

Tennessee Valley Authority, Post Office Box 2000, Spddy-Dalsy, Tennessee 37379-2000

Robert A. Fenech Vice President, Sequoyah Nuclear Plant

February 2, 1994

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D.C. 20555

Gentlemen:

In the Matter of Tennessee Valley Authority Docket No. 50-328

SEQUOYAH NUCLEAR PLANT (SQN) - UNIT 2 CENTRIFUGAL CHARGING PUMP (CCP) 2B-B POSTMAINTENANCE TESTING SUITABILITY

On January 7, 1994, the 2B-B CCP shaft broke as a result of an event initiated by a high-cycle fatigue failure. A matched spare element was utilized to repair the 2B-B pump; and a subsequent American Society of Mechanical Engineers, Section XI, pump test was performed to validate the pump head and establish a baseline. As requested by NRC during a January 10, 1994, telecon, Enclosure 1 provides the basis for TVA's position that a modification to the emergency core cooling system (ECCS) subsystem flow characteristics has not occurred. Based on Enclosure 1, the ECCS flow tests specified by Technical Specification (TS) Surveillance Requirement (SR) 4.5.2.h will not be required. However, a flow verification test will be performed as scheduled during the upcoming Unit 2 Cycle 6 refueling outage.

It should be pointed out that performance of a system flow test, as specified by TS SR 4.5.2.h, is normally performed each refueling outage with the reactor vessel head removed and the reactor coolant pumps jacked up. Performance of the system flow test in other than this configuration unnecessarily challenges the cold overpressure protection system and has been a suspected source of seal degradation if seal injection is being maintained during the test. In addition, performance of the full flow test in the current plant configuration is estimated to delay plant restart two to three days.

080017

D030'

U.S. Nuclear Regulatory Commission Page 2 February 2, 1994

Enclosure 2 contains the commitmen' provided in this submittal.

Please direct questions concerning this issue to J. D. Smith at (615) 843-6672.

Sincerely,

Robert a famen

Robert A. Fenech

Enclosures cc (Enclosures):

> Mr. D. E. LaBarge, Project Manager U.S. Nuclear Regulatory Commission One White Flint, North 11555 Rockville Pike Rockville, Maryland 20852-2739

NRC Resident Inspector Sequoyah Nuclear Plant 2600 Igou Ferry Road Soddy-Daisy, Tennessee 37379-3624

Regional Administrator U.S. Nuclear Regulatory Commission Region II 101 Marietta Street, NW, Suite 2900 Atlanta, Georgia 30323-2711

S57 940108 880

ACCEPTANCE OF INSTALLING THE SPARE ELEMENT S/N 36532C-SPARE II INTO THE CCP 2B-B PUMP LOCATION AND PMT REQUIREMENTS

ACCEPTANCE OF INSTALLING THE SPARE ELEMENT INTO THE 2B-B CCP LOCATION WITHOUT PERFORMING A FULL FLOW TEST.

Tech Specs section 3/4.5.2 surveillance requirements requires the sum of the injection flow rates, excluding the highest flow rate must be greater or equal to 309 gpm (commonly referred to as the N minus 1 criteria or number of loops minus one) and the total pump flow must be less than or equal to 555 gpm. AS described in Tech Specs this requirement applies when modifications are performed to the ECCS subsystems that alter the flow characteristics. Though not addressed in Tech Specs there is also a design requirement that the pumps not be allowed to degrade below a minimum ECCS performance curve. This minimum ECCS performance curve insures that the system resistance is not reduced to compensate for weak pumps. Not all design base accidents will result in RCS pressure stabilizing immediately at ambient conditions where the flow balance is performed. Having a lower resistance than assumed in the analysis would result in more flow being lost thru the assumed break (in the lowest resistance branch line) when the RCS pressure is higher than those during the actual balance. From graph 1 it can be seen both the original and spare elements are well above the Min ECCS performance curve and add margin to the analysis.

