SUMMARY TECHNICAL REPORT
PRIMARY CONTAINMENT INTEGRATED
LEAK RATE TEST

APRIL 1982

TABLE OF CONTENTS

Intro	oduo	ti	o n	٠	٠			٠			٠				٠				٠	٠		2	
Gene	ral	Da	ta				ķ						٠					٠	*		÷	3	
Techr	nica	1	Dat	а			٠				٠		*	÷							٠	3	
Test	Dat	ta								٠		٠	*	*			*					4	
Veri	fica	ti	on	Te	st		٠				*			÷			÷					4	
Anal	ysis	a	nd	In	t e	rp	re	ta	at:	ion	n		*	٠								5	
Test	Chr	one	010	gy						*	٠	٠		٠		٠						14	
Local	l Le	ak	Ra	te	T	e s	it	Re	S	ult	ts	*	*									15	
Leak	Det	ec	tio	n	Sy	st	еп	1	٠	£.		٠		*				ż			×	Attachment	I
Calcu	ılat	io	nal	M	e t	ho	ds	5				*					٠					Attachment	II
Suppo	rti	ng	Te	st	D	at	a		*				*									Attachment	III

INTRODUCTION

The Primary Containment Integrated Leak Rate Test (PCILRT) was conducted on April 2-3, 1982. The 24 hr. pressure test was performed in accordance with 10CFR50, Appendix J, the Oyster Creek Technical Specifications, and Station Procedure No. 666.5.007, "Primary Containment Leak Rate Test". Specific deviations from Appendix J testing requirements are listed in the "Oyster Creek Appendix J Exemption Requests", dated November 22, 1978 and approved on March 4, 1982. Guidance in conducting the test was provided by ANS N274-1978, ANSI N45-2-1972 and ANS/ANSI 56.8-1981.

Included herein, in accordance with 10CFR50, Appendix J is a summary of pertinent data, Type B and C test results, an analysis and interpretation of test results, and a test chronology. A description of the leak detection system, calculation methods, and supporting test data are provided as attachments. Additional test supporting data is available for review at the station site in accordance with ANS/ANSI 56.8-1981.

GENERAL DATA

Owner Jersey Central Power & Light Co./General

Public Utilities

Docket No. 50-219

Location Route #9, Forked River, New Jersey

Containment Design Mark I, General Electric Co.

Test Completion Date April 3, 1982

TECHNICAL DATA

Containment Net Free Volume, cu. ft. 300,000

Design Pressure, psig 62 (35)

Design Temperature, OF 175 (281)

Design Accident Peak Pressure, Pac, psig 38 psig

Calculated Accident Peak Temperature, OF 285

TEST DATA

Test Method Absolute

Data Analysis Mass Plot

Test Pressure 37.142 psia

Maximum Allowable Leak Rate .567 wt %/day

Calculated Leakage Rate at

upper confidence level (UCL) .273 wt %/day (uncorrected, unadjusted)

.291 wt %/day (corrected, adjusted)

Measured Leak Rate, Lam .225 wt %/day (uncorrected, unadjusted)

.244 wt %/day (corrected, adjusted)

VERIFICATION TEST

Calibrated Leak Superimposed (%/24 hrs) .7619 wt %/day

Mass step change N/A

Mass step change measured by type A Instrumentation N/A

ANALYSIS AND INTERPRETATION

Definitions:

Pa(psig): Calculated peak containment internal pressure related

to the design basis accident

Pt(psig): Containment vessel reduced test pressure selected to

measure the integrated leakage rate during type A

testing

La(%/day): Maximum allowable leakage rate at pressure Pa, as

specified in technical specification

Lt(%/day): Maximum allowable leakage rate at pressure Pt

Ltm(%/day): Total measured containment leakage rate at pressures

Pa and Pt respectively, obtained from testing the

containment with components and systems as close as

practical to that which would exist under design

basis accident conditions.

Acceptance Criteria

10CFR50, Appendix J requires that the leakage rate, LTM, at the 95% confidence level shall be less than .75 Lt. Therefore,

Lt = La (Pt/Pa)^{1/2}
Lt = 1 wt %/day (20psig/35psig)^{1/2}
Lt = .75593
Ltm = .75 Lt = .75 (.75593)
Ltm = .567 wt %/day

Test Methods and Test Results

Containment leakage rate was determined by the absolute system analysis method and mass plot calculational technique. The Reference Vessel method was utilized for data comparison to insure confidence in test results.

The results of the absolute and mass plot analyses were corrected to account for changes in containment free volume due to water accumulation in the containment sump. (Reactor vessel level changes were automatically corrected for in the test method computerized program). These results were further adjusted to incorporate the results of Local Leak Rate Testing (LLRT). The level correction calculation and LLRT adjustment are given below.

The test results at the measured and 95% UCL for both the Absolute and Reference Vessel test methods are given in Table I. Both the level corrected and LLRT adjusted values at the 95% UCL for the Absolute Test Method are also provided.

TABLE 1
TEST RESULTS SUMMARY

Calcul	ation	Absolu	te Method	Reference	Vessel Method
Techni	que	Measured	Calculated 95% UCL	Measured	Calculated 95% UC
	Uncorrected	.2253	.2732	N/A	N/A
Mass	Level				
Plot	Corrected	.2313	.2792	N/A	N/A
	Total			Land of the same	
	Ad justed	.2440	.2919	N/A	N/A
Mass Point	Uncorrected	N/A	N/A	.3017	N/A
Total Time	Uncorrected	N/A	N/A	.3672	.4244

Level Correction

The measured leakage rate was corrected to account for water leakage into the containment as determined by the following equation:

$$Lw = \frac{2400 [0.1337 (S_F - S_I)]}{(300,000) (DT)}$$

Where Lw = water leakage into containment free volume, wt %/day

DT = time interval between initial and final sump integrator readings, hrs.

 S_{τ} = initial sump integrator reading, gallons

 $S_{\rm p}$ = Final sump integrator reading, gallons

2400 = 24 hrs/day x 100%

300,000 - containment net free air volume, ft3

.1337 - conversion factor, gallons to ft3

Substituting values:

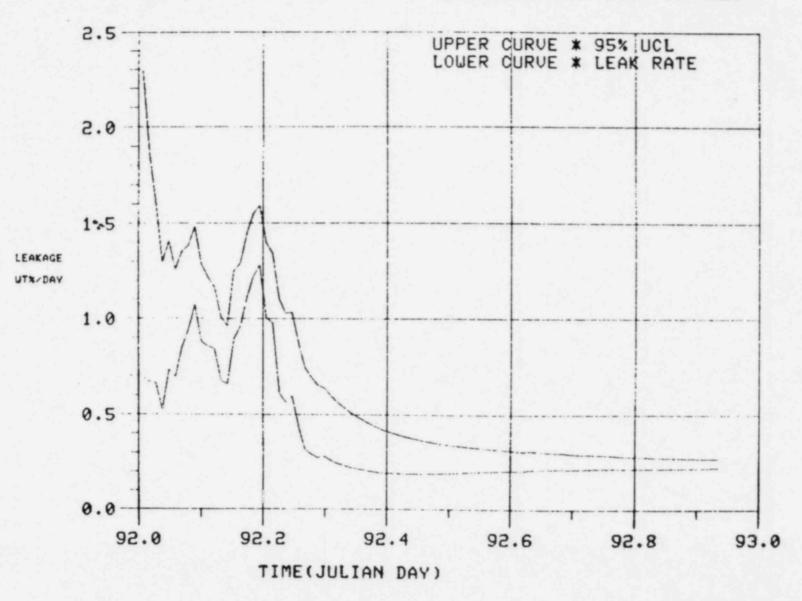
Lw = 2400 [0.1337 (166632-166496)] = .0060 wt %/day(300,000) (24)

Local Leak Rate Test Adjustment

The level corrected leakage rate is further adjusted to include total leakage from those values and penetrations isolated during the type A test.

