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ABSTRACT

The Environmental Transport Model is a compartment
model which represents radionuclide movement through a
sur face hydrologic system. Some of the parameters in the
model are based on water and solid flow rates between var-
ious compartments in the system. Mean yearly flow rates
have been used in the calculation of these parameters,
whereas the flow rates are (at best) periodic functions
of time or (more realistically) periodic stochastic pro-
cesses. This report presents the results of an investi-
gation into the effects that these variable hydrologic
patterns have on the Environmental Transport Model.
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Chapter 1

Introduction

The following report presents the results of an
investigation into the effects that variable hydrologic
patterns have on the Environmental Transport Model. The
Environmental Transport Model is a compartment model
which is used to represent how radionuclides would move
through a given surface water system of lakes and rivers
and how they would build up in the adjacent soil layers,
the upper groundwater aquifers beneath the soil layers,
and the sediment layers beneath the surface water system.
Detailed discussions of the model are given in Campbell,
et al., (Ca78) and Helton and Kaestner (HelS8lb).

The model is based on the vector differential
equation

dX/dt = AX + R, (1.1)

where, if 1 < i < n, then ¥X;(t) denotes the number of
atoms of & particular radionuclide which are present
at time t in a certain subzone (GW ~ groundwater, SOIL~
soil, SW~surface water, SED ~ sediment) of one of the
hydrologic zones in the system being considered. The
preceding terminology is explained in greater detail
in the next paragraph. The matrix A (called an
Environmental Transport or ET-matrix here) contains
the transfer coefficients (units: yr~l) between the
subzones and has a special character which will be
indicated. The vector R represents the rates (units:
atoms/yr) at which the radionuclides under considera-
tion are entering the subzones in the system being
considered. In the following, R is assumed to be
constant.

The elements of the matrix A are derived from the
flow rates for water and solid material between the
various subzones in the system. These flows are shown
for a single zone in Figure l1-1. Further, the linkage
of zones to represent the movement of a decay chain
containing N radionuclides through a system of M zones
is shown in Figure 1-2. As discussed in Campbell, et
al., (Ca78, Chapter 4) a total of 4MN compartments is
used to represent the movement of a decay chain with N
radionuclides through a system of M zones. With

«) -



L = 4N(I - 1) + 4(J - 1) + K

and under the notation used in conjunction with the
computer program (Hel8lb) which implements model, the
Lth compartment is the compartment associated with the
presence of Radionuclide J in Subzone K (1~ GW, 2 ~ SOIL,
3~SW, 4~ SED) of Zone 1. That is, the function X in
the radionuclide transport equations represents the
amount of Radionuclide J in Subzone K of Zone I,

<—  SURFACE-
SEDIMENT |~ AT

-

GROUNDWATER | SOIL

Figure 1-1. Division of a Zone Into Subzones.
Arrows represent potential direc-
tions of movement for water and
solid material. Radionuclide
movement should follow the same
pattern since it is these flows
that dominate radionuclide

transport.
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Figure 1-2. Compartments and Flows Associated With the Movement of a Chain
of N Radionuclides Through a System of M Zones. Each subzone
has N compartments associated with it. Each radionuclide has
4M compartments associated with it. Solid lines represent
physical flows of radionuclides; dotted lines represent decay.
With the exception of the surface-water subzone of Zone M,

arrows which represent possible physical flows out of the
system are omitted.




In the simplest case where only one zone and one
radionuclide are considered, A = [aj4] 1s a 4x4 matrix.
Then, X;(t), Xp(t), X3(t) and X4(t) represent the number
of atoms of the radionuclide in question present at time
t in the groundwater, soil, surface water and sediment
subzones, respectively. The flow rate constant ajj
(units: yr~l), representing flow from Subzone J td
Subzone 1, is defined by the eqguation

ajj = (1 - S4)RWj§/VW4 + (S4)RSi4/MSq,

where VW3 is the volume (units: L) of water in Subzone J,
MSJ is the mass (units: kg) of solid material in Subzone
J,"RWj4 is the rate of water movement (units: T/yr) from
Subzoné J to Subzone I and RSj4 is the rate of solid move-
ment (units: kg/yr) from SubzOne J to Subzone I. The
term Sy 1is a weighting factor based on the distribution
coefficient (KD-value) for the particular radionuclide

and subzone under consideration. Specifically,

S N

e KDjMSJ/{?DjMSj + VWj),

where KD; is the distribution coefficient for the radio-
nuclide 1n Subzone J. The distribution coefficient
(units: c¢i/kg per ci/L) is a measure of the tendency of
the radionuclide to become sorbed to solids and has gen-
erally been found to range between 109 and 105 (To79,
Ap77). 1f the distribution coefficient is large, S is
close to 1; if the distribution coefficient is small, S
is closer to 0. For i = 5, the term aj4y defines a move-
ment out of Subzone J and out of the zone. Such terms do
not appear by themselves as elemenis of A as do the other
ajyi however, they are used in the calculation of the diag-
onal elements of A, Specifically, such diagonal elements
are given by

a3 = -2 aij -,
1#73

where A is the decay constant for the radionuclide, With
respect to the preceding equality, each diagonal element

is the rate constant for movement out of a particular sub-
zone and thus is the sum of all rate constants for movement

out of that subzone,




The preceding paragraph describes the elements of A
for one zone and one radionuclide. That is, A is defined
for a system of the form represented in Figure 1-1. The
elements of A are defined similarly for a system of the
form represented in Figure 1-2. Here, A is a 4MNx4MN
matrix and it is necessary to incorporate into the ele-
ments of A the linkages which result from radioactive
decay and from physical flow through the system,

In the Environmental Transport Model, mean yearly
values for the flow rates RWj4 and RSj4 are used in the
calculation of the aj4 and A 1s treatea as a constant
matrix. These flow rates are (at best) periodic func-
tions of time or (more realistically) periodic stochastic
processes. Here, the designation periodic stochastic pro-
cess is used to indicate a stochastic process for which
the expected values of the individual random variables
form a periodic function. This study examines the rates
at which radionuclide buildup occurs when this variability
in A is taken into account. The desire is to determine if
such variability has sufficient effects on predictions by
the Environmental Transport Model to require some method
for its incorporation into model predictions. In investi-
gating these processes, the intent is to perform bounding
calculations to develop a feeling for the extent of their
effects rather than to develop detailed models which incor-
porate these effects into the Environmental Transport Model.

