anis, harris (attrict t		Project No.: 9140-67	Calculation No.: CMED-058057
Com	ponent & Materials	Project Name/Station/Unit: Zion Station	Units 1 & 2
Engineering Division		Client: Commonwealth Edison Company	Spec. No.:
X	Safety-Related Non-Safety-Related	Calculation Title/Purpose: The purpose of evaluate the structural integrity and find structural Smoke Det	f this calculation is to and mounting details adequacy tector (PFSD) Sentry Units.
DEV		DESCRIPTION	RESPONSIBILITY DATE
00	ORIGINAL ISSU	E	PREPARER: Attice compour 2/29/ A. H. Bejanpour REVIEWER: M. Hassabaila
	Review Method: D	etail Review	Appropriation to a 10. 29. 1
	Status: Is Input Ve	rified ? X Yes No	M. H Sanwarwalla
	Balass to mpart + v		PREPARER:
			REVIEWER:
	Review Method:		APPROVER:
	Review Michiou.		
	Status: Is Input Ve	rified? LIYes LINO	PREPARER
			REVIEWER:
	Review Method:		APPROVER:
	Status: Is Ir out Ve	erified ? Yes No	
	310103. 10 10/04 11		PREPARER:
			REVIEWER:
	Davian Mathod		APPROVER:
	Keylew Michad.		$\label{eq:states} \left\{ x \in \{1, \dots, n\} : x \in \{1, \dots, n\} \} \right\}$
	Status: Is Input V	erified ? LI Yes LI No	PREPARER:
	940223014 PDR ADOC	6 940211 K 05000295 PDR	R. VIEWER:
	Review Method:		APPROVER:
		Vat No	

Calc. For: S.Q. of Portable SARGENT & LUNDY Sentry Units		table Flame Detector	Calc.No. CMED-058057	
		Sentry Units	Sentry Units	
	ENGINEERS U	X Safety-Related	Non-Safety Related	Page 1 of
Client	Commonwealth	Edison Co.	Prepared by AHBe your	pon Date 12/24/43
Project	Zion Station	Unit(s) 1 & 2	Reviewed be fl. Atm	elily Date 12/29/93
Proj. No.	9140-67	Equip.	Approved by Hannon	wak Date 12.29.93

1.0 PURPOSE

The purpose of this calculation is to evaluate the structural integrity and mounting details adequacy of the Portable Flame and Smoke Detector (PFSD) Sentry Units.

2.0 DESIGN INPUT

All the references listed in Sec. 7.0. The details in the figures shown in the calculation are updated from walkdown dated 11/22/93.

Equipment Data:Portable Flame and Smoke
Detector Sentry UnitsLocation:Aux. Building (Ref. 7.1)Elevation:Anywhere in Aux. Bldg.Classifications:Non-Safety-RelatedModification No(s):N/A

3.0 ASSUMPTIONS

- Aluminum pole material is 6063, T6 or better
- Other assumptions are stated in the calculation, they are conservative and need no further verification.

Background:

Per Ref. 7.1, The sentry portable flame and smoke detector is to replace the existing fire watch. The units can be located anywhere in the auxiliary

Fig. - 4.1

Form 60-3.08.1 Rev.2

	Calc. For: S.Q. of Port	able Flame Detector	Calc.No. CMED-058057
SARGENT & LUNDY	Sentry Units		Rev.00 Date
ENGINEERS	X Safety-Related	Non-Safety Related	Page 2 of
Client Commonwealth	Edison Co.	Prepared by	Date
Project Zion Station	Unit(s) 1 & 2	Reviewed by	Date
Proj No. 9140-67	Equip.	Approved by	Date

1"0x1/8" WASHER-

3/8" # EYEBOLT (TYP)

TH-TO STREW & NUTS

TYPE 304 SS

building. For now, the units temporarily will be placed in the corner of rooms for evaluation of the effectiveness. If the results of the evaluation show that the units are effective the units will be permanently mounted.

Mounting of the unit to fixture (wall or column): The temporary attachment is such that the PFSD can be easily detached from the location of anchor. However, in the case of wall connection

horizontal member of the cart as shown in Figs. 4.2 and 4.3. Two pieces of chain with sufficient length are to be permanently connected to the two eyebolts on the cart. The other end of the chain should have adjustable hook which will be mounted to the wall fixture (i.e. eyebolt). The wall fixture could be $3/8"\phi$ "U" bolt or eyebolt welded to the embedded plate or connected to unistrut using spring nuts, or eyebolt expansion anchor, directly embedded to the wall. In cases where the unit can be used next to a column the chain can be used to anchor the

Fig. 4.2

		Calc. For: S.Q. of Portable Flame Detector		Caic No. CMED-058057
SARGENT & LUNDY		Sentry Units		Rev.00 Date
	ENGINEERB U	X Safety-Related	Non-Safety Related	Page 3 of
Client Comm	onwealth	Edison Co.	Prepared by	Date
Project Zion	Station	Unit(s) 1 & 2	Reviewerf by	Date
Proj. No. 9140	-67	Equip.	Approved by	Date

unit to the column, (i.e. chain from one eyebolt around the column to adjacent eyebolt) no permanent fix will be necessary in this case. Where none of the above options are available the unit can be stand alone without any restraint, provided that the area where the unit may tip over and fall is clear of any equipment that may damage during the seismic event by the fall of portable fire detection unit. In this case the wedge or any other device that can be used to prevent the unit from rolling shall be utilized. Because, if the unit tips over backward the unit will roll forward (see Tip over Analysis).

Structural integrity: Per Ref. 7.1, the structural integrity and mounting details for the subject equipment will be evaluated for the gravity and seismic forces. From Ref. 7.2, the enveloping response spectra for all the elevations in the Auxiliary Building are developed as shown in attachment 2. The peak acceleration from the enveloped response spectra will be used as the seismic accelerations. The maximum seismic acceleration will be calculated by multiplying the peak seismic acceleration by Seismic Amplification Factor ($S_{AF} = 1.5$). The dead loads and seismic forces will be applied through the center of gravity for evaluating the structural integrity of critical links and adequacy of mounting details. The stresses in the critical areas of the equipment will be calculated and will be compared to the allowables (AISC, Ref. 7.6) to show the structural integrity of the equipment.