From graph 1 and table I it can also be seen all 3 pump performance curves have very similar characteristics with the spare curve being between the 2A-A and 2B-B at the critical area or maximum flow. Near the low flow area of the curve the spare element has a slightly higher head which is a desirable

characteristic yet insignificant.

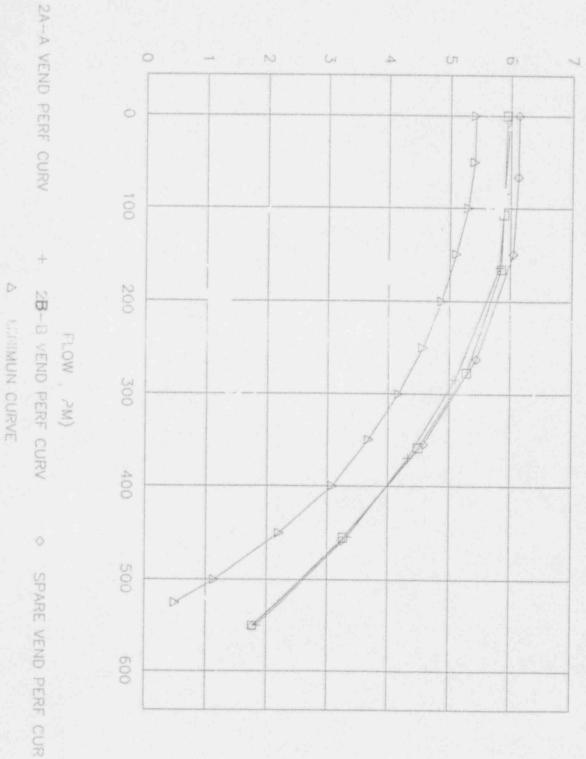
From table I and graph II it can be seen the old 2B-B pump has shown negligible degradation since its original installation in 983 with all flow balance points shown. Although field discharge pressure test data has not agreed with the vendor certified curve performed on an ideal test loop it is a known fact the specific plant piping layout includes a short run of discharge piping (3 ft) leaving a nonconcentric discharge nozzle with a ninety degree elbow immediately followed by the miniflow tee. In the middle of these components is the discharge pressure tap. It should be noted SNP has never been able to achieve test data has always been in the conservative direction in relation to the Min ECCS performance curve. As seen on graph II a direct correlation does exist. The latest flow balances are seen on graphs IV and V.

A review was also conducted on the ten years of Section XI test data. (Ref Table III and Graph III) This shows at miniflow conditions the average head loss for the 2B-B pump was 18 psig over a 10 year period. Using the conversion of 4.3 lbs of pressure increase yeilds an increase of 1 gpm and applied uniformly across the pump performance curve only a 4 gpm increase in flow would be expected at the max flow conditions. The 2B-B pump flow was left at 538.24 gpm during the 1992 flow balance or 16.8 gpm from runout. Thus enough margin is available to absorb the additional flow.

Westinghouse (see attached memo) has also reviewed and discussed the following areas with TVA which include:

NORMAL CHARGING TESTING FLOW BALANCING PUMP RUNOUT NPSH REQUIREMENTS RPM HORSEPOWER

CONCLUSION: THE SPARE ELEMENT 36532C-SPARE II CAN BE INSTALLED AND VERIFIED ACCEPTABLE WITHOUT A FULL FLOW TEST. A SECTION XI TEST IS REQUIRED TO BASELING THE PUMP. A FULL FLOW TEST WILL BE PERFORMED NEXT REFUELING OUTAGE IN ACCORDANCE WITH SEQUOYAH'S NORMAL SCHEDULE.