For this study, the solutions Y to the following
equations are considered as models of the periodic case:

dy/dt = p(t)AY + R (1.2)

and

il

dy,/dt = (p(t)F + D)Y + R. (1.3)

The function p(t) is called a hydrologic pattern and is a
continuous (or, at least piecewlise-continuous), periodic
(with period 1 year), positive-valued function with

1
[p(t)dt = 1.
0




The function p(t) is unitless and thus the units for

the preceding integral are years. The matrix A is the
Environmental Transport Matrix computed with mean yearly
values for the flow rates as previously indicated.
Further, F is the resulting matrix when the decay rates
are not includea and D is the decay rate matrix; that

is, A= F + D. The matrix D is a lower triangular matrix
with nonpositive diagonal elements and nonnegative off-
diagonal elements. The diagonal elements correspond to
radioactive decay rates; the positive off-diagonal ele-
ments correspond to generation rates of daughter isotopes
due to the radioactive decay of parent radionuclides.

Replacements of the form indicated in the preceding
paragraph are common in biological and ecological model-
ing. Spe~ifically, a periodic parameter A(t) with period 7
may be replaced by its mean value

.
A =/ A(t)dt/7T.
0

Or, a periodic stochastic parame er A(t,e) with period 7
may be replaced by its expected value

T T
A=E [ A(t,e)dt/r =f E(A(t,*)]dt/7.
0 0

See Rykiel and Kuenzel (Ry71), Heathcote (Hea73) and
Tiwari, et al., (Ti78) for some linear and nonlinear
models where this is done and some comparisons are made.

It is obviously assumed in Equations (1.2) and (1.3)
that variations in flos -~ates of water and sediments occur
simultaneously in all Lzones of the system. This is
only an approximation of true hydrologic phenomenon and ’
tends to overestimate flow rates for other subzones rela-
tive to those for the surface water subzone, As discussed
in Section 4.1, this does cause some potentially misleading
results, It is also inherently assumed in (1.2) that, if
the decay rates are included in the computation of the
diagonal elements of A, then they vary along with the
flow rates; this obviously does not agree with reality.




Equation (1.3) avoids this difficulty. However, Equation
(1.2) yields to a certain change of variables which greatly
simplifies the analytical comparison of its solution to
the solution X of (1.1). Also, certain computational
difficulties are encountered in generating solutions to
(1.3) which do not occur in generating solutions to (1.2).
Therefore, this study ccncentrates primarily on (1.2).

For a radionuclide chain with equal distribution coef-
ficients, it is possible to omit consideration of the
decay rates, in which case a comparison of the solutions
to (1.1) and (1.2) is the pertinent comparison. In most
cases of interest in geologic waste disposal, the decay
rates in D are much smaller than the elements of F, so
that p(t)A is almost the same as p(t)F + D. 1Indeed, it
will be shown that in the case of a single radionuclide
with long half life, there is limited difference between
the solutions to (1.2) and (1.3).

As a model of the stochastic case, the solution to
the following equation is considered:

di(t,w)/dt = S(t,w)p(t)AZ(t,w) + R, (1.4)

where p(t) 1s a hydrologic pattern and S(t,w) is a cer-
tain kind of stochastic process with E[S(t,*)] = 1. The
particular stochastic process considered is descripbed in
Chapter 3.

/




Chapter 2
General Description of A, X and Y

An Environmental Transport Matrix is an example of
a lass of matrices each of which is a square matrix
with (1) off-diagonal elements nonnegative, (2) diagonal
elements nonpositive, and (3) the jth diagonal element

ajj = —dj satisfying

42 & %4
1#9

With respect to the structure of an Environmental
Transport Matrix A, each element aj4, 1i#), corresponds
to a movement from Compartment J to  Compartment I; thus,
strict inequality holds in the preceding relation only
i1f there is a direct movement of radionuclide (due to
radioactive decay or physical transport) out of
Compartment J and out of the system under consideration.
A compartment system such as the one represented in Fig-
ure 1-2 is said to be open if material can move out of
the system; conversely, a system is said to be closed

if it is not open. Further, a system is said to be
completely open if it is open and contains no closed
subsystem., If all the flows represented in Figure 1-2
are nonzero, then the indicated system is completely
open, If the system represented by an Environmental
Transport Matrix 1is completely open, then (4) each
diagonal element is negative and (5) there exists at
least one diagonal element a44 = --dJ such that

d] > Z aiqe

i%3

But, validity of conditions (1) through (5) does not
necessarily imply that the underlying system is com-
pletely open. However, if the system is completely
open, then the corresponding Environmental Transport
Matrix A is nonsingqular and all eigenvalues of A have

negative real part. Additional discussion Is available

in Franklin (Fr68, Section 6.8), Thron (Thr72) and
Helten, et al., (Hel8la, Section 1.2).




The general mathematical nature of the solutions
to (1.1), (1.2) and (1.3) is now discussed. For con-
venience, the terminology and notation of Brauer and
Noel (Br69) are used. There will be scalar, vector and
natrix quantities mixed in various equations, It should
be clear from context which is which. For example, in
the expression p(t)eAtr, the following is intended: t
and »(t) are scalars; A, At and eAt are matrices; R is
a vector; and so the product is a vector. The equivalent
expressions eAt and exp(At) are used to represent matrix
exponentials., As discussed in Bellman (Bel70) and
Dollard and Friedman (Do79), such functions can be
represented as infinite series or multiplicative inte-
jrals. If V is a vector and a is a scalar, then the
expression V > a 1s used to indicate that every element
of V is greater than or equal to a. 1In the following,
the underlying system is always assumed to be completely

1_)}).)71.

The solution to (1.1) is examined first. A con-
venlent representation for the solution X to (1i.1l)
with X(0) = Vg is

t

. e(t_S)ARds (2.1)

N

[Br6é9, p. 72]. The equality in (2.1) remains valid when
R 1s assumed to be a function rather than a constant.

