Mr. Frank D, Coffman
Systems Interaction Branch
Division of Systems Integration
U. S. Nuclear Regulatory Commission

Washington, D. C. 20555
Dear Frank:
In response to your recent request, the following deliverables have been sent to you in response to your needs for the project "Development of Systems Interaction Regulatory Guidance" (FIN B2339).

1. Letter report, "Interpretation of Single Failure Criteria for a Systems Interaction Analysis," dated May 6, 1981
2. Letter report, "Systems Interaction Analysis Demonstration Example," dated May 6. 1981
3. Draft letter report, "The Systems Interaction Branch Approach to Systems Interaction in LWR's," dated May 7, 1981
4. Draft letter report providing Sections 4.0, 5.0, 6.0 and Appendix B for the Systems Interaction Interim Guidelines report, dated August 21,1981
5. Draft paper, "Development of Regulatory Guidance on Systems Interactions," dated September 9, 1981

In addition to these five letter reports, there were a number of letters or other informal responses providing comments or recommendations regarding the various stages of developing the interim guidelines.

I trust this information will meet your needs.
Sincerely,

R. D. Widrig

Project Manager
RDW: 11m

Teiex 15-2874

May 6, 1981

Mr. Frank Coffman
Systems Interaction Branch
Division of Systems Integration
U.S. Nuclear Regulatory Commission
Washingtor, D. C. 20555
Dear Frank:

Enclosed is an information package on SI analysis consisting of two informal reports and a summary:

1. "Interpretation of Single Failure Criterion for a Systems Interaction Analysis"
2. "Systems Interaction Analysis Demonstration Example"

These reflect some of my thoughts with regard to an SI analysis and show how I, an an analyst, would approach a problem.

The first discusses the use of the single failure criterion for characterizing adverse SIs. The second is a continuation of the Browns Ferry 3 example from the Battelle "state-of-the-art" report. It extends the SI analysis through the evaluation phase.

It is hoped that these will serve as useful "food for thought" with regard to preparation of the upcoming regulatory guidance on SIs. Do not hesitate to call if you have any questions or comments. Also, thank you for reviewing the paper which Arn Plummer and I are submitting to the ANS Risk Assessment Meeting.

Sincerely yours,

Ray Gallucci, Research Engineer Energy Systems Department

RHVG: jf
Enclosures
cc: P. Cybulskis, Battelle-Columbus (with full enclosure)

SUMMARY

The following two reports consider the use or the single failure criterion in a systems interaction (SI) analysis and demonstrate such an analysis in the context of the Browns Ferry 3 incident. Several topics are discussed which bear potentially significant impact on the nature of an SI analysis. These are highlighted here.

An SI analysis fits naturally into an overall safety analysis and is most efficient when performed as an integral part. This is so because, in ,order to identify adverse SIs, the analyst must develop the same model that he would need for a general safety analysis. Focusing solely on events designated as adverse SIs and ignoring other events that must inevitably be identified in the process seems somewhat artificial.

The use of the single failure criterion to denote some threshold level of system/function degradation characteristic of an adverse SI leads to inconsistencies. A more appropriate criterion would be the requirement that an adverse SI degrade a safety function such that redundancy (whether it be between frontline or support systems, subsystems, or components) no longer exists at some level. This includes all violations of the single failure criterion as well as other types of failures with equal safety impact.

Similarly, inclusion of common cause as a necessary requirement for an SI can lead to confusion. Certain types of independent failures among shared components also constitute SIs but are not strictly common-cause events. Rather than concentrate on a general definition of an SI, it might be better to focus on classes of SIs, of which three have been identified:

1. Any failure of a support system component
2. Any failure of a non-support system component that is shared by at least two frontline sytems
3. A common-cause failure of at least two components in at least two frontline systems.

Any one of these that degrades a safety functinn such that redundancy no longer exists at some level constitutes an adverse SI.

The actual goal of an SI analysis is to identify and evaluate events that degrade a safety function such that redundancy no longer exists at some level. Sl events that accomplish this are deemed adverse. However, other non-SI events can also accomplish that and be of equal importance with adverse SIs from a qualitative or quantitative viewpoint. Emphasizing only the events that meet the criteria for being labeled SIs while overlooking these other equally important events is inconsistent. Including an SI analysis as an integral part of an overall safety analysis avoids this problem.

In the latest draft letter report. from the Systems Interaction (SI) Branch", use of the "single failure" criterion is advocated for evaluating SIs. This is said to be consistent with existing NRC regulations and avoids the need to perform probabilistic analysis for SI evaluation. Appendix A of 10CFR, Part 50^{2} states that a fluid or electric system is considered to be desigred against a single failure if no such failure results in a loss of the capability of the system to perform its safety function. Thus, if a system A has redundant components A_{1} and A_{2}, any failure that fails both A_{1} and A_{2} violates the single failure criterion. A failure of A_{1} or A_{2} separately would not. Such a failure merely degrades A by reducing redundancy from 1-out-of-2 to 1-out-of-1 (non-redundant).

The effect of the single failure criterion upon safety functions must be examined. Safety functions are generally designed with redundancy at the system or sub-system level to ensure that failure of a single system or subsystem does not fail the function. Consider two safety functions, F_{1} and F_{2}. F_{1} is served by only one system. However, this system has two redundant sub-systems. Thus, should both sub-systems fail from a single failure, both the system and the function (F_{1}) will also fail. In this case, violation of the single failure criterion for the system likewise fails the function.
F_{2} is served by two systems which are redundant. Each system likewise has two redundant sub-systems. In this case, violation of the single failure criterion for either system (as a result of a single failure of both of its sub-systems) merely degrades the function $\left(F_{2}\right)$. Its redundancy at the system level drops from $1 / 2$ to $1 / 1$, but it does not fail.

The apparent difference between these two situations stems from an interpretation of system vs. sub-system. In the case of F_{1}, the distinction between function and system is grammatical only, since they are the same from a design viewpoint. Thus, as for F_{2}, redundancy is provided at the level immediately below the function, whether this level be labeled as "system" or "sub-system". The key point is that violation of the single failure criterion degrades the safety function by reducing the redundancy at its first level from $1 / 2$ to $1 / 1$.

What if a safety function $\left(F_{3}\right)$ were served by three redundant systems? Violation of the single failure criterion for any one of them would merely decrease F_{3} 's redundancy from $1 / 3$ to $1 / 2$. From conversations with the SI Branch, it seems apparent that such degradation is not severe enough to merit consideration as an "adverse" SI.

It is possible for a safety function to have a $1 / 2$ redundancy exhibited at a level below the first. Consider safety function F_{2} described earlier. Designate the redundant systems as A and B with each pair of redundant subsystems designated by subscripts 1 and 2. Each sub-system (which may more conveniently be thought of as a major component of the subsystem) is subject to an independent failure, which will be designated with a prime. In addition, assume there are dependencies between sub-systems within the same system and between sub-systems in the difforent systems such that:

1. A_{1} and A_{2} are subject to single failure C_{A}
2. B_{1} and. B_{2} are subject to single failure C_{B}
3. A_{1} and B_{1} are subject to single failure C_{1}
4. A_{2} and B_{2} are subject to single failure C_{2}

A fault tree for failure of F_{2} is shown in Figure 1. From the list of minimal cut sets, it is apparent that any one of the dependent failures (labeled C) will degrade F_{2} by reducing redundancy from $1 / 2$ to $1 / 1$. However, only C_{A} or C_{B} will violate the single failure criterion since C_{A} results in failure of A, and C_{B} in failure of $B . C_{1}$ or C_{2} alone degrades each system by decreasing the redundancy between each system's sub-systems from $1 / 2$ to $1 / 1$. This is not a violation of the single failure criterion as it is presently defined.

From a logical, non-probabilistic viewpoint, the dependent failures are all of equal importance so far as failure of F_{2} is concerned. By the very nature of SIs, the types of failures characterized by C_{A}, C_{B}, C_{1}, and C_{2} will be of concern if they degrade the safety function to a non-redundant state. Thus, although C_{1} and C_{2} do not separately violate the single failure criterion as defined, they merit as much consideration as do C_{A} and C_{B} in an SI analysis.