The following penetration was isolated during the type A test:

Instrument air and nitrogen system, V-6-393 & V-6-395


MSIV Drain Valves - V-1-106, 107, 110 & 111

Post type A local leak rate test results: 3.97SCFH = .012 wt %/day

Overall Test Performance

Figure I is a graphical description of the test performance as determined by the absolute and mass plot test method. The irregular test data results during the early test period is attributed to dewcell instrumentation instability. Following this unstable period, the data converges to the true leak rate in a smooth, continuous fashion. During the last hours of the test the measured leakage rate value begins to converge to the 95% UCL leakage value as expected.

1982 LEAKRATE TEST -- 24 HRS.

Verification Test

In accordance with 10CFR50, Appendix J, a verification test was performed following the type A test to provide a method for assuring the systematic error or bias was given adequate consideration.

Definitions

Lo = The known leakage rate superimposed on the containment during the verification test

Lam = The measured containment leakage rate at the test pressure

La = The maximum allowable leakage rate at the test pressure

Lc = The composite leakage rate measured during the verification test

Acceptance Criteria

10 CFR50, Appendix J requires that the verification test results must satisfy the following order relationship:

(Lo + Lam - 0.25 La)
$$\leq$$
 Lc \leq (Lo + Lam + .25 La)

Verification Test Methods and Test Results

The verification test utilized the superimposed leak verification method in which a calibrated leak was superimposed on the existing leaks in the primary containment. A 3.95 SCFM leak was introduced into the leak detection system

and the corresponding composite leakage rate was determined by the absolute analysis method and mass plot calculational technique. The Reference Vessel analysis method and point-to-point calculational technique was also utilized to assure confidence in test results. The results of the testing at the 95% UCL are given in Table II.

VERIFICATION TEST RESULTS

TABLE II

	Absolute	Reference
Lx	Method	Vessel Method
Lo	0.7619	0.7619
Lam	0.2732	0.4244
La	0.1890	0.1890
Lc	1.2169	1.2654

Substituting values for the acceptance criteria order relationship provides the following test results:

Absolute Method

$$(0.7619 + 0.2732 \stackrel{\checkmark}{=} 0.1890) \stackrel{\checkmark}{=} 1.2169 \stackrel{\checkmark}{=} (0.7619 + 0.2732 + 0.1890)$$

 $0.8461 \stackrel{\checkmark}{=} 1.2169 \stackrel{\checkmark}{=} 1.2241$

Reference Vessel Method

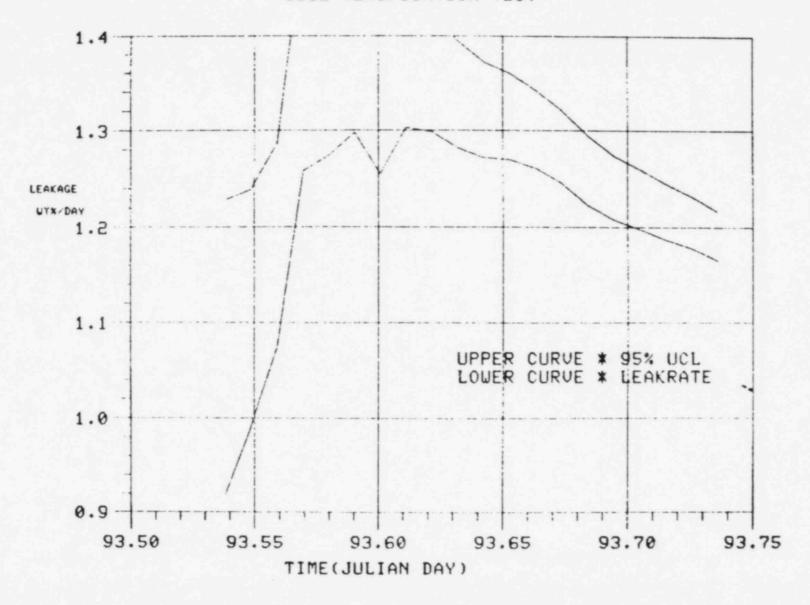
$$(0.7619 + 0.4244 - 0.1890) \le 1.2654 \le (0.7619 + 0.4244 + 0.1890) 0.9973$$

 $0.9973 \le 1.2654 \le 1.3753$

Figure II is a graphical illustration of the verification test performance as determined by the absolute and mass plot test methods. The irregular test data during the early stage of the test is attributed to unstable dewcell instrumentation. After the dewcell instrumentation stabilized, both the measured and 95% UCL leakage rates continuously decrease in a smooth, continuous fashion.

Summary and Conclusion

Type A Test ("As-Left")


The results of the 24 hr. test determined a containment leakage rate well below that required in 10CFR50 Appendix J. The accuracy of the test data has been verified by the satisfactory performance of a verification test. It is therefore concluded that the validity of test data has been confirmed and that all type A testing requirements of 10CFR50, Appendix J has been demonstrated.

Type A Test ("As-Found")

Due to excessive containment valve/penetration leakage determined by the "pre-repair" LLRT, the "as-found" containment leakage exceeded the acceptable containment leakage criteria. Valve repairs were completed and applicable valve "post-repair" leakage values were added to the Type A Test ("As-Left) results as required by 10CFR50, Appendix J. "Pre-repair" and "post-repair" valve leakage values are provided on pages 18 and 19. Appropriate instrument sensitivity is included in each test result value.

FIGURE II

1982 VERIFICATION TEST

TEST CHRONOLOGY AND HIGHLIGHTS

Type B and C local leak rate tests were performed on all testable penetrations prior to the initiation of the type A test. (The results of the local leak rate testing as required by 10CFR50, Appendix J, are provided in the following section).

The chronology of significant events prior to and during the performance of the type A test is as follows:

March 30, 1982

- An inspection of the drywell was completed. No structural deterioration was observed.

7:45 pm - Began containment pressurization

March 31, 1982

- 6:15 am Commenced drywell depressurization due to inadequate drywell recirculation fan operation.
- 2:30 pm Drywell depressurized. An investigation revealed a damaged fan speed control shim. The speed control shim was replaced.

April 1, 1982

- 2:20 am Performed a drywell airlock leakrate test to insure the integrity of the drywell inner door seal.
- 3:14 am Began drywell repressurization.
- 10:50 am- An air leak was discovered at valve N-19 which allowed a N_2 system leak into a predetermined type A test leakage path. A new leakage path was determined and utilized.
- 12:57 pm- Drywell pressurized to test pressure.
- 4:30 pm Began pressure stablization period.

April 2, 1982

- 1:30 am Dewcell instrumentation appeared to be unstable.
- 2:50 am Service air vent was closed to investigate dewcell instability.
- 5:00 pm Type A test was concluded with leakage rate of 0.273% at 95% UCL.
- 10:55 pm -Began verification test.