Further, the vector function e®Yy. can be expressed_ as
a linear combination of elements of the form p»(t)e\x',
where the pj(t) are vector polynomials in t dnﬁ the Aj
are the eigenvalues of A (Th72, Theorem 8). Since the
eigenvalues of A have negative real part, it follows
that

‘BAtVO”_-O as t_. XX ® (202)

It 1s easily shown by direct substitution that the
constant vector

SX = -A~1lR




1s a ﬂﬁlj(lwh for (1l.1). Now, by using the relations
in .1) and (2.2), 1t follows that SX is the constant

x,lmptut1L smlutxun for (1.1) to which eve{y solut1on'

converges,

The foliowing relationship involving the nonnega-
tivity of solutions to (1l.1) with initial value X(0)
Vo 1s often useful:

This result can be established by using the equality

etvy = lim (I + At/3)lv,

j——u

Once j 1s sufficiently large, all elements of (I + At
and hence of (I + At/j)J), are nonnegative. The result
now follows readily.

/1)

)

The solutions to (1.2) and (1.3) are examined next,.

The unique solution to a nonhomogeneous system

dy/dt = M(t)Y + G(t), Y(0) = Yo

1S given Dy

Y(t) = &(t)¥Yy + &(t) | &~ 1(s)G(s)as, (2

0

where & 1s the fundamental matrix solution for the
corresponding homogeneous system dY/dt = M(t)Y with
$(0) = I (Br69, Section 2.4). The preceding result

is now used to show that there exists a unique periodic

asymptotic solution SY to (1.2) to which every solution

of (1.2) \onvquws. For convenience, the functions P
and Q are introduced, where

—
-~

'



or
cr
-

o

0 0

The function P is increasing with P(n)
positive integer n, and the function Q

Q(n) = 0 and |[Q(s) - Q(¢t

for all s and t. Since

d :
__;\,?P(t_)A) - p(t),\;)p(t)A

dt

SP(t)A - oQ(t)AgtA

)

is a fundamental matrix solution to the
tion dX/dt = p(t

)

has negative rea

I

n

S = € +
for each

is periodic

1

with

homogeneous equa-

AX. Thus, since every eigenvalue of A
part, the relation indicated 1n

2.2)

Lo i

implies that every solution to the preceding homogeneous

equation must converge to zero and so

the
have no nonzero periodic solutions. This

{ e
15

to imply that (1.2) has at least one periodic

(Br69, Theorem 2.14). Now, by using the
G

(2.2) and (2.4) and noting that G(s)

it follows that this periodic solution
that every solution to (l.2) converges
with the initial value condition Y(0)

sentation in (2.4) becomes

t
s P(t)A, (P(t)-Pl(s
) 82 ‘O - ©
0
1 " )
\atrix function eQ(t)A j§ the per
1 earing in Floguet's Theor:t Bre9,
-1 l =
11l

A

SY 1s

1

a

to 5Y.

'/Q '

‘A

the

Rds.

equation
sufficient

can

solution

relations
R 1s

in

constant,
unique and

For

+ 1
INC 1
N

Lol

(1.2)

repre-



The preceding discussion of the behavior of (1.2) would
not be valid 1f p(t) were replaced by a periodic matrix
B(t) due to complications associated with the noncommu-
tativity of matrix multiplication.

In general, it is not possible to express the solu-
tion to (1.3) in a form involving matrix exponentials as
1s done in (2.6) for the solution to (1.2). This results
because 1t 1s not necessarily true that FD = DF. However,
ln the l-radionuclide case, such commutativity holds
because D 1s a diagonal matrix, and in this case, the
solution to (1.3) with initial value Vg can be expressed
as

al{P{L)F+LD) (P(L)”‘tﬂ P(s)=-sD)

Rds.
0

It has now been shown that both (1.1) and (1.2) have
Inique asymptotic solutions to which all other solutions
onverge,4 The manner in which individual solutions to
these equations approach their asymptotic limits is now
considered. For (1.1) with X(0) 0, the components of
X are ncndecreasing functions on (0, »]. To establish

[
this statement, the equality in (2.1) is used to show

"

that, 1f 0 < £t < t + € , then
L+ € t
X(t+e€) - X(t) = e(t+€-S)Ag4qs - elt-s)Aggs
0 0
€ t+ € t
e(t+€-5)Apqs + e(t+€-8)ARgs - e(t-8)Ap4s
0 ¢ 0

2A definition of convergence which is ‘uvpll»‘aul»\ for both
l.1) and (1.2) 1is the following: The statement that
the function F converges asymptotically to the function
G means, 1f € > 0, then there exists a positive number
N sucn that, i1f t > N, then F(t) - G(t) & .



Now, the change of variable s = 2z + € in the second
integral cancels the last integral and thus leads to
the relationship

€
X(t+e€) - X(t) = f e(t+€-s)Ap4s > o,
0

where the inequality follows from (2.3). This estab-
lishes the result.

The behavior of solutions for (1.2) is considered
next., As the asymptotic solution SY to (1.2) is periodic,
the components of other solutions cannot "increase mono-
tonically tc their limits." However, the following
result is true. For (1.2) with Y(0) = 0, the inequality
Y(t) < Y(t+l) is valid for t > 0, and hence, if Y; is a
component of Y, then Y;(t) < SY;(t) for t > 0. The first
inequality can be established by an argument similar to
that used to establish the nondecreasing nature of the
components of X. The second inequality follows immedi-
ately since its failure would contradict the convergence

of Y to SY.




Chapter 3
Computer Simulation Results

The results of a number of simulations using the
Environmental Transport Model are presented in this
chapter. Specifically, solutions to the equations in
(1.1), (1.2) ana (1.4) are given. The intent is %o
illustrate the behavior of solutions to (l.1) as the
15, mptotic solution SX is approached and to provide
comparisor ~f ropreocentations for a given site with
(1.1), (1.2) and (1.4).