What all this suggests is that violation of the single failure criterion is inadequate as a necessary condition for an adverse SI. A more appropriate
criterion would require an adverse SI to degrade a safety function such that redundancy no longer exists at some level. This includes violations of the single failure criterion as well as other failures such as those between the systems that were examined eariier. Such a criterion is especially desirable from a fault tree wiewpoint because it enables the analyst to discard all minimal cut sets of order 3 or greater once they have been resolved for dependencies. Only failures in one and two-element minimal cut sets (resolved for dependencies) can degrade a safety function to a degree of non-redundancy.
FIGURE 1. FAULT TREE FOR FAILURE
OF SAFETY FUNCTION F_{2}

$A_{1}^{3} A_{2}^{1} C_{B} \quad A$
5
$A_{1} B_{1} C_{2} \quad B ;{ }_{2} C_{2}$

Cut Sets: 2-Element
$C_{A} C_{B}$
$C_{1} C_{2}$
Minimal
Cut Sets:

REFERENCES

1. Systems Interaction Branch, "The Systems Interaction Branch Approach to Systems Interactions in LWRs," Draft Staff Summary Letter Report; U.S. Nuclear Regulatory Commission (February 1981).
2. Code of Federal Regulations, vol. 10, Energy; Office of the Federal Register, General Services Administration.

SYSTEMS INTERACTION ANALYSIS DEMONSTRATION EXAMPLE

One of the essential safety functions for a nuclear power plant is the ability to achieve and maintain reactor subcriticality. In order to demonstrate a systems interaction analysis, this safety function will be examined during the transition from power operation to hot shutdown. The analysis is an extension of that performed for the Browns Ferry 3 Partial Failure-to-Scram in NUREG/CR-1896. ${ }^{1}$ The preliminary work used to develop the fault trees for the "Reactor Control" safety function is described in Appendix B of that report and will not be repeated here.

Slight modifications of the fault trees is necessary to adapt them for computer analysis. These consist of elimination of a $3 / 185$ majorityvote gate for HCU failures and resulting combination of hardware failures in the HCU subtree. Also, passive failures of hydraulic components (such . the SIV drain line) are ignored to establish consistency in the level of resolution between the CRS and SLC fault trees. These modifications have been incorporated into the fault trees used in this example (Figures 1-10).

The computer program MFAULT ${ }^{2}$ is employed to find the cut sets for the failure paths of the CRS and SLC systems. Thus, a cataloguing scheme must be established for the gates and component failures on the fault trees. This scheme is listed in Table 1. Note that all gates are prefixed with "A" while all component failures are prefixed with "X".

Table 2 lists all the minimal cut sets (MCSs) of lengths one through four for CRS failure. Theoretically, all MCSs, regardless of length, are needed to identify all possible common-cause failures. Six elements in an eight-element MCS may be subject to a single common-cause failure, thereby generating a "new" MCS of length three. An example of this will appear later when the MCSs for SLC are resolved for dependencies.

Table 3 lists all the MCSs of lengths one through five for SLC failure. Unlike the case for CRS, the five-element sets have been retained; their number is manageable and there are no four-element sets. Table 4 lists all the MCSs of lengths one through four for Reactor Control failure. These are the Boolean "AND" combination of the CRS and the SLC MCSs.

At this point, it is instructive to note the magnitu of the analysis. Without having begun to identify dependencies, and with limiting the analysis to MCSs of relatively low order, the number of MCSs generated so far are:

$$
\begin{aligned}
& \text { CRS failure path } \longrightarrow 325 \\
& \text { SLC failure path } \longrightarrow 72 \\
& \text { Reactor Control failure } \longrightarrow 291
\end{aligned}
$$

And, it must be remembered that the degree of detail incorporated into the fault trees is relatively limited. For example, circuit breakers and cables have been ignored on the electrical fault trees for simplicity. Including such detail would increase the complexity.

The cormon-cause analysis focuses on the elements of the MCSs. While it is possible to have included all the dependent events on the original trees, this would have been entailed resolution of all the events for conmon cause. By starting from the MCSs, one needs only resolve some of the total number of events. Of course, one must recognize the risk of overlooking some dependent events because only the shorter-length MCSs have been retained.

The SI Branch draft letter report ${ }^{3}$ refers to 2 types of SIs: external and functional events. These correspond basically to 2 types of commoncause events, often referred to as spatial and generic. Each of these categories spans a wide spectrum of factors. Even though completeness can never be guaranteed, it is safe to say that identification of the , majority of these factors requires resolution to a fine level. This necessitates a very detailed analysis. For example, spatial dependencies can include fire and flooding effects and susceptibility to missiles.

Generic dependencies can include human errors in various forms (latent, such as miscalibration, and dynamic, such as operator error) as well as manufacturing defects and functional dependencies.

In this example, the dependencies are identified broadly as generic and spatial, without any further resolution. Components of similar types performing the same functions, such as $4160 / 480 \mathrm{~V}$ AC Cormon transformers, are assumed to be subject to a common generic failure, denoted by the letter " G ". Components located near one another are postulated to be subject to a common spatial failure, denoted by " S ". Credit can be given for physical separators, such as walls. However, judgment must be employed since even components in separate rooms may be subject to conmon spatial failure (e.g. - flooding). This broad use of the terms generic and spatial in the demonstration analysis does not guarantee that all such potential dependencies will be accounted for. Components in different systems performing dissimilar functions can still be subject to a cormon generic failure such as miscalibration. The common-cause analysis performed here is intended only to be demonstrative; no specific conclusions regarding the actual plant should be drawn.

The component failures contained in the CRS MCSs from Table 2 are listed in Table 5 along with their locations. From this list, generic and spatial failures can be presumed, as listed in Table 6. Note that each component, whether it be subject to a dependent failure or not, is assumed to be subject to an independent failure, denoted by "I". From a fault tree viewpoint, the resolution for dependencies effectively transforms unresolved component failure " X " into an OR gate with inputs " I ", " G ", and "S". There may be more than one of each type of input "G" and "S". For convenience, component failures not subject to any common-cause failure with other components on the trees are left unresolved (as " x ").

Once the component failures have been resolved for dependencies, it is necessary to incorporate this resolution into the unresolved MCSs.

This results in "new" MCSs, thereby increasing their overall number. Thus, to keep the analysis tractable, it is advantageous to eliminate longer-element MCSs. Unlike the parallel elimination performed for unresolved MCSs, this stage of. elimination runs a negligible risk of overlooking important dependencies. The events in each set are now "independent," assuming that the common-cause analysis is essentially exhaustive. However, this does not "recapture" any dependencies lost earlier when the longer, unresolved MCSs were ignored.

The question arises as to what length MCSs should be retained. The SI Branch draft letter report expresses favoritism for use of the "single failure" criterion for evaluating SIs. However, as discussed elsewhere, this can be translated into a more general requirement that an adverse SI must degrade a safety function to a degree where redundancy no longer exists at some level. Only failures in one and two-element MCSs (resolved for dependencies) can so degrade a safety function and, therefore, qualify as adverse SIs. Since the CRS and SLC fault trees are related to overall function failure through an AND gate, any three-element or longer MCS from either tree can be ignored. Even within each tree itself, no single event in a three-element or longer MCS can degrade the system such that redundancy is lost at some level. Thus, only the one and two-element MCSs (resolved for dependencies) need be retained. This simplifies the subsequent analysis.

Table 7 lists the resolved MCSs for CRS failure. Note that the number of one-element sets has been increased from 4 to 13 , while the number of two-element sets has been increased from 19 to 79 . Each of the additional. MCSs results from resolution of the original ones (including the three and four-element sets) for dependencies. Thus, each of these contains at least one common-cause element, either generic (G) or spatial (S).

It is instructive to note that the resolution for dependencies introduces MCSs with commonalities among components not previously contained in the MCSs of the same length. For example, prior to the resolution of the original MCSS, the only one-element sets were failures of CRS components.

Following resolution, common-cause failures of non-CRS components (RBEDS exhaust fans, Control Air compressors, and AC Reactor Building Vent boards), as well - dependent failures among CRS components not previously in oneelement sets, become "new" one-element MCSs. Similar trends among the two-element MCSs are apparent, as manifested by the addition of numerous sets containing cormon-cause failures among electrical components.

Resolution of the original MCSs for SLC for dependencies follows the same procedure as that for CRS. The component failures contained in the SLC MCSs from Table 3 are listed in Table 8 along with their locations. Dependencies among the various components are categorized as generic or spatial in Table 9. The identification of G40 as a generic common cause between failures X191 and X192 (4.16 kV AC Shutdown buses) merits some discussion. Earlier, it was mentioned that dependence among elements in an MCS results in generating a "new", shorter MCS containing the dependency. The MCSs for SLC contained no failures of any of the "40" components (4.16 kV AC Unit boards) up through the five-element sets (see Table 3). However, referring to the fault tree in Figure 9, it is apparent that for each five-element MCS containing both X191 and X192, there would be a corresponding nine-element MCS containing $X 41$ through $X 46$. For example, five-element MCS $\{\times 181, \mathrm{X183}, \mathrm{X184}, \mathrm{X191}, \mathrm{X192} \mathrm{\}} \mathrm{has} \mathrm{a} \mathrm{corresponding}$ nine-element one $\{\mathrm{X} 181, \mathrm{X} 183, \mathrm{X} 184, \mathrm{X} 41, \mathrm{X} 42, \mathrm{X} 43, \mathrm{X} 44, \mathrm{X} 45, \mathrm{X} 46\}$. Generic dependencies among the " 180 " and the "190" components produces a twoelement MCS \{G180, G190\} from the five-element one. Similarly, generic dependence among the " 40 " components creates a two-element MCS \{G180, G40\} from the nine-element one. Although a generic cormonality among six components may be unlikely, this serves to illustrate that discarding the long MCSs prior to resolution can result in omission of rather short MCSs containing dependencies. Such a problem cannot be alleviated without complicating the analysis greatly (imagine the number of nine-element MCSS). The analyst can only accept this shortcoming and be aware of it.