April 3, 1982

- 5:30 am Determined that verification test period would be lengthened due to unstable dewcell instrumentation.
- 3:50 pm Discovered that verification test rotameter was not properly connected to test cabinet. The rotameter was properly reconnected.
- 5:40 pm Verification test was concluded with a leakage rate of 3.95 SCFM.
- 7:30 pm Began drywell depressurization.

Type B and C Local Leak Rate Tests

Type B and C local leak rate tests were performed on all testable containment isolation valves, gaskets, and penetrations in accordance with 10CFR50, Appendix J and the Oyster Creek Technical Specifications.

Instrument Air and Nitrogen System Valves V-6-393 and V-6-395, and MSIV Drain Valves were isolated during the type A test. These valves were tested after the completion of the 24 hr. test and their test result values added to the type A test result value.

An attempt was made to test all four feedwater checkvalves although these valves are exempt from testing until piping modifications are completed in accordance with 10CFR50 Appendix J. However, due to the current piping configuration, it was determined that the test results were not representative of the valves leak tightness.

The "Pre-Repair" and "Post-Repair" results from the local leak rate testing are provided on the following pages and include all local leak rate testing conducted since the previous type A test. Leak rate test values listed indicate leakage through a penetration. Individual valves or seals which did not meet acceptable leakage criteria are as follows:

Description	Valve/Gasket
Main Steam Isolation	NSO3A, NSO4A
Main Steam Drain	V-106, V-111
1-8 Sump Discharge	V-22-28, 29
Drywell Purge	V-27-3
Drywell Airlock	Outer Door Gasket
Torus to Reactor Bidg. Vac. Breaker	V-26-16
Torus Vent Bypass	V-28-47

Summary of Test Results	20 psig (SCFH)	35 psig (SCFH)
Total (Post-Repair Test Results)	92.56	117.40

Combined leak rate @ 35 psig = 117.40 SCFH

= 0.279 La

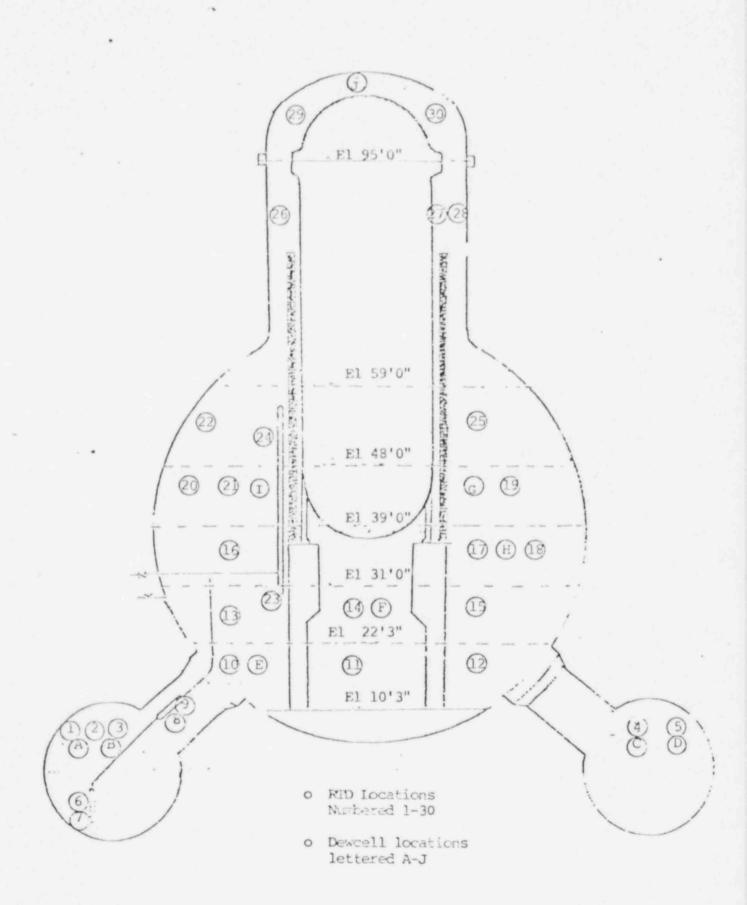
where La = 419.88 SCFH

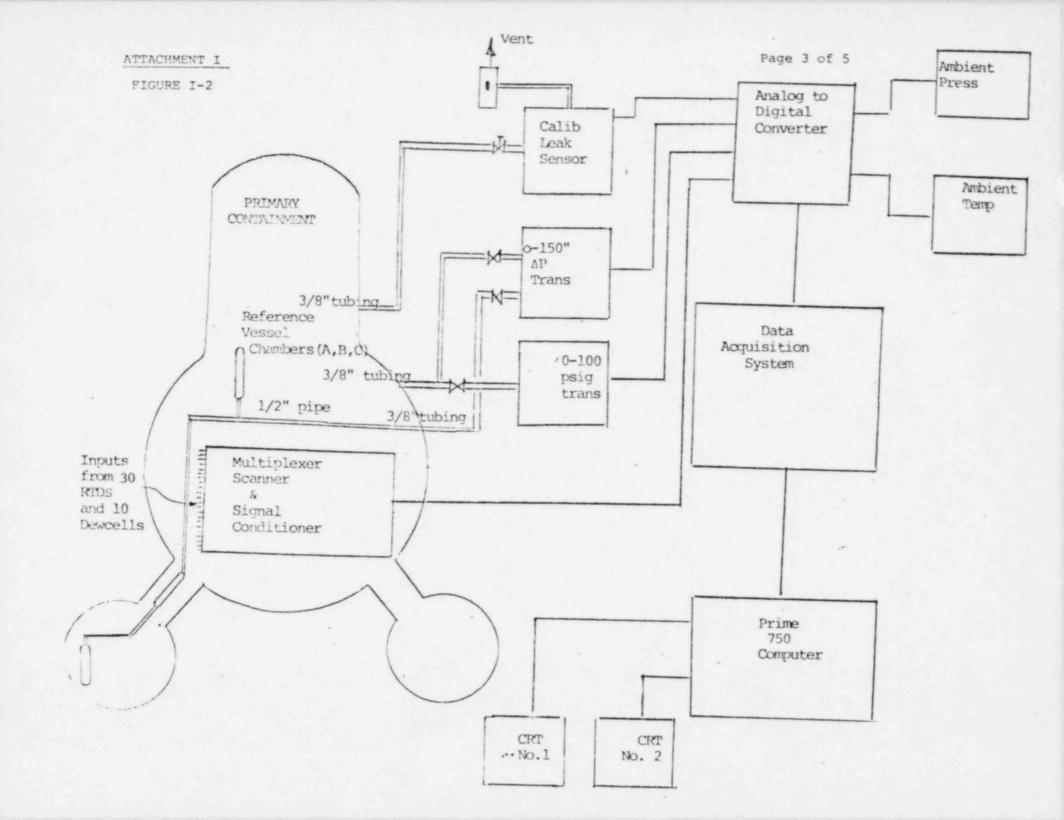
Total (Pre-Repair Test Results) - exceeded acceptance criteria.