Note 1: The reaction loads will be calculated at the anchor point to the wall or wall fixture (i.e. unistrut) due to one horizontal and the vertical

	Calc. For: S.Q. of Port	able Flame Detector	Calc.No. CMED-058057
SARGENT & LUNDY	Sentry Units		Rev.00 Date
ENGINEERS	X Safety-Related Non-Safety Related		Page 4 of
Client Commonwealt	h Edison Co.	Prepared by	Date
Project Zion Static	n Unit(s) 1 & 2	Reviewed by	Date
0 No. 9140-67	Equip.	Approved by	Jate

seismic factor and the gravity force.

Acceptance Criteria:

The stresses in the mounting bolts and the weak links will be compared to the allowable stresses shown in the AISC Code (Ref. 7.6), for their acceptability.

Calculations 5.

Form 60-3.08.1 Rev.2

SARGENT & LUNDY ENGINEERS	Sentry Units Sentry Units X Safety-Related Edison co. Unit(s) 1 & 2 Equip $= \frac{2.54}{cm} \qquad in = IL$ $n = \frac{1}{453.582} Ib \qquad psi = \frac{1b}{in^2}$ IES:	Non-Safety RelatedPrepared by Reviewed by Approved byIb = Imft = 12·in $cm = \frac{1}{2.54}$ ·inm = 100·cm	Rev.00 Date Page 5 of Date Date Date Date bate Date kips≡lb·1000 http://documents.org/lb/in²
ENGINEERE Client Commonwealth Project Zion Station Proj. No. 9140-67 Basic Units: GENERAL PROPERT Assuming Sheet Gage Weight of Face Plate f	XSafety-RelatedEdison uo.Unit(s)1 & 2Equip. $\equiv \frac{2.54}{cm}$ in $\equiv IL$ $n \equiv \frac{1}{453.582}$ lb $psi \equiv \frac{1b}{in^2}$ IES:	Non-Safety RelatedPrepared by Reviewed by Approved byIb = Imft = 12·in $cm = \frac{1}{2.54}$ ·inm = 100·cm	Page 5 of Date Date Date Date kips≡lb 1000 ksi≡1000 lb in²
Client Commonwealth Project Zion Station Proj. No. 9140-67 Basic Units: GENERAL PROPERT Assuming Sheet Gage Weight of Face Plate f	Edison up. Edison up. Unit(s) 1 & 2 Equip. $\frac{2.54}{cm} \qquad \text{in = IL}$ $n = \frac{1}{453.582} \text{ lb } \text{psi = } \frac{1b}{\text{in}^2}$ IES:	Prepared by Reviewed by Approved byIb = 1mft = 12·in $cm = \frac{1}{2.54}$ ·inm = 100·cm	Date Date Date Late kips = lb 1000 ksi = 1000 $\frac{lb}{in^2}$
Client Commonwearth Project Zion Station Proj. No. 9140-67 (in Basic Units: gr GENERAL PROPERT Assuming Sheet Gage Weight of Face Plate f	Unit(s) 1 & 2 Equip. $= \frac{2.54}{cm} \qquad \text{in} = 1L$ $n = \frac{1}{453.582} \text{lb} \qquad psi = \frac{1b}{in^2}$ IES:	Reviewed by Approved by Ib = 1m $ft = 12 \cdot in$ $cm = \frac{1}{2.54} \cdot in m = 100 \cdot cm$	Date Date kips = lb 1000 ksi = 1000 $\frac{lb}{in^2}$
Project Z10n Station Proj. No. 9140-67 Basic Units: GENERAL PROPERT Assuming Sheet Gage Weight of Face Plate f	$\frac{2.54}{\text{cm}} \qquad \text{in} = 1\text{L}$ $n = \frac{1}{453.582} \text{lb} \qquad \text{psi} = \frac{1\text{b}}{\text{in}^2}$ IES:	Approved by $lb \equiv 1m$ $ft \equiv 12 \cdot in$ $cm \equiv \frac{1}{2.54} \cdot in$ $m \equiv 100 \cdot cm$	Date kips = lb 1000 ksi = 1000 $\frac{lb}{in^2}$
Proj. No. 9140-67	$= \frac{2.54}{\text{cm}} \qquad \text{in = IL}$ $n = \frac{1}{453.582} \text{lb} \qquad \text{psi} = \frac{1b}{\text{in}^2}$ IES:	lb≡ 1m ft=12·in cm = $\frac{1}{2.54}$ ·in m = 100·cm	kips = lb 1000 ksi = 1000 $\frac{lb}{in^2}$
Basic Units: GENERAL PROPERT Assuming Sheet Gage Weight of Face Plate f	$\equiv \frac{2.54}{\text{cm}} \qquad \text{in} \equiv \text{IL}$ $n \equiv \frac{1}{453.582} \text{ lb} \qquad \text{psi} \equiv \frac{1\text{b}}{\text{in}^2}$ IES:	$b \equiv 1 m$ ft $\equiv 12 \cdot in$ $cm \equiv \frac{1}{2.54} \cdot in$ m $\equiv 100 \cdot cm$	kips = lb 1000 ksi = 1000 $\frac{lb}{in^2}$
GENERAL PROPERT Assuming Sheet Gage Weight of Face Plate f	IES:		
Assuming Sheet Gage Weight of Face Plate f	#18 for Linner Enclosure - thir		
Weight of Upper Enclo Weight of Smoke Dete Weight of Smoke Dete	for Upper Enclosure (fp) : osure (ue) : actor (SD) : actor (SD) :	ckness: $t_{ue} = 0.0516 \text{ i}$ $W_{fp} = 1.75 \text{ lb}$ $W_{ue} = 4.75 \text{ lb}$ $W_{SD} = 0.625$ $W_{FD} = 0.5 \text{ lb}$	n Ref. 7.5
Total Weight of Upper	Enclosure including the device	9S.	
$W_{6} = W_{fp} + W_{ue}$	+ W _{SD} + W _{FD}	W ₆ = 7.625*lb	
Main Enclosure thickn	ess (Sheet Gage #16, Ref. 7.5	i, 7.4): t _E = 0.0625 i	n
Aluminum Pole:			
Outside Diameters (4	sections): i = 1	4 D ₁ = 2.5 in	D ₃ = 2.0 in
		D., = 2.25 in	D ₄ = 1.75 in
Thickness:	$t p = \frac{1}{16}$	n	0.479
Cross-sectional Area	(for each section): $A_i = \frac{\pi}{4} \left[\left(\frac{\pi}{4} \right)^2 \right]$	$\left D_{i} \right\rangle^{2} - \left\langle D_{i} - 2 t_{p} \right\rangle^{2} \right]$	$A = \begin{bmatrix} 0.45 \\ 0.38 \end{bmatrix} \cdot \ln^2$
Moment of inertia:	$I_i = \frac{\pi}{64} \left[\left(D_i \right)^4 - \left(D_i - 2 H_p \right)^4 \right]$	$I = \begin{bmatrix} 0.356 \\ 0.257 \\ 0.179 \\ 0.118 \end{bmatrix} \cdot in^4$	[0.331]
Sectional Modulus:	$\mathbf{S}_{i} = \frac{\pi}{32} \left[\frac{\left(\mathbf{D}_{i} \right)^{4} + \left(\mathbf{D}_{i} - \mathbf{t}_{ip} \right)^{4}}{\mathbf{D}_{i}} \right]$		$S = \begin{bmatrix} 0.119 \\ 0.094 \\ 0.071 \end{bmatrix} \cdot \text{in}^3$

