel columns with line brads Column (3E) is 84F31 Allowable pressure = 126.885 psf . Allowable differential pressure = 0.881 psi For this differential pressure corresponding LITH LIVE Lond speed = 126.885 = 157.58 mpl Lords b) .. Tomedo dynamic pressure allowed = 126.885 (Use 0.8 shape factor) = 158. 606 put_ For this tomado dynamic presence corresponding hind speed = $\sqrt{\frac{158.606}{0.00256}}$ = 248.91 mph

Project Page 3-9 026-05257-01 Franklin Research Center BYRA Date Ch'k'd A Division of The Franklin Institute The Benjamin Franklin Parkway, Phila, Pa 19103 Date Rev. Date APRIL'82 MLP 6/92 Title CONCRETE BLOCK WALL - PRIMARY AUXILIARY BLDG. CONCRETE BLOCK WALL ; CAPACITY IN VERTICAL DIRECTION 16'8" nigh 8" Concrete Block Wall Wt. of 8" thick Concrete Block = 55 psf. For 1 ft. width, compressive stress . 16.67 x 55 8 x 12 : 9.55 psi Area Inertia = $\frac{1}{12}bh^3 = \frac{1}{12}(12)(8)^3 = 512 m^4$ Let W = WIND LOAD PER UNIT LENGTH Moment = + wl2 M = + w (16.67)2 M= 34.72 W x 12 = 416.7 W Assume the masonry block is Grouted. Allowable Tensile stress normal to Bed Jt. 27 psi $27 = \frac{416.7 (W) (8/2)}{512} - \frac{9.55}{2}$ 31.77= 3.26 W ⇒ W= 9.76 psf Increase allowables by 1.3 for Tomado conditions in block wells. lle a shapefacter for 0.8 " 27× 1.3 = 3.26W - 4.79 = W= 12.2BF

Project 02G - C5257 - 01 Page B-10 Franklin Research Center By Date Ch'k'd Date Rev. Date A Division of The Franklin Institute RA JUNE'82 MLP 6/92 Title PRIMARY AUXILIARY BUILDING - CONCRETE BLOCK WALL Calculation of corresponding wind speeds for ellowable pressure load on concrete block walls Allowable pressure = 12.2 PSE a) :. Alloweble differentiel pressure = 0.085 psi For this differential pressure conceptionding hind mpced = 12.2 = 43.9 ... mpl b) :. Allowable tornado dynamic pressure = 12.2 = 15.3 pet. For this tomado dynamic pressure conceptonding wind speed = $\sqrt{\frac{15.3}{0.50256}} = \frac{77.3}{5.3}$ mphr. : Allowable high wind dynamic pressure = 9.76 = 12.2 psf c) => conceptonding wind speed = 55.5 mph.

APPENDIX C

DIESEL GENERATOR BUILDING DESIGN REVIEW CALCULATIONS

Stand

	Project 02G - C5257-01					Page C-1	
A Division of The Franklin Institute The Benjamin Franklin Parkway, Phila, Pa. 19103	"RA	JUNE 82	Ch'k'd	Date	Rev.	Date	
ITIE DIESEL GENERATOR B	UILDING						

THE DIESEL GENERATOR BUILDING IS BASICALLY A STRUCTURAL STEEL STRUCTURE WITH CONCRETE BLOCK WALLS. IN THIS ANALYSIS ROOF DECKING, ROOF BEAM, STEEL COLUMNS AND CONCRETE BLOCK WALLS HAVE BEEN EXAMINED.

WE ASSUME THAT CONCRETE BLOCK WALL TRANSFERS ALL THE LOAD IN THE LATERAL DIRECTION ONTO STEEL COLUMNS BEFORE IT FAILS. NO DETAILS & PROPERTIES ARE AVAILABLE FOR CONC BLOCK WALL & ROOF DECKING. ASSUMED SECTION PROPERTIES HAVE BEEN USED IN THE ANALYSIS FOR CONC. BLOCK WALL MND STEEL ROOF DECKING ALSO.