Note that resolution results in "creating" one-element MCSs for SLC where none existed previously (see Table 10). Each of these is a dependent failure, not only among SLC components, but also among electrical ones. Thus, the number of one-element sets increases from 0 to 10 , while that for two-element ones goes from 8 to 12 (the additional ones
containing commonalities among electrical components).
Finally, the resolved MCSs for CRS and SLC can be combined (through a logical AND - see Figure 1) to yield resolved sets for the overall safety function. These are listed in Table 11. The fact that the CRS and SLC failures are connected through an AND gate (for Reactor Control failure) Also necessitates reviewing the list of unresolved MCSs for Reactor Control (Table 4) to check for dependencies among previously unencountered groupings of components. For example, components 201-203 are combined in four-element MCSs for the overall safety function, but all three had never been grouped together in the CRS or SLC MCSS. It just so happens that the only commonality among all three is a generic one (G200). Since 202 and 203 had been previously combined in the SLC MCSs, G200 had implicitly been included. Generally, this is not always the case (although it does turn out to be in this demonstration example) and must be explored when the TOP gate is an AND gate. This complication is not encountered with a TOP OR gate.

Before resolution, there were no one nor two-element MCSs for Reactor Control (see Table 4). Following resolution, there are still no oneelement sets, but 157 two-element sets appear, each containing at least one common-cause failure. Longer-element sets are not identified since they would not lead to the decrease in redundancy at some level necessary to constitute an adverse SI. Note that the elements of these MCSs are assumed to be independent since, theoretically, all commonalities have been accounted for. Also note that, even within the degree of detail used in this analysis, one cannnot ensure that all the two-element MCSs have been identified since the longer-element MCSs were discarded prior to resolution.

From a logic viewpoint (without considering probability), each twoelement MCS is equivalent to one another with regard to the TOP event. The importance of each element depends upon the number and the length of the MCSs in which it appears. The concept of an adverse SI seeks to distinguish among elements, which may be logically equivalent, based upon the event's effect upon systems. For example, consider MCS elements I342, G310, and G420. Each appears in ten two-element MCSs. Thus, from a logic viewpoint, their importances are equal. However, 1342 refers to independent failure
of the SIV drain valve, G310 to cormon generic failure of several CRS diaphragm-operated valves, and 6420 to common generic failure of the Control Air compressors. Each of these is a one-element MCS for CRS failure (see Table 7). Thus, failure of any one will fail CRS. However, since each failure is part of a two-element MCS for Reactor Control failure, occurrence of any one only degrades this safety function. An additional failure is required to fail Reactor Control. However, each of the failures I342, G310, and G420 is sufficient to degrade the function to a non-redundant level.

Is each one an adverse SI? The draft letter report from the SI Branch implies that, in addition to degrading a safety function to a nonredundant level, an adverse SI must also result from common cause and involve at least two systems. I 342 fails on both accounts. It is not a cormon-cause event, nor does it involve two systems (being a failure in a frontline system only - CRS). G310 is a common-cause event, but it involves only the CRंS system. G420 is a common-cause event, and it also invoives two systems, these being Control Air and CRS (through the loss of Control Air). Thus, of the three, only G420 would constitute an adverse SI.

Some confusion can arise when a support system component is considered. 191 and S91 are each contained in three two-element MCSS. Thus, their logical importances are the same. However, 191 refers to independent failure of $480 v$ AC Cormmon Board 1 , while 591 refers to cormmon spatial failure of this board with 4160/480V AC Cormmon Transformers IA and 18. The latter is clearly an adverse SI since it results from a common cause and involves two systems (being a failure in a support system, it can only manifest itself through a frontline system). However, while 191 involves two systems (being a failure in a support system), it is not a commoncause failure in the support system. However, tracing through the fault trees, it is seen to affect frontline systems through the Control Air (via compressor C) and $250 \mathrm{v} D C$ systens (via the four battery chargers). Thus, while 191 corresponds to independent failure of 480 v AC Common Board 1 , the failure itself has an effect upon multiple components (at least to the point of degradation). As such, it would appear to be the type of event that should be treated as an adverse SI. In effect, 191 represents a common-cause event affecting Control Air Compressor C and the four 250v DC battery chargers.
ivent 192 illustrates an added complication. It also has the same logical importance as 191 and represents an independent failure in a support system (480V AC Common Board 2). However, unlike 191, its failure affects only Contrui ©ir Compressor D (and none of the 250 y DC battery chargers). At first, this would not appear to affect multiple components. However, in tracing farther up through the fault trees, I92 is seen to affect the availability of Control Air (A500), which subsequently can prevent the SIV drain valve and the west and east bank SDV vent valves from opening. Thus, it has an effect upon multiple components. In fact, 191 has this same effect as 192, but this was not examined earlier for 191 since its "common cause" effect was evident at a lower level in the fault trees. Thus, 192 would also be an adverse SI.

What is becoming evident here is a seeming need to "trace back" through the fault trees for certain events to determine whether or not they are adverse SIs. With these relatively simple fault trees, this is not a problem. However, with much larger and more detailed trees, such tracing back could prove very difficult and time-consuming since a large number of MCSs would surely be involved. Since support system failures affect the safety function only through frontline systems, it seems safe to assume that any failure of a support system component (independent or dependent) that degrades a safety function to a non-redundant level constitutes an adverse SI. This accounts for multiple failures of frontline systems' components due to failure of a single support component.

If a non-support component is shared by two frontline systems, any failure of it will automatically affect the two systems and be an SI. However, for components in different frontline systems, only a commoncause failure among them will constitute an SI. What is becoming apparent is that a common cause is not a necessary criterion for an SI. Certain types of independent failures constitute SIs too. Thus, three classes of SIs can be identified:

1. Any failure of a support system component
2. Any failure of a non-support system component that is shared by at least two frontline systems
3. A common-cause failure of at least two components in at least two frontline systems.

An adverse SI is an SI that degrades a safety function such that redundancy no longer exists at some level. In an SI analysis, what one is actually searching for are the adverse SIs since only these sis produce the threshold level of degradation. It might be better termed an "adverse SI analysis."

As has been seen, the designation of an adverse SI attempts to distinguish among events that may, from a logica! viewpoint, have equal importance. The value of doing so can be questioned since the assignment of the label "adverse SI" to one event but not to another of equal importance seems to be impractical. In order to identify adverse SIs, the analyst must develop the same model he would use for a general safety analysis, complete with identification of hardware and other independent failures in preparation for and in addition to resolution for dependencies. The focus has been placed on only the portion of the MCS elements designated as adverse SIs. It seems somewhat artificial to ignore the other elements that must inevitably be identified in the process. Unless adverse SIs can be identified without requiring the accompanying detail of a regular safety ana?ysis, it seems inconsistent to focus only on certain ever.ts when others have equal importance from a logical viewpoint. An SI analysis fits naturally into an overall safety analysis and is most efficient when performed as an integral part.

The adverse SIs (and other events not constituting SIs) have been identified; the analysis now continues with their evaluation. Table 11 lists all the two-element MCSs (resolved for dependencies) for failure of the Reactor Control safety function during the transition from the Power Operation to the Hot Shutdown mode. Of the 35 distinct failure events comprising the 157 MCSs, 12 do not fall into any of the three categories of SIs previously identified. These 12 are the following:
$1310 \quad$ G310

1320 S310
1342 G320
1353 G430
1363 S430
G440

These correspond to independent and common-cause failures of components within single frontline systems (CRS, SLC, and RWC), uncharacteristic of SIs. However, as will be demonstrated, some of these rank very high in importance from a logic viewpoint with respect to other failures that are classified as adverse SIs.

A relatively simple, qualitative way of ranking the MCS elements is to tabulate the number of times each appears in the sets of each specific length. Since only two-element MCSs have been identified (there are no one element ones), the qualitative importance of the various failure events depends solely upon the number of times they appear among the 157 twoelement sets. Normally, any one-element MCS event would be qualitatively more important than any appearing solely in multi-eiement MCSs. The failure events are listed in their order of qualitative importance in Table 12. Note that the 12 failures not deemed to be SIs are included in this list.