NSSS SYSTEM ENGINEER

NSSS SUPERVISOR

c:\wp51\ccp2b

(GRAPHIL)

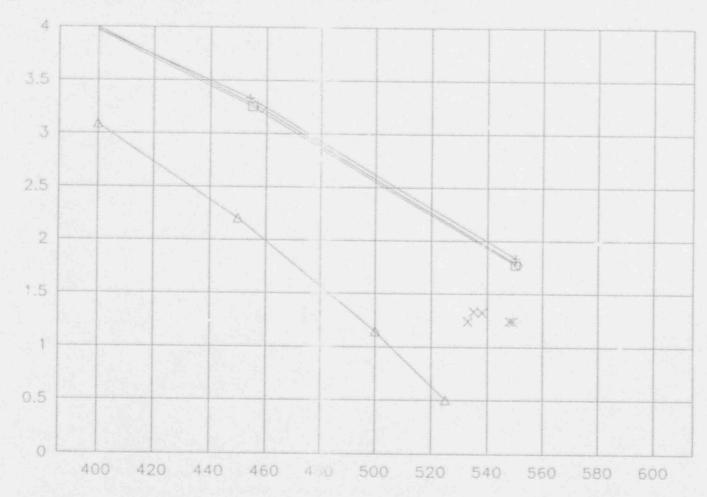


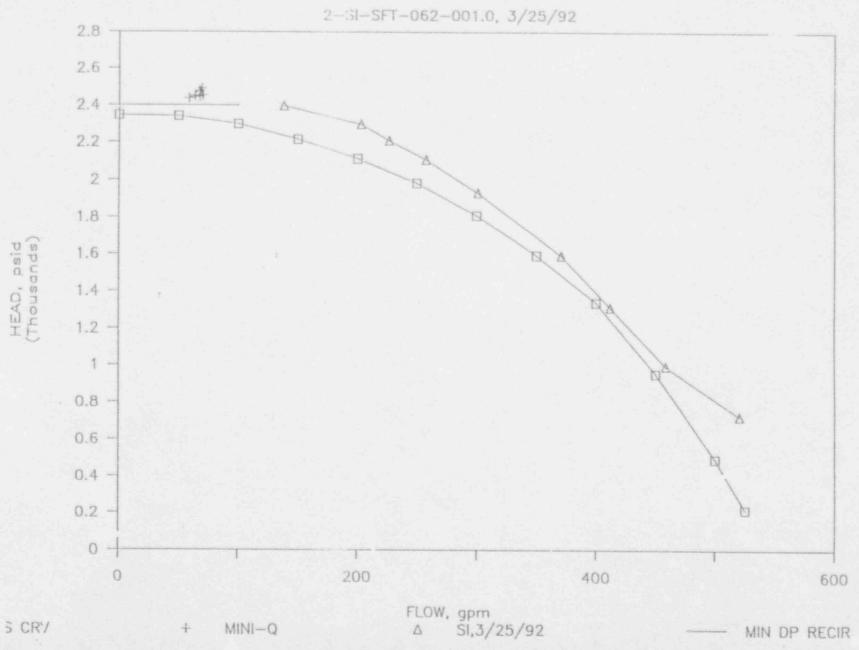
TABLE I

PUMP VENDOR DATA

2A-A HD	A FLOW	2B-B HD	TEST	SPARE HD	MINIMUM ECCS CURVE	
1769	550					
3250						
4499						
5281						
5855						
5892						
5944		5988				
	8.4	5907				
	164	5826				
	284	5098				
	370	4331				
	454 550	3326 1836				
	551	1030				
	458			1774		
	355			3232		
	262			4581		
	150			5440		
	66			6047		
	0			6124	5410	
	50			6129	5410 5400	
	100				5300	
	150				5110	
	200				4875	
	250				4575	
	300				4175	
	350				3675	
	400				3085	
	450				2200	
	500				1140	
	525				500	
	549		1235			1990
	548		1237			1986
	538		1320			1992
	536		1327			1983
	533		1261			1989
****	****PAST TEST					
9/24/83	1327	536				3/702.70
10/16/86	1237	549				YEAR
2/07/89	1261	533		~		
10/12/90	1235	549	*	1	- 11)	
3/24/92	1320	538	*		60.8	
	HEAD FT	FLOW	*		TONYO	
		TOTAL	*		a late	
****	*****	****	*****		Ou	

UNIT 2 CCP PERFORMANCE

FLOW (GPM)


