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EXECUTIVE SUMMARY
Objective

The BWR Owners' Group embarked upon a program of water level testing to better
understand the phenomena associated with degassing in water level instrumentation
reference legs at operating plants and to provide a basis for individual plant solutions to
the associated ervors in indicated water level. The objective of the program was to obtain
data for a variety of reference leg configurations. These data would then be used to
support the validation of an analytical model that could then be used by each plant to
evaluate their configuration and degassing potential.

It should be reemphasized that tests were not plant specific (with one exception);
therefore, the test results do not form the basis for direct application to any other plant.
Each plant should be evaluated separately for their individual configurations.

This testing did not address the plant specific effects of condensing chamber (CC)
configurations and inlet steam piping on the non-condensables gas concentration in the
oC.

Testing

The testing program was conducted under a rigorous quality control program. This
included one over one verifications and extensive documentation. Repeatability of
results was confirmed.

The tests were performed in a manner to ensure the conservative nature of the results. A
single gas (oxygen) was employed for a majority of the testing. This gas stays in solution
longer than stoichiometric oxygen and hydrogen which are present in the reactor, thereby
contributing to larger resultant errors. The depressurization rates were chosen to bound
those of hypothetical Design Basis Accidents.

General Conclusions

The test program results have yielded a better understanding of the degassing phenomena
and the data can be utilized in individual plant evaluations to better understand the



susceptibility to degassing errors. These results clearly demonstrate the potential for
water level errors following plant depressurizations due to the concentration of dissolved
gas in the water level instrumentation reference leg piping.

Specifically, some general conclusions that have been developed or recontirmed by the
iest prograim include the following:

1. The test program identified a dissolved gas concentration below which
insignificant level errors occur (nominally 150 ppm by volume).

. As was expected, the higher the concentration of dissolved gas, the higher the
indicated level error following depressurization. This was not directly linear due to
dynamic effects and geometry differences.

3. Geometric variations of reference leg piping systems were shown to have a
profound impact upon the level error resulting from degassing due to rapid
depressurization.

4, The faster the depressurization rate, the larger the level error.

3. The gas remained supersaturated in solution down to low pressures. For the
single gas testing, indicated level error were not induced until the pressure dropped below
220 psia.

B, Significant "notching” appears to be due to slug-flow migration of gas voids
between horizontal and vertical segments of piping.

7. Orifices may impede the release of gas to the condensing chamber. This provides
an increased volumetric expansion rate at lower pressure and correspondingly higher
indicated level errors.

vi Rev.



SECTION 1 INTRODUCTION

1.1 Scope

This document describes the tests conducted on behalf of the Boiling Water Reactor
Owner's Group (BWROG) to gather comprehensive data on the effect of non-
condensable gases on potential water level loss in the water level reference lines during
rapid depressurization. In addition, limited testing of slow depressurization events was
included in this de-gas testing program. This testing program was conducted according
to the testing plan outlined in Ref. 1, which was based upon the test specification
described in Ref. 2.

1.2 Background

Ninety-four depressurization tests and fourteen shakedown tests were conducted over a
period of approximately 8-1/2 weeks at the EPRI-NDE Center in Charlotte, North
Carolina, on multiple piping geometries. These geometries are not representative of any
plant layout with the exception of Configuration #7. Therefore, De-Gas test results
cannot be directly correlated to plant response to dissolved non-condensable gases in the
plant's water level reference legs. These test data were collected under a rigorous quality
assurance program, described in Ref. 3.

1.3 Program Objectives

The objective of the te-t prograin was to provide insight into the water level error that
occurs due to dissolved gas in the iastrument lines. Test data was obtained for water
level errors simulated when an amount of water is displaced during depressurization
events using various piping geometries for a variety of dissolved gas types and
concentrations and at various depressurization rates. These data would be used to support
the validation of an analytical model, which could in turn be used in a plant-specific
evaluation of the degassing phenomenon.

1.4 Impact of Non-condensable Gas

Pre-test calculations had shown that inventory may be lost from degassing of the cold
reference leg of BWR water level instrumentation during a rapid depressurization event.

1-1 Rev.



This loss is due to water carry-over as the non-condensable gas comes out of solution and
expands as the pressure drops. The amount of inventory lost depends upon the actual
cold leg piping geometry, amount and composition of initial non-condensable gas
dissolved in the leg, and the depressurization rate. Inventory loss in the cold leg directly
impacts the reference pressure sensed by the differential pressure instrumentation that
determines the water level in the reactor pressure vessel (RPV), resulting in a non-
conservative reading in the contzol room. A schematic of a BWR water level
measurement system is shown in Figure 1.1.

Non-condensable gases may collect in the condensing chamber at the top of the water
level reference legs in BWRs. As reactor steam condensate flows down the chamber
walls and into the leg to maintain the reference leg liquid inventory, the gas may move
down into the reference leg. These gases are primarily a stoichiometric mixture of
hydrogen and oxygen, and arise from radiolysis in the BWR's generation of steam.
Collection of gas and associated buildup of its partial pressure in the condensing chamber
over time could allow the formation (via diffusion) of a high-concentration non-
condensable gas solution in the water surface at the top of the reference leg. The
concentration of dissolved gas is determined by Henry's law, which states that the
concentration is a product of the gas solubility in water (a parameter dependent upon
temperature) and the partial pressure of the gas above the water's free surface. Thus
dissolved gas solution could be carried down into the reference leg via diffusion, thermal
convection, or a leak in the reference leg.

The fastest means of conveying any high-concentration solution into the leg would be by
a leak, which, if located near the water level instrumentation rack, would raise the
concentration in the complete reference leg after time with a uniform concentration of
dissolved non-condensable gas (assuming that the partial pressure of gas in the
condensing chamber had reached a steady value). Thus, in order to provide bounding
conditions for the experiments described herein, pre-mixed solutions of various
concentrations of non-condensable gas were injected into the piping geometries tested.

1.5 Test Parameters

Design of the de-gas experiment involved the selection and duplication, as best as
possible, of all the most important physical parameters that are understood to affect the
degassing phenomenon that may occur in actual BWRs during depressurization. These

1-2 Rev.
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primary parameters were: the reference leg piping geometry, including flow constrictions,
pipe diameters and surface (material) properties, horizontal segment slopes, and height-
volume distributions; the type and concentration of non-condensable gas dissolved in the
reference leg water; and the depressurization rate.

The depressurization rates selected included both generic worst-case design basis severe
accident scenarios, and normal shutdown depressurization time histories, inciuding
shutdown cooling operations. The slow depressurization tests were added to the original
test scope because of newly identified concerns to attempt to duplicate degassing
phenomena observed during shutdown operations on some BWRs. Time histories of the
rapid depressurization rates and the shutdown depressurization pressure time histories are
shown in Figures 1.2 and 1.3.

No attempt was made to duplicate the processes by which non-condensable gases may
actually enter the reference leg piping system at an operating BWR. This decision was
made to provide bounding, worst-case degassing conditions, and to simplify the required
experimental hardware by eliminating the need to produce steam at reactor conditions
(approximately 540 °F for BWRs operating at 1000 psig). As a consequence, stratified
cuncentrations of dissolved gas, with 2 higher concentration located near the condensing
chamber (as would be present during a significant portion of steaming operations in
BWRs), were not simulated. Such distributions would most likely lead to reduced
degassing effects on the piping geometries tested than those reported here.

Other experimental parameters that were deemed of secondary importance were vibration
and temperature effects on the degassing process. Vibration may impact the rate by
which gas comes out of solution, but simulation of prototypical BWR reference leg
vibration levels would require such extensive experimental sophistication to make other
than in-plant testing physically impossible. Since limited benchtop testing of degassing
in sniall pipe lengths indicated that the gas came out of solution (both with and without
vibration) within a significantly shorter time period than the depressurization rate, it was
concluded that simulation of vibratory inputs was unwarranted. Temperature variations
exist along BWR reference leg piping. Segments within the drywell are typically
approximately 150 °F and those outside the drywell remain at ambient reactor building
temperature. The primary impact that temperature has on degassing is through the
change of gas solubility with temperature, which is both fairly small over this range
(150°F to ambient) and is well documented, and thus may be corrected for in an

1-4



VESSEL PRESSURE (PSIA)
~sEAENSEsEE 82 UE8EED

VESSEL PRESSURE (PSIA)
~upadHEESEHEB 2B RERER

RECIRC LINE BREAK DEPRESSURIZATION

PV ——— a il

i mm \ " m ' ¢ T T YW TR TITYITNT) YT
4 3 ® N 0 W W W R W K B WM wW

SECONDS AFTER EVENT INITIATION

Fig. 1.2a: Generic LOCA-Event BWR Depressurization Curve

' 0 OB ¥

ATWS DEPRESSURIZATION

) Y ‘W ®m o 0 5 %0

SECONDS AFTER EVENT INITIATION

Fig. 1.2b: Generic ATWS -Event BWR Depressurization Curve
1-5



BWR Shutdown Depressurization Time History
1200 r - -+ v ' r ;

g

3

RPV Pressure (psia)

9-
3

200

1

0 50 100 150 200 250 300 350 400 450

ik

A

Time (minutes)

Fig. 1.3: Generic BWR Shutdown ization Time History
(Including Shutdown ing)



analytical model. For this reason, all tests were performed at ambient room temperature,
with gas concentration controlled through adjustment of saturation pressures.

Single-gas testing for preparation of the non-condensable gas solutions was done in order
to avoid the safety impact of working with stochiometric mixtures of oxygen and
hydroger, and to provide bounding conditions for the dynamic expansion of the dissolved
gas as it comes out of solution at reduced pressures. Supporting calculations have shown
that the maximum dissolved gas concentration possible in the condensing chamber water
surface is close to 1500 pprov !, based upon total pressure and temperature limitations of
BWRs. However, as this soluticn is reduced in temperature below 300 °F during its
migration into the reference leg, only a concentration of approximately 1100 ppmv may
be supported without degassing at 1000 psig. Because the solubility of nitrogen and
oxygen at room conditions is greater than that of hydrogen, the partial pressure required
to maintain a concentration of 1100 ppmv in solution is less than 1000 psig, and hence
single gas testing was possible at room temperature without requiring a depressurization
event to initiate from pressures above those found in BWRs. Also, since the non-
condensable gas used in the testing would not begin to come out of solution until its
saturation pressure was reached in the depressurization event, the results from the test
would generate level anomalies higher than those anticipated for similar conditions in
BWR reference legs (degassing in the actual plant would take place immediately upon
any loss in RPV pressure). This result is primarily due to the additional dynamic forces
that would arise from the same volumetric expansion of the gas taking place in a shorter
amount of time. This phenomenon is further discussed in Section 2 of this report.