ROOF STEEL BEAM & STEEL DECKING HAVE BEEN ANALYZED FOR UPLIFT PRESSURE CASE. EVEN MFTER FAILURE, DECKING ASSUMED TO BE PARTIALLY INTACT TO THE BEAM AND TRANSFERS LOADS.

Page 2-2 Project 026-65257-01 Franklin Research Center Date By Ch'k'd Date Rev. Date A Division of The Franklin Institute The Benjamin Frankin Parkway, Phila, Pa. 19103 JUNE 92 DIE) tie Roos STEEL - DIESEL GEN BLOG. 19650 5xx = 39.1 143 R= 32' SINCE CUMPRESSION FLANGES IS NON THE BUTTOM FLANGS ! RT = 1.96 W d/A== 4.21 RIRT = 32x12/1.96 = 196 = 119 F3 = 12×107 . 7.42×51 => H= (7.42)(39.1) = 661 K-14/ 55.1 K-ET 32×12×4.2/ F8 = 170×10 1 = 4.43 KS1 (196)2 MOM = R(10 + 3 - 2* 5) $= -\frac{4}{10} RR = 7.87 \frac{100}{100}$ VZR SUPPORT ARCA = 1/2 (13.5+21.67') (6.52') = 115.7 5' 8 = 32' PAUSS = 2.57 = 24.8 PSF 115.7 EST D.W. = 5 PSF + 50#11 = 7.84 PSF Toxunoo Pa = 24.5 *1.6 + 7.84 = 97.5 PS.E DIFFERENTAL PRESSURE , 330 PSI 96 MPH DYNAMIC PRESSURE 67.9 PSE 163 704 46.6 PSF 133 7 04 HIGH WIND

Eastlin Prosent Court	Project	026-C525	7-01	Page C-3.
A Division of The Franklin Institute The Benjamun Franklin Parkway, Phila, Pa. 19103	RA	APRIL S2	Ch'k'd Date	Rev. Date
Title ROOF STEEL - MESEL	GEN.	BLDG.		
10 WF 21				
supports area	a of 21	8" × 6'7"		
unbraced leng	g + n = n + g	<i>'</i> ь"		
Allowable N	loment	= 30.5 k.f	+ (from	Beam)
			(Diag. d	of AISC)
L= 11.5' M=	wl2			
	8			
$W = \frac{BM}{1^2} =$	8 (30.5)×1000 = 519	7633 pf	
pressure = $\frac{\omega}{1-\omega}$ = 78.95	14 prf.			
Increase steel allowable	1. by 1.6	for Jomado .	. allowable pr	=1.6×18.9514
") Allowable diff pressure = 0	·88 pri			= 126 322pg
DALL IL + I A	⇒crw	uponding wind sy	ach = 157.23	mph
) Alterable romado dy. pr = 12	0.7 = 180	· 46prf => wind	speed = $\frac{26}{26}$	5.504 mph
8WF 17 L= 13'-6"	lateria	l lenth:	(c' ¬"	
M= 16.5 K-ft	AL	touche Mon	ent	
WE BM 8	(1/2 5)			15-1
	3.5)2 =	:0.724 ×/-	C+ = /24	~ >/++
Time this loo	d tope	$suce = \frac{12}{6}$	583 = 110 P	4
Increase steel allow	ables by	1.6 for Toma	-do -7/ -4	
e) . Ma-lle dillectul aver	pressure 1.22	= 1.6 × 110 = 1 2 bi = Griespon	10 psg.	red = 185.56m.d
b) Allowable Tomado dynami	c press = 171	= 251-43 NI - U	responding	
(Use O. T shape factor)	0.7	IF W	ind speed =	313.39 mol