LOCAL LEAK RATE TEST

Double Gasketed Seals	Pre-Reg	air Test R	esults	Post-Rep	air Test Resu	lts
	Test Date	Leak Ra	tes (SCFH)	Test Date	Leak Rate	s (SCFH)
		20 psig	35 psig		20 psig	35 psig
TIP Penetrations (4)	2/15/82	0.04	0.05	2/15/82	0.04	0.05
Torus Manhole Cover - North	10/1/81 2/9/82	.0122	.0161 .011	3/25/82	0.02	0.03
- South	10/1/81 2/10/82	.48 .496	.642	3/25/82	5.54	7.33
Drywell Head Seal	6/12/80	0.016	0.02	6/12/80	0.016	0.02
Drywell Head Manhole Cover	6/4/80	0.016	0.02	6/4/80	0.016	0.02
Steam Dryer Penetration	5/10/82	0.0073	0.0096	5/10/82	0.0073	0.0096
Torus to Drywell Vacuum Breakers (4)	2/9/82	5.94	7.86	2/9/82	5.94	7.86
Reactor Building to Torus Vacuum Breakers (2) Gaskets and O-rings	2/7/82	0.043	0.057	2/7/82 + 3/2/82	0.041	0.055
Biological Shield Stabilizer Manways (8)	2/17/82	2.63	3.79	2/17/82	2.63	3.79
Drywell Airlock Seal	2/13/82	0.007	0.009	2/13/82	0.007	0.009
Drywell Airlock	7/19/80	4.21	5.486			
	7/19/80	4.09	5.49			
	3/9/81	7.78	10.29			
	4/1/81	4.667	6.17			
	5/29/81	11.63	15.43			
	10/18/81	4.633	6.129			
	11/4/81	3.114	4.116			
	4/1/82	4.67	6.17	4/1/82	4.67	6.17
Penetrations and Isolation Valves						
Electrical Penetrations (32)	2/11/81 to 2/16/82	0.96	1.28	2/11/82 to 2/16/82	0.96	1.28
Steam Dryer Penetrations (16)	2/13/82	0.096	0.128	2/13/82	0.096	0.128
Drywell Airlock Electrical Penetration	2/10/82	0.008	0.011	2/10/82	0.008	0.011
Demineralized Water System Penetration	2/12/82	0.35	0.46	2/12/82	0.35	0.46
Drywell Sump Discharge V-22-28 & 29	2/12/82	7.36	9.74	3/19/82	1.40	1.85

Penetrations and Isolation Valves	Pre-Repa	ir Test Res	sults	Post-Rep	sir Test Resul	ts
	Test Date	Leak Rate	es (SCFH)	Test Date	Leak Rates	(SCFH)
		20 psig	35 psig		20 psig	35 psig
Drywell Equipment Drain Tank Discharge V-22-1 & 2	2/12/82	0.04	0.05	2/12/82	0.04	0.05
MSIV's - NSO3A & 4A - NSO3B & 4B	02/08/82 02/08/82	* 11.49	* 15.2	04/05/82 02/08/82	1.43 11.49	1.89 15.20
MSIV's Drain Valves V-1-106, 107, 110 & 111	03/17/82	*	*	04/09/82	1.17	1.54
Isolation Condenser Vent Valves V-14-1 & 19	01/22/82	0.98	1.30	01/22/82	0.98	1.30
V-14-5 & 20	01/22/82	3.53	4.67	01/22/82	3.53	4.67
TIP Ball Valves (4)	03/19/82	2.21	2.92	03/19/82	2.21	2.92
Instrument Air & Nitrogen System V-6-393 & 395	02/14/82	2.33	3.08	04/09/82	1.84	2.43
Drywell Vent V-27-1 & 2	02/09/82	5.11	6.76	02/09/82	5.11	6.76
Drywell Purge V-27-3 & 4	03/03/82	10.73	14.20	03/03/82	10.73	14.20
Drywell N ₂ Purge V-23-13 & 14	02/06/82	0.10	0.13	02/06/82	0.10	0.13
Drywell N2 Makeup V-23-17 & 18	02/09/82	0.79	1.05	02/09/82	0.79	1.05
Drywell Vent Bypass V-23-21 & 22	02/09/82	0.096	0.13	02/09/82	0.096	0.13
Torus N ₂ Purge V-23-15 & 16	02/08/82	3.14	4.16	02/08/82	3.14	4.16
Torus N ₂ Makeup V-23-19 & 20	02/09/82	0.07	0.09	02/09/82	0.07	0.09
Torus Vent V-28-17, 18 & 47	05/13/81 02/15/82	.03 4.32	.03 5.71	02/15/82	4.32	5.71
Reactor Building to Torus Vacuum Breakers V-26-15 & 16	02/07/82	10.89	14.74	03/02/82	1.297	1.72
V-26-17 & 18	02/07/82	9.92	13.12	03/02/82	9.92	13.12
Drywell O Analyzer & Particulate Monitor V-38-9 & 10	02/11/82	1.14	1.51	02/11/82	1.14	1.51
Torus Particulate Monitor V-38-16 & 17	02/11/82	0.75	0.91	02/11/82	0.75	0.91
Torus O2 Analyzer V-38-22 & 23	02/12/82	6.18	8.18	02/12/82	6.18	8.18
* Would not pressurize						


ATTACHMENT I


LEAK RATE DETECTION SYSTEM

The leakage rate detection system consists of thirty (30) four-wire platinum (RTD's) and ten (10) lithium chloride dew cells positioned in the containment structure as illustrated in Figure I-1. The analog signals from these sensors are input to a multiplexer scanner also positioned inside the containment. A data acquisition system located external to the containment interrogates the scanner on demand for temperature and humidity information. Containment absolute pressure and reference vessel differential pressure information is input to the data acquisition system from a pair of fused quartz bourdon tube manometers which are externally connected to the containment and reference vessel. The analog signals are processed through an analog to digital converter and transmitter at present intervals to a PRIME 750 computer. A system sensitivity check is performed by introducing a calibrated leak through a mass flow transducer. The output from the transducer is also processed via the analog to digital converter and data acquisition system to the computer. In addition, the system reads and records the ambient temperature and pressure.

The computer operates in a real time mode to collect the transmitted information and calculate on demand the containment leakage rate. Figure I-2 is a detailed functional block diagram of the Leak Rate Detection System including individual appropriate component performance specifications.

(RID and Dewcell Sensor Location)

ATTACHMENT I

INSTRUMENTATION

Temperature

Configuration: 4 wire

Operating Range: 32-250°F

Accuracy: 60-120°F, + 0.1°F

32-250°F, ± 0.15 °F

Repeatability: ± 0.1°F

Element: Platinum

Quantity: 30

Dewpoint Temperature Measurement

Dewpoint Range: 0-200°F

Dewpoint Accuracy: + 1°F

Dewpoint Repeatability: + 0.5°F

Dewpoint Sensitivity: + 0.1°F

Type of Sensor: Lithium Chloride

Quantity: 10

ATTACHMENT I

Pressure Measurement

Operating Range: 0-100 psia

0-150 in. H20 (differential)

Accuracy: + 0.02% of reading

Repeatability: + 0.001% of full scale

Stability: Less than 0.001% F.S. degree

Fahrenheit ambient temperature range

Type of sensor: Quartz Bourdon Tube

Quantity: 1 each of the above

Data Acquisition System

A/D Dual slope integration

 $V \rightarrow F$, constant scan rate

Display: 5 + digit, polarity, decimal and legend

Sampling Rate: DC-180DB, 10000 ohm unbalance

AC-180DB at 50-60 HZ

Normal Mode Rejection: 80DB

Input Impedance: 1000 megohms/volt

Ambient Temp. Range: 050°C

Zero Offset: Recalibrate before each reading automatically

Voltage Temp: $\pm 0.002\%$ of reading (0.25 V/°C)

Accuracy: ± 0.005: F.S., ± 0.005% of reading at 25°C

with + 10% power variation at 67% F.S.:

0.012 F.S.

Repeatability: + 0.005% F.S.

