3/4.4 REACTOR COOLANT SYSTEM

BASES

3/4.4.1 REACTOR COOLANT LOOPS AND COOLANT CIRCULATION

The plant is designed to operate with all reactor coolant loops in operation, and maintain DNBR above 1.73 during all normal operations and anticipated transients. With one reactor coolant loop not in operation, THERMAL POWER is restricted to < 38 percent of RATED THERMAL POWER until the Overtemperature ΔT trip is reset. Either action ensures that the DNBR will be maintained above 1.73. A loss of flow in two loops will cause a reactor trip if operating above P-7 (10 percent of RATED THERMAL POWER) while a loss of flow in one loop will cause a reactor trip if operating above P-7 (10 percent of RATED THERMAL POWER) while a loss of flow in one loop will cause a reactor trip if operating above P-8 (39 percent of RATED THERMAL POWER).

In MODE 3, a single reactor coolant loop provides sufficient heat removal capability for removing decay heat; however, single failure considerations require that two loops be OPERABLE.

In MODES 4 and 5, a single reactor coolant loop or RHR loop provides sufficient heat removal capability for removing decay heat; but single failure considerations require that at least two loops be OPERABLE. Thus, if the reactor coolant loops are not OPERABLE, this specification requires two RHR loops to be OPERABLE.

The operation of one Reactor Coolant Pump or one RHR pump provides adequate flow to ensure mixing, prevent stratification and produce gradual reactivity changes during boron concentration reductions in the Reactor Coolant System. The reactivity change rate associated with boron reduction will, therefore, be within the capability of operator recognition and control.

The restrictions on starting a Reactor Coolant Pump with one or more RCS cold legs less than or equal to 290°F are provided to prevent RCS pressure transients, caused by energy additions from the secondary system, which could exceed the limits of Appendix G to 10 CFR Part 50. The RCS will be protected against overpressure transients and will not exceed the limits of Appendix G by either (1) restricting the water volume in the pressurizer and thereby providing a volume for the primary coolant to expand into, or (2) by restricting starting of the RCPs to when the secondary water temperature of each steam generator is less than 50°F above each of the RCS cold leg temperatures.

3/4.4.2 SAFETY VALVES

3/4.4.3 SAFETY AND RELIEF VALVES

The pressurizer code safety valves operate to prevent the RCS from being pressurized above its Safety Limit of 2735 psig. Each safety valve is designed to relieve 420,000 lbs per hour of saturated steam at 110% of

TROJAN-UNIT I

R 3/4 4-1

Amendment No. \$4, 56

8207290373 820714 PDR ADOCK 05000344 PDR

3/4.4 REACTOR COOLANT SYSTEM

BASES

3/4.4.3 SAFETY AND RELIEF VALVES (Continued)

the valve's setpoint. The relief capacity of a single safety valve is adequate to relieve any overpressure condition which could occur during shutdown. In the event that no safety valves are OPERABLE, an operating RHR loop, connected to the RCS, provides overpressure relief capability and will prevent RCS overpressurization.

During operation, all pressurizer code safety valves must be OPERABLE to prevent the RCS from being pressurized above its safety limit of 2735 psig. The combined relief capacity of all of these valves is greater than the maximum surge rate resulting from a complete loss of load assuming no reactor trip until the first Reactor Protective System trip set point is reached (i.e., no credit is taken for a direct reactor trip on the loss of load) and also assuming no operation of the poweroperated relief valves or steam dump valves.

Demonstration of the safety valves' lift settings will occur only during shutdown and will be performed in accordance with the provisions of Section XI of the ASME Boiler and Pressure Code.