While ranking the failure events by their qualitative importances provides some measure as to their relative contribution to Reactor Control failure, one can only infer that one event is "more" or "less" important than another. A numerical measure of their relative importances requires a quantitative evaluation. Although the structural importance measure ${ }^{4}$ can provide this without requiring probabilistic estimates, such a ranking scheme is prohibitive for the number of failure events involved here (35) without computer aid. Further, a probabilistic evaluation provides a better measure as to the "true" importances of the failure events, especially if all lead to similar consequences. Ideally, both the probability and the consequence should be evaluated to obtain a risk-based importance. However, such an evaluation is much more complex than a mere probabilistic one an unnecessary when trying to obtain a relative measure of the quantitative importances of failure events with similar consequences. This is the case here since the demonstration example is restricted to one safety function during specific plant modes.

A detailed search for failure data is not warranted for merely illustrating a probabilistic importance evaluation. Thus, for the failure events that have been identified, failure rates from WASH -1400^{5} will be used rather loosely for the sake of supplying numerical values. Tables III 4-1 and III 4-2 of WASH-1400 list demand and time failure rates for the mechanical and electrical components encountered in the WASH-1400 analyses.

For components under continuous operation (such as 250 v DC batteries), an interval of one month is assumed between inspections. Thus, if such a component has a time failure rate of λ_{T}, the average unavailability can be approximated as:

$$
\bar{A}=1 / 2 \lambda_{\mathrm{T}}(720 \mathrm{hrs})
$$

For components demanded at the onset of scram (such as SLC pumps), a mission time of two hours is assumed, since this would be the maximum time required to shut down using the SLC system. Thus, if such a component has a demand failure rate of λ_{D} and a time failure rate (given start) of λ_{T}, the average unavailability can be approximated as:

$$
\bar{A}=\lambda_{D}+1 / 2 \lambda_{T}(2 \mathrm{hrs})
$$

The independent component failure probabilities listed in Table 13 are these average unavailabilities either for continuous or demand operation.

For generic dependencies (among identical component types), the failure probability is approximated as:

$$
\left(\begin{array}{l}
\text { Individual } \\
\text { Failure } \\
\text { Probability }
\end{array}\right) \vee \begin{aligned}
& \text { Required to Manifest the Common- } \\
& \text { Cause Failure (at least 2) }
\end{aligned}
$$

In this example, the mirimum number is 2 in all cases except for G 210 (common generic failure of 250 V DC batteries), where it is 3 . For spatial dependencies, the failure probability is approximated as:

The minimum number is 2 in all cases. The value .01 is arbitrary.
Table 14 lists all the failure probabilities calculated for the events in the two-element MCSs for Reactor Control. The independent failure probabilities used in deriving these are taken from Table 13. The values in Table 14 can then be used to calculate the failure probability of each of the 157 MCSs for Reactor Control listed in Table 11 (two-element sets only). The sum of these is 5×10^{-5} and represents the conditional probability of failure of the Reactor Control safety function given that it is needed during the transition from the Power Operation to the Hot Shutdown mode.

The probabilistic importance of each of the 35 failure events in the MCSs can be calculated as follows:

Let S_{n} correspond to the $n^{\text {th }}$ MCS, of which there are a total of N .

$$
0^{\circ} 0, P(T O P)=\sum_{n=1}^{N} P\left(S_{n}\right)
$$

where P (©) represents the probability of \bullet

If event X is an element of each MCS $S_{i}, i=1,2, \ldots$, m (where $m \leq N$), then the importance of event X is:

$$
I(x)=\sum_{i=1}^{m} P\left(S_{i}\right) / \sum_{i=1}^{m} P\left(S_{i}\right) / \sum_{n=1}^{N} P(T O P)
$$

These importances are listed in Table 15. Included are the 12 failure events that are not SIs.

While the qualitative importances are capable only of showing the rank of the failure events, the probabilistic importances can establish not only the rank but also the quantitative relationship among the events. For example, Table 12 indicates that G170 is more important than G150. However, Table 15 indicates that G170 is more important than G150 by a factor of 5. The probabilistic importances convey more information than the qualitative ones, assuming that the failure data used is accurate.

It is interesting that some of the failure events not constituting SIs are of high importance in either ranking systen. In fact, using probabilistic importance, two of the top three events are not SIs. This seems to emphasize earlier comments that assigning a label of "adverse SI" to one event but not to another of high importance is somewhat impractical, especially when such events will automatically be identified during the search for adverse SIs.

Note that the two ranking schemes do not necessarily yield similar results. For example, none of the events ranked first through fifth qualitatively are ranked fourth or above probabilistically, and vice versa. Especially large discrepancies are found between the two ranks of the following events:

	RANK	
EVENT I310	QUALITATIVE	PROBABILISTIC G210
G160	11	34
G310	2	20
I423	5	23
I424	11	28
G200	30	14
G150	30	14
G440	4	17
G450	2	14
	6	17

Whatever ranking scheme an analyst employs (these two are by no means the only ones), the results must be tempered with a recognition of the method's limitations. For example, considering events G170 and G150 again, one might be falsely tempted to assume that G170 is only slightly more important than G150 based on qualitative importance since their respective numbers of MCS appearances are 22 and 21. No quantitative interpretation can be placed on these numbers; they are useful only for determining rank. Under the probabilistic ranking, quantitative evaluation can be made. However, the restriction of data accuracy and the requirement of consequence similarity still must be recognized.

REFERENCES

1. Cybulskis, P. et al., "Review of Systems Interaction Methodologies," NUREG/CR-1896; Battelle Columbus Laboratories, (January 1981).
2. Pelto, P. and W. Purcell, "MFAULT: A Computer Program for Analyzing Fault Trees," BNIVL-2145; Battelle Pacific Northwest Laboratories, (November 1977).
3. Systems Interaction Branch, "The Systems Interaction Branch Approach to Systems Interactions in LWRs," Draft Staff Summary Letter Report; U.S. Nuclear Regulatory Commission, (February 1981).
4. Barlow, R. and F. Proschan, Statistical Theory of Reliability and Life Testing; Holt, Rinehart and Winston, Inc., (1975).
5. Reactor Safety Study: An Assessment of Accident Risks in U.S. Commercial Nuclear Power Plants, WASH-1400 (NUREG 75-014); U.S. Nuclear Regulatory Commission, (October 1975).

FIGURE 1

IOP OF FAULT TREE FOR REACTOR CONTROL DURING TRANSITION FROM POWER OPERATION TO HOT SHUTDOWN

FIGURE 3 (cont.)

FAULT TREES FOR AC REACTOR BUILDINE VINTILATION ELECTRIC PJWER

FIGURE 7 (cont.)

FIGURE 8
FAULT TREE FOR AC REACTOR MOTOR-OPERATED VALVE ELECTRIC POWER

FAULT TREES FOR AC UNIT ELECTRIC POWER

Numbers	Systems	Components
19	AC Reactor B1dg Vent	480 v AC Boards
10-19	AC Reactor MOV	$480 v$ AC Eoard
20-29	AC Unit	480 v AC Boards
30-39	"	4160/480v AC Transformers
40-49	"	4.16 kV AC Boards
50-59	"	20.7/4.16 kV AC Transformers
60-69	\cdots	22 kV AC Generators
70-79	"	$500 / 20.7$ kV AC Transformers
80-89	"	500 kV AC Off-Site Power
90-99	AC Common	480 v AC Boards
100-109	"	4160/480v AC Transformers
110-119	"	4.16 kV AC Boards
120-129	"	4.16 kV AC Start Board
130-139	"	161/4.16 kV AC Transformers
140-149	"	161 kV AC Off-Site Power
150-159	AC Shutdown	480v AC Boards
160-169	"	4160/480v AC Transformers
170-179	"	4.16 kV AC Boards
180-189	"	4.16 kV AC Generators
190-199	"	4.16 kV AC Buses
200-209	250v DC	250v UC Battery Boards
210-219	"	250v DC Batteries
220-229	"	250v DC Battery Chargers
230-299	Other Gates for Elect	mponents
310-319	CRS	HCU Scram Inlet \& Exhaust Valves
320-329	"	HCU Scram Pilot Valves
330-339	"	Backup Scram Pilot Valves
340-349	"	SIV Valve
350-359	"	West Bank SDV Valve
360-369	"	East Bank SDV Valve