-	Franklin Pessarch Contor				Project 026-65257-01			Page C-5			
	A Divis	ion of The Frank	in Institute	er	RA		APRIL 82	Ch'k'd	Date	Rev.	Date
Title	STEEL	COLUMN -	- DIE	SEL	GEN.	BLDG					
	Now	Consid	der (Colu	mn	105 V	<u>v</u>				
	Dead	Weight	of	16 ft 11'6 11'6 16 ft 13'6" 13'6"	off off of	18 W W 10	50(2) = 25 = 21(2) = 10 = 45 = 17(2) =	16 × 50 × 11.5 × 21 11.5 × 21 × 16 × 10 13.5 × 45 13.5 × 17 ×	2 = = = = = = = = = = = = = = = = = = =	1600 28 483 160 607. 459	5
								TOTAL	→ ³	597.0	163
	Live	10ad :	16 × 2	25 x 4	to pof	= 160	00 - 14	KIPS			
		7	OTAL I	load =	16	+ 3.59	7 = 19.5	97 KIPS	5		
		$f_a = \frac{19}{5}$	<u>597</u> =	3.91			יזע 	HOUT L TAKE fa = 5 5	IVE LI Azia	nts HLLONH 1 kn	0=5kj
		etal Fa	.9] -	. 514	4		Flue	= 1.0	=	0.1311	<0.15
		Fex = 127 23 (T ² E (14.25 x) 3.36	<u>-</u> 2) ² =	57	. 65	:. U	te fa +	fr]Fr	<u><</u> 1.0	
	(1	$\frac{f_{b}}{\frac{f_{a}}{F_{e}}} F_{b}$ $f_{b} = (1$	= 1- 514)[$\frac{fa}{Fa}$ $(1 - \frac{\pi}{5})$. <u>91</u> 7.65)	14-117]		$= \begin{pmatrix} 1 - \frac{1}{F} \\ F \end{pmatrix}$ $= (1 - 0)$ $f_{2} = 12$)f. -1311) -32	14.117 kn	

Franklin Bassach Contar	Project 02G - C5257-01	Page C-6
A Division of The Franklin Institute The Benjamun Franklin Parkway, Phila, Pa. 19103	RA APRIL'82 Ch'k'd Da	ite Rev. Date
Title STEEL COLUMN - DIESEL	GEN. BLDG.	
$\frac{M}{T} Y = f_{b} \longrightarrow$	$M = \frac{f_b \pm}{\gamma}$	= d/2
	$= \frac{(6.423)(56.6)}{(7.93/2)} = 1$ = 91.683 k-inch =	(7.93/2) (7.93/2) 175.8351 kind
Now, convert allowa	i. M = 7.6402 k-ft =	14.653 K-H.
M =	= WLZ	
=) W=	8x 7.6402 × 1000 = 301.0 lbs (14.25)2	184
For a lateral i Increase steel	allowable pressure = 1.6 × 12.04 =	= 12.04 psf
WITH (F): Alloweble diff. pu	essure = 0.134psi or., equivalent wind speed = $\sqrt{\frac{15}{0}}$	1.264 = 61.4mpl
LIVE LOAD b) : Allowable Tomas (Use 0.8 shape coverp	do dynamic pressure = $\frac{19.264}{0.8}$ = factor) onding wind speed = $\sqrt{\frac{24.1}{0.00256}}$	= 96.985mp
c) High wind dyna	mic pressure = $\frac{12.04}{0.8} = 15.05$	5p=4.
· · · · ·	responding wind speed = 80.1	mph

Project 02G - C5257 - D1 Page Franklin Research Center BY Date Ch'k'd Date Rev. A Division of Ture Franklin Institute The Benjamin Franklin Perkwer, Phila, Pa 19103 APRIL 82 Title BLOCK WALL - DIESEL GENERATOR BUILDING. CONCRETE Increase allowable by 1.3 for Tomadu. :. allowable pressure = 15.6 PSF Calculation of word speeds for this pressure loading a) Allowable diff. pressure = 0.108.psi => Corresponding wind speed = 15.6 = 55.3 mpl b) Allowable tomado dynamic pr. = 15.6 (Use 0.8 shape factor) = 19.5 pt > corresponding wind speed = V 19.5 = 37.3 - mpl c) Alloweble high wind dynamic pr = 12.38 = 15.475 pt => corresponding wind speed = 63 mph