Each simulation involves a representation for one
zone and one radionuclide. Two different sites are
considered, The tirst site is a "typical river zone"
and is the zone designated as Zone 1 in the Reference
Site defined by Helton and *man (Hel80, Chapter 2).
The second site is a "typical lake zone" and is the
zone designated as Zone 2 in the preceding Reference
Site (Hel80). The radionuclide used is Cm245 (Half
Life = 8.3 x 103 yr, Decay Constant = 8.4 x 10~3 yr‘l).
With an assumed distribution coefficient of 1000 L/kg,
the resulting Environmental Transport Matrices for
these two sites are

-3.2x10~4 8.9x10~4 0. 0.
0. -2.3x10"3 5.9 e
A = 2.3x10~4 1.4x10~3 -960.0 1.0x10~1
0. 0. 90.0 -1.0x10~1 (3.1)
and
-3.2x10~4 8.9x10-4 0. 0.
0. -1.4x10"3 2.5x10~3 0.
A =1 2.3x10"4 4.5x10~4 -1.6 _ .10
0. 0. 4.0x10-1 -.15 (3.2)
respectively. The units for the elements of the precedinyg

natrices are yr-l, The input data for the Environmental
Transport Model which defines the two preceding matrices
ire derived in Helton and Iman (Hel80, Chapter 2).




Solutions for (1.1) were obtained using the coeffi-
cient matrices in (3.1) and (3.2). However, to consider
(1.2) and (1.4) it was first necessary to define the
hydrologic pattern p(t). Initially, a study was made
of stream hydrographs available from the United States
Geological Survey and data in the recent literature on
synthetic hydrology (appearing meostly in the journal
Water Resources Research) to determine what assumptions
were reasonable with respect to p(t). Such patterns are
usually bimodal (sometimes unimodal), typically attaining
a minimum value, min p, in the fall and a maximum value,
max p, in the spring. For examples, see Harms and
Campbell (Ha67), Thomas and Fiering (Tho62) and Moreau
and Pyatt (Mo70). The intervals (min p, max p) generally
range from (.4, 2.0), see Harms and Campbell (Haé67, Fig-
ure 4), to more extreme values like (.2, 3.8), see Thomas
and Fiering (Tho62, Table 12.2). Although one might imag-
ine an environment so extreme that p(t) would be less than
.1 for 11 months of the year and then greater than 10.9
for one month, this appears to be an unusual case. In all
computations of the solutions Y(t) and Z(t) to (1.2) and
(1.4), respectively, the hydrologic pattern is assumed to
be the following mildly extreme one:

P; = .4, P, = 3, Py = .6, Py = 2.0, Pg = 3.8, Pg = 2.5,

P, = > Pg = .} Py = .2, Pip © .3, Py, = .4, Py, = .6,
(3.3)

where p. = p(t), (m-1)/12 < t < m/12, and can be considered
as the level cf hydrologic activity during the mth month.
This is essentially the p(t) appearing in Table 12.2 of
Thomas and Fiering (Tho62).

To generate solutions for the equations in (1.2) and
(1.4), it 1s assumed that the hydrologic activity through-
>at the mth month of the nth year is equal to

(1) p, in incrementing Y(t) for (1.2)

and
(2) Vi2n+m Pm in incrementing Z(t) for (1.4),

where the v, are elements of a suitably defined Markov
process. rhe definition of this process is now considered.
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Discussions of accepted methods of simulating the
stochastic process S(t,w) appearing in (1.4) are given
by Yevdjevich (Ye72, pp. 252-253) and in grcater detail
by Matalas (Mata67). For such simulations, Thomas and
Fiering (Tho62) proposed a model for the mathematical
synthesis of streamflow data which would preserve the
monthly means and variances and the month to month serial
correlation3 and also give the monthly streamflow variable
a (truncated) normal distribution. Harms and Campbell
(Ha67) extended the Thomas-Fiering model to give the
monthly streamflow variable a log normal distribution.
However, as Matalas (Mata67) pointed out, the model
preserves the means, variances and month to month serial
correlations of the logarithms of the monthly streamflow
rather than the corresponding parameters of the streamflow
itself. Matalas (Mata67, p. 939) gave the formulas to be
used in synthesizing a monthly streamflow sequence which
preserves means, variances and lag-l correlations of
historical streamflow data and also gives the streamflow
variable a log normal distribution. It is this technique
given by Matalas which is used to define the stochastic
process S(t,w).

3por a sequence {xi} M, the lag-1 or serial correlation
i=1

coefficient is defined to be the gquotient

n_ii ;{,::?}Q' ;) ("i+1 T _)

P =

3|
™M=
—
b
-
i
x|
—
N

e 1 &
where x = § E Xi. This number provides a measure of
i=1
the extent to which xj; and xj,; vary together. Additional
discussion is given by Yevdjevich (Ye72, Chapter 2).
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Specifically, after an examination of the literature,
it was decided to define the vj such that each vj has a
log normal distribution and also such that E(vj) = 1.0,
var(vyi) = 0.25 and the month to month serial correlation
is 0.5. The sequence {vi} is generated by first defining
a sequence Juj}l such that

2,1/2 4.

Uy =o€y and uj,y = 4 +p(uj-u) + (1-p i+l

where 02 = 0.2231, u= -0.1116, p= 0.5278 and {¢;} is
a sequence of independent, standard (i.e., mean 0 and
variance 1), normal variates, The preceding values for
02, u and p were obtained by solving the following
equations:

1.0 = E(vy) = exp(1/20% + u) (3.4)
0.25 = var(v;) = exp[2(02 +u)]l - exp[o2 + 2u) (3.5)
0.5 = [exp(02p) = 1)/[exp(c2) - 1]. (3.6)

The preceding equations are Equations (7), (8) and (12),
respectively, of Matalas (Mata67), where a = 0 is assumed
in Equation (7). In the solution of these equations,
(3.4) and (3.5) are solved firs%; then, the value for o

so obtained is used in the solution of (3.6). Each vj 1s
defined by vj = exp(uj). As indicated by Matalas (Mata67,
p. 939), the sequence {vi} has the properties stated at
the beginning of this paragraph.