1.6 Use of Test Results

The data reported here serve two purposes. First, they provide an upper boungd on the
changes in indicated water level due to water column reference pressure loss on the water
level reference leg. The majority of this program's piping systems tested do not represent
actual reference leg instrumentation systems of BWRs, because these tested piping
systems were designed to provide parameter sensitivities to water volume loss that would

| ppmv is parts per million by yolume. ppmv is defined as the moles of non-condensable gas x 106 divided
by the moles of water vapor or steam. For gas in solution, ppmv is defined as the moles of non-
condensable gas x 106 divided by the moles of water. The partial pressures of non-condensable gas and
water vapor can be used instead of moles where convenient. To convert to ppmv from ppm by weight

(ppmw), multiply by the molecular weight of water (18) divided by the molecular weight of the gas [for Hy,

ppmv = ppmw x (18/2); for O3, ppmv = ppmw x (18/32)]. See Appendix B for additional details.
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provide conservative values on in plant potential water column reference pressure losses.
Second, these data comprise a data base for correlation with water level instrumentation
analysis codes to predict the plant specific water level errors during such depressurization
scenarios.

The test program did identify, for a typical BWR water level reference leg, a dissolved
gas concentration below which no level error could be induced. It should be emphasized,
however, that use of these data 1o predict water level ancrealies in specific operating
plants cannot be made directly, because the gas concentration and distribution within a
particular plant reference leg is not known, and the geometries tested as part of this
program were selected to represent bounding configurations only.

1.7 Test Program Summary

Thirteen different reference leg piping systems were tested. Configurations were selected
to provide both sufficient parametric variation for analytic model correlation, and
conservative measurements on indicated water level changes. These piping systems were
selected after 32 plant-specific water level reference legs were reduced from isometric
drawings supplied by BWROG member utilities. The plant-specific geometric data were
characterized in graphical form as the fraction of cumulative height from the condensing
chamber output to a particular pipe location vs. the fraction of cumulative volume in the
reference leg to the same location. Such characterization allows assessment of the
sensitivity of indicated water level column height to percentage loss of leg water volume
for all surveyed reference legs. This in tumn provided a means to select piping systems
that had equal or greater height to volume sensitivities, and thus a bounding indication on
maximum reference leg indicated water level perturbations during depressurizatiop
events. A plot of the height-volume characteristics for the configurations tested is shown
in Fig. 1.4 and that of the plant-specific height-volume characteristic is shown in Fig. 1.5.

Modifications to the originally proposed piping geometries to be tested were made during
the test period, under BWROG approval, to assure the maximum usefulness of the
resulting test data. This flexibility was deemed essential to provide usable, relevant, and
high-quality data in support of the test objectives, and allowed observations made on
previous configurations to guide the parametric choices on the tests that follow.d.
Primary parametric variations in the test matrix, in addition to reference leg geometry,
included the type of non-condensable gas dissolved in solution, the concentration of
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dissolved gas in the solutions, and the depressurization rate. A detailed list of the tests
conducted on each configuration are presented in Table 2.1, and are described briefly
below.

1.8 Test Equipment

A pressure vessel of ten cubic feet volume was used to provide both an initial nominal
reference pressure of 1000 psia on the reference leg, and to control the pressure time
history during depressurization of the system. The depressurization rate was controlled
by a valve actuated blowdown through an orifice whose size was chosen to set a
depressurization rate and time history that is representative of a design basis reactor
accident. The orifice was changed to allow vanation of the depressurization rate, in order
to investigate the influence of pressure rate effects on the amount of indicated water level
lost in the test reference leg. Nitrogen was used as the working gas for the vessel
pressurization.

It should be noted that the test setup is such that the decrease in reference leg water level
is measured as gas comes out of solution. This expansion of dissolved gases would
correspond to an indicated increase in RPV level as observed on plant level
instrumentation. It is necessary to understand this distinction when discussing decreasing
water level in these test results.

The pressure vessel was connected to the water level reference leg through a 2" vertical
pipe, which in turn was connected to a coupling chamber having a shape similar to that of
a conventional condensing chamber found on BWR water reference instrumentation
lines. This coupling chamber was installed vertically, whereas more typically the
chamber is installed in a horizontal plane. This chamber simulates the flow constrictions
and spillway present in an actual system in order to ensure that geometric influences on
the test data results are due only to the reference leg piping system itself.

Non-condensable gas was introduced into the reference leg piping by using a pre-mixed
solution, made by combining demineraiized water with the desired gas in a separate
chamber under pressure. The concentration of dissolved gas was controlled by means of
adjusting pressure in the separate chamber to achieve a particular equilibrium condition.
After the solution had achieved the desired concentration, it w s injected into the
reference leg by using a gas blanket at slightly higher pressure. Verification that the
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proper concentration was in the reference leg piping was done by injecting the solution
through a port at the bottom of the piping system near the differential pressure
instrumentation, and sampling a small volume of solution that was extracted from an
upper location near the free surface in the coupling chamber.

Geometric vanations for the configurations tested are outlined below, and are more

completely described in Section 6 of this report. That section provides detailed

spreadsheet calculations that accurately represent the as-built configurations tested at the
EPRI-NDE Center. Simple sketches of the piping geometries tested can be seen in Fig.

1.6 below. | Rev. 1

The first configuration tested, configuration #1, consisted of a straight vertical 30’
(nominal) 1" SCH 80 stainless steel pipe. This configuration, due to its almost 1:1
sensitivity of percent volume loss to percent indicated height loss, provided a good
baseline test case for analytical model correlation efforts. The second configuration
tested, #2, had a short vertical stub connected to the coupling chamber, followed by a 30’
nearly horizontal segment having a 1/2" per foot slope, which was then connected to a 28'
vertical segment, all of 1" SCH 80 stainless steel pipe. Data from this configuration
provided an indication of the effect of horizontal segments on potential water level loss,
and was also used to investigate the effects of gas type on indicated water level transient
and end point readings. This configuration was modified into configuration #2a to
include an offset 1/4” orifice located approximately half way along the horizontal
segment, to investigate the influence of an orifice on the measured level error.
Configuration #2a was further modified by adding a second orifice in an attempt to
simulate flow constrictions that may be present due to an excess flow check valve; this
modified configuration was denoted #2b. Configuration #2¢ was then tested to examine
the effect of a reduced vertical segment as compared to #2a, by shortening the 29" vertical
pipe to a 17" length. Finally, the vertical pipe was completely replaced with 1/2" stainless
steel tubing to assess the influence of smaller diameter tubing located in vertical runs in
reference legs; this last modification became configuration #2d.

Configuration #3 was a "mirror image” of configuration #2, in that the 29' vertical
segment was directly connected to the coupling chamber, followed by a 30" horizontal
segment of 172" per foot slope. This variation, when compared to configuration #2,
provides data that shows the influence of the sequence of piping segments on the
indicated lev:; encr  Other parametric variations performed on this configuration were
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selected so as to provide similar comparisons as was done for configuration #2:
configuration #3a included a 1/4" onfice located 4' below the free surface of the coupling
chamber; #3d replaced the nearly horizontal segment of configuration #3a with 1/2"
tubing; #3c used a shortened vertical segment of approximately 17 length; and
configuration #3¢ varied the horizontal slope of configuration #3c to 1/4" per foot to
investigate effects of slope on level error.

Due to program scheduling limitations, the originally proposed configurations #4 and #5
of the Test Plan (Ref. 1) were skipped (with Model and Test Committee (MATC)
approval), and configuration #6 was tested next. This configuration had a 25" vertical
segment connecied to the coupling chamber, followed by a 117" nearly horizontal
segment having 1/2" per foot slope, and then another 22' vertical segment, all built from
1" SCH 80 stainless steel pipe. This configuration had an overall vertical drop of nearly
52', and a large horizontal pipe volume, and thus generated some of the largest level
errors of the testing program.

The final configuration tested, #7, was a mock-up of the Hanford WNP-2 "C" channel
reference leg, built from plant-supplied isometric drawings, and included an orifice and
excess flow check valve as they exist on the actual plant water level reference leg. This
geometry was tested at both rapid design basis accident depressurization rates, and at a
slow depressurization rate that simulated a piant shutdown operation.

1.9 Description of Report Sections

The remaining sections and Appendices of this report provide additional details on the
results from and procedures used in the reference leg depressurization tests. Section 2
presents a summary of the results of the tests, including some general conclusions that
may be drawn from the documented results. Section 3 provides additional background on
the test facility and instrumentation used in the collection of the experimental data.
Section 4 details the processes used in the reduction of the raw test data to correct for
configuration infiuences and instrumentation calibration effects. Section 5 provides
additional details on the as-measured configurations tested, and includes additional
results of the test program. References for this report are listed in Section 6, the
processed time histories of the pressure instrumentation for all tests are presented in
Appendix A, documentation on the maximum concentration of non-condensable gas used
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Ao

in the test program is in Appendix B, and Appendix C documents the test procedures and
how the data were taken to assure that a quality-related testing program was employed.



SECTION 2 SUMMARY CF RESULTS

2.1 General Observations

The following observations are for bounding data and are not plant specific. As shown in
Fig. 2.1, of the 94 depressurization tests on 13 configurations, the largest indicated height
loss was approximately 5; % of total height sensed by the differential pressure cell for
Configuration #6. As can be seen in Fig. 1.4, such a large percentage of total vertical
height loss can be achieved for this configuration with only 18% of the total volume
displaced. This high sensitivity of height loss to volume loss provides an extreme upper
bound. Fig. 1.5 shows that for the majority of BWR reference legs, a 20% volume loss
corresponds to only a 5% to 10% loss in indicated vertical height loss. The majority of
the level errors recorded in the testing program reflected a similar 5% to 15% of total
vertical column height reduction.