ATTACHMENT II

CALCULATIONAL METHODS

References

- ANSI N454 1972, Leakage Rate testing of Containment Structures for Sclear Reactors.
- ANS N274 1978 (W.G. 56.8 Draft #2), Containment System Leakage Testing Requirements.

The containment leakage rate calculation was performed in accordance with the above standards and utilized the absolute system analysis method and mass plot calculational techniques. In addition, the reference vessel system analysis method was also performed for comparison to insure confidence in the test result. These analytical methods are described below.

ABSOLUTE METHOD

The absolute method of leakage rate determination consists of measuring the temperature and pressure of the containment atmosphere, with suitable correction for changes in humidity. This method assumes the temperature variations during the test will be insufficient to effect significant changes in the internal volume of the containment structure.

The percent leakage of air from the containment structure in terms of the original amount contained and that which escaped during each hourly test period is then calculated by the following formula:

Leakage Rate (Wt %/day) =
$$[1 - \frac{(T1) (P2)}{(T2) (P1)}]$$
 (100) $\frac{(24)}{h}$]

where:

- T1 = mean absolute temperature of the containment structure air, at the start of each data collection period (point-to-point method) or at the beginning of the test (total time method).
- T2 = mean absolute temperatue of the containment structure air at the end of each data collection period (point-to-point) method.

- Pl = total aboslute pressure in the containment structure at the start of each data collection period (point-to-point method), or at the beginning of the test (total time method).
- P2 = total absolute pressure in the containment structure at the end of each data collection period (point-to-point method).
- h = total length of test period (hours)

An upper one-sided 95% confidence limit for the leakage rate (total time) is then calculated using the mass point calculational technique.

REFERENCE VESSEL METHOD

The reference vessel method of leakage rate determination compares changes in the pressure of the containment atmosphere with the pressure in a hermetically closed reference vessel system. Due to its geometry and location in the containment structure, the reference vessel assumes the temperature of the containment atmosphere with a time lag that is compatible with the frequency of the data collection.

The leakage rate of air from the containment structure in terms of the original amount contained and that which would escape during a 24 hour period is then calculated in accordance with the following formula:

Leakage Rate (WT %/day) =
$$\frac{(24)}{h}$$
 (100) $\left[\frac{T1 (PR2-P2+PV2)}{T2 (P1-PV1)} - \frac{PR1-P1+PV1}{P1-PV1}\right]$

Where T1, T2, P1, P2 and h are defined above and

- PRI = absolute pressure of the reference vessel at the start of each data collection period.
- PR2 = absolute pressure of the reference vessel at the completion of each data collection period.
- PVI = the partial pressure of water vapor at the start of each data collection period.
- PV2 = the partial pressure of water vapor at the completion of each data collection period.

MASS POINT METHOD

The mass point calculational method utilizing the ideal gas law, determines the mass of air in the containment, at each time point during the test and performs a straight line least squares analysis to estimate the leakage rate. An exact upper one-sided limit of 95% confidence level is then calculated on the leakage rate using the relationships identified below. The derivations and details for this calculational method can be found in reference 2.

The calculational methods employed in the computer code for mass point technique calculates a least squares analysis as follows:

NOTE: Symbols are defined at the end of this section.

The least squares line is given by

$$\overline{W} = At + B$$

where the slope (A) and intercept (B) are given, respectively by

$$A = \frac{N(\sum_{i} t_{i} W_{i}) - (\sum_{i} W_{i})}{N(\sum_{i} t_{i}^{2}) - (\sum_{i} t_{i}^{2})^{2}}$$

AND

$$B = \frac{(\sum w_{i}) (\sum t_{i}^{2}) - (\sum t_{i}w_{i}) (\sum t_{i})}{N(\sum t_{i}^{2}) - (\sum t_{i})^{2}}$$

Each t_i is the elapsed time between a clock time for the initial reading and the clock time at which the ith reading is taken. The formulas for A and B do not require equal time intervals.

The leakage rate is expressed as the ratio of the rate of change of the mass and the mass in the containment at time $t_1 \approx c$. The values of t_i have units of hours and since the leakage rate is desired in Wt %/day the estimated mass point leakage rate, expressed as a positive number, is calculated as follows:

$$L = (-2400) (A/B)$$

The uncetainty in the estimated value of leakage rate is assessed in terms of the standard deviations of A and B and their covariance followed by the computation of an upper limit of the 95th confidence level for the leakage.

The estimate of the common standard deviation of the masses with respects to the line is given by:

$$S = \left[\frac{\sum (w - \overline{w})^2}{N-2}\right] 1/2$$

where

Wi is the measured mass at time ti and

 \overline{W}_i is the estimated mass at time t_i from \overline{W}_i = At_i +B

In order to determine the standard deviation of the slope (S_a) let

$$K = \frac{S}{[N(\sum t_{i}^{2}) - (\sum t_{i})^{2}]^{1/2}}$$

then

$$S_a = K[N]^{1/2}$$

To determine the standard deviation of the intercept (S_h)

$$S_b = K[\sum_i t_i^2]^{1/2}$$

and the covariance of the slope and intercept (SAB) is

$$S_{ab} = K^2 \left[-\sum t_i \right]$$

In order to calculate the exact upper one-sided limit of a 95% confidence level for the leakage rate, let

$$a = B^2 - t_{95}^2 (S_b^2)$$

$$b = AB - t_{95}^2 (S_{ab})$$
 and

$$c = A^2 - t_{95}^2 s_a^2$$

then the exact upper one-sided limit of a 95% confidence level for the leakage rate is determined as follows:

UCL
$$(+95) = -2400 [b - (b^2 -ac)^{1/2}]/2$$

SYMBOLS AND SUBSCRIPTS

SYMBOLS

- P Total absolute pressure in the containment (psia)
- T Mean absolute temperature of the containment air (°R)
- V Internal free volume of the containment (assumed to remain constant for the duration of the test - ft³)
- R Gas constant for air (53.35 ft-1bf/1bm-°R)
- $P_{\rm U}$ Partial pressure for water vapor (PSIA)
- N Number of pairs of measurement
- W Measured mass of contained air (1bm)
- T Time interval of measurement after initial measurement (hr)
- W At & B Lease squares line relating measured masses to corresponding times of measurement
- A Slope of least squares line
- B Intercept of least squares line
- S_ Estimate of standard deivation of slope of least squares line
- S, Estimate of standard deviation of intercept of least squares line
- S Estimate of covariance between slope and intercept of least squares
- L 2400A/B Estimate of leakage rate, derived from least squares slope and intercept, expressed as a positive number (%/day)
- T_{05} 95th percentile of student's distribution
- UCL Exact upper one-sided limit of a 95% confidence level for the leakage rate.

SUBSCRIPTS

i - Indicates the ith data point.

For all analytical methods described above, constant containment volume is assumed. The leakage rate is later corrected for changes in containment volume due to water leakage into the containment. Changes in reactor vessel water level are automatically accounted for in the computer program.

Data for temperature and dewpoint input is corrected for instrument error using three point calibration data provided by the equipment supplier. In addition, the pressure sensor readings are corrected using a similar technique. Weighting factors are assigned to the temperature and dewpoint sensors thus providing a single ambient and dewpoint temperature reading indicative of containment conditions.