The following simulations were performed with the
coefficient matrix appearing in (3.1). This is the matrix
for the "typical river zone." First, calculations were
performed to illustrate the manner in which the solution
X of (1.1) approaches its asymptotic solution SX. Specif-
ically, (1.1) was solved four times. For each solution,
the initial value is taken as X(0) = 0 and a different
subzone is assumed to receive a radionuclide input of 1
atom/year. For example, this yields R = [1, 0, O, 0)T
when radionuclide input is to the groundwater subzone;
the units for R are atoms/yr. As the solution of (1.1)
is linear with respect to R with the initial value
condition X(0) = 0, the solutions obtained here can be
scaled to represent other rates of input. Then, com-
ponents of X and the corresponding components of SX were
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graphed. Each graph illustrates the behavior of a single
component of X from time t = 0 until the time at which
the component of X has reached approximately 90% of its
asymptotic value. These graphs appear in Figures 3-1
through 3-4.

second, calculations were performed to compare the
solutions of (1.1), (1.2), and (1.4) for the 100th year
after the initiation of radionuclide input. Specifically,
plots were generated which show (1) a component of the
solution X of (1.1) for that period, (2) the corresponding
component of the solution Y of (1.2), (3) the average value
EZ of the corresponding component of 100 Monte Carlo simu-
lations of the solution 2 of (1.4), and (4) EZ + SDZ,
where SDZ(t) is the standard deviation of the 100 observed
values of the component of Z(t). These plots appear in
Figures 3-5 through 3-8.

Third, similar plots were generated for the 1000th
year after the initiation of radionuclide input. These
plots appear in Figures 3-9 through 3-12.

Next, the same sequence of simulations was per formed
with the coefficient matrix appearing in (3.2). This is
the matrix for the "typical lake zone." These plots
appear in Figures 3-13 through 3-24.

A listing of the program XYZl which generated the data
used in preparing the plots of X, Y, EZ, and EZ + SDZ is
given in the Appendix in the form used for the following
case: Year 1000 of input to the soil subzone of the River
Zone. Figure 3-10 presents the results generated by this
version of the program. Each of the 8 "Year 1000" runs
(each run involving 100 Monte Carlo simulations of 1000
years for Z) took approximately 34 minutes of CDC 6600
CPU time. The "Year 100" runs were of course shorter by
a factor of 10. It is a fairly expensive proposition to
simulate repeatedly over long time periods, but if it is
deemed desirable to do so, the program XYZl is adaptable
to fit the estimated hydrologic parameters of other sites.

The computational results presented in Figures 3-1

through 3-24 are now discussed. First, Figures 3-1

through 3-4 and 3-13 through 3-16 indicate the asymptotic
behavior of solutions to (1.1). As discussed in Chapter 2,
such solutions increase monotonically towards a constant
solution. For radionuclide input to the groundwater sub-
zone, it takes approximately 10,000 years for the systems
to reach equilibrium. For radionuclide input to the soil
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subzone, it takes approximately 1000 years for the soil
subzone in rthe River Zone to reach equilibrium and
approximately twice as long for the soil subzone in the
Lake Zone to reach equilibrium. This difference results
from the fact that the soil subzone of the River Zone
was defined with more active processes that influence
radionuclide movement. Also, it takes approximately
5000 years for the surface water and sediment subzones
to reach equilibrium in the River Zone and somewhat
longer for these subzones to reach equilibrium in the
Lake Zone. As indicated in a previous sensitivity anal-
ysis (HelB8la) for radionuclide input to the soil subzone,
the surface water and sediment subzones approach their
equilibrium concentrations nore slowly than the soil
subzone due to radionuclide movement through the ground-
water suvbzone. For radionuclide input to the surface
water or sediment subzones, both the surface water and
sediment subzones move rapidly towards their equilibrium
concentrations. Here, the times required to reach equi-
librium vary from a year to a few tens of years. 1In
contrast, it requires on the order of 1000 to 2000 years
for the soil subzones to reach equilibrium.

Figures 3.5 through 3.12 and 3.17 through 3.24 con-
tain comparisons of X, Y and Z, the solutions to (1.1),
(1.2) and (1.4), respectively. The most striking feature
of these figures is the relatively small differences
indicated in these solutions.

The comparisons of X and Y are considered first.
With the exception of *“he surface water component for
radionuclide input to the surface water subzone, there
is little discernable difference between X and Y. For
input to the surface water subzone of the River Zone, Y
appears to oscillate between 1/(max p) SX3 and 1/(min p
S§X3. In fact, Y3(t) behaves approximately as SX;3/p(t).
A similar but less pronounced pattern holds for 43 when
radionuclide input is to the surface water subzone of
the Lake Zone. This behavior can be related to the
large rate constants associated with radionuclide move-
ment out of the surface water subzones. An explanation
of the observed behavior of X and Y is provided in
Chapter 4.

The comparisons of X and Z are now considered.
These comparisons are similar to those for X and Y.
Again with the exception of the surface water component
for radionuclide input to the surface water subzone,
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1s little difference between X and Z. The following
presented in justification of ti preceding statement,
assume that it is " y" that a random
exceed 1ts mean plus times 1ts standard
lon. Chebyshev's inequality guarantees that the

) &

s than .25, and it is usually more like
he value for normal variables. Lt us
the estimates EZ2x(t) and SDZi(t) are
3timates of the true moments F( t,*)) and
*3)s [f one examines each apl O determine
amount ti k 2 ( exceeds I(_,\(t),
cases this 1: small percentage
he results of such a comparison
in every case except fo
water component with radionuclide input t«
water subzone, 1t can be said that it
t exceeds 3 In the case of
ice water subzone of the Lake Zone, it
*ly that Z,3(t,w) will exceed l.8Xq(t)

- aeven
’ -V )
A

O 1nput to the surface water subz
4one, 1t appears unlikely that Z3(t,v) will exceed
12X3(t). Furthier, the expected behavior of 2 is very

one of

close to that for Y. Additional discnssion of (1.4) 1s
rovided in Chapter 5.
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Input to SW Input to SOIL Input to GW

Input to SED

SOIL
SW
SED

SOIL
SW
SED

GW
SOIL
SW
SED

SOIL
SW
SED

Max [EZ (t) + 2°SDZ,(t) = Xp(t)] /X (t)