For mosi of the configurations tested, at least six runs pe; configuration were made using
three dissolved gas concentrations of approximately 300, 600 and 1100 ppmv, and two
rapid depressurization rates, corresponding to generic LOCA and ADS/ATWS accident
events. This ppmv volumetric concentration measurement best represents the expansion
capability of the non-condensable gases coming out of solution as the pressure is
Jowered, since it equates moles of gas per moles of water, and thus would produce the
same volumetric expansion for the same concentration, regardiess of gas type. The upper
bound on the gas concentration used was based upon calculations (detailed in Appendix
B) for an assumed stochiometric mixture of hydrogen and oxygen in the condensing
chamber that showed the maximum level was limited by RPV pressure and temperature
dependent gas solubility in the reference leg. The lower limit was selected after repeated
testing of Configuration #1 showed no level error for dissolved gas concentrations of 100
ppmv and lower.

The two depressurization rates were selected as being typical of the postulated LOCA and
ADS/ATWS events for the majority of operating BWRs, and were controlled through
insertion of an orifice disk having either a 0.157" or 0.266" diameter hole into the vent
line to the exhaust stack. While the actual accident scenarios for LOCA, ADS or ATWS
events may include rapid depressurization to pressures other than one atmosphere, it was
concluded that the testing schedule could be accelerated and the results could be made

2-1
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more bounding if the depressurization went directly to atmospheric conditions. End point
pressures other than atmospheric were investigated during tests on Configuration #1.

Rev. |
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Fig. 2.1: Summary of Fractional Differential Pressure Losses

Both end-point level errors and transient pressure data were recorded as part of the

experimental program. Due to the "accumulator” function of the coupling chamber

Jocated at the top of the piping configurations tested, most of the transient data showed a

indicated level error greater than the final endpoint level error. This is primarily due to

the migration of gas voids up the pipe, from areas of smaller cross-sectional area to those

of greater area. Since the coupling chamber diameter was typically three times that of the

pipe geometries tested, small resultant (or residual) level errors could show a transient

level decrease as much as nine times the steady-state value. Thus, differential pressure

data typically showed a reduction during depressurization, followed by a "recovery”

process where the indicated test reference leg level would increase to its final steady-state |Rev. 1

value.

Tabulated end-point level errors are summarized in Table 2.1 for all 94 configurations.
This table includes a cross-reference between test number and configuration, gas type,
concentration, depressurization rate, and final level error. Inspection of this table, and the
transient data of Appendix A, provide the basis for making several general observations
on the influence of various effects on indicates level error
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Table 2.1 (cont.): Summary of De-Gas Test End-Point Data

31-Mar| 3s-6 54| 38/0% 287 0.157/ATW3 1030 1.7 $.6
1-Apr| 3d-1 §5| 3d|02 1130 0.266/LOCA 1030 14.7 25.%5
1-Apri 3d-2 56| 3d|C2 655 0.266 LOCA 1030 14.7 18.8
1-Apr| 3d-3 57| 3d|02 307 0.266/LOCA 1030 14.7 11.7
1-Apr| 3d-4 $8| 3d/02 1120 0.157|ATWS 1029 14.7 13.7
2-Apr! 3d-5 58| 3d{02 6§35 0.157/ATWS 1030 14.7 12.4
2-Apr| 3d-6 60| 3d{02 336 0.157|ATWS 1030 14.7 7.0
$-Apr! 3c-1 61| 3¢|0O2 1081 0.266/LOCA 1030 14.7 28.7
S-Apr| 3c¢c-2 62| 3¢ci02 626 0.266/LOCA 1030 14.7 8.5
S-Apr|{ 3c¢c-3 63| 3¢02 287 0.266/LOCA 1030 14.7 5.0
S-Apr| 3c-4 64| 3ci02 1150 0.157|ATWS 1030 14.7 21.9
S-Apr| 3c-5 65| 3¢c|02 616 0.157/ATWS 1030 14.7 8.9
6-Apri 3¢-6 66! 3¢|02 287 0.157/ATWS 1030 14.7 1.7
6-Apr! 3e -1 67| 3elO2 1150 0.266/LOCA 1030 14.7 18.6
6-Apr| 3e -2 68| 3el0O2 616 0.266 LOCA 1030 14.7 6.1
6-Apr! 3e -3 68 3Jel2 327 0.266/LOCA 1030 14.7 5.6
6-Apr 3Je -4 70( 3e/O2 1150 0.157 ATWS 1031 14.7 14
7-Apr. 3e -5 71| 3el02 596 0.157|ATWS 1030 14.7 4.0
7-Apr| 3e -6 72/ 3e/02 287 0.157/ATWS 1030 14.7 5.1
8-Aprl 6-1 73, 6l02 1130 0.266 LOCA 1030 14.7 324,
8-Aprl B-2 74 602 1021 0.26€/LOCA 1030 14.7 324.3
g-Apr! 6-3 75 6102 £56 0.266|LOCA 1030 14.7 312.8
B-Apr! 6-4 76/ 6102 268 0.266/LOCA 1030 14.7 51.8
B-Aprl 6-5 77 6|02 1071 0.157 ATWS 1030 14.7 213.8%
_9-Apr| 65 78, 6|02 616 0.157/ATWS 1030 14.7|n/a
9-Apr! 6-6 78| 6,02 287 0.157/ATWS 1030 14.7 47.9
| S-Apri 65 B0l &|02 5556 0.157/ATWS 1030 14.7 203.9
13-Aprl 7-1 81 7102 1091 0.266/LOCA 1031 14.7In/a
13-Apr] 71 B2l 7102 1130 0.268/LOCA 1030 14.7 70.1
| 13-Apr| 741 83 702 1110 0.266/LOCA 1029 14.7 83.2
14-Apr| 7-2 84l 702 655 0.266/LOCA 1030 14.7 24.0!
14-Aprl 7-3 85 7102 307 0.266LOCA 1030 14.7 10.4
14-Aprl 7-4 86 7,02 1209 0.157 ATWS 1030 14.7 104.7
14-Apr| 7-§ 87/ 7]02 616 0.157 ATWS 1030 14.7 14.4
14-Apr| 7-6 68, 7.02 317 0.157/ATWS 1030 14.7 11.1
14-Apr! 7-7 B9 7|02 42 0.266/LOCA 1030 14.7 0.0
15-Apr! 7-8 sol 7|02 718in/a S.D. 1015 14.7 7.1
16-Apr| 7-9 $1/ 7l02 317in/s S.D. 1015 14.7 2.9
22-Apr! 710 92| 702 513 0.266/LOCA 1030 14.7 14.7
23-Apr! 7-11 83 702 178in/a S.0. 1015 14.7 0.8
23-Apri 7-12 g4l 7/02 189 0.157 ATWS 1030 14.7 0.8
Notes: | e
(1) A stuck solenold velve forced e blowdown using the nitrogen injection port.
(2) Improper re-injection of pre-mixed solution following sample resulted In a reference leg
T ihat was not completely filled prior 1o biowdown. | [
3) Pre-mixed tank ran “"dry” during iatter portion of sciution Injection, Introducin
|ges Into the reference leg and resuiting in large errors.
(4) Suftered power outage during blowdown event. { 1
(5) Nolse on replacement data acquisition cerd invalideted transient dats.
(6) Siow depressurization run to simulate 8 hr plant shutdown |




2.2 Gas Concentration

As would be expected, in most cases tested, the higher concentration of dissolved gas, the
larger the indicated level error, due to the larger volume that the gas can occupy when
expanded to atmospheric conditions. The influence of concentration was not directly
linear, due to dynamic effects associated with configuration geometry and at what time
during the depressurization the gas came out of solution.

2.3 Gas Type

While two gas types (nitrogen and oxygen) were investigated in testing Configuration #1,
the closest test points for gas type comparison are the data from tests #14 and #17 on
Configuration #2, which were both ATWS-type depressurizations for gas concentrations
near 550 ppmv. Since oxygen is more soluble than nitrogen, a nitrogen mixture would
require a higher equilibrium partial pressure, and would begin to come out of solution
sooner in the depressurization event. Nominally the same volume of gas would be
released at one atmosphere, therefore the volumetric growth rate for the oxygen gas
would be larger, and hence the dynamic expansion forces would be correspondingly
greater, resulting in increased level error. This hypothesis was borne out by these data,
and as a consequence all subsequent tests used oxygen as the non-condensable gas in
order to provide more bounding estimates for the static and dynamic level errors.

2.4 Configuration Variations

configuration variations explored in the test matrix were for piping systems having the

same volume, the majority required a reduction of total reference leg volume in order to
evaluate selected parameters. Because the amount of non-condensable gas is controlled
on a volumetric basis for the tests, a reduction of reference leg volume at the same
dissolved gas solution concentration is equivalent to a reduction in the total amount of
gas in the system. Direct comparison of level errors between configurations of differing
volumes would not necessarily provide a suitable basis to separate out the influence of
geometry over simple volume displacement capability. In erder to assess the geometric
dependencies of level error, data in the comparisons below has been further reduced by




calculating fractional height loss and corresponding fractional volume loss, based upon
the configuration height - volume sensitivities presented in Section 6.

2.4.1 Horizontal - Vertical Segment Sequence

The most obvious difference between horizontal and vertical piping segment sequences
for similar volumes can be seen through comparison of results from Configurations #2
and #3. Configuration #2 has a greatly reduced sensitivity of height loss to volume loss
compared to Configuration #3, and thus for the same displaced volume, one would expect
the indicated height loss for Configuration #3 to be significantly larger. However, since
the primary transport mechanism for gas bubbles is buoyancy, one would also expect that
bubbles rising through vertical segments would provide additional momentum and
mixing in any horizontal segments they may enter later, and thus help to "strip” gas out of
horizontal segments that would otherwise form gas bubbles through diffusion to the pipe
surface only. Both of these competing effects can be seen in comparison of tests #21
{Config. #2) and #42 (Config. #3). While test #21 shows a reduced level erroy, its
orientation is such that the volume required to produce this level loss is greater than that
for test #42. As a result, the level errors for these two configurations are not as different
as one may think they should be based upon static displacement arguments alone.