D 2A-A VEND PERF CURV + 2B-8 VEND PERF CURV • SPARE VEND PERF CUR

Δ MINIMUN CURVE X TEST'83,86,89,90,92

DIFF PRESSURE (FEET) (Thousands)

GRAPH III

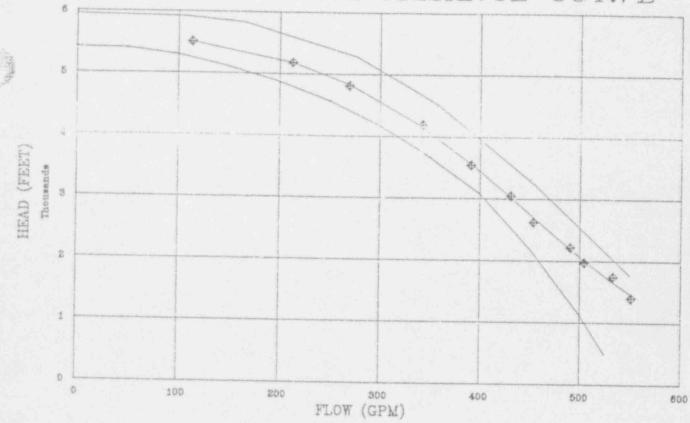
CCP2B ECCS CURVE, MINIFLOW &

THOTOM (1)

CONT. II FUND DATA FOR CEPER 2-51-51P-062-001.8

28-85

		10 mm	-		1031-1031			B12							100 CC 64 CC 100							PMT, high wibs bearing \$8-15 ails, real con	MRR087530	753			MRADISSOR FREN DIT PROTET				MR 28 9 3 0 1 1 1 0 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1			PMI, sud incr/oil clr, MR*sA302519, "524, "521, "504, "525	
	SCHED BASELN yes/no	0.2A	NEG.	100	ON	H	W CH	YES	NO.	H	EN	ON	100	OH.	237	9	0H	CH.	UN	E A	NO	YES	YES	200	NO	25	OH	MU	310	DN	YES	OH	NO	157 147 241	NU
	EECU TEMP											43			655			1.9			B		60	76	71	90	50				533		48	W3	
	THE STATE	1	2 2		0		0	0	0	0	0	7.0	0	100	99	0	2	500	0	0	100	0	500	333	47.6	27	4.7	0	0	0	4.75	0	E77	3,0	0
												and pro-			122			0.21			12		120	100	11.2	47	17.0				600		0	100 100	
	NS TENPS OUTBOOTF (F) (F)	ŭ	25	9	100	. 0	-0	. 4		0	0	65	0	0	6.0	100	407	10			170	0	25	63	99	50	1	e.	-	0	20	0	23	70	0
												109			114			106			112		10	166	139	123	124				123		121	121	
	BEARING DIFF OUT	6.3	38		0	0	0	NO.	0	0		UT)	0	0	100	0	0	-61	0	0	Č75	0	1.0	77.2 Ca2	ī,	50	629	0	0	0	29	0	200	0.0	0
	田田田											44			103			93			113		D-	122 123	122	1/7) 	115				115		113	120	
	DAM CLL NATE PRESS PTYS		18.5	26,3	107		1771	11,3	100	11.3	11.3	7.11	500 240 240	11.7	100	10.8	10	00	11.9		10.2	11.3	6,11	11,5	911	11.2	47.4	11,3	11.5	11.8	16 8			10.2	10.5
27.0	GUTED BEDRING AXIAL DAL DRI H.VIB V.VIB VID FL RAII AXIS RI:S RIIS 908																			Cy	ACC SON		VI ANO 510	N N N											
700		0.15	6.25	6.24	0.0	61.0	1.8.1	0.76	1,55	92.0	.56	\$1.24 (3.24	1.85	2,71	4.0	1,96	10°	9,44	.533	.83	33	1,23	6.0	5.23	50	11.0	~0	1	00	100	0,2	0,13	577	0,21	459
55-201-21C-1C-5	TAPE BEARING H.VIB V.VIB mil> alls																						9.0												
		0	0																				0												
	FLOW RATE ope			0	118	90	Etc		0	DL.	ă-	G2 G-	Ex-	Cr-		6	b.	15	Cr.	35	111)			66	CF-	0	5	57	0.5	97	100	99	600	160
5	PRESS	2544	3,6	2550	2548	2553	0423	2553	590.5	2590	0652	2529	2504	2533	2554	2422	2533	54.60	100 40 100 100	5210	0123	40	2518,3	13.5	2508	30.5	2182	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2472	5496	2202	5032	5204	25.00 25.00	5531
LEY LIST	PRESS PS19	50	21.4.2	50	53	CF2	10	122	20,12	39	0.5	C. 1	eu E2	6.9	10	40	677	96	133	- T	0.5	50	31,5 25	50.34	Plu W 3	27.5	100	C3	32	4.0	48		46	113	5.9
	FRESS P																				1		2550								02			5	25
(115	C 14 6																				- 4														
当当		3	3.50	ce.				5	1		17		2/2	2	S		7	77	27	4	201	10	783	(83	en.	120	FD	501		27	(%)	ST1	(2)	(B)	**