	Calc. For: S.Q. of Port	able Flame Detector	Calc.No.	CMED-0580
SARGENT & LUNDY	Sentry Units		Rev.00	Date
ENQINEERS	X Safety-Related	Non-Safety Related	Page 6	of
Client Commonwealth	Edison Co.	Prepared by		Date
Project Zion Station	Unit(s) 1 & 2	Reviewed by		Date
Proj. No. 9140-67	Equip.	Approved by		Date
Material Properties:				
Weight density: w _d	$A = 2.8 \cdot \frac{\text{gm}}{\text{cm}^3}$	$w_{d,A} = 0.10116 \cdot lb \cdot in^{-3}$		
Mass Density m d	$1.A = \frac{W d.A}{386.4}$	m _{d.A} = 0.0002618*1b*in ⁻³		
Sectional Length: L	= 6·ft L ₂ = 4·ft	$L_3 = 4 \text{ ft}$ $L_4 = 4 \text{ ft}$		
C.G. of each Sec. y ₁	= 3.5 ft y' ₂ = 8 ft	$y'_{3} = 12 \text{ fl}$ $y'_{4} = 16$	ft.	
Ŵ	$= \left(\sum_{i} A_{i} L_{i}\right) \left(w_{d,A}\right)$	W ₅ = 9.03*1b		
	$\sum A_{j}$	$L_i y_i \left(w_{\mathbf{d},\mathbf{A}} \right)$		
Calculating the C.G. o	of aluminum pole: y ₅ = 1	v ₅ = 102	2.079•in	
-		•		
		Weight *	<u>y * dimen</u>	sion see Fig 5.
Weight of Battery (80	00 AMP):	W ₁ = 60-lb	$y_1 \approx 6 in$	
Weight of Backup En	closure and components:	W ₂ = 16 lb	y ₂ = 18 ir	1
Weight of Enclosure	(Item-3):			
$W_3 = (2 ((16 in + 40)))$	in) $9 \cdot in + (16 \cdot in \cdot 40 \cdot in))) \cdot (t_{E} \cdot 0)$	$283 \frac{\text{lb}}{\text{in}^3} \qquad \text{W}_3 = 40.469 \text{·lb}$	$y_3 = \frac{40}{2} i$	n
Weight of Miscellane (Including the two ca	ous items (assumed): ble reels, alarm light, console, wire)	W ₄ = 15-lb	y ₄ = 34 i	n
Weight of Aluminum	Pole from above:	$W_5 = 9.027 \cdot lb$	$y_5 = 102$.	079*in
Weight of upper enc	losure including devises:	W ₆ = 7.625*lb	y ₆ = 17.5	fit.
a swill star whether with				

 $W_7 = 23 \text{ lb}$ $y_7 = \frac{1}{4} 43 \text{ in}$

* Based on approximate measurement and conservative assumptions

Weight of cart and power cord reels:

	Calc. For: S.Q. of Port	able Flame Detector	Calc.No. CMED-058057
SARGENT & LUNDY	Sentry Units		Rev.00 Date
ENGINEERB	X Safety-Related	Non-Safety Related	Page 7 of
Client Commonwealth Edison Co.		Prepared by	Date
Project Zion Statio	n Unit(s) 1 & 2	Reviewed by	Daté
Proi. No. 9140-67	Equip.	Approved by	Date

C.G. of the assembly:

$$Y1 = \frac{\sum_{j} W_{j} y_{j}}{\sum_{i} W_{j}}$$

 $Y2 = \frac{\sum_{i} W_i y_i}{\sum_{i} W_i}$ $Y2 = 14.965 \text{ in } W_{TL} = \sum_{i} W_i$

Y1 = 27.684 · in

C.G. of the cart assembly without pole and upper enclosure:

j = 1..7

i.=1..4

where:

L = total length

C.G. of pole and upper enclosure:

$$Y3 = \frac{W_5 Y_5 + W_6 Y_6}{W_5 + W_6}$$
 Y3 = 151.495*i

Natural Frequency of Aluminum Pole:

Assuming aluminum pole to be uniform beam, one end fixed, the other end free. The uniform load 'w' per unit length plus an end load "W'

Per Ref. 7.8, page 576, case 3c, the natural frequency can be calculated from formula shown below:

$$f_1 = \frac{1.732}{2.\pi} \sqrt{\frac{E \cdot I \cdot g}{W \cdot L^3 + 0.236 \cdot w \cdot L^4}}$$

 $L_1 = \sum_i L_i$ I = area moment of inertia

where:
L = total length
$$L_t = \sum_{i} L_i$$
 I = area moment of inertia $I_m = \frac{\sum_{i} L_i}{L_t}$
E = modulus of elasticity (Ref. 7.4) E = 10.6 10⁶ psi w = uniform load per unit length wp = $\frac{W_5}{L_s}$

 $W_6 = 7.625 \cdot lb$

4

57. .