2.4.2 Length Dependencies

Effects of variations in lengths of vertical segments are illustrated between
Configurations #2a and #2c, and #3a and #3c in Figs. 2.2 and 2.3 below. Since the

+ slunes for these configurations are different, direct comparison of indicated level errors
does not convey the differences dne to dynamic effects such as "stripping” by bubbles in
long vertical segments. Comparison of the equivalent fractional volume lost for each
configuration shows that, for configurations #2a and #2c, the fractional volume for #2a is
larger by almost a factor of two for the highest concentration tested, but approximately
equal for configurations #3a and #3c. Thus, increased length of vertical segments has an
additional impact if any horizontal segment is exposed to the dynamic migration of
bubbles from these longer segments to the upper surface of the coupling chamber.
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2.4.3 Orifice EJects

Variations with and without orifices can be seen in comparisons between Configurations
#2 and #2a, and #2 and #3a. While the offset 1/4" orifice of Configuration #2a on'y

. F s ] y *
appears to increase the level error associated with lower concentrations of dissolved gas

] = . 2 - \ . 7 » » lavel
utions {(shown 1n Fig. 2.4), the onfice of Configuration #3 shows an increase 1n level




error for the medium concentration test results as well. This orifice may impede the
release of gas to the free surface of the coupling chamber, providing an increased
volumetric expansion rate at lower pressure and correspon lingly higher dynamic

expansion forces, resulting in increased mass loss

Effect of Orifice: Cfg #2 and #2.. LOCA
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Fig. 2.5: Effect of Orifice on Level Errors for Config. #3



2.4.4 Slope Variations

The only direct variation of siope in the test matrix was between Configurations #3c (12"
per foot) and #3e (1/4" per foot). Most of the decrease in level error is associated with
the higher concentration levels, as shown in Fig. 2.6 below. Slope would primarily affect
the bubble rise velocity in nearly horizontal sections of pipe, but it appears that this effect
is minimal for the slope variation investigated except for solutions having high

con entrations of dissolved gas. Bubble rise velocity would be determined by a balance
of buoyant forces with surface tension and friction effects, and could be significantly
reduced in lines having only minimal slopes, such as certain segments of Configuration
#7

Effect of Slope: Cfg #3c and #3e LOC/
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20.0 B crg 3c
Level Error 15.0
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0.0

1100 600 300

Gas Conc. {ppmv)

Fig. 2.6: Effect of Slope on Level Error, Config. #3.
2.4.5 Pipe Diameter Effects

Changes to pipe diameter, from 1" SCH 80 pipe to 1/2" nominal s.s. tubing, were
designed to show the influence of pipe cross section on level error. Since such reductions
in area would also reduce the net volume, the fractional volume loss for Configurations
#2 and #3 are shown in Figs. 2.7 and 2.8. Fig. 2.7 indicates that a reduction in pipe
diameter in the vertical segment results in smaller nondimensicnal volume losses, which
would be expected, since the corresponding height - volume characteristic for such a
modified reference leg would exhibit a reduced sensitivity of indicated height to volume
loss. A similar height - volume dependency would be expected, and is seen, in Fig. 2.8,
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nce the change in area between Configurations #3a and #3d effectively redistributes

] } P e - .y
e of the volume to the vertical segment of the configuration. Such a redistribution

would thus have a larger fractional height error for the same fractional volume loss. As

on, the actual level errors associated with these changes for

Configuration #3 are presented in Fig. 2.9, where it can be seen that essentially no role 1s

- " ~ . - ™ o1 lec
his reduced horizontal segment area on the final indicated level 108s
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Fi1 2.9: Effect of Pipe Diameter on Level Error, Config. #3.

Pipe diameter was seen to play a substantial role in the end-point indications of the
differential pressure transducer for tests on Configuration #7. As is explained in more
detail in Section 6, the large indicated level errors for that configuration suggested that an
exceptionally large mass of water had to have travelled out of the reference leg and down
the spillway. Subsequent post-test measurements on the actual volume remaining in the
leg indicated that the differential pressure reading was in fact not indicative of the water
volume remaining in the leg, and thus, voids must exist in the piping system of this
configuration to account for the discrepancy between indicated level and system water
volume. Post-blowdown procedures were added to nieasure the remaining water in the
leg, and these data are reported in tabular fori.. i >ection 6. It is theorized that the
extensive 1/2" tubing present in this configuration aliows voids of gas to remain fixed in
vertical piping segments after the system is depressurized, resulting in a head loss
indicated on the differential pressure transducer. The small diameter tubing appears to

allow water surface tension to support these voids.

2.5 Depressurization Rate

inspection of Table 2.1 reveals that, on average, the faster the depressurization rate, the
larger the level error. This effect is primarily due to the added dynamic forcing on the

water mass that results from a greater volumetric expansion rate for the non-condensable

gases that come out of solution for the faster depressurization test points.
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2.6 Notching Behavior

"Notching", or the fluctuation of indicated level due to gas release in the reference leg,
was observed on a large number of configurations tested. High frequency fluctuations,
seen on the data for Configurations #2 and #3, is thought to be random fluctuations in
small bubble migration, whereas the slower, more discrete jumps in indicated level can be
seen on the test for Configuration #7. It is believed that this latter behavior is caused by
slug-flow migration of gas voids between horizontal and vertical segments of piping, and
thus accounts for the significant activity seen on the transient data for tests on
Configuration #7.

2.7 Repeatability

Repeatability was investigated in the first two tests, and again whenever particularly
unique transient data was recorded, such as for test #19 and #20. In every instance
investigated, both the final level errors and the general shapes of the transient pressure
time histories showed marked repeatability.

2.8 System Pressure at Initial De-gassing

The system pressure at which de-gassing was first observed in the transient data is shown
in histogram format in Figure 2.10. In every test using oxygen, indicated reference leg
water level did not decrease until the system pressure dropped below 220 psia. This
pressure is to be compared to the equilibrium saturation pressures of 197, 395 and 733
psia for the solution concentrations of 300, 600 and 1100 ppmv respectively. While some
of this behavior may be explained by the time lag associated with diffusion of the gas in
solution to the reference leg inner pipe walls, the exact mechanism for this phenomenon
is unexplained.
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SECTION 3 TEST FACILITY
3.1 Introduction

Design of the test facility was divided into three separate functional groups: (1) the
reference leg piping geometries to be tested; (2) the pressure vessel simuiator, to provide
a desired depressurization time history and establish proper initial conditions; and (3) the
pre-mixed gas-water solution preparation system, to control the concentration of non-
condensable gases introduced into the reference leg piping.

3.2 General Description

A general schematic diagram of the experimental apparatus is shown in Fig. 3.1 below,
along with instruments used in the recording of data for the experiment.

Coupling Chamber
Thermocouple
Exhaust Stack
Sampling Line
Dual-vol!
Orifice Rif;’g““" Sampler © st
mixture
saey | L) froyny
Volve Blowdown
0 inject
mixture
POl
. 0
ﬁ “Flow Pre-Mixed 2
< Metwr GasiWater
De-Mineralized
Water Supply

Figure 3.1 Schematic of De-Gas Test Apparatus.
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3.2.1 Reference Leg Geometries

Reference leg geometries were constructed from stainless steel pipe or tubing, in order to
accurately reproduce the same internal wall roughness and hence provide similar
conditions for potential nucleation sites where the non-condensable gas begins to come
out of solution. Segments of pipe were joined using socket welded fittings, as 1s typically
done on reference legs on operational BWRs.

3.2.2 Pressure Vessel

The pressure vessel was build from 6" SCH 80 carbon steel pipe, folded back upon itself
into an "S"-shape and supported by 1-beams on the floor of the high-bay area at the EPRI-
NDE Center. This arrangement allowed the proper sizing of the internal volume for an
isentropic biowdown that followed the depressurization for LOCA and ADS/ATWS
design-basis accidents for a BWR-4, but did not require the additional state licensing
requirements of a standard pressure vessel. These vessel pressure time histories may be
seen in the attached time histories in the Appendix. The pressure vessel was attached via
a flange to a 2" vertical steel pipe that provided the connection to a "coupling chamber”, a
geometrically similar device to a conventional condensing chamber that was welded to
the reference leg under test.

3.2.3 Pre-mixed Solution Source

Pre-mixed solutions of non-condensable gas and demineralized water were prepared by
pressurizing a partially filled tank, and then agitating until equilibrium saturation
conditions were achieved. Three tanks were constructed from 6" SCH 80 stainless steel,
each of approximately 20' in length, and the agitation was provided by rocking the tanks
in see-saw fashion while suspended from an overhead crane. Approximately 20 to 30
low frequency oscillations were typicaily required to drive the gas blanket into solution
and achieve equilibrium.

3.3 Instrumentation
Primary instrumentation for these tests consisted of absolute pressure measurements of

the pressure vessel, and differential pressure readings between the pressure vessel and the
bottom of the filled reference leg under test. Indicated water level loss in the reference
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line was measured using differential pressure instrumentation calibrated for reading
inches of water column height, much as it would be in the plant. As will be made more
apparent in Section 6 of this report, this value did not always reflect the actual volume of
water lost from the reference leg, but was still a valvable measurement because it would
directly correlate with instrumentation a BWR operator would have available in the
control room. Measurements were also made on the actual volume of w..2r remaining in
the reference leg for some of the later runs, and those are reported there as well. Table
3.1 lists the instrumentation used in the collection of both end point and transient level
error data, along with other supplemental measurements.

Table 3.1: Instrumentation List for De-Gas Experiment

Measurement Symbol  Instrument

Differential Pressure DP] Rosemount 1151DPSS Pressure Transmitter

Absolute Pressure Pl Sensotec 440 Pressure Transmitter

Water Temperature TI Type J Thermocouple with Omega DP41-TC
meter

Air Temperature T2 Type J Thermocouple with Omega DP41-TC
meter

Gas Concentration L1002 Dual-volume sampling system, with associated

LIN2 valves, tubing and graduated cylinders
Computer IBM Compatible PC
A/D Data Translation 2801 A/D Board

3.4 Data Acquisition System

Transient pressure data was acquired using an IBM-PC compatible computer and a DT-
2801 analog to digital interface card. The data acquisition unit was calibrated as a stand-
alone turn-key device, and sampled the pressure transducer data at a SHz rate. Operator
irtervention was required in determining the length of recorded time history data, through
monitoring the absolute and differential pressure instrumentation digital displays for
when they reached steady-state conditions.
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SECTION 4 DATA REDUCTION | Rev. 1
4.1 General Description lRev. ]

Data for the De-Gas test was acquired both from calibrated digital display meters and
from a personal-computer based data acquisition system. Both of these sources have
traceable calibration documentation that has been maintained as part of this testing
program. Corrections to these data include individual instrument calibration curves and
adjustment for physical phenomena as a result of the particular orientation of the sensors
for recording the transient pressure information.