Table 3-1

Expressed as a Percentage

RIVER ZONE
Year 100 Year 1000
+19% « 1%
8.4 % 2.2 %
.15% +3 B
1.8 % .4 %
7.4 % .9 %
9 % 2.1 %
+F & 1.9 %
1:7 % 3.7 %
9.2 % 1.0 &
.8 % 2.0 &
1200. % 1200. %
20, % 20. %
7.8 % 13 %
1.4 ¢ 1.9 %
16.0 % 17:3 %
15.0 % 16.2 %
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LAKE ZONE

Year 100 Year 1000
.3% 4%
9.0% 1.6%
.6% 4%
2,18 .4%
T+18 1.5%
.6% 1:9%
.6% 9%
1.6% 9%
T7:2% 1.7%
7% 1.4%
80.0% 80.0%
17.0% 16.4%
8.3% 1.6%
1.7% 1.2%
16.4% 16.4%
20.0% 20.0%



Chapter 4

Comparison of X and Y

In this chapter, the solutions X and Y to the dif-
ferential equations in (1.1) and (1.2), respectively,
are discussed. 1In Section 4.1, a heuristic discussion
of the similarities and differences between X and Y is
given, This discussion is based on the comparison of
components of X and Y to solutions of scalar differ-
ential equations. Then, in Section 4.2, several results
are presented which provide exact comparisons between X
and Y.

4.1 Heuristic Comparison of X and Y

To - ‘ovide a basis for a heuristic discussion of the
graphs pearing in Chapter 3, the following two scalar
differ ntial equations are introduced:

dx/dt = -ax(t) + r, x(0) = C (4.1)
and
dy/dt = -p(t)ay(t) + r, y(0) = 0, (4.2)

where a and r are positive numbers and p is a
positive-valued, periodic function with period 1 such

that
1l
Jr p(t)dt = 1.
0

The solutions to the two preceding equatiuns are given
by

Xx(t) = e (1 - e~ta) (4.3)
a
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and

t t t
y(t) =f rlexp f -adu] * exp f ~h(u)du} ds,
0 5 s

where the functicen h is defined by

(4.4)

h(u) = p(u)a - a. {4.5)

It follows from the properties of p that h is periodic
with period 1 and that

s+1
J. h(u)du = 0.
s

A bound for solutioiis to (4.2) is now established.
This will help to explain the limited variaticn which
appears in some of the solutions graphed din Chapter 3.
Suppose u < v are two nonnegative numbers; further, sup-
pose n is the larges:t integer suci that u < u + n < v,
Then, o,

v v
exp -f h(w)dw | = exp -f h(w)dw
u u+n

v

v
exp -f (max h) dw
u+n

|wv

exp(-max h)

exp(l - max p)a, (4.6)

-7l



and similarly,

v v
exp —f h(w)dw | = exp -f hiw)dw
u | “Yu+n

v
exp -f (min h) dw
u+n

A

I

exp(-min h)

exp(l - min p)a. (4.7)

juppose % is an arbitrary positive number. Then, by using
the two preceding inequalities, it follows that

t t t
y(t) =] rjexp f -adu | « exp [ -h(u)du }jds
0 s s

\
[From (4.4)]

t t
3[ rjexp f -~adu ] * exp(l - max p)a |ds
0

S

[From (4.6)]

= x(t) exp(l - max p)a
[From (4.3)]

2=



and also that

t t
y(t) =[ r exp[ -adu} exp[ -h(u)du]|ds
0 s

S

[From (4.4)]

t t
i/ expf -adu}] * exp(l - min p)a | ds
0 s

[From (4.7)])

= x(t) exp(l - min p)a.
[From (4.3)]

Thus,
x(t) exp((l - max p)a]
< y(t) < x(t) exp[(l - min p)a]l. (4.8)

It is now shown that the solutions of (4.1) and (4.2)
intersect in every interval of length 1. Suppose s is a
positive number. Further, let Q be defined as in (2.5);
then,

v v
J[ h(t)dt = Jr [p(t)a - aldt
u u

v
= {l. [p(t) - 1]1dt = a[Q(v) - Q(u)].
u




As noted in Chapter 2, Q(0) = 0 and Q is periodic with

period 1.

Since Q is continuous, there exist t; and t)

in [s, s+1] such that Q assumes its maximum and minimum
at t; and tp, respectively.
representation for y given in (4.4) that

y(t))

and

y(tz)

| A

| v

t1
[r
0
t1
fr
0

t2
[r
0
£2
f:
0

exp

exp

exp

exp

-

£
f -adu
v

—~

It now follows from the

* exp(-aQ(t,) + aQ(v)] dv

dv = x(tl)

* expl(-aQ(t,) + aQ(v)],dv

dv = x(tj).

Thus, it follows from the continuity of x and y that

there must exist a number t between t;

that x(t) = y(t).

appear
difference in the solutions

Hence,

and ty such

the solutions of (4.1) and
(4.2) intersect in every interval of length 1.

In the following, three aspects of the graphs
ing in Chapter 3 are discussed:

(1) the limited
to (1.1) and (1.2) for the

groundwater subzone when radionuclide input is to the
groundwater subzone, (2) the noticeable difference in
the solutions to (1.1) and (1.2) for the surface water
subzone when radicnuclide input is to the surface water
subzone, and (3) the limited difference in the solutions
for the surface water subzone when
radionuclide input is to the groundwater subzone.

to (1.1) and (1.2)

74+



In this paragraph, we consider the limited
difference in the solutions to (1.1) and (1.2) for the
groundwater subzone when radionuclide input is to the
groundwater subzone. That is, the differences in X
and Y, are considered. For this situation, the amount
of ta&ionuclide in the groundwater subzone is repre-
sented by equations which are similar to, but slightly
different from, the equations appearing in (4.1) and
(4.2). The difference is that, in addition to the
constant radionuclide inflow r, there is also a
radionuclide inflow from the soil subzone. However,
this inflow is small in comparison to r and thus has a
limited effect on the solution. The result is that Y
is bounded by X, in a manner similar to that shown in
(4.8) for the scalar aquations. As the value corre-
sponding to a in (1.1) and (1.2) is 3.2 x 10™% and the
values for max p and min p are 3.8 and 0.2, respectively,
this bound should be reasonably tight. As indicated in
the figures contained in Chapter 3, such is the case.
Further, as previously shown, the solutions to (4.1) and
(4.2) intersect in every interval of length l. Again,
similar behavior can be expected from X, and Y, and such
is indicated to be the case in Chapter &. Altﬁough only
the behavior of X, and Y with radionuclide input to the
groundwater subzone has éeen discussed, similar behavior
is also exhibited by X, and Y, with radionuclide input
to the soil subzone ana by X, and Y, with radionuclide
input to the sediment subzore.