$\frac{\text { Numbers }}{\text { Sustems }}$	Components	
$370-379$	CRS	
$380-389$	$"$	SDV/SIV Pilot Valves
$390-399$	RP	Manual Signal
$400-409$	n	Trip-Logic Channels
$410-419$	RBEDS	Close-Logic Channels
$420-429$	Control Air	Exhaust Fans
$430-439$	SLC	Air Compressors
$440-449$	n	Pumps
$450-459$	RWC	Valves
$460-512$	Other Gates for Non-Electrical Components	

1-Element		3-E, ement		
	310	$\times 320$	$\times 333$	$\times 334$
	x 35	$\downarrow 333$	$\downarrow 334$	1391
	¢53	- 333	334	-342
	+32	320	331	332
		331	322	341
		331	332	392
		422	423	424
		152	423	4 C
		91	422	42 ¢
		91	152	$42 \overline{4}$
		42	422	423
		92	152	42 l
		91	92	422
		41	¢2	156
		111	112	422
2-Element		111	112	156
		$42!$	423	424
$\times 320$	$\times 4.1$	151	423	424
1391	1401	41	421	424
\checkmark - ${ }^{\text {2 }}$	- 40 ¢	91	151	424
320	402	92	421	425
371	40 ?	92	151	423
392	402	91	92	421
371	375	41	92	151
375	300	111	112	42%
371	$39 ?$	111	112	15j
380	352	421	422	426
372	37 ?	151	422	424
378	300	152	421	424
371	541	151	152	424
380	391	42	421	42 C
411	412	92	151	422
	412	42	15 द	421
e	412	42	151	15
1	411	421	422	423
20	9	151	422	423
	93	152	421	423
		151	152	423
		91	421	42 c
		41	151	$42 \dot{1}$
		41	152	421
		91	151	15 L
		30	93	100
		45	93	100
		30	93	111
		45	93	11.
		20	105	100
		20	105	111
		30	106	11.
		45	100	11.
		20	105	115
		20	111	112
		30	111	112
		45	111	112

4－Element（cont．）

－x111	$\times 112$	X 163	$\times 164$
$\downarrow 111$	$\downarrow 112$	$\downarrow 164$	$\downarrow 172$
111	112	163	173
11.	112	172	173
51	112	120	4 C
51	112	120	is2
52	111	120	$4 \bar{C}$
52	111	120	$1 \leq 2$
51	52	120	4 ¢ ¢
51	52	120	152
161	162	422	4 c 4
152	171	4 2う	4e\％ 4
161	172	423	454
17 ！	172	422	424
91	161	16 ¢	$4 \overline{4}$
41	$1 \in 2$	171	4¢4
41	16！	172	$4 \overline{\text { c }}$
91	171	176	¢ ${ }^{\text {c }} 4$
101	102	421	424
101	102	151	पद4
102	111	421	4 E 4
102	111	$15 i$	424
101	112	42 ！	4 CH
101	112	15	4 Ca
92	161	162	4 C 3
42	162	171	423
93	161	17 c	$4 \hat{4} 3$
92	171	172	पく3
91	93	－ 161	$i \in \dot{1}$
91	92	16 c	171
91	92	101	172
91	92	171	$\underline{17}$
92	101	due	$4 \overline{5} 1$
93	10.	102	$1 \leq 1$
42	102	11.	4 C 2
Y2	102	112	151
42	101	115	422
42	01	115	İ¢
103	104	421	4 ¢ ${ }^{\text {a }}$
103	1 CH	151	423
51	103	104	4 cı
91	105	104	－15
104	111	$42 \overline{1}$	4 C 3
104	111	151	423
91	104	11 j	4e ${ }^{\text {a }}$
91	104	111	15
102	104	111	4è
102	107	111	151
103	112	421	4ご
103	112	$15 j$	4 C
41	103	116	4 示
41	103	-112	151
101	103	112	4 E ¢
101	103	112	151

4－Element（cont．）

X 111	x！ $1 ¢$	$x \neq 1$	$\times 162$
$\downarrow 111$	$\downarrow 12$	$\downarrow \mathrm{l}=$	1171
111	11 E	161	172
111	112	172	172
51	112	126	4 ¢
51	112	$-12 i$	1． 1
52	111	$12 i$	4 C i
52	111	120	15i
31	52	126	4 ci
51	52	120	151
161	162	425	4 C 4
162	171	422	424
161	172	$42 i$	पढ ${ }^{4}$
171	172	425	4 C 4
152	$1 \in 1$	162	4 c
152	162	172	424
152	161	17 É	$4 \overline{4}$
1ち2－	171	172	4 E 4
163	164	421	矿年
151	163	164	424
164	172	42 j	424
151	164	． 72	पंत
161	164	176	$4 \overline{4} 4$
164	171	175	प 4.4
163	173	$42!$	4 C 4
151	163	173	4 C 4
172	173	$42 j$	4 Ca
151	172	173	$4 \hat{4} 4$
161	172	175	4 ¢ 4
171	172	173	424
211	212	213	4 4 4
92	161	162	¢ $\overline{\text { ez }}$
－92	162	171.	प̄こと
92	161	17 c	प̄ご
92	171	172	¢ご
42	152	161	
42	152	162	171
92	152	161	17 2
92	152	111－	172
92	163	164	¢ $\overline{\text { E }}$
92	151	163	İ ${ }_{\text {d }}$
42	164	17 c	4¢ $\overline{1}$
42	15.	164	17 2
42	161	164	172
92	164	175	172
92	163	173	4 C ¢
92	151	169	173
42	172	173	4 c i
$4{ }^{4}$	151	175	173
92	161	175	179
72	171 －	176	175
92	211	212	C19

$\times 103$	$X_{1} 104$	X421	X 4こ2
$\downarrow 103$	1104	$\downarrow 15 \mathrm{i}$	\downarrow ¢ ¢ ¢
V03	104	－ 152	－ 4 E1
103	104	151	1¢
104	111	421	4 ¢ 2
104	111	151	पह己
104	111	155	4 E1
104	111	151	1¢
103	112	4 Cl	¢́ez
103	112	151	¢́z
$103-$	112	15 ć	4E
103	112	151	15 ${ }^{\text {c }}$
161	162	426	4 ${ }^{\text {c }}$
162	171	4 E	4 ¢3
161	172	42 C	4 C
171	172	4 E	4 ¢ 3
15 ？	161	162	$4{ }^{\text {a }}$
152	162	171	423
152	161	172	4 E 3
152	171	172	$\overline{4} 5$
165	164	422	4es
151	163	164	423
104	172	$42 \bar{y}$	4 Es
151	164	176	4 ê
161	164	175	4 C 3
164	171	175	प ${ }^{\text {¢ }} 3$
163	173	421	$4{ }^{\text {c }}$
151	163	17\％	4 C 3
172	173	421	4 ¢3
151	172	175	423
161	172	173	$4{ }^{4} 3$
171	172	179	4¢3
211	212	213	4 C 3
41 －	161－	162	\＃ēe
91	162	171	4 $\frac{1}{}$
91	161	175	4 ¢ 2
91	171	17%	4 ¢ 2
4.	152	161	İも
41	152	162	171
－91	152	16 ！	172
41	153	171	172
91	165	164	4 ¢ ${ }^{\text {d }}$
91	151	169	164
91	164	175	4 Cl
41	151	164	17 ${ }^{\text {c }}$
41	161	164	17
91	164	171	172
91	163	173	4 ¢1
91	151	163	175
91	172	173	¢ ¢ ¢
41	151	17 e	173
71	161	178	173－
41	171	172	175
41	211	216	Ė12

TABLE 4. Reactór Control Minimal Cut Sets Prior to Resolution for Dependencies

3-Element			4-Element			
$\times 310$	$\times 441$	X442	$\times 201$	$\times 202$	$\times 203$	$\times 320$
	$\times 202$	X203	$\downarrow 201$	$\downarrow 202$	$\downarrow 203$	$\downarrow 391$
\downarrow	$\times 431$	$\times 432$	201	202	${ }^{+} 203$	* 392
	$\times 154$	$\times 432$	211	212	213	91
	$\times 155$	$\times 431$	211	212	213	92
	$\times 154$	X155	211	212	213	423
	$\times 451$	$\times 452$	211	212	213	424
	$\times 10$	X451	320	401	441	442
$\begin{gathered} \times 363 \\ \downarrow \end{gathered}$	$\times 441$	X442	391	401	\downarrow	
	$\times 202$	$\times 203$	342	401		
	$\times 431$	$\times 432$	320	402		
	$\times 154$	$\times 432$	371	$40 ?$		
	$\times 155$	$\times 431$	392	402		
	$\times 154$	$\times 155$	371	373		
	$\times 451$	X452	373	380		
	$\times 10$	$\times 451$	371	392		
$\times 353$	$\times 441$	$\times 442$	380	392		
	$\times 202$	$\times 203$	371	372		
	$\times 431$	$\times 432$	376	3 Co		
	$\times 154$	$\times 432$	371	391	-	
	$\times 155$	$\times 431$	380	391		
	$\times 154$	$\times 155$	411	412		
	$\times 451$	$\times 452$	1	412		
	$\times 10$	$\times 451$	3	411		
$\begin{gathered} \times 342 \\ \downarrow \end{gathered}$	$\times 441$	$\times 442$	1	- 2		
	$\times 202$	$\times 203$	20	- 93		
	$\times 431$	X432	320	-401	-202	203
	$\times 154$	$\times 432$	391		\downarrow	
	$\times 155$	$\times 431$	342	40%	\downarrow	
	$\times 154$	$\times 155$	320	402		
	$\times 451$	$\times 452$	391	40 ?		
	$\times 10$	$\times 451$	392	402		
			371	392		
			380	392		
			371	372		
			378	3 CO		
			371	591	-	
			380	391		
			411	412		
			1	412		
			3	411		
			1	2		
			20	$\therefore 93$		