Befors ow After Pressurizetion [}

h
H.0
DP1 = P gh DPl = (P, ~-P . )ED
H,0 H,0 HZO ges H.O
Figure 4.1: Ilustration of DP Cell Reduction with System Pressurization Rev. 1

During shakedown testing, it became apparent that an adjustment was required in the
differential pressure cell that measured water column height by subtracting pressure in the
pressure vessel from that measured at the low end of the reference leg. Since the gas-side
of the differential sensor would also measure the increased pressure due to the added gas
mass in the column connecting the cell to the upper surface of the reference leg, the
differential reading would decrease as the total system was pressurized. Since the
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differential cell actually measures the difference in density of the two fluid columns on
each side of its cell, this adjustment is strictly a function of the static pressure in the
pressure vessel, and is easily accounted for. This adjustment was applied to the time
history data plotted in Appendix A of this report, after the individual calibration curves
were applied to the raw data. Appendix C identifies the details and control of the test

process.

Rev. 1

4.2 Quick-look Data Reduction Rev. |

Quick-look plots of time histories were made and distributed during the weeks of testing
to BWROG Model and Test Committee (MATC) members using the advertised (not
measured) gains for the instruments, with the understanding that such preliminary non-
Quality related data would still be valuable in helping control the test matrix to deliver
the largest possible set of useful data.

4.3 Post-test Data Reduction Rev. 1

Actual instrument calibration curves supplied from approved instrument calibrators have
been u._. in the reduction of the raw time history data given in the Appendix. Best-fit
straight line calibration curves were developed from calibrator supplied reference data,
and these were applied to the transient pressure data prior to plotting. Corrections were
also made to adjust indicated differential pressure when the system was at other than
atmospheric pressure. Note that the transient data still show some evidence of differential
pressure fluctuation during the initial blowdown transients; these are most likely due to
the high flow rates of the nitrogen gas past the pressure port on the pressure vessel during
the blowdown process.



SECTION § TESTED CONFIGURATIONS Rev. |

As-built specifications for reference leg configurations were recorded per the De-Gas test
procedures, and these data were converted to spreadsheet format to both aid interpretation
of the transient pressure data and provide a basis for possible future correlation efforts
against an analytical model. These spreadsheets are presented below for each
configuration, along with any additional data that may be pertinent to the correlation and
interpretation effort. Reference leg geometries are represented by straight pipe segments
connecting identified node points. These nodes are represented by elevation reference (in
feet and inches) relative to a fixed reference point, length of pipe or tube (in feet and
inches) from the previous node point to the current node point, azimuth orientation of the
connecting pipe segment (in degrees) relative to a reference compass orientation, and
nominal pipe diameter and schedule of the connecting egment. These geometry data
were then used to compute the Cartesian coordinates of the node points (given in feet)
and the cumulative volume ("sigma-v", in cubic feet), cumulative volume fraction
("sigma-v/V") and cumulative fractional height ("sigma-h/H") at each node point. These
fractional volume and height data were used to characterize the configuration geometries
in Figure 1.4 of Section 1. For Configuration #7, the node points are represented by
Cartesian coordinates directly (in inches), since these were measured relative to the North
corner in the hi-bay at the EPRI-NDE Center in Charlotte, N.C. Slopes (measured in
degrees) for some of the segments that were located above the roofline at that facility are
also included, where these were used to compuie Cartesian coordinates that were not
directly measurable. Additional information identifying particular locations of orifices,
valves, couplings and instrumentation are given in the "reference” column of each
spreadsheet.

Additional measurements of Configuration #7 volume was made after high concentration
testing indicated a surprisingly large level error, which would suggest that over half the
internal water volume had been voided for a particular test. The system of Configuration
#7 was repressurized after all blowdown pressure transients had died down, and an
additional end point was taken while the system was at pressure. In addition, the
remaining volume was drained and measured using a graduated beaker, in order to assess
how the large indicated level errors were possible for this configuration. The conclusions
based upon these observed results is that the small diameter (1/2") tubing that is present
on a majority of the piping system can sustain sufficient surface tensions to allow trapped
voids in vertical segments that do not rise to the reference leg free surface with time.
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These trapped voids in the vertical lines, then, would have a net decrease in density
sufficient to cause significant indicated level errors on the differential pressure
transducer. The post-test volume measurements are given in the table below.

Table 5.1 Post-Test Volume Measurements for Configuration #7 Rev. 1

De-Gas Testing - Post test reference leg

volume measurement summary
Full leg = 5750 ml

Date Run# Test#  Measured

Vol.
14-Apr 7-2 84 4700
14-Apr 7-3 85 5100
14-Apr 7-4 86 4000
14-Apr 7-5 87 5000
14-Apr 7-6 88 5250
14-Apr 7-7 89 NA.
15-Apr 7-8 90 5100
16-Apr 7-9 91 5400
22-Apr 7-10 92 5250
23-Apr 7-11 93 5650
23-Apr 7-12 94 5650
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Table 5.2: Configuration #1 As-Built Geometry

Config 1§

De-Gas Test Geometry

Flest Elev (M) l{in) d-i (1) in} Sched x{f1} y(ft) 2{1t} sgma v

CC. top_ 0 0 0 c 0 0
-2.37 2.37 3 80! 0 ol -0.1975] 0 009695] © 05 ©.00668 1
-5 87! 3.5 .53 0 0 o] -048917] 0.019877] 0.1071 0.01657
-11.25 5 38 2 B0 0 0! -0.9375| 0.029658] 0.1 0.031762!
-337.7 326 45 1 8 [ 0] -28 1417] 0 178034] 0 950579] 0.953416}

DR -338.7 1 i 80} i) 0] -28225] 0.1784a8| 0. 0.9562

ball viv -354.2 15 5| 1 80{ 0 0] -29.51671 0 185534 1 1

Tot Vol. 1.391687|gal

[Rev. 1
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Table 5.3: Configuration #2 As-Built Geometry |Rev. 1
Config 2 1
De-Gas Test Geometry
Ret. Elev. (1) I{in} d-i (") wn) azim (1) y(I) z{1} sigma-v -y
CC. top ) 0 0 ) 0 [ [
__-2.37] 2.37 3 8ol 0 o] -0.1975| 0.009695] 0.026123] 0.006
-5 87 35 2. 53] 0] 0 o] -048917] 0019877 0.05 0.01632|
ap -11.25 5 38 2 80| 0 o] -0.9375] 0 029658] 0.086036] 0. os:zn
<17.437 6 1875 1 ao] 0 0] -1.45313] 0.032471] 0 0941 0.
-32 4375 2 1175 1 sol o] 289531 -270313] ¢ 195982 0.568523] 0 080182]
5" above dp1 -342 9 25 10.5 1 80| 0f 299531 -285781] 03371 0877915] 0 953432}
5 below dp1 -343 938! 1 1 LB o] 299531l -286815; 0.337562} 0. 97!2341 0 9502__'4
viv -359 688] 1575, 1 80| 0] 299531 -20974] 0344721
Tot Vol 2 585752
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Table 5.4: Configuration #2a As-Built Geometry |Rev. 1

Contig 2a |

goe-gvuanim

Al Elov. in d-f in} x(f} ¥ z(1) sigma-v___|(sigma-v

CC._top 0 0 0 0 0 0 0
-2.37 237 a 80; ) ol -01975| 0009695 0.028123] 0 006589
-5 87 3.5 2.53 o} ) o] -048917] 0.019877] 0.05 0.01632,

{pipe_top -11.25 5. 2 80| 0 0] -09375| 0.029658{ 0 086026 0031277

-17.4375 § 1875 1 80| 0 0] -1.45313] 0032471] 00941 0.0484

25" offset oric -24 9427 15 0 1 80| 0] 14 98696] -2.07856] 0 114283] 0.331523| 0 0693

[ R -32.4375) 14] 1175 1 80| o| 299531] -2.70313] 0 195982] 0 56852

5" abeve dpt -342 938| 25] 105 1 80} 0] 299531 -285781] 0.337108] 0977915] 0953432

5 below dp! -343 938 1 1 80] 0] 299531] -28 6615 0.337562] 0.979234] 0956212

{bait viv -35¢ 15.75 1 8 o] 299531] -29974] 0344721 1 1

Tot Vol 2 585752

par-



Table 5.5: Configuration #2b As-Built Geometry [Rev. |

[Config 2b 1

De-Gas Test Geometry

Ret. Elev. in d-l (! l(in) azim fx(my y{tt) z{1) sigma-v s

CC.bp o 1 0 0 0 0 e [

, -2.37] 2.37 3 80| 0 O] -0.1875] 0.009695] 0.028123] 0006
-5.87 3.5/ .53 o] 0 0] -048917! 0019877 0.057 0016

[pips_top -11.25 5 38/ 2 80| 0 0] -0.8375] 0029658! 0 086036] 0 031277
-17.4375) 6.1875) 1 80} 0 0] -1.45313] 0.032471] 0.0941 0.0484

25" offset orfc -24 0427 15 ) 1 80} 0] 14 98696] -2 07856] 0.114283] o.amsg o.mug

viv orfc -31.9684] 14 0.5) 1 80} 0l 20 01641] -2 66404 0 190868] 0O 0 0BBB7

-32.4375] 11.2 1 80| o] 299531 -2.7031;{ 0.195082| 0.568523] 0.090182

5" above dp1 -342 938] 25 10.5 1 80] 0] 299531 -285781] 0.337108] 0977615/ 0953432