We now consider the noticeable difference in the
solutions to (1.1) and (1.2) for the surface water subzone
when radionuclide input is to the surface water subzcae.
That is, the differences between X, and Y, are consiaered.
Again, the amount of radionuclide 2n the surface water
subzone is represented by equations which are similar to,
but slightly different from, the equations appearing in
(4.1) and (4.2). The difference is that, in addition to
the constant radionuclide inflow r, there are also radio-
nuclide inflows from the groundwater, soil and sediment
subzones. However, these inflows are small in comparison
to r and thus have a limited effect on the solution. Thus,
X, and Y, tend to behave as indicated in (4.3) and (4.4).
Tge difference in behavior X, and Y, from the cases con-
sidered in the preceding paragraph 2: due to the large
rate constant (i.e., 960 for River Zone and 1.6 for Lake
zZone) for flow out of the surface water subzone. The
effects of this car be realized by considering (4.3),
where a corresponds to the rate constant for flow out of
the surface water subzone. With a large, the solution
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to (4.1) moves very quickly to its asymptotic value r/a.
That this is the case can be seen by considering Figures
3-3 and 3-15. Replacement of a in (4.1) by the product
pja changes the asymptotic value to r/pja. The differ-
ences in X3 and Y3 result from the tendency of these
solutions to behave as indicated in (4.3); the relatively
large values associated with pja tends to keep Y3 close

to r/pja. This pattern is more pronounced for the surface
water subzone of the River Zone than the surface water sub-
zone of the Lake Zone as it has a larger rate constant for
radionuclide outflow.

We now consider the limited difference in the solu-
tions to (1.1) and (1.2) for the surface water subzone
when radionuclide input is to the groundwater subzone.
That is, the similarity between X3 and Y3 is considered.
This similarity is much greater than one would expect.
Specifically, there is almost no difference between X3
and Y3 when input is to the groundwater subzone while,
as already discussed, there is noticeable difference
when input is to the surface water subzone. This
behavior results from the introduction of variation in
(1.2) by the multiplication of the coefficient matrix A
by the scalar hydrologic pattern p(t), which causes all
flow rates in the system to vary up and down together.
For the situation under consideration, this causes more
variation in the discharge of the groundwater subzone
than is physically appropriate and in turn this discharge
cancels out the effects of increased discharge from the
surface water subzone,

The manner in which this occurs can be realized by
considering X3 and Y3 as solutions to equations of the
form given in (4.1) and (4.2). There will be inflows
to the surface water subzone from the groundwater, soil
and sediment subzones. As initial radionuclide input
is to the groundwater subzone, the largest radionuclide
inflow to the surface water subzone will be from this
subzone. Further, as indicated in the two preceding
paragraphs, the amount of radionuclide in the ground-
water subzone will change very slowly relative to the
changes in the surface water subzone and further will be
little affected by the hydrologic pattern. The result
is that X3 and Y3 will behave similarly to solutions for
(4.1), where a is the rate constant for outflow from the
surface water subzone and r is the rate of inflow from
the groundwater subzone. The reason for this is
indicated in the next paragraph.
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Although multiplication of A by the hydrologic
pattern 2(t) has little effect on Yy, it does have the
effect of multiplying the radionuclide flow r from the
groundwater subzone to the surface water subzone by p.
The result is that X3 and Y3 can be approximated in each
month by solutions to equations of the form

dXx3/dt = -aX3(t) + r

and

dy3/dt = -pjavj(t) + pjr.

In turn, these equations have asymptotic solutions given
by

r/a and pjr/pja = r/a,

respectively. Thus, due to the large rate constant
associated with the surface water subzone which results
in rapid attainment of equilibrium, the effects of the
in~ eased outflow from the surface water subzone which
re alt from multiplication of A by the hydrologic pat-
tern p(t) are canceled by the increased inflow from the
groundwater subzone. This is not a normal situation;
one would not expect groundwater discharge to vary so
directly with surface water discharge. The indicated
patterns for direct radionuclide input to the surface
water subzone are probably the most meaningful (i.e.,
revealing) of those presented. Similar behavior to that
of X3 and Y3 with radionuclide input to the groundwater
subzone is also exhibited by X3 and Y3 for input to the
soil subzone and for input to the sediment subzone.

4.2 Analytic Comparison of X and Y

In the preceding section, a heuristic discussion of
the similarities and differences between X and Y is
provided. This section contains several results which
provide analytic comparisons between X and Y.

We start by reminding the reader that Y it the solu-

tion of (1.2). In this equation, variation is introduced
by multiplying the coefficient matrix A by the hydrologic
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pattern p(t). In contrast to the situation represented
by (1.3), such a procedure results in a variation in the
decay constants for the radionuclides involved. The
relationship in (1.2) is more convenient to deal with
than that in (1.3) as a suitable change of variable
transforms (1.2) into an equation of the form

where h(t) is another hydrologic pattern (i.e., a piece-
wise continuous, periodic, positive-valued function with
a period of one year and

1
[ h(t)dt = 1).
0

Specifically, let
Wit) = Y(p-l(t)). (4.10)

with P(t) defined as in (2.5). Then,4

d
dw/dt =— Y(u)
du

a
— p=l(t)
u=p-1(t) dt

= (p(p=l(t)) av(p-l(t)) + Rl (1/p(P~1(t))]
= ay(p-l(t)) + [1/p(P~l(t))IR

4The reader is reminded of the following result on the
existence of inverses and their derivatives: Suppose 4
is a one-to-one function with domain [a,b] and range
[F(a),F(b)] whose derivative exists and is positive on
(a,b). Then, F has an inverse q; nd if y = F(x), then
q'(y) = 1/F'(x) for a < x < b.
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h(t) = 1/p(p~l(t))

is a hydrologic pattern such that
t
H(t) = f h(s)ds = P~1(t). (4.13)
0

A result is now established which indicates the

similarity between the solutions to (1.2) and (1.3).
In essence, this result states that, when the decay
constant for a radionuclide is "small," the difference
between the solutions to (1.2) and (1.3) is "small.”
Although the following theorem is stated and proved
for the l-radionuclide case, it should be possible to
obtain similar results for multi-radionuclide cases.
The l-radionuclide case is particularly tractable due
to the commutativity of certain matrices.