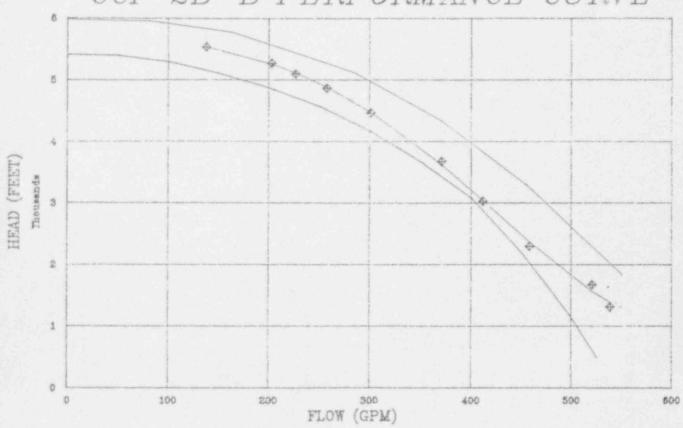

THELET

																														0	くなっじ	20		, ,	PARC		/	1	154	イン・デージャ	A AL PARTY
			WPB104366			1085-1158	1684-1456		1087-1073	Pasein, is, "est w/UT	Gear box hig. wibs, PRO 2-88-4				O rngs expanded, ICF 88-1311				HR 8758967 on pag cutbd seal		7 on bearing temps						ddd'1 M&1E 549622-vib	1st perf new SI				ERCW DT 57			`	10/02	1-1851 Chat	しょうし かりひつ	0-76		1
28	000	呈	GH.	E.	W	140	100	910	980	YE	IN.	OH .	2	N.		01	NO	NO.	No	200	MO	OH	OH.	M	NO	MU	NO	110	NO	100	01	NO	MO	92	310	H	-ON	NO	M		
		-07					4.5				40										20											54.4				57					
		277	0		0		200	New	0	0	19		0	-	0	7	9	0	0	-	95		0	-02	0			100	0	9		56.6	0	0	0	335	0	0	0	0	
	6	0 74		0		40-	175	-00	0	0	55 109	0	100	6	0	65		-		97	146		0	0	0	0	0-	105		0		.6 111		0	0	30 65		0	-		
		101					119 7				03 2					103				61	\$6 55						47	000				11 56.				96 39					
	0	71.	-05	0	ó	0	99	0	60	625	50 10	0	0	0	0	9075	0	0	0	-	59	0	0	0	0	0	23-	Ĩ.	0	0		453	0	0	0		0	0	0	0	
		EN.					501				(I)					63				50	52						44	85				03 48,									
re	207	23		20.2 2.1 2.1	W.S.			40	6.0	9777	2	5.7																		»D	100	114	9.01	6.3	-2	11	1073	30-1 10-1	CO.		
	2018				1000		77		3474																																
																												23	u »	4.15	44.1		100	45	4	20.	503	35	48.4		
																												0	5.0	m e	c)	0.9	96,3	0.74	0.16	0.0	0.9	0.25	0.36		
																												5.0	320	0.7	17	arred .	0.1 0.1	.85	0.5	2	, B2	0,92	Eri		
1	-Cy-	+4.5 +++	500	2	ru:	100	671	577	22	53	C2	34	100	Fu.	FM	CEN	53	-103 -103	F73	50	623	100	25	100 000	63	57												0,18			
0.5	0,42	0.3	0.41	0.5	6,5	0	0.1	0.3	0.0	0.5	6.4	0	0.5	9.4	0.44	0.44	0,49	0.4	70	0.2	0.2	9,0	6,28	0,6	0.43	0	0.45	0.3	0,23	6	0.28	0.0	0,32	0.24	0.34	0,42	9.28	0,23	0,38		
100	100	9.7	103	115	100	(5) (5)	1000 1000	EX7	06	53.3	500 100	53	10 mm	100 100	16	10	100	2/1	80.8	84.8	63,9	524	7.0	1/3 1/3 1/3	71.7	54,2	70	69.8	22	34	67.3	70	100	67.4	58.6	6.9	\$6.4	25.4	62.4		
2483	1643	2550	1255	10°-	623 103	30.0	2002	27.90	eri u i	W77	11.5	9440	672	71.5	ETT.	5510	400	10.00	6)	15° ES	623 675	26.95	924	p.i	(*) (*)	B12	395	9636	475	454	001	2,5	147	62	102 102	50,00	eu -6	5752		60	
																																						0.5			
																							T		-										200		100	5469	100		
50	(XX)	523	123	(E)	0	(20)	00	000	8	Les	100	63.7	277	III.	000	000	25	CT.	60	100	431	5	17	1.7	1		0	-	Dr.	-	19-	100	P.	0	17	67-	23-	0.	FF-		