COMPUTER CODE QUALIFICATION:

An independent audit was performed on the computer code prior to utilizing it in the 1978 Primary Containment Leak Rate Test at Gyster Creek. The audit consisted of an in-depth check of the equations used to confirm agreement with those recommended by the governing standards. In addition, the code was run using data obtained by contractors who performed leakage rate tests on other containment structures. The results of this check agreed favorably with the values obtained using the cognizant contractor's code. The code was also utilized during the 1980 PCILRT at Oyster Creek.

ATTACHMENT III

SUPPORTING TEST DATA

24 hr. Test Data	
Absolute Method DataPage	III-I
Reference Vessel Method Data	111-3
Verification Test Data	
Absolute Method DataPage	III-5
Reference Vessel Method DataPage	111-6

JERSEY CENTRAL PONER & LIGHT CO. OYSTER CREEK NUCLEAR GENERATING STATION

INTECRATED CONTAINMENT LEAK RATE TEST *ABSOLUTE METHOD*

****MASS PLOT ANALYSIS***

100
<
VIS
(C)
C.
10
377
PM:
**
1
37
40
**
URE
Part .
5
100
550
PRE
777
ion.
Jupan
**
LING
200
-
-
PH.
24
ST
50
100
82
500
0
-
AA
93
-
-
1PR
File.
<
-
IV
75
-
RED
Jacks .
print
1
Die
1
E
0
2
RT
Andrea .
260
0
PO
EPO
REPO
REPO

LEAK RATE (UCL+95)																																																
LEAK																																																
AIR MASS	55359.5182	55349.2189	55347.9196	55346.6203	55545.3210	555344.0217	55342.7224	55341.4231	55340.1238	55338.8245	55337,5251	55336,2258	55334.9265	55333.6272	55332,3279	55331,0286	55529,7293	55328,4300	55527,1367	55325.8314	5324	55323.2328	55321,9335	55320,6342	55319,3349	55318,0356	55316.7363	55315,4370	55514.1825	55312,8384	55311.5391	55310.2398	22208.9402	55367,6412	55566.3419		55303.7433	555562,4440	55301,1447	55299.8454	55298,5461						55200,7503	THOOD ATTO
AIR MASS	55391.3134	55356.3267	55404,1301	55369.7891	55336.6223	55399.4646	55319.6858	55376.1595	55353,4068	55348,6344	55362.0947	55315.8957	55340,2389	55300.5571	55297.2050	55273.5562	55351.1685	55368.8652	55303.3101	55360.6228	55309.3260	55186.9398	55240.6524	55178.3126	55174,4823	55184.7944	55415.2899	55257.0195	55537.6636	55313,1264	55240.8140	55425.5723	55410.1634	55322,3334		*		55317,9843	55313.0124	55313.9864	55308.9327	55307,4585	55308.7141	56306.4557	55307.2613	552397, 1554	55297, 5780	2010.10100
VPRESS.	0.3870	0.4066	0.3745	0.3929	0.4161	0.3703	0.4236	0.3824	0.3983	6.3983	0.3865	0.4171	6268.0	0.4260	0.4242	0.4376	0.3856	0.4117	0.4130	0.3718	0.4033	0.4871	0.4459	0.4858	0.4867	9624.0	0.3240	0.4257	0.2371	0.3830	0.4259	0.3007	0.3077	6.3619	0.3595	0.3299	0.3591	0.3623	0.3619	0.3608	0.3634	0.3624	0.3610	0.3620	0.3556	0.3619	0.3614	0.0010
DEWPOINT (F)	71.902	73.368	986.02	72.352	24.052	209.02	74.589	71.547	72.757	72.758	298.12	74.125	72.723	74.761	74.630	75.563	262.12	73.742	73.830	20.716	73.129	82.273	76.130	80.001	81.677	78.330		74,738	57,839		24.750			276.69	18.	- 60	102.69	196.69	186,69	69.834	20.048		69.820		199.69	69.928	69.889	200.00
TEMP.	090.62	79.064	120.62	29.063	29.039	26.62	810.62	210.62	78.985	78.985		026.82	78.974	78.940		- 1	78.911	668.82	. *		78.886	- 10	18	78.781	28.776	14			78.488		*			*	*	18.	*	1.00	628.22	*	36		- 16	77.655		168.22	0 9	
PRESSURE (PSIA)	37.377	37.373	878.378	37.368	37.368	37.366	37,364	37,361	37,360	37,357	37.354	37,352	37,349	37.348	37.344	37.341	92.339	37,336	37,334	37,331	37.329	37.326	37.323	37,320	37.316	37,313	37.309	87.299	37,285	87.274	37.264	37.253	37.242	37.230	37.218	212.78	37,219	37.220	87.219	37.217	37.214	37.209	37,205	37.201	37.197	37,191	927, 189	201 106
TIME	:25	22:40	1000	01:	1501	:40	: 22	01:	:23	:40	: 52	01:	:23	:40	: 52	01:	:25	05:	: 55	01:	:25	05:	:52	01:	:23	05:	:22	01:	: 23	65:	222	01:	223	07:	: 222	01:	522	05:	: 52	01:	:25	0.50	200	01:	:22		12.53	200
AV(16	16	16	16	16	91	16	92	92	65	92	92	92	92	626	625	9.2	9.5	92	92	92	92	9.3	92	9.3	92	9.3	92	92	92	9.2	656	6.5	92	63	200	92	92	65	92	92	92	6.5	92	9.2	0.22	6.0	20.00

807

0.27322

0.22535																																									
55225.7853	55227.0846	55529,6535	55230,9825	55232,2818	55233.5811	55234.8804	55236.1797	55937 4790	55238,7783	55546 6776	20242.0002 55041.0760	55243.9755	55245.2748	55246.5741	55247.8734	55249.1727	55250.4720	55253.0706	55254.3699	55255.6692	55256.9685	55958.9678	55260.8664	55262,1657	55263.4650	55264.7643	55266.0636	35208.0022 georg ocoo	55269,9615	55271.2608	55272.5601	55978 RE94	55276.4550	55277.7525	9926,62229	55280.3559	55281.6552	55256.2555 55550 5555	55285.5531	55286.8324	55288.1517
55218.5229	55219.2453	55558.0759	55224,9553	55231,0123	55230.4221	55234.1811	55235,6029	55935 9975	55240,8293	55930 3660	55559.9693	35244.2164 gross oces	55257,5826	55245,8282	55245,0408	55245.6131	55248,5253	55250.0054	55255.0929	55267.3145	55253,8827	55953 8449	55239,6267	55265,5559	55242,6501	55266,5283	55266.5471	1649.0220	55270,4502	55270.8939	55272.8360	56973 8360	55273,6321	55276.4953	55282.0864	55282,3190	55285.8406	55257,6966	28292,5007	55290,7777	55296.2175
0.3677	0.3652	0.3550	0.3651	0.3654	0.3653	0.3646	0.3645	0.3660	0.3643	0.3646	0.3030	0.3622	0.3534	0.3626	0.3611	0.3626	0.3619	0.3631	0.3616	0.3535	0.3621	0.3633	0.3619	0.3610	0.3756	0.3613	0.3610	0.3613	2008.0	0.3608	0.3596	0.3599	0.3605	0.3698	0.3691	0.3603	0.3589	0.33333	0.3692	0.3594	0.3595
20.393	20.190	69.363	70.181	70,208	70.204	70.141	70.138	70 927	70.123	70 143	20.019	69.949	66.556	69.983	69.860	69.982	69.927	70.025	006.69	69.235	69.945	70.040	69.926	69.851	71.621	69.880	69.837	183.69	69.832	288.69	69.741	69 761	69.811	69.836	622.69	262.69	69.683	69.672	69.790	69.724	69.732
	77.654	77.645							* 1	77 599		024.55	024.22	27,448	694.22	77.463	77.443	684.22	77.425	77.423	77.440	77 494	77.428	22.382	628.22		* .	77.304				*	77.313		77.306	77.321	77.357	77.425	22,425		77,485
37.142	37.141	37.143	37.144	37,147	37.147	37.148	37.148	37 149	37,149	37.148	36.1%3	37.143	37.143	37.143	37.143	37.144	37.144	37,146	37.147	37.147	37.148	27 148	37.151	37.152	37.152	37.153	37 154	37.133	37.155	37.155	37.157	37.159	37,160	37,161				37.173			37,182
22:25	22:10	21:40	21:25	21:10	20:55	20:40	20:25	90:10	19:55	19:23	19:10	18:55	18:40	18:25	18:10	17:55	17:40	17:10	16:55	16:40	16:25	10:00	13:40	15:25	15:10	14:55	14:23	14:10	13:55	13:40	13:25	00:01	12:40	12:25	12:10	11:55	11:40	01:11	10:22	10:40	10:25
5.5	0.5	925	26	626	92	600	0.5	000	0.0	220	276	010	92	65	65	65	200	65	92	92	65	000	610	92	92	92	200	010	63	625	65	200	9.2	65	92	625	100	656	66	92	92

