

DEPARTMENT OF ENERGY CHICAGO OPERATIONS OFFICE NEW BRUNSWICK LABORATORY, D-350 98C0 SOUTH CASS AVENUE ARGONNE, ILLINOIS 60439 DOCKETED

82 AGO 30 All :32

PROPOSED RULE PR-Misc. Notice (Reg Guide)

August 26, 1982

Secretary of the Commission U.S. Nuclear Regulatory Commission Washington, DC 20555

Attn: Docketing and Service Branch

Dear Sir/Madam:

A proposed revision to Regulatory Guide 5.21 - Nondestructive Uranium -235 Enrichment Assay by Gamma-Ray Spectrometry - has been circulated for comment. Members of the technical staff of the New Brunswick Laboratory have reviewed the document and offer the following comments:

- 1. The numerical value assigned to the emission rate of 185.7 keV gamma rays per gram of U-235 stated in Section 13, pp. 2,3, is dependent upon values for the half-life and the gamma-ray branching intensity. A range of emission rates differing by nearly 8% (4.26 4.60 x 10⁴) can be calculated using widely accepted published values (see Attachment). In the calibration procedures discussed in Section C.4, any systematic error in gamma-ray emission rate cancels out. In other procedures, such as the so-called "intrinsic calibration" frequently used with Ge(Li) detectors, the systematic error in gamma-ray emission rate selected. No discussion is given, nor reference provided, for the source of the quoted emission rate (4.3 x 10⁴ gammas/g sec).
- P. 15, para 5, line 2 Suggest replacing "agitated" with "tumbled". Tumbling is believed to achieve better mixing of canned particles whereas "agitation", if interpreted to mean vibration on a horizontal surface, might tend to compact and order the material by density or particle size.

8209010291 820826 PDR REGGD 05.021 C PDR

Acknowledged by card.

DS09 2: 8 2 7 Wel add: 8650 Nr . U.S. NRC

N. 1. 1. 1.

×

If additional information relative to the above comments is desired, it will be supplied upon request.

Sincerely,

Carleton Di Singham

Carleton D. Bingham Director

Enclosure: As stated

cc: S. McDowell, OSS, HQ, w/encl.

ATTACHMENT TO COMMENTS ON REGULATORY GUIDE 5.21

The gamma-ray emmission rate follows:	of a radioactive material may be calculated as
$- \frac{dn}{dt} = \lambda N \begin{array}{c} decay \ rate \\ [disintegram] \end{array}$	is proportional to quanity of material tions/sec 📽 number of atoms present]
λNb = gamma-ray emission where b = branc	n rate, hing fraction ≡ gammas emitted per disintegration
a = gamma-ray emission where 1a 2 W = 1	rate = $\frac{1 \cdot 1}{t^{1/2}} \cdot \frac{W}{A} \cdot \tilde{N} \cdot b$, gammas/sec-g = natural logarithm of 2 = 0.69315 mass of U-235 present, g = 1
$\widetilde{N} = $ $A = $ $t^{1/2}$	Avogadro's Constant = 6.022045 x 10 ²³ atom/mole nuclide mass of U-235 = 235.0439 = half life of nuclide, sec
$a = 5.628 \times 10^{13} \frac{b}{t^{1/2}}$	y),
b = 0.54	quoted in Lederer, C.M., et al. "Table of Isotopes, Seventh Edition" from E.K. Hyde, et al., The Nuclear Properties of the Heavy Elements, Vol. II, Prentice Hall, Eaglewood Cliffs, NJ (1964)
= 0.561	Augustson, Rond Reilley, T.D. LA-5651 from Gunnick and Tinney UCRL - 51086
= 0.575 ± 0.009	Vaninbroukx, R., et al., "The Determination of Gamma-Ray Emission Probabilities in the Decay of 235 _U and ²³¹ Th", Proceedings of the 5th Symposium on X-and Y-Ray Sources and Applications, June 10, 1981, Ann Arbor, MI, North Holland (1982)
$t^{1}/_{2} = 7.0385 \times 10^{8}$	quoted in Lederer, et al. <u>loc cit</u> from Jaffey, A.H., et al. Physical Review, C 4, 1889 (1971)
$= 7.0 \times 10^8$	quoted in DeBievre, <u>Pure & Applied Chemistry 47</u> , p 94 Pergamon Press (1976)
$= 7.129 \times 10^8$	from Augustson and Reilley, loc cit

-11