2516-2498 => (2008 min

ECCS MINIMUM PERFORMANCE	2A-A CCP U2C5 DAT	RO	VEN		CURVE FI COEFFICI FOR	
HEAD FLOW (FEET) (GPM)	HEAD (FEET)	FLOW (GPM)	HEAD (FEET)	FLOW (GPM)	TEST	
to be about the second of the	1395.84 1741.34 1972.29 2214.78 2618.94 3046.19 3541.57 4188.22 4811.78 5181.29 5504.62	552.04 534 505.5 491.5 454.6 431.7 392 343.4 270.6 214 114.2	5944 5892 5855 5281 4499 3250 1769	0 107 166 277 359 455 550	C= X= X^2= X^3= X^4=	5991.037 -7.92882 0.050516 -0.00018 1.6E-07

CCP 2A-A PERFORMANCE CURVE



- ECCS MINIMUM CURVE + UZC5RO TEST DATA
- 4th Order Curve Fit ____ VENDOR CURVE

GRAPH I

ECCS MI PERFORM		DA.		VENI DA		CURVE FI	
HEAD (FEET)	FLOW (GPM)	HEAD (FEET)	FLOW (GPM)	HEAD (FEET)	FLOW (GPM)	FOR TEST DATA	
5410 5400 5300 5110 4875 4575 4175 3675 3085 2200 1140	50 100 150 200 250 300 350 400	1319.63 1675.06 2298.38 3028.18 3679.45 4464.67 4871.13 5102.08 5275.29 5536.26	538.24 520.6 458.1 411.6 370.7 300.9 257.3 226.3 202.9 137.9	5988 5907 5826 5098 4331 3326 1836	0 84 164 284 370 454 550	C= X= X^2= X^3= X^4=	6247.455 -9.70844 0.058383 -0.00021 1.9E-07

CCP 2B-B PERFORMANCE CURVE

ECCS MINIMUM CURVE U2C5RO TEC

FSE/FSDA-94-2386

From: Fluid Systems Engineering

WIN: 284-5917

Date: January 7, 1994

Subject: CCP Failure Evaluation

To: J. Steinmetz

cc: L. Walker

M.P. Osborne K.N. Garner

File: Sequoyah Operating Plant

The Sequoyah Nuclear Station Unit 2 experienced a failure of the 2-BB Centrifugal Charging Pump (CCP) on January 7, 1994. Sequoyah Engineering requested Westinghouse to evaluate the replacement element impact on the system performance.