 $g = gravitational acceleration = 386.4 \frac{in}{sec^2}$

W = end load [(Upper Enclosure) + (Smoke & Flame Detector)]:

$$L_{t} = 216^{4} \text{in}$$

$$I_{m} = 0.242^{4} \text{in}^{4}$$

$$f_{1} = \frac{1.732}{2 \cdot \pi} \sqrt{\frac{E \cdot I_{m} \cdot g}{W_{6} \cdot L_{1}^{-3} + 0.236 \cdot \text{wp} \cdot L_{1}^{-4}}}$$

$$f_{1} = 0.875^{4} \text{sec}^{-1}$$

Form GQ-3.08.1 Rev.2

		Calc. For: S.Q. of Portable Flame Detector		Calc.No. CMED-058057			
SARGENT & LUNDY		Sentry Units		Rev.00	Date		
		X	Safety-Related		Non-Safety Related	Page 8	of
Client	Commonwealth	Edis	on Co.	Pr	epared by		Date
Project	Zion Station	Unit	(s) 1 & 2	Re	viewed by		Date
Proj. No.	9140-67	Equip	j.	Ap	proved by		Date
Proj No.	9140-07	Equi),				

The following are maximum accelerations applicable to Aux-Turb-D.G. Building:

OBE 0.5% damping		
OBE Vert. Per Ref. 7,2, p. 6	aov = 0.06	(g)
OBE Horiz.Per Ref. 7.2:	aoh = 2.1	(g)
SSE 2% damping		
SSE Vert. Per Ref. 7.2, p. 6	asv =0.12	(g)
SSE Horiz.Per Ref. 7.2,	ash = 2	(g)
Use amplification factor of (1.5): $S_{AF} = 1.5$		
ax = S AF max(aoh ash)	ax = 3.15	(g)
ay = S_{AF} max(aov asv) + 1	ay = 1.18	(g)
$az = S_{AF} max(aoh ash)$	az = 3.15	(g)

and the second state

See Attachment "2" Enveloped Response Spectra

Per Ref. 7.2, p 7, "The direction of the earthquake motion can be <u>parallel to either of the principal axes</u> of the equipment and/or equipment supports. The direction causing the most severs combination of stresses shall be used for design."

In this case the horizontal accelerations are the same for either directions, therefore, the results will be the same also. The C.G. of the whole assembly is approximately in the same highs as the location of the eyebolt.

$WT = \sum_{j} W_{j}$	WT = 171.121+lb	Ć		
Eyebolt diameter:	d ₁ = 0.375 in	Was	ther 5	houlder nut eyebolt
Stress Area:	At $1 = 0.0773 \cdot in^2$	Fig.	5.2	Fig. 5.2a
Shear Area:	$As_1 = 0.0678 \text{ in}^2$			F-1
a = 45-deg	de = 0.375 in			EL A A
Seismic force could be F1 or F2 or F3	3	F=F1=F2=F3		F2
F = ax-WT (1 eyebolts in each	side)	F = 539 033-1b		A FI
$F_t = F \sin(a)$		$F_1 = 381.154 \cdot b $		Fig E 2h
$F_{\mathbf{S}} = F \cdot \cos(\alpha)$		F _s =381.154*lb	ę	F F
assuming: b = 1.75 in		de1 = 0.25-in		Tr s
$M=2 \text{ f} \text{ del}$ $f=\frac{M}{2 \text{ del}}$ $M = F_s \text{ b}$	$f = \frac{M}{2 \cdot de1}$	f = 1334.038*lb		
Note: M will be slightly smaller than	M = Fsb -Ft(e*)		Fig. 5.2c	den

	Calc. For: S.Q. of Porta	ble Flame Detector	Calc.No. CMED-058057
SARGENT & LUNDY	Sentry Units		Rev.00 Date
ENGINEER8	X Safety-Related	Non-Safety Related	Page 9 of
Client Commonwealth	Edison Co.	Prepared by	Date
Project Zion Station	Unit(s) 1 & 2	Reviewed by	Date
Proj. No. 9140-67	Fouip.	Approved by	Date
$\sigma = \frac{F_1 + f}{At_1} = \sigma$	= 22.189 •ksi < 20 ksi	$\left(\frac{4}{3}\right) = 26.667 \text{ ksi}$ (Ref. 7.6- ass	suming A307 material)
$\pi = \frac{F_s}{As_1}$	τ = 5.622 •ksi < 10 ksi	$\left(\frac{4}{3}\right) = 13.333 \text{ ksi}$	
$\frac{4}{3} \cdot 26 \cdot ksi - 1.8$	$t = 24.548 \text{*ksi} > \sigma = 22.$	189 *ksi (Ref. 7.6- assuming	A307 material)
Chain Connection to	the Wall.		
Per Ref. 7.7,	Trade Size	Work Cat. No. Load Limits	-
Type 304 Stainless St	eel Chain 3/16"	3392T29 1200-16)	Recommended
Passing Link Chain	400.219"	3596T16 600-lb)	>* F = 539,033*10
* Using one chain in	each side of the cart	1"#x1/8" WASHER-	- WASHER AND LOCK WASHER
Chain can be perman to the cart and in the temporary (adjustable to Unistrut eyebolt / E	ently bolted or welded at one er other end can be attached e hook) or permanently (weld, el xpansion Anchor eyebolt, etc.).	nd TYPE 304 SS CHAIN tc.) 3/8"¢ EYEBOLT (TYP)	
Unistrut: the capa	city per Ref. 7.11	-05-	
Type Span	Load Capacity	1/4-30 SCREW & RUTS	
P1000 24"	1690 lb 0.5 = 845*lb *	539.033•lb	
P3000 24"	1330 lb-0.5 = 665•lb)	0 Jun	
* safety factor			
A 3/8"Ø eyebolt attache other suggestion is a 3/1 directly to the wall.	d to the unistrut can be used to 8"Ø eyebolt expansion anchor, a	provide connection for the cha as shown in Fig. 4.4, Detail -2,	ain's adjustable hook. The that may be mounted
Per Ref. 7.9, 3/8" Wedg capacity for 1 5/8" EMB	e Type Expansion Anchors can = 2328*Ibs tension and 4767 Ib	be used <u>recommended effec</u> s shear.	tive embedded length is 3",
F tension = o At 1	F tension = 1715.192+lb	These loads for Expansio by 30% for conservatism	n Anchor will be increased and will be given to the
F shear = t As 1	F shear = 381.154*lb	SED if it is requested.	
$F_{exp-tens} = (1.3) \cdot F_{te}$	ension F exp.tens = 2229.749*1b	$F_{exp.shr} = (1.3) \cdot F_{shear}$	$F_{exp.shr} = 495.5 \text{+lb}$

3/8" expansion is adequate.