. .	4-Element (cont.)			4-Element (cont	
-x 320	X4C1... x431 1	$\times 432$	- $\times 320$	- $\times 401 \times 154$	$\times 155$
$\checkmark 391$	$\checkmark 401$	\downarrow	$\sqrt{391}$	$\downarrow 401$	\downarrow
342	401		342	40! \downarrow	
320	402		320	402	
371	$40 ?$		371	40 ?	
392	402		392	402	
- 371	373		- 371	373 -	
375	306		373	300	
371	$39 ?$		371	392	
380	392		380	392	
371	372		371	372	
372	3 Co		375	3co	
371	591		371	391	
380	391		380	391	
411	412		411	412	
1	412		1	41 c	
2	411		2	411	
1	2		1	2	
$20-$	-93		20	$\therefore 93$	
320	-401- $\times 154$	$\times 432$	- 320	. 401×451	X452
391	401 d	\downarrow	391	40\% \downarrow	\downarrow
342	40%.		- 342	401 V	
320	402		320	402	
371	40?		391	402	
392	ROZ		342	402	
371	373		- 371	375 --	
375	380		375	300	
371	393		371	$39 ?$	
380	352		380	392	
371	372		371	372	
372	3 CO		378	3 CO	
371	591		- 371	591	
380	391		380	391	
411	412		411	412	
1.	412		1 .	412	
\longleftarrow	411		2	411	
1	2		1	2	
	$\therefore 93$		$20-$	-93	
320	4C1 X155	$\times 431$	- 320	-401-. $\times 10$	$\times 451$
391	$4 \mathrm{Cl} \downarrow$	\downarrow	391	40%	
342	401 V	\downarrow	342	401 V	\downarrow
320	402		320	402	
371	40 ?		371	40 ?	
392	402		392	402	
371	375		- 371	373 -	
373	30		375	380	
371	$3 ¢ ?$		371	3¢?	
380	352		380	352	
371	372		371	372	
312	350		375	3 CO	
-. 371	591		- 371	591	
380	391		380	391	
411	412		411	412	
1	412		1-	412	
2	411		2	411	
1	2		1	2	
. 20	-93		20		

4-Element (cont.)				4-Element (cont.)			
$\begin{gathered} \times 310 \\ \downarrow \end{gathered}$	$\times 211$	$\times 212$	X213	$\begin{gathered} \times 353 \\ \downarrow \end{gathered}$	$\times 211$	$\times 212$	
	$\times 166$	X167	$\times 432$		$\times 166$	$\times 212$ $\times 167$	$\times 213$ $\times 432$ $\times 432$
	$\times 167$	$\times 173$	$\times 432$		$\times 167$	$\times 173$	$\begin{array}{r}\text { X2132 } \\ \times 432 \\ \hline\end{array}$
	$\times 166$	X174	$\times 432$		X166	x16 $\times 174$ $\times 174$	X 432 $\times 432$ $\times 432$
	X173	X174	$\times 432$		$\times 173$	$\times 174$	$\times 432$ $\times 432$ $\times 162$
	$\times 155$	X166	$\times 167$		X155	X174 $\times 166$	$\times 432$ $\times 167$
	$\times 155$	$\times 167$	$\times 173$		$\times 155$	X167	X167 $\times 173$
	$\times 155$	X166	X174		X155	X166	X173 $\times 174$ $\times 174$
	$\times 155$	X173	$\times 174$		X155	$\times 173$	X $\times 174$
	$\times 167$	$\times 168$	$\times 431$		$\times 167$	X168	X174 $\times 431$
	$\times 154$	X167	$\times 168$		X154	X168	X431 $\times 168$
	$\times 166$	X167	X168		X166	X $\times 167$	X168 $\times 168$ $\times 173$
	X167	, X168	$\chi 173$		$\times 167$	$\times 168$	$\times 173$
	$\times 168$	X174	$\times 431$		X168	$\times 174$	X168 $\times 437$
	$\times 154$	X168	X174		$\times 154$	$\times 168$	$x 1731$ $\times 174$ $\times 174$
	$\times 165$	X168	$\times 174$		$\times 166$	$\times 168$	X174 $\times 174$
	X168	$\times 173$	X174		$\times 168$	$\times 173$	$\times 174$
	$\times 167$	$\times 171$	X431		$\times 167$	$\times 171$	X $\times 131$
	X 154	$\times 167$	$\times 171$		$\times 154$	$\times 167$	X $\times 171$
	$\times 166$	$\times 167$	$\times 171$		$\times 166$	X167	$\times 171$
	X167	$\times 171$	$\times 173$		$\times 167$	$\times 171$	$\times 173$
	X171	X174	X431		$\times 171$	$\times 174$	X431
	$\times 154$	$\times 171$	X174		$\times 154$	$\times 171$	$\times 174$
	X166 $\times 171$	$\times 171$	X174		X166	$\times 171$	$\times 174$
$\begin{gathered} \times 363 \\ \downarrow \end{gathered}$	X171	$\times 173$	$\times 174$		$\times 171$	$\times 173$	$\times 174$
	$\times 165$	$\times 172$ $\times 167$	$\times 213$	$\times 342$	$\times 211$	$\times 212$	$\times 273$
	$\times 167$	X $\times 173$	$\begin{array}{r}\text { X432 } \\ \times 432 \\ \hline\end{array}$		$\times 166$	X167	X432
	$\times 166$	$\times 174$	X432		$\times 167$	X173	$\times 432$
	X173	$\times 174$	$\times 432$		$\times 166$	$\times 174$	$\times 432$
	X155	X166	X167		X $\times 155$	$\times 174$	$\times 432$
	$\times 155$	X167	X 173		$\times 155$	$\times 1766$ $\times 167$	X167
	X155	$\times 166$	X174		X155	X166	$\times 173$
	X155 $\times 167$	$\times 166$ $\times 173$ $\times 168$	X174		X155	$\times 173$	X173 $\times 174$ $\times 17$
	X154	x17 $\times 167$ $\times 167$	X17 $\times 168$ $\times 168$		$\times 167$	X168	$\times 431$
	X166	$\times 167$	X168		$\times 164$ $\times 165$	$\times 167$	$\times 168$
	$\times 167$	$\times 168$	X173		X166 $\times 167$	$\times 167$	X168
	$\times 168$	$\times 174$	- $\times 1431$		X168	X168 $\times 174$ $\times 174$	X173
	$\times 158$ $\times 165$	$\times 158$	X174		$\times 154$	X168	X431
	X168	X168	X174		$\times 166$	X168	X174 $\times 174$
	$\times 167$	$\times 171$	X174 $\times 174$ $\times 431$ $\times 175$		$\times 168$	X173	$\times 174$
	$\times 154$	$\times 167$	X 171		X168	$\times 171$	$\times 431$
	$\times 166$	$\times 167$	X171		x15 $\times 166$	$\times 167$	X171
	$\times 167$	$\times 171$	$\times 173$		$\times 167$	X171	$\times 171$
	X $\times 175$	$\times 174$	$\times 1731$ $\times 174$		$\times 171$	X174	X173
	$\begin{aligned} & \mathrm{X} 166 \\ & \mathrm{X} 171 \end{aligned}$	X171	X 1714 $\times 174$		$\times 154$	$\times 171$	X174
		$\times 173$	$\times 174$		X166	$\times 171$	$\times 174$
					X171	$\times 173$	$\times 174$