5 below dp1 -343 938] 1 1 80| ol 299531 -286615] 0.337562] 0.979234] 0956212

{bat viv -359 688 15.75 ! 8 0f 299531 -29974] 0344721 1 1

Tot Vot 2 585752]gais
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Table 5.6: Configuration #2¢ As-Built Geometry

Config. 2c 1
De-Gas Test Geometry
Rel Elov. }) d-t (1) {(in) azim jdia Sched  ix{f1) y{tt) z(f) v {sigma-v
CC. lop ) 0 [ 0 3 0 3
-2.37 2.37 3 8 0 o] -0.1975] 0 009695| 0.036403] 00117
-5.87 35 2.53 0 0 0] 048917 0019877 0.074638| 0.029177]
-11.25 5.3 2 8 0 0] -0.9375| 0029658] 0 111365] 0055918}
-17 4375, 6 187 1 80| ) 0] -145313] 0032471] 0 121925| 0 086673]
25" offsat orfc -25.4953] 15| 0 1 80| 0 14.98496] -2 12461] 0 114283] 0 420123] 0 126724
329375 1 10.25 1 80] 0] 28.82524] -2 74478] 0 189846] 0.712855] 0 163715
5° above dpt -184.438] 12 7.5 1 8O 0] 28.82524] -153698] 0258704 0971413 0 916744
5 below dp1 - 185 438] 1 1 80| 0| 28 82524] 15 4531] 0.250159] 097312 0921715
viv -201.1 15.78 1 80| 0| 28 82524] -16.7656] 0 26631 1 1
Tot Vo 1.987648

|Rev. 1
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Table 5.7: Configuration #2d As-Built Geometry

2d 1

De-Gas Test Geometry
Hef Elev. () i(in) d-1_(#t) I{in) dia  [Sched ix(f) ¥ z{f) sigma-v __ {sigma-v)/Msigma-h/H
CC_top [ 0 0 0 4 of 0
-2.37! 2.37 3 80| 0 o] -0.1975| 0 009695] 0 042376] 0.0065
-5.87 3.5) 2.53 o] 0 0] -0.48917] 0.019877| 0. 086884| 0 016224
{pipe_top -11.25] 5. 2 80} 0 of -09375| 0.029658] 0 128637{ 003109
-17.4375] 6 1875 ' 80! 0 0] -1.45313] 0.032471] 0 141929] 0 048195
25" offset orfc 254953 15 ) 1 80| 0] 14.98496] -2.12461] 0.114283] 0 499531] 0070465
albow -32.9375{ 1 10.25 1 80} 0] 28.82524] -2 74479 0 189846] 0 829815 0.091035)
top of tubing -37.4375} 4.5 1 80} 0] 28 82524] -3.11979] 0191891} 0 838755 0 103472
5" above dpi -359.100' 26 9.75 0.5 80| 0] 28.82524] -29 9323| 0.228451] 0 998558] 0992745
5 below dp1 -360.1 1 0.5) 8 0] 28.82524] -30.0156] 0 228565 0 999055| 0 99550
bail viv -361 813] 1.625 0.541 80| o] 28 82524] -30 151] 0228781 ' [

Tot Vol 1.716084|gals

|Rev. 1
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Table 5.8: Configuration #3 As-Built Geometry

3 |
De-Gas Tast Geometry
-
Hel. Eiey. in) d-l_ (1) [{in) Sched  Ix(I) yif) z{ti) sigma-v (w
CC_top 0 0 0 0 0 0 o
-2.37 237 3 80; 0 o] -0.1975| 0 009695 0 028126] C 006585
-5 87 35 53 [ 0 o] -048917] 0.019877] 0057667} 0 016334]
-11.25) 5 38 2 80} 0 o] -0.8375] 0.029658] 0 086043] 0 031304|
-343.75] 27 8.5 1 80| 0 0] -28 6458] 0 180784] 0.524479] 0 956522
5" above dpi -358 649] 2 7.875] ' 80f 0] 28 62934 -298874] 033708] 0.877613] 0 997081
5 below dpl -358 693] ' 1 80| 0] 28.71259] -29 891| 0.337534] 0.979232] 0 998101
bail viv -359.37 15.75 1 80] 0] 30.02386] -20 9479] 0 344693| 1 1
Tot Vol 2 585539{gals

|Rev. 1



or-s

Table 5.9: Configuration #3a As-Built Geometry

3a 1

Test Geomsetry
Rt Flev. in) {in) dia (Sched Ix(t) [y(ity  lzgiy sigma-v }@gm-gm sigma-h/H
CC.lop 0 0 0 0 [ 0 0
-2.37 2.37 3 80! 0 ol -6.1975] 0.00969] 0 028126] 0 006595
-5 87 a5 2.53 o] 0 0l -0.4892] 0.01988] 0 057667 0 016334
1op -11.2 53 2 80} 0 0] -0.9375] 0.02966] 0.086043] 0031304
25" orifice -46.75 355 1 80} [} ol -3.80 0.04579] ©.132853{ 0 130087
{eibow -343 75, 24 9 1 80} 0 0| -28.646] 0.18078] 0.524479] 0 956522
5" above dp1 -a58.648] 28; 7875 1 80| ¢l 28 629l .20 887 0.33708{ ¢ 877913] 0 997981
|5 below dp1 -358 693 1 1 ao} 0l28.713] -20 891] 0.33753] 0979232] © 898101
ball viv -m.srﬂ 15.75 1 80} 0] 30 024] -26 948{ 0 34469] 1 1

Yot Vel 2 58554|gals

|Rev. 1
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Table 5.10: Configuration #3d As-Built Geometry

{Fet Elev. {M(in) (M i(in} lazim |dia _[Sched [x{ft) (It Ja(r)  Isigma-v i(sigma-v)/\{sigma-hit4
CC.top. 0 ) & 0 0 0 0
-2.37 2.37 3 80} 0 ol -0.1975] 0.00968] 0.04298] 0.006606

-5 87 3.5 2.53] o ) 0} -0.4892| 0.01988] 0088123} 0.016362

ipe_top -11.250 5.38 2 8o} [ 0] -0.9375] 0.02966] 0.131486| 003135
25" orifice 46 75) 35.5) 1 80} 0 of -3 8958! 004579 0.20302| 0.130314}
-343.75] 24 9 1 80| 0 0| -20.646] 0.18078] 0 RO1481] 0 958188]

coupling -344.074 # 1 80} 0{ 0 6661] -28 673] 0 18442| 0.B17601] 0.959093]
| 5" above dp1 -358 64 359 25 0.5 80} 0! 30 570] -29 887 0.22524| 0.998575] ©.99971]
5 below dp! -358 687 1 0.5 80{ 0] 30 662] -29 91| 0.22535! 0.899079| 0 99982
ibalt viv -358.75 1.5625 0.541 8 0| 20.792] -29 896| 0 22556 1 1

Tot Vol 1.69194|gals

IS
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Table 5.11: Configuration #3c¢ As-Built Geometry |Rev. 1

% |

De-Gas Test Geometry

Ral. Eiev_ (M) ﬁ]iﬂl d-! (1) in) azim dia Schad ix{tt) {1 z{tt) sigma-v___|{sigma-v

CC_top [ i 0 o 0 0 0 0
-2.37, 2.37 3 80§ o 0] -0.1875| 0.009695{ 0.034996] 00112
-5 87 a5 2.5 of 0 o] -0.48917] 0.019877] 0 071752 0.027
-11.2 5. 2 a0} 0 ol -09375{ 0.029658] 0.10 0.053444

25°_oifice -46.7 35.5] 1 80} 0 o] -3. 0.045794| 0.16 0.22
-195. 12 475 1 80| 0 0] -16.2917] 0.113402| 0 409355] 0928741

5" above dp! 2008021 2 7.25 1 80| o] 28 57933] -17.4835] 0 269414] 0972519 O

5 below dp! -209 844 1 1 80| 0] 28 66259 -17.487| 0. 0.974158] 0

bail viv -210.5) 15.75 1 8 0| 20 973951 -17.5417] 0.277027 1 1

Total Vol 2 07798|gal




Table 5.12: Configuration #3e As-Built Geometry |Rev. 1

Config. 3o |

De-Gas 1ast Geometry

|Ret Elov. in in} x{ft) y{ft) z() sigma-v S| v hH |

CC_top ) 0 0 0 ) ) 0
-2.37 2.37 3 80| 0 o] -0.1975] 0009695 0034 0.011682]
-587 35 2.53 o} 0 0] -0.48817| 0.019877] 0071752 0028934

\op _ -11.25] 5 38| 2 80} 0 0] -09375| 0.029658] 0.10706] 0.055453]

25" orifice -46.75 355 1 80| ) 0] -3.89583] 0.045704] 0.165304] 0.230437}
-195 5 12 4.75 ! 80} ) 0] -16.2917] ©.113402] 0.409355] 0 96364

5 above _ap1 -202.532 2 7.25 1 8o 0{ 28 59816] -16.8777| 0.269414] 0 972519] 00998

5 below dp1 -202 552 1 1 8ol 0] 28 68148] -16.8794] 0260868 0 874159 0 09841

bail viv -202 875 15.75 1 80 0] 2999837] -169063] 0277027 1 1

Tot Vol 207798

13
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Table 5.13: Configuration #6 As-Built Geometry | Rev. 1
Poz!v ]
Do-Gas Test Geometry
{
{Ret Elov. in (M __ {(n} dia x(f1) y(t) z2(ft) sigma-v__ |(sigma-v){sigma-h/H |
{CC_top [ 0 0 0 0 0 0
-2.37 2.37 a 8 o 0] -01975] 0 009695! 0 010402] 0.00378
-5 87 a5 2.53 o 0 ol -04R917] 0019877 6021327 0.00837
top -11.25 5,38 2 80| 0 o] -08375] 0 029658] 0031821} © 01796
-311.75 300.5 1 BO{ [ o] -259792| 0 166239 0 178362 0497904
{40 deg -326.75 ao} 0 1 80| 0] 29 97395] -27.2292| 0.329864] 0 353017] 0 521861
2nd aibow -370.75! B9} 1.5) 40| 1 BO| 57 23004] 98 18085] -30 A958! 0. 815866] 0 B75465] 0 592124
5° above dp! -509.375] ! 10.625 40 1 BO| 57.23994] 08 18985] -50.7813] 0 924424] 0.991832] 0 973248
5 balow dp1 -610.375 1 40 1 80| 57.23994] 98 1BORS| -50 8646 0 924878 6 992319| 0 974845
bail viv -626.125 15.75, 40 1 80| 57 23994] 98 18985] -52 1771] 0932037 1 1
Tot Vol 6.691208
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Table 5.14: Configuration #7 As-Built Geometry