	Calc. For: S.Q. SF	Portable Flame Deter	ctor	Calc.No. CMED-058
SARGENT & LUNDY	Sentry Units			Rev.00 Date
ENGINEERB	X Safety-Related	Non-Safety Re	lated	Page 10 of
client Commonwealth	Edison Co.	Prepared by		Date
Project Zion Station	Unit(s) 1 & 2	Reviewed by		Date
Proj. No. 9140-67	Equip.	Approved by		Date
Upper Box Face Plate	Details:			
Plate Dimension:	8.0" x 12.0" (Ref. 7.5)	h = 12 in w = 8	in	
Thickness:		$t_{ue} = 0.052 \cdot in$		
Weight of Face Plate	+ component:			
W _{fp} = 1.75•lb	W _{SD} = 0.625*Ib	W _{FD} = 0.5*lb		
W _{pt} = W _{fp} + W	SD + W FD	W pt = 2.875*1b		
For conservatism in th	ne analysis, assume the e	eccentricities to be as:		
ex =0. in	ey = 3 in	ez = 2 in		
Seismic & Dead Loa	ds:			
Forces:	Fx = W _{eff} ax	Fx = 9.056*1b		
	Fy = W pt ay	Fy = 3.392*Ib		
	$F_Z = W_{pt} az$	Fz = 9.056°1b		
Moments:				
	Mx = Fy ez + Fz ey	Mx = 33.954+lb+in		
	My = Fx ez + Fz ex	My = 18.113*lb*in		
	Mz = Fy ex + Fx ey	Mz = 27.169*1b*in		
Screw: Per Re	f. 7.5 #5 screws are use	d		Y_ c +
Screw diameter (F	Ref. 7.4): d =	0.125-in	0	° T
Tensile Stress Area	(Ref. 7.4): A 5.1	= 0.0079 in ²		ez h
Shear Area (Ref.)	7.4): A _{5.s}	= 0.0067 in ²		
see Fig 5.3	1	25 in	0	0
conservatively	h = 5	in	L	
assuming				

	Calc. For: S.Q. of Portal	ble Flame Detector	Calc.No	CMED-058057
SARGENT & LUNDY	Sentry Units		Rev.00	Date
ENGINEERB	X Safety-Related	Non-Safety Related	Page 1	1 of
lient Commonwealth	Edison Co.	Prepared by		Date
Project Zion Station	Unit(s) 1 & 2	Reviewed by		Date
Proj. No. 9140-67	Equip.	Approved by		Date

 $I_{yy} = 0.334 \cdot in^4$ $I_{zz} = 1.124 \cdot in^4$

$$1_{zz} = 1_{xx} + 1_{yy}$$

 $I_{\overline{yy}} = 4 \left(A_{\overline{5},t} \, c^2\right)$

Stresses in Screw:

$$\sigma_{5} = \frac{Fz}{(4 \cdot A_{5,t})} + \frac{Mx \cdot h}{1_{xx}} + \frac{My \cdot c}{1_{yy}}$$

$$\sigma_{5} = 677.85054 \text{ *psi}$$

$$\sigma_{5} = 677.85054 \text{ *psi}$$

$$\sigma_{5} = 505.025 \text{ *psi}$$

Allowable Stresses:

Screw material is assumed to be A-307. Per Ref. 7.6, Table 1.5.2.1, the Allowable Stresses on Fasteners with A-307 material are:

Allowable Tension:	$F_1 = 20$ ksi	>	σ ₅ =0.678 ∗ksi
		_	
Allowable Shear :	$F_{\rm eff} = 10$ ksi		$t_{5} = 0.505 \text{ ksi}$

Therefore, the 4 # 5 screws are adequate to withstand the seismic loading and are sufficient to mount the face plate for upper enclosure.

Checking the Mounting of Flame and Smoke Detector:

(The Smoke and flame detector, both have a similar mounting details evaluating the mounting details for smoke detector envelop the other)

For conservatism in the analysis, assume the eccentricities to be as:

ex -	i. in	cy = 1 in	62. – 5·m
Weight of Smoke Detecto	r assumed:	W _s = 1 lb >	W _{SD} = 0.625*1b
Seismic & Dead Loads:	Forces:	$Fx = W_{s}ax$	Fx = 3.15*lb
		Fy = W _s , ay	Fy = 1.18*lb
		Fz = W , az	Fz = 3.15+1b

	Calc. For: S.Q. (of Portable Flame Det	ector	Calc.No.	CMED-058057
SARGENT & LUNDY	Sentry Units			Rev.00	Date
ENGINEENS U	X Safety-Relate	ed Non-Safety	Related	Page 12	2 of
Client Commonwealth	Edison Co.	Prepared by			Date
Project Zion Station	Unit(s) 1 & 2	Reviewed by			Date
Proj. No. 9140-67	Equip.	Approved by			Date
Moments: Mx = F My = F Mz = F Screw: Per Ref. 7. Screw diameter Tensile Stress Area Shear Area see Fig. 5.4, conservatively assuming	$y \cdot ez + Fz \cdot ey $ $x \cdot ez + Fz \cdot ex $ $y \cdot ex + Fx \cdot ey $ $(Ref. 7.4): $ $d_{5} = 0$ $(Ref. 7.4): $ $A_{5.8}$ $\begin{pmatrix} e = 1.5 \\ de2 = 0 \end{pmatrix}$	x = $6.69 \cdot 1b \cdot in$ y = $12.6 \cdot 1b \cdot in$ z = $4.33 \cdot 1b \cdot in$ d 0.125 · in = $0.0079 \cdot in^2$ = $0.0067 \cdot in^2$ 5 · in 4 · in	ex ex	cy cy	-↓× de2
Moment of Inertia:	$1_{\mathbf{y}\mathbf{y}} = 2 \cdot \left(\mathbf{A}_{5,\mathbf{t}} \mathbf{c}^{\mathbf{z}} \right)$	I _{yy} = 0.036*in*	Fig 5	4	-
$\sigma_5 = \frac{Fz}{(2 A_{5,t})} + \frac{\frac{M}{2 \cdot d}}{A_5}$ $\sqrt{Fx^2 + Fy^2} = \frac{M}{2}$	$\frac{x}{\frac{c^2}{5.t}} + \frac{My \cdot c}{I_{yy}}$ $\frac{dz}{1 \cdot c}$	σ ₅ = 836.86709 *psi			

on Fasteners with A-307 material are:

Allowable Tension: $F_t = 20 \text{ ksi}$ $\sigma_5 = 0.837 \text{ ksi}$ Allowable Shear : $F_v = 10 \text{ ksi}$ $\tau_5 = 0.466 \text{ ksi}$

Therefore, the 2 # 5 screws are adequate to withstand the seismic loading.