CALCULATED LEAK RATE PERCENT/DAY= 0.22535 UPPER CONFIDENCE LEVEL AT 95 PERCENT= 0.27322

THE ZERO TIME INTERCEPT IS 55350.5 LBS AND THE SLOPE -5.197 LBM/HR

JERSEY CENTRAL POWER 8 LIGHT CO. OYSTER CREEK NUCLEAR GENERATING STATION

INTEGRATED CONTAINMENT LEAK RATE TEST *REFERENCE VESSEL METHOD*

REPORT PREPARED SAT, APR 03 1982 STARTING PRESSURE: 37.377 PSIA

						POINT-TO-POINT		TOTAL TIME	
DAY	TIME	PRESSURE	DPRESS.	TEMP.	DEWPOINT	PPLR	TTLR	TTLR	TTLR
2010.0		(PSIA)	(PSID)	(F)	(F)	(MEAS.)	(MEAS.)	(CALC.)	(UCL+95)
91	22:40	37.373	3.152	79.064	73.368	0.28051	0.28051	0.42660	
91	22:55	37.373	3.150	79.071	70.936	9.28051 9.41355 0.39126 0.47071 0.48306 0.51316 0.49417 0.26222 0.39773 0.34872 0.30629 0.26627 0.41400 0.40742 0.27141 0.45119 0.34089	0.34687	0.42596	
91	23:10	37.368	3.148	79.063	72.352	0.39126	0.36169	0.42532	
91	23:25	37.368	3.147	79.039	74.057	0.47071	0.38891	0.42468	
91	23:40	37.366	3.146	79.057	70.605	0.48896	0.40867	0.42404	
91	23:55	37,364	3.144	79.018	74.589	0.51316	0.42609	0.42341	
92	0:10	37.361	3.143	79.015	71.547	0.49417	0.43575	0.42404	
92	0:25	37.360	3.142	78.985	72.757	0.26222	0.41405	0.42341	
92	0:40	37.357	3.141	78.985	72.758	0.39773	0.41221	0.42277	
92	0:55	37.354	3.139	78.988	71.862	0.34872	0.40583	0.42213	
92	1:10	37.352	3.138	78.970	74.125	0.30629	0.39676	0.42149	
92	1:25	37.349	3.136	78.974	72.723	0.28627	0.38752	0.42085	
92	1:40	37.348	3.134	78.940	74.761	0.41400	0.38952	0.42022	
92	1:55	37.344	3.132	78.942	74.630	0.40742	0.39075	0.41958	
92	2:10	37.341	3.131	78.935	75.563	0.27141	0.38276	0.41894	
92	2:25	37.339	3.129	78.911	71 700	0.45119	0.38697	0.41830	
92	2:40	37.336	3.128	78.899	73.742	0.34089	0.38425	0.41766	
92	2:55	37.334	3.127	78.896	73.830	0.47869	0.38946	0.41703	
92	3:10	37.331	3.125	78.886	70.716	0.45569	0.39292	0.41639	
92	3:25	37.329	3.124	78.886	73.129	0.45735	0.39613	0.41575	
92	3:40	37.326	3.123	78.800	82.273	0.48165	0.40017	0.41511	
92	3:55	37.323	3.121	78.821	76.130	0.66515	0.41213	0.41447	
92	4:10	37.320	3.120	78.781	80.001	0.43119 0.34089 0.47869 0.45569 0.45735 0.48165 0.66515 0.22736	0.40408	0.41383	
92	4:25	37.316	3.118	78.776	81.677	0.34549	0.40155	0.41320	
92	4:40	37.313	3.116	78.753	78.330	0.24838	0.39535	0.41256	
92	4:55	37.309	3.113	78.736	66.703	0.31535	0.39330	0.41192	
92	5:10	37.299	3.106	78.660	74.738	1.47061	0.43218	0.41128	
92	5:25	37.285	3.101	78.488	57.839	0.95137	0.45063	0.41064	
92	5:40	37.274	3.098	78.394	71.593	0.47247	0.45145		
92	5:55	37.264	3.095	78.328	74.750	0.58191	0.45175	0.41001	
92	6:10	37.253	3.091	78.201	64.555	0.71456	0.46405	0.40937	
92	6:25	37.242	3.088	78.087	65.220	0.72200	0.47213	0.40809	
92	6:40	37.230	3.084	77.976	69.927	0.72051	0.48148	0.40745	
92	6:55	37.218	3.031	77.864	69.729	0.73221	0.48883	0.40682	
92	7:10	37.217	3.085	77.848	71.356	-0.90026	0.44917		
92	7:25	37.219	3.086	77.845	69.701	-0.12752		0.40618	
92		37.220	3.086	77.845	69.961	0.06273	0.43316 0.42314	0.40554	
	7:40							0.40490	
92	7:55	37.219	3.084	77.879	69.931	0.54561	0.42635	0.40426	
92	8:10	37.217	3.083	77.853	69.834	0.37358	0.42498	0.40363	
	8:25	37.214	3.081	77.816	70.048	0.47567	0.42623	0.40299	
92	8:40	37.209	3.079	77.766	69.969	0.57746	0.42990	0.40235	
92	8:55	37.205	3.078	77.712	69.850	0.39363	0.42902	0.40171	
92	9:10	37.201	3.076	77.655	69.939	0.55991	0.43204	0.40107	
92	9:25	37.197	3.074	77.633	69.661	0.44680	0.43236	0.40044	
92	9:40	37.191	3.073	77.591	69.928	0.46494	0.43174	0.39980	
92	9:55	37.189	3.071	77.560	69.882	0.37478	0.43048	0.39916	
92	10:10	37.126	3.070	77.526	69.876	0.51689	0.43230	0.39852	
92	10:25	37.182	3.069	77.485	69.732	0.23266	0.42813	0.39788	
92	10:49	37.178	3.068	77.473	69.724	0.55991 0.44680 0.46494 0.37478 0.51689 0.23266 0.50303	0.42964	0.39725	