Westinghouse (Auxiliary Equipment Group and Fluid Systems) evaluated the following system performance areas:

- * Normal Charging Function
- * Safety Injection Function
 - * Flow Balancing
 - * Pump Runout Issue
 - * ECCS Minimum Performance
 - * Brake Horse Power
 - * NPSH Requirements
 - * RPM Comparison
- * Testing

General Comment:

The replacement rotating element, as shown in the attached Table, is very similar to CCP 2BB. The replacement element head is slightly higher (50 to 100 ft) from 0 to 300 GPM, the same at 400 and 500 gpm and 50 ft. lower at the pump runout of 550 gpm. Also, the replacement vender curve data falls in between the installed 2AA and the failed 2BB vender curves.

The test performance curve numbers for the rotating elements are as follows:

2AA 36532C Revised 2BB 36532D Spare 36532C-Spare II

* Normal Charging Function:

The replacement element will meet the normal charging functions.

- * Safety Injection Function
 - * Flow Balancing:

The failed element, CCP 2BB, was installed and the system balanced in 9/83. The spare/replacement element pump characteristics are very similar (See attached Table) to that of the 2BB vender data. In fact, the replacement element vender curve data lies between the 2AA and 2BB test performance curves.

Conclusion: Based on the pumps characteristics being very similar and the system not being rebalanced since the initial installation of elements 2AA and 2BB, the system need not be rebalanced with the installation of the spare element. The system resistance has not been significantly changed.

- * Pump Runout Issur: Not an issue since the spare element runout head is less than that of 2BB.
- * ECCS Minimum Performance: Not a issue since the replacement pump performance is similar to 2BB and slightly higher than 2AA (See Attached Table). The system configuration/resistance has not been significantly changed, therefore there is not an impact to the Sequoyah ECCS model.
- * Brake Horse Power: Not an issue since they are the similar. Spare BHP is 670 and 2BB BHP is 680.
- * NPSH Requirements: Not an issue since the NPSH requirements for the replacement element (NPSHR @ 550 is 16.5) is less than that of 2BB (NPSHR @ 550 is 18).
- * RPM Comparison: Not an issue. The speed requirements are slightly less than the original installed element. The effect to pump head is negligible.

* Testing :

Westinghouse Recommendation:

Initial Installation: Test Data at Mini-flow and or at the maximum flowrate the plant can achieve during plant operating conditions. Evaluate the replacement element data against that of 2BB.

Next Plant Shutdown: Perform a pump test curve. Evaluate the replacement element data against that of 2BB.

Verified By

D. F. Dudek, Engineer Fluid System Design and Analysis J.G. Dudiak, Engineer Auxiliary Equipment Group

Felli Ogostino for J. N. Steinmett PROJECT MANAGER

		Sequoyah 1	U-2 CCP St	naft Failure	Evaluation		
Flow (GPM)	00	100	200	300	400	500	550
2AA Head (FT) Vender Curve 36532C	5950	5900	5700	5100	4000	2550	1750
2AA Head Test (FT)		114 gpm 5504 ft	214 gpm 5181 ft		392 gpm 3541 ft	505 gpm 1972 ft	552 gpm 1395 ft
2BB Head (FT) Vender Curve 36532D	6000	5900	5700	5000	4000	2650	1850
21 3 H d Test (FT)			202 gpm 5275 ft	300 gpm 4454 ft	411 gpm 3028 ft		538 gpm 1319 ft
Spare Head (PT) Vender Curve 36532C- Spare II	6100	6050	5800	5050	4000	2650	1800

ENCLOSURE 2

Commitment

The full flow tests described in Technical Specification 4.5.2.h that involve flow from the 2B-B centrifugal charging pump will be performed during Unit 2 Cycle 6 refueling outage.