Config. 7 1
De-Gas Tes! Geometry
{Fet. dia Sched v siope x z sigma-v_jv/V hiH
CC. top surf 13l 125 510} 0 0 0
| 80| 13|  125] 504} 0.0109] 0 054787] 0.012072
albow 2 D 742 B O} 13 12.5) 498] 0 0124 0.062328| 0.024145
ortfice 2a] 0.742) B80! 3.6l 371 16 5| 496.47] 0.0185] 0 092968! 0 027219
3l 0.742 80] 2.5 46.25 18.75] 496 06] 0.0209| 0 104945] 0.028054
4l 0.742 80} 1.7 5 29| 495 69] 0.024] 0.120376| 0.028787
5| 0.742 80} 05 185 53 5| 485 33| 0.0344] 0 172541 0028515
6] 0742 80} 4 32! 73] 493.72] 0.0402] 0 201723] 0.032766
7] ©0.742 80| 1.4 68| 53.5| 492 72| 0 0504} 0 253195] 0 034779
8l 074 [ 0. 82! 72.5| 492 39} 0.0563] 0.28286] 0.035441
14 0957 80| 1.5} 131] 1495 490} 0.0543] 0 473742] 0.040248]
[ 0.857 ao! 90l 131] 1495 462 0.106] 0.532282] 0.096586]
xic inket .95 8 ol 13 152.5 462} 0.1075] 0.53982| 0 096586
xic out 17 o.ss;pmn 58] 1375 159] 461.2] 0 1108} 0556432 0.098194
1 0.3 5 8| 144! 166.5] 46018l 0. 1114] 0 55955 0 100212
1 0.37 144 5 169] 442 69| 0.1125{ 0.565076] 0 135423
20 0.37 2] 1295 146] 441.74] 0.1142] 0 573663] 0.137351
21 o037 1315 148] 385 75| 0.1177] 0 591182 0.25
220 037 139 S| 142 5{ 385 25] 0 1183] 0.59422] 0 251006
2 0.37 140.25] 142.5] 3725 0.1191} 0 598212 0.27666
24 037 131.25 14 372] 0.1198] 0.601512{ 0.277666,
25] 0137 130.25] 154 297] 0.1244] 0.625027] 0. 428571
26| 0.37 124] 201 295 75| 0.1274] 063985] 0 431087
271 0.37 125.5] 201 262} 0.1295] 0.650408] 0 498994
28] 037 118.5] 264 5| 263 25! 0.1335] 0.670377] 0 49647
20| 0.37 1268 5] 2655 263.75] 0.1342] 0.673832] 0.495473]
30| 037 128.5] 276.5 264| 0 134 o.snzad 0.49497!
31} 037 118] 2755 263.75] 0.1355] 0 680 0.495473]
32| 037 104] 359 5| 266.25] 0 1408] 0.707207] 0 490443}
a3l  0.37 128] 364.5] 265.75] 0 1423] 0.71487] 0 491449|
32} 0.37] 125 5] 365 25| 2265 o.u% 0.727163] 0.570423]
3 037 124] 376.25| 226 75| 0.1455] 0.730634] 0.56992}
36| 037 122] 376.25] 217.25| 0 1461] 0.7 0.589034}
371 037 125 5] 357 25| 215 75] 0.1473] 0.739723] 0 592052
a8l 037 1165 357 25| 1751 0 1496] 0.752765] 0. 674044
3gl 037 149 5| 364.25 172] ©.152] 0.763349] 0.68008|
40f 0427 142! 460.25 n}i 0. 158 0 793442 0 68008|

IRev. 1
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Table 5.14 (con't.): Configuration #7 As-Buiit Geometry

41 0.37 125] 481.25 1721 ©.158{ 0.798764] 0 68008}
42] 0.37] 125| 477.25 171] 0.16] 0.803774] 0 682093}
4 0.37 122] 483 25 171} 0.1605] 0.805871] 0682093}
44 037 121] 545.25] 170 25| 0.1643] 0 825251} 0 683602]
45 037 143.75] 547 28] 168.5] 0.1657] 0832400 0 687123}
46{ 0.37 1431 547 25 157] 0.1665] 0.83601] 0.710262
471 0.37 142.75] 546 25 155| 0 1665| 0 836714 0.714286
48(  0.37 139 25| 548 75] 48 25| 0.1732] 0870102 0920074
491 0.37 131.5] 549 25! 48 25| 0.1737] 0872 0. 929074
5 0.37 135] 600.25] 47.5| 0.1769] 0.888 0. 930584
51 0.37 160.5] 600.75] 47 25| ©0.1785] 0.896477| € 931087
$2| 037 161.5] 684.75{ 45.5| 0 1837] 0.922736] 0.634808|
5 0.37] 135.;_{ 686.75] 36.5] 0.1854] 0.931357] 0 8527186{
541  0.37 141 5] 759 25 3 0.18] 0.954097] 0955734}
55| 0.37 266 5] 759.25 31} 0.1977] 0.093182] 0963783}
5 0.37 270} 758 75| 31} o0.% ¢ 994 0 963783]
571  0.37 =72] 761. 13} 0.1991 1 1
Yot voi | 1.493

|Rev. 1
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APPENDIX A: TRANSIENT PRESSURE DATA TIME HISTORIES

Raw data from the absolute and differential pressure instrumentation has been processed
using the calibrations measured on these transducers prior to the start of the de-gas testing
period. These data have also been corrected for effects of increased nitrogen density
when the system: is at pressure, in order to aid in the interpretation of the differential
pressure reading as the reference leg water colurnn height. The time history plots of these
data show both corrected pressures as a function of time (in seconds) for each run, with
the left scale representing the absolute pressure reading (in psia), and the right scale the
differential pressure (in inches of water).

Data from the slow depressurization tests has been plotted on a compressed time scale, in
order to fit the entire run on a single page. The plot header field, aside from providing a
traceable record of when the plot was made, includes the configuration number, test
number, gas type and concentration measured in the sample line prior to the blowdown
event. The absolute pressure time history may be consulted to determine if the event
simulated a LOCA or an ADS/ATWS depressurization time history.
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CONTINUUM DYNAMICS, INC. CONTRACT#F164 DC_QCALS MOD 0O 5/6/93

DATE: SUN MAY 9 21:06:54% 1993 CA#:B0061 FILE: DECASL. DAT
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CONTINUUM DYNAMICS,
DATE: SUN MAY S

RUN #:86 CONFIC#H:7
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APPENDIX B: MAXIMUM NON-CONDENSABLE GAS CONCENTRATIONS

In order to support single gas testing in the De-Gas Test program and to design a test
matrix, calculations were performed to determine the maximum concentration of non-
condensable gas that may be present in the condensing chamber and in the reference leg
water. These are repeated in this Appendix to provide documentation on how this
maximum concentration was determined.

Dalton's Law of Partial Pressures states that the sum of the partial pressures of the various
gases in any volume must equal the total pressure in that volume. In the vapor/gas space
of the condensing chamber, these gases are saturated steam (water vapor), hydrogen, and
oxygen gas, the latter a result of radiolysis that occurs in the BWR pressure vessel, such
that:

PTOTAL = Pyapor(T) + PH2 + Po2

Because these non-crncensable gases are produced in a stochiometric ratio in the BWR,
it is reasonable to assume they will collect in the condensing chamber in this same ratio.
Thus, for a stochiometric mixture, P2 = 2 P2, and since ProTaL = 1000 psig
{(approximately), then:

P s i 1000 PSES; Pyapor(T) 1.

- 3

From Henry's Law, this gas will enter into solution in the water surface at the top of the
reference leg according to:

Massgas = MaSSwaer X Smm X Pw,

where Sgag(T) is the solubility of the gas (on a mass basis), which is a function of gas
type and temperature, T. Because the volume of gas dissolved directly determines the
amount of water that may be displaced when the gas comes out of solution, the
concentration on a yoluing basis is determined by multiplying this solubility by the ratio
of molecular weights of water to the gas. Thus the conceniration of oxygen and hydrogen
are:



conco? = m}“:;o So:m%[ 1000 psig - Pvapor(T) ], and

concyy = "Z:;’ smm§( 1000 psig - Papor(T) 1,

and the total volumetric concentration of non-condensable gas is thus:

w 1 -
conCytoc, 12402 = 2 - Sy2(T) + —22- $0p(T)) 5 [ 1000 psig - Prapor(T) ]
WH2 W02

where (gas is the molecular weight of the gas. Using published steam tables and
solubility data from two different sources!2, this concentration is plotted against
temperature in Figure B.1. While the maximum concentration is shown to be
approximately 1500 ppmv (parts per million by volume), the maximum concentration
expected in the reference leg would be closer to 1100 ppmv, because any higher
concentration at elevated temperatures would degas due to the temperature drop as the
condensate is cooled and flows down into the reference leg.

Max Conc. in Condensate

iy GE Solubiin| Data |
1600 ... m'l

1400 ~ B ot

1200 ! .

g 1000 -LER—
o

a 233 Tay, et 4. Daia
400

o]

200

e

0 100 200 300 400 500 800
Temp (deg F)

Figure B.1: Maximum Dissolved Gas Concentration vs. Temperature

! Pray, et al., "Solubility of Hydrogen, Oxygen, Nitrogen, and Helium in Water at Elevated Temperatures,”
Industrial and Engineering Chemistry, Vol. 44, n. 5, May 1952.

Zpresberry, C., "Solubility of Ideal Gases in Water,” General Electric Nulear Energy Rept. Y1002E101,
February 1977.
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APPENDIX C: TEST OPERATIONS
C.1 Test Procedures
C.1.1 Reference Leg Configuration Measurement

Prior to the testing of any reference leg, a procedure was in place to measure and identify
the as-installed configuration. Identification of the configuration was denoted by the
configuration number as well as a sketch of the piping.