0.42444	
0.39661 0.395633 0.395633 0.395633 0.395633 0.395633 0.395633 0.395633 0.385646 0.386646	
0.424233 0.422453 0.422453 0.422453 0.422453 0.412463 0.41226 0.41226 0.41226 0.41226 0.41226 0.41226 0.394663 0.394663 0.394663 0.394696 0.36227 0.394696 0.36227 0.396227	
0.30938 0.41249 0.412446 0.35511 0.35511 0.35512 0.25526 0.25526 0.21564 0.21564 0.21564 0.21564 0.21564 0.21564 0.21564 0.21564 0.21564 0.21564 0.21564 0.22638	
69.799 69.799 69.7466 69.683 69.783 69.783 69.783 69.783 69.832 69.833	
77. 425 77. 357 77. 357 77. 357 77. 357 77. 356 77. 366 77. 36	
3.5.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
24. 752 25. 1.72 26. 1.25 27. 1.72 27. 1.72 28. 1.73 28. 1.73 28. 1.73 28. 1.73 28. 1.73 28. 1.73 28. 1.73 28. 1.73 28. 1.73 28. 1.7	
10 11 11 12 13 13 14 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	
3 3483888888888888888888888888888888888	

JERSEY CENTRAL POWER & LIGHT CO. OYSTER CREEK NUCLEAR CENERATING STATION

INTECRATED CONTAINMENT LEAK RATE TEST *ABSOLUTE METHOD*

****MASS PLOT ANALYSIS****

	LEAK RATE (UCL+95)																											1.21693
B PSIA	LEAK																											1.16546
STARTING PRESSURE : 36.948 PSIA	AIR MASS	54867,9420	54861.2899	54854,6199	54547.9588	54841.2977	54834,6366	54827,9755	54821.3145	54814,6534	54807.9923	54891,3312	54794.6701	54788.0091	54781,3489	24774.6869	54768.0258	54761.3648	54754.7037	54748,0426	54741.3815	54734.7204	54728.0594	54721.3983	54714,7372	54708.0761	54701,4150	54694.7540
STARTING PRE	AIR MASS	54856,5442	54864,4009	54863.2394	54854.4163	54847,1849	54840,6072	54836.4638	54824,2551	54818.4738	54808.0461	54784.4973	54790.6332	54780.8085	54785,1069	54760.4475	54762.6316	54759.2087	54751.2726	54741.9270	54737.9161	54734,0148	54732,8790	54724.7482	54716.7204	54711.7149	54705,3306	54702.9068
03 1982	VPRESS.	0.3830	0.3740	0.3703	0.3710	0.3720	0.3734	0.3714	0.3748	0.3731	0.3704	0.3804	0.3721	0.3726	0.3691	0.3809	0.3773	0.3733	0.3770	6.3795	0.3780	0.3791	0.3769	6.3795	0.3800	0,3786	6.3794	6.3775
SAT, AFR 03 1982	DEWPOINT (F)	71.594	70.894	20.600	70.657	70.733	658.02	069.02	20.922	70.825	209.02	71.393	70.744	70.785	70.508	71.429	71.134	70.841	71.132	71.320	*	71.289	71.124	71.323	098.17	71,254	71.315	291.12
PREPARED	TEMP.	78.111	78.140	78.150	78.170	78.185	78.189	73.218	78.237	78.258		78.249	78.234		78.279	78.338	78.355	78.403	78.413	78.443	78.492	78.489	78.506	78,523	78.536	78.584	- 1	78.582
REPORT	PRESSURE	36.948	36.946	36.942	36,938						36.918	36.915		36.910	*				668			36.291	36,888	36,885	36.831	36.878	36.876	36,872
	TIME	11:10	11:25		11:55	12:10	12:25	12:49	12:55	13:10	13:25	13:40	6.00	14:10	14:25	14:40	14:55	15:10	15:25	1.5		16:10	16:25	16:40	16:55	01:21	17:25	04:21

CALCULATED LEAK RATE PERCENT/DAY= 1.16546 UPPER CONFIDENCE LEVEL AT 95 PERCENT= 1.21693 THE ZERO TIME INTERCEPT IS 54867.9 LBS AND THE SLOPE -26.644 LBBL/HR

JERSEY CENTRAL POWER 8 LIGHT CO. OYSTER CREEK NUCLEAR GENERATING STATION

INTEGRATED CONTAINMENT LEAK RATE TEST *REFERENCE VESSEL METHOD*

REPORT PREPARED SAT, APR 03 1982 STARTING PRESSURE : 36.948 PSIA

						POINT-TO-POINT	1	TOTAL TIME	
DAY	TIME	PRESSURE	DPRESS.	TEMP.	DEWPOINT	PPLR	TTLR	TTLR	TTLR
		(PSIA)	(PSID)	(F)	(F)	(MEAS.)	(MEAS.)	(CALC.)	(UCL+95)
93	11:25	36.946	2.790	78.140	70.894	1.14732	1.14732	1.14482	
93	11:40	36.942	2.785	78.150	70.600	1.15262	1.15006	1.14430	
93	11:55	36.938	2.782	78.170	70.657	0.89644	1.03556	1.14378	
93	12:10	36.935	2.778	78.185	70.733	1.09649	1.05078	1.14327	
93	12:25	36.932	2.774	78.189	70.849	1.07856	1.05631	1.14275	
93	12:40	36.929	2.769	78.218	70.690	1.09007	1.06188	1.14223	
93	12:55	36.926	2.766	78.237	70.957	1.14304	1.07341	1.14172	
93	13:10	36,924	2.763	78.258	70.825	1.35907	1.10901	1.14120	
93	13:25	36.918	2.757	78.260	70.607	2.32003	1.24336	1.14069	
93	13:40	36.915	2.755	78.249	71.393	1.44092	1.26296	1.14017	
93	13:55	36.913	2.752	78.234	70.744	1.58041	1.29164	1.13965	
93	14:10	36.910	2.750	78.265	70.785	1.01273	1.26829	1.13914	
93	14:25	36.909	2.746	78.279	70.508	0.51015	1.20992	1.13862	
93	14:40	36.907	2.741	78.338	71.429	1.05644	1.19958	1.13810	
93	14:55	36,905	2.737	78.355	71.154	0.84047	1.17554	1.13759	
93	15:10	36,991	2.732	78.403	70.841	1,08633	1.16985	1.13707	
93	15:25	36.899	2.728	78.413	71.132	0.85484	1.15123	1.13656	
93	15:40	36.896	2.723	78.443	71.320	1.03991	1.14494	1.13604	
93	15:55	36.894	2.719	78.492	71.209	0.81328	1.12740	1.13552	
93	16:10	36.891	2.714	78.489	71.289	0.83261	1.11257	1.13501	
93	16:25	36.888	2.710	78.506	71.124	0.90998	1.10283	1.13449	
93	16:40	36.885	2.705	78.523	71.323	0.85941	1.09168	1.13398	
93	16:55	36.881	2.700	78.556	71.360	1.02204	1.08854	1.13346	
93	17:10	36.878	2.696	78.534	71.254	1.01131	1.08522	1.13294	
93	17:25	36.876	2.692	78.598	71.315	1.29070	1.09330	1.13243	
93	17:40	36.872	2.688	78.582	71.167	1.12172	1.09427	1.13191	1.26541

10 × 10