Checking 1/4" screw holding the upper enclosure to pipe clamps: (see Fig 5.1)

For conservatism in the analysis, assume the eccentricities to be as:

 $e_X = 1 - in$

ey = 3 in

ez = 3.5 in

	Calc. For: S.C	Calc. For: S.Q. of Portable Flame Detector			Calc.No. CMED-058057	
SARGENT & LUND	Sentry Unit	S			Rev.00	Date
ENGINE	X Safety-Re	ated	Non-Safety R	elated	Page 13	of
Client Commonwea	alth Edison Co.		Prepared by			Date
Project Zion Stat	tion Unit(s) 1 &	2	Reviewed by			Date
Proj. No. 9140-67	Equip.		Approved by			Date
Weight of Uppe Seismic & Dea	er Enclosure: Id Loads:	W ₆ = 7.62	5•1b			
Faranci	Fw - W .av	Fx = 24.0	19*lb			
Forces.	r a mont	$E_{\rm V} = 2.00$	7.16			
	$\mathbf{r}\mathbf{y} = \mathbf{w}_6$ ay	Ey = 0.39	10.15			
	Fz = W ₆ az	PZ = 24.0	19-10			
Moments:	$Mx_{\rm c}=Fy_{\rm c}ez_{\rm c}+Fz_{\rm c}ey_{\rm c}$	Mx = 103	548*lb*in			
	$My = Fx \cdot ez + Fz \cdot ex$	My = 108	.084•1b•in			
	$M_{Z} = Fy \cdot ex + Fx \cdot ey$	Mz = 81.(054*lb•in			
Screw: Pe	er Ref. 7.5 1/4"-20 scre	ws are used				
Screw diame	ter (Ref. 7.4): d	= 0.25 in				
Tensile Stres	s Area(Ref. 7.4): A	c = 0.0317 in	2			
Shear Area (Ref. 7.4):	c.s = 0.0269 in	n ²			
see Fig.5.	5 & 5.1 d	s ₁ = 0.375·in y ₁ = 2·in				
Moment of	Inertia: $I_{XX} = 2 \cdot (A$	$et^{dy} 1^2 $ 1	xx = 0.254*in ⁴		dx ₁ y	
Stresses in	Screw:				H	
$\sigma_{c} = \frac{Fz}{(2 \cdot A_{c})}$	$\frac{1}{\frac{1}{2}} + \frac{Mx \cdot dy}{1}_{XX} + \frac{\frac{My}{dx}}{2 \cdot A}_{c.t}$	o	c = 5.7416 *ksi	dy1		×
$\tau_{c} = \frac{\sqrt{Fx^2}}{2A}$	$\frac{Fy^2}{c.s} + \frac{Mz \cdot dy}{I_{xx}}$	1	e = 1.116*ksi		•	
				Fig. 5.5 (s enclosure	crews hold to pipe cla	ing upper mp)

Form GQ-3.08.1 Rev.2

1.1

	Calc. For: S.Q. O	f Portable Flame D)etector	Calc.No.	CMED-0580
SARGENT & LUNDY	Sentry Units		Rev.00	Date	
ENGINEERIN	X Safety-Relate	d Non-Safe	ty Related	Page 1	4 of
Client Commonwealth	Edison Co.	Prepared by			Date
Project Zion Station	Unit(s) 1 & 2	Reviewed by			Date
Proj. No. 9140-67	Equip.	Approved by			Date
			ada anis e sa di estre e e	an an ann an thatair a' su an an Anna	
Allowable Stresse	5:				
Screw material is ass on fasteners with A-3	sumed to be A-307. F 307 material are:	Per Ref. 7.6, Table 1.5.2.	1, the Allowa	ble Stresses	
Allowable Tension:	$F_t = \left(\frac{4}{3}\right) \cdot 20 \text{ km}$	$F_1 = 26.667 \cdot k_{si}$ >	σ _c = 5.742 •	ksi	
Allowable Shear :	$F_{v} = \left(\frac{4}{3}\right) \cdot 10 \text{ ksi}$	$F_v = 13.333 \text{ ksi}$ >	t _c = 1.116 4	csi	
Therefore, the (2) 1/	4"-20 screws are adeo	quate to withstand the se	ismic loading		
Checking 1/4" screy	w holding the Alumin	um Pole to Cart:			
Weight:	WA = W _z +	WA = 16.653	2•1b		
Eccentricities					
Locentromes.	1 / 13.5			3.5 in W ₆	m = 1.607ali
ex = 0-in ey	$= \left Y_3 - \left(\frac{15.5 + 2}{2} \right) \right $		ez	WA	EZ - 1.005-1
k =12	ax, =0 ax, =3.15	az, =3.15 az, =()		
Seismic & Dead L	oads: Seismic force a direction + vert	acting in only one horizon	ital ax = $\begin{pmatrix} 0\\ 3 \end{pmatrix}$	az = (0
Forces: F	x = WA ax	$Fx^{T} = (0 52.455) lb$			
F	y = WA-ay	Fy = 19.65•1b			
F	z = WA-az	Fz ^T = (52.455 0)1b			
Moments: N	dx = Fy ez + Fz ey	Mx ^T = (6811.083 31	.491)lb•in		
Ν	dy =Fx ez + Fz ex	My ^T = (0 84.066)1	o* in		
Ν	Az = Fy·ex + Fx·ey	$Mz^{T} = (0 \ 6780) lb^{*}$	in		
Screw: Per R	Ref. 7.5 1/4"-20 screw	rs are used		d×1	Y
Screw diameter	(Ref. 7.4): d _c = 0.3	25 in		1+0	0.75" *
Tensile Stress Are	ea (Ref. 7.4); A _{c.t} = (0.0317-in ²		dy	×
Shear Area (threa excluded from sh	ads are ear planes) A _{c.s} =	$\frac{\pi}{4} \cdot d_c^2 \qquad A_{c.s} = 0.$	049*in ²	Te	
see Figs. 5.6 & 5	.1 dx 1 = 0	0.375 in $dy = \frac{13.5}{2}$	in S	0.7	·5*

Calc. For: S.Q. of Port	table Flame Detector	Calc.No. CMED-05805
SARGENT & LUNDY Sentry Units	Sentry Units	
ENGINEER6 U X Safety-Related	Non-Safety Related	Page 15 of
Client Commonwealth Edison Co.	Prepared by	Date
Project Zion Station Unit(s) 1 & 2	Reviewed by	Date
Proj. No. 9140-67 Equip.	Approved by	Date