The size and type of pipe and/or tube was identified on the procedure sheet. The lengths
and elevations of all of the relevant points on the configuration was measured, and the
slope of the runs was noted where applicable. On the more complex configurations the
nodes were located using a string and plumb bob. At the completion of the identification
and measurement, the date and time was recorded along with the signatures of the
preparer and verifier.

C.1.2 Pre-mixed Dissolved Gas Solution Prepara‘ion

The pre-mixed solutions were prepared in any one of three mixing tanks. The tanks were
constructed of 6" diameter stainless steel pipe with welded end caps. A fitting was
welded on each end to accommodate a valve and ~ Jick connect fitting, and the entire
valve assembly was surrounded by a protective cylinder.

The solutions were prepared by combining a known volume of liquid in a given tank with
pressurized gas, agitating the tank, and monitoring the pressure drop to ensure a saturated
«~‘ytion. The first part of the procedure consisted of filling the tank solid with
demineralized water of a known conductivity and then draining out a specified amount of
water via a turbine flow meter. The amount of water to be drained was calculated based
on the tank volume required for a 10% drop in pressure following gas addition and the
associated dissolution process.

The next step consisted of pressurizing the tank to a specific starting pressure. The
required starting pressure was calculated based on the desired solution concentration and
gas solubility of the solute gas. The endpoint target pressure was calculated to achieve
the 10% pressure drop once equilibrium conditions were established. The tank was then
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agitated by suspending it about its center with the use of an overhead crane and tipping
the ends in a "see-saw" motion with an approximately 5-6 second period. The duration of
the agitation was between 20 to 25 cycles. The tank was then slowly rolled in order to
strip off any bubbles from the walls of the tank which may have formed during mixing.

To ensure that the solution was saturated, the endpoint pressure of the tank was then
measured. If the pressure was no greater than 5% above the endpoint target, the
procedure was complete. If the pressure was higher than 5% of the endpoint target, the
tank was agitated further until the desired pressure was obtained. The procedure was
completed by recording the date and time along with signatures of the preparer and
verifier.

C.1.3 Volumetric-Based Dissolved Gas Concentration Measurement Rev. 1

This procedure provided a method for measuring the amount of dissolved gas contained
in a liquid sample. This technique was used to measure the solution concentration in the
pre-mixed tanks as well as in the reference leg. The measurement required the use of a
sampling device as well as a measurement apparatus, illustrated in Figure C.1. The Rev. 1
sampling device consisted of two sample cylinders separated by an isolation valve. The
bottom of the device utilized a quick connect fitting to facilitate attachment to either the
reference leg sampling line or a pre-mixed tank. The top of the device consisted of a
detachable gauge to monitor the pressure and a needle valve to control the flow through
the device. The measurement apparatus consisted of two inverted graduated cylinders of
different capacity with the open ends immersed in a bath of water. A three way valve
connected the selected graduates via a universal tube which was attached to the top of the
sampling device. The cylinder chosen for the measurement was dependent on the
anticipated gas concentration of the sample. The water was drawn up into the graduates
with the use of a hand operated vacuum pump.

The first part of the procedure involved clearing the sampling device of any remaining
sample and pressurizing it. This was accomplished by opening the isolation valve and
needle valve on the device and attaching a nitrogen source via the bottom quick connect.
The device was then purged with gas until it was free of any solution. With the gas
source still attached, the needle valve was then closed and the cylinders were pressurized
to a pressure approximately 50 psia above that of the sample source. The reason for this
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pre-pressurization is to guarantec that the sample does not degas upon irjection into the

device.

Needle Valve o
Graduated

Cylinder

Expansion Chamber
@ ~ 1 Atmosphere

aiiaeitl
i

Water with Non-condensable
Geas @ Pressure

Inlet From
Sempls Line Quick-connect
Fitting
Figure C.1: Schematic of Gas Concentration Sampling Device Rev. 1

The sampling device was then attached to the sample source via the bottom quick
connect. The necessary valves were then opened in the flow path leading to the device.
The top needle valve was cracked open to allow flow through the device, while at the
same time monitoring the pressure in the device so as not to allow it to go below that of
the solution saturation pressure and hence cause degassing. When the sample solution
reached the needle valve, which was evident by the absence of gas hissing frora the
device, the isolation valves on the bottom chamber as well as the upper needle valve were
closed. The device was then disconnected from the sample source, and solution
temperature, as measured by an in-line thermocouple probe, was recorded.

The upper surge volume of water was then emptied, and the gas line to the inverted
cylinder was checked so that no water was trapped in it. The line was then attached to the
top of the sampling device and the vacuum pump was connected to the valve at the
bottom of the upper chamber. The water was then pulled up into the graduated cylinder
to a convenient starting point, and the graduated cylinder level was recorded and verified
by two operators. The isolation valve was then opened, the device agitated, and all the
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gas coming out of solution was trapped in the inverted cylinder. The final volume was
measured and the differential was used to compute the resulting solution concentration.
The procedure was completed by recording the date and time along with the signature of
the preparer and verifier.

C.1.4 De-Gas Test Procedure Rev. 1

The test procedure used to test a reference leg configuration consisted of detailed
instructions involving many steps. Where necessary, the steps were checked by two
people to ensure that quality was maintained.

A test was initiated by entering on to the procedure sheet all pertinent information
relevant to the test. This information included the date, time, run number, piping
configuration number, blowdown orifice diameter, pre-mixed solution gas and nominal
concentration, nominal starting pressure and the endpoint pressure.

The piping configuration to be tested was verified prior to each test. The verification of

the configuration was ¢ by checking that the piping in place was in fact representative Rev. 1
of the system measured and identified by the configuration procedure. The date of the
configuration measurement form was entered to provide a reference.

The pre-mixed solution tank to be used was verified to be the desired solution required
for testing by cross checking the tank identification and the appropriate solution
preparation procedure form. A reference of the date of the mixture preparation was
included. The tank was also verified to have enough solution to carry out the test by
checking the pre-mixed solution log.

The first dynamic step in the procedure involved the demineralized water injection. The
water supply source was connected to the instrument spool piece via a quick connect
coupling. The pressure vessel drain valve was opened to allow the water flowing over the
spillway to drain out of the system. The water was then injected into the reference leg by
opening the valves in the flow path. Flow continued into the leg until it was deemed full
by a constant reading indicated by the differential pressure cell. The valves in the flow
path were shut off and the remaining water was allowed to drain from the pressure vessel.
The differential pressure cell reacing was then recorded.
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The next part of the procedure involved pressurizing the system in preparation for the
pre-mixed solution injection. The blowdown valve, sampling line vaive and both ball
valves on the instrument spool piece were checked to be in the shut off position. The
nitrogen suppfy line was coupled to the ball valve on the pressure vessel and the absolute
pressure cell was checked for operation. The system was then pressurized to the desired
pressure as determined by ‘he solution equilibrium saturation pressure.

The reference leg was then filled with the pre-mixed solution from the mixing tank. The
injection line from the mixing tank to the reference leg was filled solid with
demineralized water to eliminate any gas voids. The input end of the line was connected
to the mixing tank and the output to the ball valve on the instrument spool piece. The
opposite end of the mixing tank was attached to a gas supply line which was used to
boost the tank pressure approximately 100 psia above that of the pressure vessel. This
differential was necessary in order to inject the solution into the reference leg. The ball
valves on the mixing tank and instrument spool piece were opened. Flow was initiated
by opening the needle valve on the flow assembly in the injection line. The flow meter
was monitored to ensure that at least twice the reference leg volume was injected into the
system and the needle vaive was then shut off. The water displaced by the solution
injection traveled down the spillway into the pressure vessel.

The system was then prepared ‘- a gas concentration measurement. This was done by
opening the sampling line solenoid valve and purging approximately 100 ml of solution
through the line in order to eliminate any voids. During purging, care was taken not to go
below the solution saturation pressure by monitoring the sampling line pressure gauge
and adjusting the needle valve as required.

The next step was to perform the dissolved gas analysis procedure on a sample from the
reference leg. If the measurement was within 20% of the predicted concentration in the
pre-mixed bottle, the sampling line solenoid valve was closed and the test continued. If
the measurement was not within the tolerance it was either repeated or a sample was
taken directly from the tank if it was suspected that the concentration in the mixing tank
had increased.

The final step in the sampling procedure was to re-inject solution into the reference leg to
replace what was drained during sampling. The injection line needle valve was closed to
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stop the flow, and the injection ball valve on the instrument spool piece was shut off to
isolate the injection line from the reference leg.

Pressurization of the system was resumed until the desired starting pressure was reached.
The drain port valve on the pressure vessel was opened in order to drain the water that
had been displaced during solution injection. Upon completion of draining, the drain
valve on the pressure vessel was closed.

In preparation for depressurization the settings of the absolute pressure cell, the
differential pressure cell, the water temperature and the ambient temperature of the room
were recorded. If it was desired to stop the depressurization at any pressure other than
atmospheric, the comparitor potentiometer was adjusted as required. The date and time
was checked on the data acquisition computer, and all pertinent test information was
recorded into the test data file. The test data filename was recorded on the procedure
sheet and the data acquisition program was started.

Approximately ten seconds after initiation of the program, the solenoid blowdown valve
was opened and the depressurization event was begun. The pressure readings were
monitored to ensure properly functionirg instruments during the blowdown. At the
completion of any transient events the data acquisition program was stopped, and the
ettings of the absolute and differential pressure cell and the room temperature were
recorded. Also, in order to ensure proper recording of the data, the time history file was
verified and a backup was made to a floppy disk.

The final step in the procedure involved draining the system and refilling the reference
leg to take an endpoint reading. The pressure vessel drain port was opened to drain any
water which may have spilled over due to a level error. The reference leg was drained of
the remaining solution via the instrument spool piece and the differential pressure cell
"zero” reading was recorded. The reference leg was then re-injected to completely fill it
with demineralized water and the reading on the differential pressure cell was recorded.
The level error was then calculated by taking an average of the differential pressure
before and after the test and subtracting it from the endpoint reading after the completion
of the blowdown event.

The final step in the procedure was altered for Configuration #7 because of observed
anomalies associated with the level depicted by the differential pressure cell. After the
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