			LOCATION		
FAILURE \#	SYSTEM	COMPONENT	BUILDING	ELEV.	COORDS.
X1	AC ReactorBldg. Vent(Unit 3only)	4SOv AC Reactor Bldg. Vent Board 3A	Unit 3 Reactor Bldg	734	QN/R $1^{\text {R }} 19$
X2		480v AC Reactor Bida. Vent Board 3B		565	$\mathrm{UT} / \mathrm{R}_{18} \mathrm{R}_{19}$
$\times 20$	AC Unit.	$480 V$ AC Unit Board 3A	Turbine Bldg	586	$0 C / T_{11} 1^{\top} 12$
$\times 30$		4160/480V AC Unit Transformer 3A			
$\times 45$		4.16 kV AC Unit Board 3A		604	${ }^{C B / T} 16^{\top} 17$
X51		20.7/4.16 kV AC Unit Station Service Transformer 1	Switchyard		
$\times 52$		20.7/4.16 kV AC Unit Station Service Transformer 2			
$\times 53$		20.7/4.16 kV AC Unit Station Service Transformer . 3			
X91	AC Common	$\begin{aligned} & 480 \mathrm{v} \text { AC Common } \\ & \text { Board } 1 \end{aligned}$	Turbine Bldg.	586	$\mathrm{KJ}^{\prime} \mathrm{T}_{6}{ }^{\text {T }} 7$.
X92		480v AC Conmon Board 2		604	$\mathrm{CB} / \mathrm{T}_{6} \mathrm{~T}_{8}$
$\times 93$		480 V AC Conmon Board 3		586	${ }^{H G / T} T_{11}{ }^{\top} 12$
$\times 100$		4160/480v AC Common Transformer EA		604	$\mathrm{CB}^{\text {/ }} \mathrm{T}_{12}{ }^{\text {T }} 13$
$\times 101$		4160/480v AC Cormon Transformer 1A		586	$\mathrm{KJ} / \mathrm{T}_{6} \mathrm{~T}_{7}$,
$\times 102$		$4160 / 480 v$ AC Common Transformer 18			
$\times 103$		4160/480v AC Common Transformer 2A		604	${ }^{C B} / \mathrm{T}_{7} \mathrm{~T}_{8}$
X104		4160/480v AC Cormon Transformer 2B			$\mathrm{CB} / \mathrm{T}_{6} \mathrm{~T}_{7}$
$\times 105$		$4160 / 480 v$ AC Cormmon Transformer 3A		586	${ }^{H G /} / \mathrm{T}_{1} 1^{\top} 12$
X106		4160/480v AC Common Transformer 38			

			LOCATION		
FAILURE \#	SYSTEM	COMPONENT	BUILDING	ELEV.	COORDS.
$\times 411$	Reactor Building Equipment Drain Sump (Ventilation only)	RBEDS Exhaust Fan 1	Unit 3 Reactor Bldg.	576	$V \mathrm{~V} / \mathrm{R}_{19} \mathrm{R}_{20}$
$\times 412$		RuEDS Exhaust Fan 2			
$\times 421$	Control Air	Air Compressor A	Turbine Bldg.	565	$M J / T_{1} T_{2}$
$\times 422$		Air Compressor B			
$\times 423$		Air Compressor C			
$\times 424$		Air Compressor D			

TABLE 6. Dependencies Among Component Failures in CRS Minimal Cut Sets

Component Failures	Dependencies	
	Generic	Spatial
X1, X2	GO	---
X20, X30	---	S20
$\times 51-\times 53$	G50	\$50
X91-X93	G90	---
X91, X101, X102	---	S91
X92, X103, X104	---	592
X93, X105, X106	---	593
X100-X106	G100	---
X111, X112	G110	---
X111, X120	---	S111
X151, X15?	G150	---
X151, X171	---	S151
X152, X173	---	S152
X161-X164	G160	---
X171-X173	G170	---
X201-X203	G200	---
$\times 201, \times 211$	---	S201
$\times 202, \times 212$	---	S202
$\times 203, \times 213$	---	S203
$\times 211-\times 213$	G210	---
$\times 310-\times 373$	---	S310
X310, X342, X353, X363.	G310	---
X320, X331-X334, X371-X373	G320	---
X391, X392	G390	---
X401, X402	G400	---
$\times 391-\times 402$	---	S390
X411, $\times 412$	G410	S410
X421-X424	G420	S420

TABLE 7.

CRS Minimal Cut Sets Following Resolution for Dependencies

			LOCATION		
FAILURE \#	SYSTEM	COMPONENT	BUILDING	ELEV.	CQORDS.
X10	AC Reactor MOV (Unit 3 Board 3A only)	480v AC Reactor MOV Board 3A	Unit 3 Reactor Bldg	621	$2 P / R_{20} R_{21}$
X154	AC Shutdown	430v AC Shutdown Board 3A			$S R / R_{20} R_{20.5}$
X155		480v AC Shutdown Board 3B			$S R / R_{20.5} R_{21}$
$\times 166$		4160/480v AC Shutdown Transformer 3A			$S R / R_{20} R_{20.5}$
$\times 167$		4160/430v AC Shutdown Transformer 3E		639	$S R / R_{20} R_{21}$
X168		4160/480v AC Shutdown Transformer 3B		621	$S R / R_{20.5} \mathrm{R}_{21}$
X171		4.16 kV AC Shutdown Board A	Unit 1 Reactor Building		$S P / R_{1} R_{2}$
X173		4.16 kV AC Shutdown Board C	Unit 2 Reactor Bldg		$\mathrm{SP} / \mathrm{R}_{13} \mathrm{R}_{14}$
X174		4.16 kV AC Shutdown Board D		593	
X181		4.16 kV AC Diesel Generator A	Diesel Generator	565	Room A
X183		4.16 kV AC Diesel Generator C			Room C
X184		4.16 kV AC Diesel Generator D			Room D
X191		4.16 kV AC Shutdown Bus 1			
X192		4.16 kV AC Shutdown Bus 2			

TABLE 8. (cont.)

TABLE 9. Dependencies Among Component Failures in SCL Minimal Cut Sets

Component Failures	Generic Dependencies	
X10, X154, X155	--	Spatial
X154, X155	G150	S10
X166-X168	G160	--
X171, X173, X174	G170	
X181, X183, X184	G180	--
X191, X192	G190, G40*	S180
X431, X432	G430	--
X431-X442	--	--
X441, X442	G440	S430
X451, X452	G450	--

* For each minimal cut set containing X191 \& X192, there is a corresponding, longer-element minimal cut set containing $X 41$ through X 46, all of which are subject to a generic failure (G40).

TABLE 10. SLC Minimal Cut Sets Following Resolution for Dependencies

1-Element	2-Element
S10	I441 1442
G150	I202 I203
G160	I431 1432
G170	I154 1432
G200	1155 1431
G210	11541155
6430	14511452
S430	I10 I451
G440	G180 G190
G450	G190 S180
	G180 G40
	G40 \$180

TABLE 11. Reactor Control Minimal Cut Sets Following Resolution for Dependencies

1-Element	2-Element (cont.)	2-Element (cont.)
None	I310 6430	I424 G210
2-Element	1363 *	1423 Gl 70
1310 510	1353	1424 G170
I363 \downarrow	1342	G310 S10
1353	I310 5430	\$310 \downarrow
1342	1363 V	\$390
I310 G150	1353	G320
I363 \downarrow	1342	G410
I353	1310 G440	S410
1342	I363	GO
1310 G160	1353	G420
I363	I342	S420
1353	1310 G450	G310 G150
1342	I363 \downarrow	S310 \downarrow
I310 G170	I 353	\$390
$\text { I } 363$	1342	G320
1353	1320 G 200	G410
1342	I391 G200	S410
I310 G200	I392 G200	GO
I363 \downarrow	I91 G150	G420
1353	$192 \mathrm{G150}$	S420
1342	191 G210	G310 G160
1310 G210	192 G210	S310 V
$1363 \downarrow$	191 G170	S390
I353	$192 \mathrm{G170}$	G320
1342	1423 G 210	G410

$$
\begin{aligned}
& \text { TABLE 11. (cont.) } \\
& \frac{\text { 2-E1ement (cont.) }}{\text { G90 G160 }} \\
& \text { G110 G160 } \\
& \text { G90 G170 } \\
& \text { G110 G170 } \\
& \text { G170 S92 } \\
& \text { G170 S91 }
\end{aligned}
$$