Moment of Inertia: $I_{XX} = 2 \left(A_{c,t} dy^2\right) = I_{XX} = 2.889 \cdot in^4$

Stresses in Screw:

0

$$A = \frac{Fz}{(2 \cdot A_{c,t})} + \frac{Mx \cdot dy}{I_{xx}} + \frac{My}{2 \cdot A_{c,t} \cdot dx_{1}} \qquad \sigma_{A} = \begin{pmatrix} 16.74298\\ 3.60947 \end{pmatrix} \cdot ksi$$

$$\tau_{A_{k}} = \frac{\sqrt{\left(Fx_{k}\right)^{2} + \left(Fy\right)^{2}}}{2 \cdot A_{C,S}} + \frac{Mz_{k} \cdot dy}{\Gamma_{XX}} \qquad \qquad \tau_{A} = \begin{pmatrix} 0.2\\ 16.413 \end{pmatrix} \cdot ksi$$

Allowable Stresses:

Screw material is assumed to be A-307 Per Ref. 7.6, Table 1.5.2.1, the Allowable Stresses on Fasteners with A-307 material are:

Allowable Shear when threads are excluded from shear plane: F = 60 ksi 0.22

 Allowable Tension:
 $F_t = \frac{4}{3} \cdot 20 \cdot ksi$ $F_t = 26.667 \cdot ksi$ $\sigma_A = \begin{pmatrix} 16.743 \\ 3.609 \end{pmatrix} \cdot ksi$

 Allowable Shear:
 $F_v = \frac{4}{3} \cdot F_v$ $F_v = 17.6 \cdot ksi$ $\sigma_A = \begin{pmatrix} 0.2 \\ 16.413 \end{pmatrix} \cdot ksi$
 $\sigma_{al_k} = min \left(\frac{4}{3} \cdot 26 \cdot ksi - 1.8 \cdot \tau_{A_k} \cdot F_t\right)$ $\sigma_{al} = \left(\frac{26.667}{5.124}\right) \cdot ksi$ $\sigma_A = \left(\frac{16.743}{3.609}\right) \cdot ksi$

Therefore, the (2) 1/4"-20 screws are adequate to withstand the seismic loading.

Checking Clamp for Bending:

Clamp Thickness & width:

t p2c = 0625 in b pc = 1.25 in

 $\max(\sigma_{pc}) = 20.143 \text{ -ksi}$

$$\frac{Fx + 1.25 \text{ in}}{2.2 \left(\frac{b \text{ pc}^{-1} \text{ p2c}}{2.2 \text{ c}^{-1}}\right)}$$

 $max(\sigma_{pc}) = 20.143$ ksi < 36 ksi 0.9 = 32.4 ksi

Fig. 5.7

0

	Calc. For: S.Q. of Por	table Flame Detector	Calc.No. CMED-058057
SARGENT & LUNDY	Sentry Units		Rev.00 Date
ENGINEERS	X Safety-Related	Non-Safety Related	Page 16 of
Client Commonwealth	n Edison Co.	Prepared by	Date
Project Zion Station	1 Unit(s) 1 & 2	Reviewed by	Date
Proj. No. 9140-67	Equip.	Approved by	Date

Checking Aluminum Pole:

$$\sigma_{Ap} = \frac{Fy}{A_1} + \frac{Mx \cdot \frac{D_1}{2}}{I_1} + \frac{Mz \cdot \frac{D_1}{2}}{I_1} \qquad \max(\sigma_{Ap}) = 23.978 \cdot ksi$$
$$\max(\sigma_{Ap}) = 23.978 \cdot ksi$$
$$\max(\sigma_{Ap}) = 0.11 \cdot ksi$$

Yield for the assumed Aluminum (6063, T6) from Ref. 7.4: Sy Ap = 31-ksi

S allow Ap = Sy Ap 0.9 S allow Ap = 27.9 ksi $\rightarrow max(\sigma_{Ap}) = 23.978$ ksi

Checking the mounting of Main Enclosure to Cart: Weight: WE = WT - W₇ WE = 148.121 · Ib

calculating the bolt center: $y_1 = 13.5$ in $y_3 = 13.5$ in $y_2 = 13.5$ in $y_4 = 0$ in

 $Y = \frac{1}{4}$ Y = 10.125 in

Eccentricities:

0X	= 0 in	¢Z	= 4.5 in
ey	= Y1 - Y	ey	=17.559+in

Seismic & Dead Loads:

Forces:	Fx = WE ax	$Fx^{T} = (0 \ 466.583) lb$
	Fy = WE dy	Fy = 174,783*lb
Moments:	Fz = WE az Mx = Fy ez + Fz ey	Fz ^T = (466.583 0) lb Mx ^T = (8979.447 786.525) lb*i
	My = Fx ez + Fz ex	$My^{T} = (0 \ 2099.622) lb \cdot in$
	Mz = Fy ex + Fx ey	Mz ^T =(0 8192.922)lb*in