APPENDIX D

CONTROL ROOM DESIGN REVIEW CALCULATIONS

SAME STOR

ALL NO. MAD

WARE AND

Tan		Project 02	Project 02G-C5257-01		
A Division The Benjam	Clin Research Center on of The Franklin Institute un Franklin Parkway, Phile, Pa. 19103	^{By} RA	MAY 82	Ch'k'd Date MLP 6/92	Rev. Date
CONT	ROL ROOM AT	YANKEE	ROWE .		
T E E Ri An Co P/I Slan <u>1070'2"</u>	HE CONTROL RO LEVATION 1052ff LEVATION 1070ff 21 EINFORCED CONCRET ND WEST SIDE WI INCRETE PIERS. I ERS.	WITH THE WITH THE S TE STRUCTU ALLS ARE WE AWAL	LOCATED A E TOP OF A OUTH WALL RE ABOVE G 3FT THICK YZE WEST	ABOVE 200F AT IS 3FT THI RADE. EAS SUPPORTED SIDE WALL &	CK T ON CONCRETE
ELW. 10 <u>50'</u>	WES	T SIDE WAT		WE ASSUL LOAD IS TO CONCRET IN LATER DIRECTIO CONCRET ANALYZ ANALYZ BENDING	ME ALL TRANSFER TE PIERS AL TN . TE PIERS ED FOR DAD ANJ F MOMENT
				REINFTRCED Concrete	PIER

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

	Project O	Page D-4 ·				
A Division of The Franklin Institute The Benjamin Franklin Parkway, Phila, Pa. 19103	BYRA	MAY'82	Chikid MLP	Date 6/32	Rev.	Date
Title CONTROL ROOM - WAL	L SECT	ION				
Calculation of actua	1 momen	t for 3ft	this	×		
wall in laterial d	irection.					
300 mph 2.25 psi ≈ 324	psf					
W= 324 × 1.5	5 = 486 F	osf				
L = 38.5 - 1.	5 = 37 ft.					
M= WLZ						
$= 486 (37.0)^2$						
: Mactual = 83.167	K-++					
: Mactual	< Mai	low				

	Project	Project 02G-C5257-01		
A Division of The Franklin Institute The Benjamin Franklin Parkway, Phila, Pa. 19103	By RA	MAY'82	Ch'k'd Date MLP 6/32	Rev. Date
CONTROL ROOM - SU	PPORTING CON	CRETE PIER	SECTION	J
Compression: Co : Co Co Co Co Co Co Co Co Co Co	0.85 f' (0.8 0.85 (2.5)(0.8 1470. 21 KIPS = (4 bars #9)(40 = (4)(1.0) (37.87	5 × 5)b 5)(22.61)(36) 0- 0.85(2.5))+(5)+(2×1.0)(34	2 bars**9)(37. + 875)	0 - 0.85 (2.5))
Tension: T ₄ = T ₄ =	(4 bars # 9); 4(40) 160 kips	fγ		
73- T3-	(2 bars = 9) fs 2(1.5) 3. KIPS	3		
$P_b = C_c + 1$ • 1470.21 $P_b = 1528.4$	C5 - TTOT + 221.25 - 163 46 KIPS	.0		
For symmetric sec at mid-depth o	ction, we find f the sectio	d plastic cer	ntroid	
$M_{b} = C_{c} (18 - 9/2)$ $= .85(22.61) = 12335.06 +M_{b} = 17371.31$	$+C_{5}(15)+C_{52}(15)+C_{52}(15)+151.5(15)+6$ 2272.5 + 348. K. inch	$(5) + T_3(5) + T_3$ (5) + 3 (5) (5) + 3 (5) (5) + 15 + 2400	4 (15) + 160(15)	
:. Mb= 1447.61	ĸ.f+.			

11

1. . .

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

*

.

*

1.1.1