TABLE 12. QUALITATIVE IMPORTANCES OF FAILURE EVENTS IN REACTOR CONTROL MINIMAL CUT SETS RESOLVED FOR DEPENDENCIES

RANK	EVENT	\# OF TIMES APPEARING IN 2-ELEMENT SETS	RANK	EVENT	$\begin{gathered} \# \text { OF } \\ \text { APPEARANCES } \end{gathered}$
1	G170	22	11	\$390	10
2	G150	21	11	G410	10
2	G210	21	11	\$410	10
4	G200	17	11	G420	10
5	G160	16	11	5420	10
6	510	14	24	G90	4
6	G430*	14	25	191	3
6	S430*	14	25	192	3
6	6440*	14	25	591	3
6	G450*	14	25	S92	3
11	1310*	10	25	G110	3
11	1342*	10	30	1423	2
11	1353*	10	30	1424	2
11	1363*	10	32	I320*	1
11	GO	10	32	1391	1
11	G310*	10	32	1392	1
11	S310*	10	32	G100	1
11	G320*	10			

* Not an SI

COMPONENTS	WASH-1400 FAILURE MODES*	WASH-1400* FAILURE RATE	$\begin{aligned} & \text { CALCULATED } \\ & \text { FAILURE } \\ & \text { PROBABILITY } \end{aligned}$
	Wires, open circuit or		
Boards,	short to ground	$3 \times 10^{-6} / \mathrm{hr}$. 001
Buses			
Electric	Transformers, open circuit		
Transformers	(primary or secondary)	$1 \times 10^{-6} / \mathrm{hr}$	4×10^{-4}
Diesel	Diesel Generators		
Generators	(complete plant):		
	failure to start	.03/demand	
	failure to run, given start (emergency conditions)	.003/hr	
Electric	Battery Power Systems		
Batteries	(wet cell), failure to provide proper output	$3 \times 10^{-6} / \mathrm{hr}$. 001
Electric			
Logic	Wires, short to power	$1 \times 10^{-8} / \mathrm{hr}$	4×10^{-6}
Channel			
Diaphragm-	Air/Fluid-Operated Valves,		
Operated	failure to operate	$3 \times 10^{-4} /$ demand	3×10^{-4}
Valves			
Solenoid-	Solenoid-Operated Valves,		
Operated	failure to operate	.001/demand	. 001
Valves			

TABLE 13. (continued)

COMPONENTS	WASH-1400 FAILURE MODES*	$\begin{aligned} & \text { WASH-1400^ } \\ & \text { FAILURE RATE } \end{aligned}$	$\begin{aligned} & \text { CALCULATED } \\ & \text { FAILURE } \\ & \text { FROBABILITY } \\ & \hline \end{aligned}$
Motor-	Motor-Operated Valves,		
Operated	failure to operate	.001/demand	. 001
Valves			
Explosive	Any Valve, failure	(maximum value	
Valves	to operate	for all valves)	. 001
		.001/demand	
Pumps	Pumps:		
	failure to start	.001/demand	
	failure to run, given start (normal environment)	$3 \times 10^{-5} / \mathrm{hr}$. 01
Fans	Pumps, failure to run, given start	$3 \times 10^{-5} / \mathrm{hr}$	$.01{ }^{\circ}$
Air Compressors	Pumps, failure to run,		
	given start	$3 \times 10^{-5} / \mathrm{hr}$	$.01{ }^{\circ}$
*Selected from Tables III 4-1 and III 4-2.			
${ }^{\oplus}$ Assumed to have already started prior to need for scram (failure probability calculated as $1 / 2 \lambda_{T}$ [720 hrs])			

TABLE 14. FAILURE PROBABILITIES FOR EVENTS IN REACTOR CONTROL MINIMAL CUT SETS RESOLVED FOR. DEPENDENCIES

FAILURE EVENT	COMPONENTS INVOLVED	FAILURE PROBABILITY
G0	$480 v$ AC Reactor Building Vent Boards	$(.001)^{\sqrt{2}}=6 \times 10^{-5}$
S10	$480 v$ AC Reactor MOV Board and $480 v$ AC Shutdown Boards $3 A$ and $3 B$	$(.01)^{\sqrt{2}}=.001$
G90	$480 v$ AC Common Boards	$(.001)^{\sqrt{2}}=6 \times 10^{-5}$
191	$480 v$ AC Common Board 1	. 001
192	48 Cv AC Cormon Board 2	. 001
S91	480 v AC Common Board 1 and 4160/480v AC Common Transformers IA and 1 B	$(.01)^{\sqrt{2}}=.001$
S92	480 v AC Common Board 2 and $4160 / 480 v$ AC Common Transformers $2 A \& 2 B$	$(.01)^{\sqrt{2}}=.001$
G100	4160/480v AC Common Transformers	$\left(4 \times 10^{-4}\right)^{\sqrt{2}}=2 \times 10^{-5}$
G110	4.16 kv AC Common Boards	$(.001)^{\sqrt{2}}=6 \times 10^{-5}$
G150	$480 v$ AC Shutdown Boards	$(.001)^{\sqrt{2}}=6 \times 10^{-5}$
G160	4160/480v AC Shutdown Trans formers	$\left(4 \times 10^{-4}\right)^{\sqrt{2}}=2 \times 10^{-5}$
G170	4.16 kv AC Shutdown Boards	$(.001)^{\sqrt{2}}=6 \times 10^{-5}$

TABLE 14 (continued)

FAILURE EVENT	COMPONENTS INVOLVED	$\begin{aligned} & \text { FAILURE } \\ & \text { PROBABILITY } \\ & \hline \end{aligned}$
G200	250v DC Battery Boards	$(.001)^{\sqrt{2}}=6 \times 10^{-5}$
G210	250v DC Batteries	$(.001)^{\sqrt{3}}=6 \times 10^{-6}$
1310	≥ 3 CRS HCU DiaphragmOperated Scram Inlet or Exhaust Valves in Different HCUs	$\left(3 \times 10^{-4}\right)^{3}=3 \times 10^{-11}$
G310	CRS Diaphragm- Operated Valves	$\left(3 \times 10^{-4}\right)^{\sqrt{2}}=1 \times 10^{-5}$
5310	CRS Valves	$(.01)^{\sqrt{2}}=.001$
1320	$\geq 3 \mathrm{CRS}$ HCU SolenoidOperated Scram Pilot Valves in Different HCUs	$(.001)^{3}=1 \times 10^{-9}$
G320	CRS Solenoid-Operated Valves	$(.001)^{\sqrt{2}}=6 \times 10^{-5}$
1342	CRS Diaphragm-Operated SIV Drain Valve	3×10^{-4}
1353	CRS Diaphragm-Operated West Bank SDV Vent Valve	3×10^{-4}
I363	CRS Diaphragm-Operated East Bank SDV Vent Valve	3×10^{-4}

TABLE 14. (continued)

FAILURE EVENT	$\begin{aligned} & \text { COMPONENTS } \\ & \text { INVOLVED } \\ & \hline \end{aligned}$	FAILURE PROBABILITY
S390	RP Logic Channels	$(.01)^{\sqrt{2}}=.001$
1391	RP Trip-Logic-Channel A	4×10^{-6}
1392	RP Trip-Logic-Channel B	4×10^{-6}
G410	RBEDS Exhaust Fans	$(.01)^{\sqrt{2}}=.001$
5410	RBEDS Exhaust Fans	$(.01)^{\sqrt{2}}=.001$
G420	Control Air Compressors	$(.01)^{\sqrt{2}}=.001$
S420	Control Air Compressors	$(.01)^{\sqrt{2}}=.001$
1423	Control Air Compressor C	. 01
1424	Control Air Compressor D	. 01
G430	SLC Pumps	$(.01)^{\sqrt{2}}=.001$
S430	SLC Pumps and Explosive Valves	$(.01)^{\sqrt{2}}=.001$
G440	SLC Explosive Valves	$(.001)^{\sqrt{2}}=6 \times 10^{-5}$
G450	RUC Motor-Operated Isolation Valves	$(.001)^{\sqrt{2}}=6 \times 10^{-5}$

RANK	EVENT	PROBABILISTIC IMPORTANCE	RANK	EVENT	PROBABILISTIC IMPORTANCE
1	S10	. 1	17	G450*	. 608
1	6430*	. 1	20	GO	. 004
1	S430*	. 1	20	G210	. 004
4	S310*	. 07	20	G320*	. 004
4	\$390	. 07	23	G160	. 003
4	G410	. 07	24	191	. 002
4	\$410	. 07	24	S91	. 002
4	G420	. 01	24	192	. 002
4	S420	. 07	24	592	. 002
10	G170	. 04	28	G310*	7×10^{-4}
11	I342*	. 02	29	G90	2×10^{-4}
11	I353*	. 02	29	G110	2×10^{-4}
11	1363*	. 02	31	G100	2×10^{-5}
14	1423	. 01 '	32	I391	5×10^{-6}
14	1424	. 01	32	I392	5×10^{-6}
14	G150	. 01	34	1310*	2×10^{-9}
17	G200	. 008	35	1320*	1×10^{-9}
17	G440*	. 008			

*Not an SI