	Calc. For: S.Q. Of	Portable Flame Detec	tor Ca	IC.NO. CMED-0580:
SARGENT & LUNDY	Sentry Units		Rev	.00 Date
ENGINEERB U	X Safety-Related	Non-Safety Rel	ated Pag	je 17 of
Client Commonwealth	Edison Co.	Prepared by		Date
Project Zion Station	Unit(s) 1 & 2	Reviewed by		Date
Proj. No. 9140-67	Equip.	Approved by		Date
Per Ref 7 5 1/4"-20	crews are used			
1011101.1.0 114 -20		1		
Screw diameter	(Ref. 7.4):	$a_c = 0.25 \text{ in}$		
Tensile Stress Area	(r(e), 7,4).	A 0.1 -0.0317-m		
Shear Area (Re	f. 7.4):	$A_{c.s} = 0.0269 \text{ in}^{*}$	-dx-y	
$d\boldsymbol{y}_1 = \begin{bmatrix} \boldsymbol{y}_1 - \boldsymbol{Y} \end{bmatrix}$	dy ₁ = 3.375*in	$dx_1 = 3.75$ in dy_1	U dy	3 dy2
$dy_2 = y_2 - Y $	dy ₂ = 3.375*in	dx ₂ = 3.75 in	B.C. dy	×
$dy_3 = y_3 - Y $	dy ₃ = 3.375*in	dx ₃ =0-in	ϕ^{-1}	40 anse
$d\boldsymbol{y}_{\boldsymbol{4}} = \begin{bmatrix} \boldsymbol{y}_{\boldsymbol{4}} - \boldsymbol{Y} \end{bmatrix}$	dy ₄ = 10.125*in	dx ₄ = 0 in		
Moment of Inertia:	$I_{\mathbf{X}\mathbf{X}} = \sum_{i} A_{\mathbf{c},\mathbf{f}} \left(dy_{i} \right)^{2}$	$1_{XX} = 4.333 \cdot in^4$		
	1	·	Fig. 5.8	
	$f_{yy} = \sum_{i} A_{c,t} (dx_i)^{-1}$	$1_{yy} = 0.892 \text{ in}$		
Stresses in Screw:	1			
$R_{i} = \sqrt{\left(dy_{i}\right)^{2} + \left(dx_{i}\right)^{2}}$		max(R) = 10.125*1	n	
$\sigma_{E} = \frac{Fz}{\left(4 \cdot A_{c,t}\right)} + \frac{Mx \cdot t}{C}$	$\frac{\max(dy)}{I_{xx}} + \frac{My \max(dx)}{I_{yy}}$	$\sigma_{\rm E} = \begin{pmatrix} 24.662\\ 10.669 \end{pmatrix} *ks$	i.	
$\tau_{E_{k}} = \frac{\sqrt{\left(Fx_{k}\right)^{2} + (Fy)^{2}}}{4 \cdot A_{c,s}}$	$\frac{1}{1} + \frac{Mz_k \cdot max(R)}{I_{xx} + I_{yy}}$	$\tau_{\rm E} = \left(\frac{1.624}{20.508}\right) * \rm ks$	Ĩ	
Allowable Stresse	s:			
Screw material is ass on Fasteners with A-	umed to be A-307. Per 307 material are:	Ref. 7.6, Table 1.5.2.1, the	Allowable Stre	esses
		13	4 662	

Allowable Shear: $F_{v} = \frac{4}{3} (10 \text{ ksi})$ $F_{v} = 13.333 \text{ ksi} > \tau_{E} = \begin{pmatrix} 1.624 \\ 20.508 \end{pmatrix} \text{ ksi}$ $\sigma_{E.al_{k}} = \min \begin{pmatrix} \frac{4}{3} \cdot 26 \text{ ksi} - 1.8 \tau_{E_{k}} F_{t} \end{pmatrix} \sigma_{E.al} = \begin{pmatrix} 26.667 \\ -2.248 \end{pmatrix} \text{ ksi} > \sigma_{E} = \begin{pmatrix} 24.662 \\ 10.669 \end{pmatrix} \text{ ksi}$

Therefore, the (4) 1/4"-20 screws are adequate to withstand the seismic loading.

	Calc. For: S.Q.	of Porta	ble Flame Detector	Calc. No. CMED-05805	
SARGENT & LUNDY	Sentry Units		Rev.00 Date		
ENGINEERS	X Safety-Related		Non-Safety Related	Page 18 of	
Client Commonwealth	Edison Co.		Prepared by	Date	
Project Zion Station Unit(s) 1 & 2			Reviewed by	Date	
Proj No. 9140-67	Equip.	Approved by		Date	
Total aveignt for Lower L	anorodono (tese).	" IL '	2		
Tip Over Analysis:					
Horizontal Acceleration:		ax ₂ = 3.1	5		
Horizontal Force on C.G. of LE		Fh = W T	L'ax2		
		Fh = 414	127+ib		
Vertical Force on C.G. of LE:		Fv = W T	L ^{ay}	+	
		Fv = 155	133*lb		
		a =atan	$\frac{Fv}{Fh}$	-Q	
C.G. for LE: Y2 = 1	4.965•in use 15"	a = 20.53	6 •deg	0	
			WEDGE	Seismic Motion	

70°>31° Therefore, the unit may tip over or roll or roll and tip over because the direction of the earthquake motion is reversible and the extension of the resultant force as shown in the Fig. 5.10 falls outside the perimeter of the unit's base.

To prevent the rolling of the unit devises such as wheel wedge may be used .

Fig. 5.9

SARGENT & LUNDY		Calc. For: S.Q. of Por	Calc.No. CMED-058057 Rev.00 Date		
		Sentry Units			
	ENGINEERS	X Safety-Related	Non-Safety Related	Page 1	9 of
Client	Commonwealth	Edison Co.	Prepared by		Date
Project	Zion Station	Unit(s) 1 & 2	Reviewed by D		Date
Pro. No	9140-67	Equip.	Approved by		Date

6.0 CONCLUSIONS

The structural integrity and mounting details as shown in Fig. 4.2 and 4.3, for subject portable fire detection has been evaluated and found to be acceptable per Zion Station requirements.

7.0 REFERENCES

- 7.1 CMED-057954, meeting notes "Qualification of Portable Flame Detector Sentry Units to be installed at Zion Station" dated 07/13/93.
- 7.2 Seismic Design Criteria for Zion Station DC-SE-002-ZI, Rev. 03, Dated 06-03-91.

7.3 Faxed information from POEM Lighting Company, dated 07/12/93.

- 7.4 Marks' Standard Handbook for Mechanical Engineers, 8th Edition
- 7.5 Field walk_down information, dated 9/13/93 (updated on 12/22/93).
- 7.6 AISC, Manual of Steel Construction 8th Edition.
- 7.7 McMASTER-CARR Supply Co., Catalog 92. (attached)
- 7.8 Formulas for Stress and Strain Fifth Edition, Roark and Young, McGraw Hill.

7.9 SED file No. DC-SE-01-CE, Rev. 2, dated 04/29/81

7.10 Not used

		Calc. For: S.Q. of Portable Flame Detector		Calc.No. CMED-058057	
SARGENT & LUNDY		Sentry Units	Rev.00 Date		
	ENGINEERS	X Safety-Related	Non-Safety Related	Page 2	0 of Final
Client	Commonwealth	Edison Co.	Prepared by		Date
Project	Zion Station	Unit(s) 1 & 2	Reviewed by		Date
Peni No	9140-67	Equip.	Approved by		Date

7.11 Unistrut General Engineering Catalog No. 10R

8.0 ATTACHMENTS

8.1 Meeting Note Ref. 7.1

8.2 Walk_down Information Ref. 7.5

8.3 Enveloped Response Spectra for Aux. Building.

8.4 Faxed information From POEM Lighting Company Ref. 7.3

- end -