Theorem 4.1. Suppose Y; and Yp are solutions to

(1.2) and (1.3), respectively, in the l-radionuclide
case with decay constant A and with initial values

Y1(0) = Y(0) = 0. Then,

=2A 2A
e Y,(t) < Yy(t) < e Y, (t)

for t > 0.

proof. Suppose t is a nonnegative number. Then,

t
Ya(t) = ]’ e[P(t)F+tD-P(s)F-lends [From (2.7)]
0

t
- f e[P(t)-P(s)] [F+D] e [t-P(t)-s+P(s)]Dpds.
! (4.14)



Now, since
elt-P(t)-s+P(s8)]D = g[t-P(t)=-s+P(s)][-Alg
where I denotes the identify matrix, it follows that
e=2X < elt=P(t)-s+P(s)]D < @2, (4.15)

The desired result can now be obtained from the relations
in (4.14) and (4.15) and the following representation for
Yy:

, 4
Yi(t) =[ elP(t)-P(s)]Aggs.
0 [From (2.6)]

This completes the proof of Theorem 4.1.

Next, a result is established which places
conservative bounds on the difference between X and Y.
These bounds are related to the extremes of the hydro-
logic pattern p(t).

Theorem 4.2, Suppose X and Y are solutions to (1.1)
and (1.2), respectively, with initial values X(0) = Y(0)
= Vg. Then,

(1/max p) X[P(t)] < ¥Y(t) < [1/min p] X[P(t)]

for t > 0.

Proof, Suppose t is a nonnegative number, Then,

-
Y(t) = eP(t)Avo + jp elP(t)-P(s)]Agrds
[From (2.6)]

t
= P(t)Ay, +I (1/p(s))p(s)elP(t)=P(S)]Aggq,
0
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Thus,

P(t)
v(t) < eP(E)Ay 4 (1/min p,J' o [P(t)-2]Apg,
0

and

P(t)
Y(t) > ep(t)Avo + (1/max p)J. elp(t)’z)ARdz.
0

The desired result now follows from the two preceding
inequalities and the representation for X given in (2.1).
This completes the proof of Theorem 4.2.

The implications of Theorem 4.2 are now discussed.
For a hydrologic pattern with min p = .2 and max p = 3.8
(such as was assumed for the computer simulations pre-
sented in Chapter 3), Theorem 4.2 implies that within
any interval [s, s+l] each component of Y becomes no
more than five times as large as the maximum of the
corresponding coaponent of X and no less than 1/4 as
small as the minimum of the corresponding component of
X. For the simulation results presented in Chapter 3,
this is very close to the situation observed in the
surface water subzone when radionuclide input is to that
subzone. 1In this case, the component Y3 of Y tends to
oscillate between (1/max p) SX3 and (1/min p) SX3. As
discussed in the preceding section, there are often
other processes involved which result in less variation
in Y than indicated by the bounds in Theorem 4.2.

I1f Y is the solution to (1.3) for the l-radionuclide
case with decay constant A, then the combined application
of Theorems 4.1 and 4.2 yields

(e=2A/max p] X[P(t)] < ¥Y(t) < [e?A/min p] X[P(t)].

For this case when the decay constant A is small, the

implication is that similar bounds exist for the solutions

to (1.2) and (1.3).
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As indicated by the simulation results presented in
Chapter 3, the similarity between solutions to (1.1) and
(1.2) is often much greater than that indicated by Theorem
4.2. Early in the investigation, it became clear that
a satisfactory explanation of this behavior would result
if it could be proved that in each interval [n, n+l],
each component of Y agrees with the corresponding compo-
nent of X for at least one t. 1If this is true, a proof
has thus far eluded the authors. However, a proof to
establish that such behavior does eventually occur was
obtained. This result is presented as Theorem 4.3.
After the proof of this result, it is shown how it can
be used to construct bounds on the differences between
the asymptotic solutions SX and SY to (1.1) and (1.2),
respectively.

Theorem 4.3, Suppose X and Y are solutions to (1l.1)
and (1.2), respectively, with initial values X(0) = Y(0)
= 03, Then,

lim min [Xk(t) = ¥Yx(t)]| =0
n—=x te[n,n+1)

for corresponding components Xx and Yy of X and Y.
Further, each component of SY equals the corresponding
component of SX for at least one t in every time inter-

val [n, n+l].

Proof. For convenience, the result is
established for w(t) = Y(p~l(t)). Since p~l(t) is a
continuous, increasing function, p=l(n) = n for every
positive integer n and X has a constant asymptotic
solution, a proof that the limit equals zero with Y
replaced by W will imply that the limit equals zero as
stated in the theorem,

If n is a positive integer and z is a number between
0 and 1, then

5Theoreml.] remains true for the initial values X(0) = xo
and Y(0) = Yp.
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n+z
f e(n+z-s)Anp(s)Rds
0

[From (4.11) and (2.1)]

z n+z
- f e{n+z-s)Anh(g)Rds + J' e(n+z-s)An(s)RrRds
0 z

n

z
f e(n+z-s)Ah(s)Rds +f e(n=u)An(u+z)Rdu,
0 0

(4.16)

where the last equality follows from the change of vari-
ables u = s-z in the second integral. Further, since

n
f e(n=u)An(y+z)Rdu
0

is continuous in z and

3 n
[ f e(n=u)An(u+z)Rduldz
0 0

1

n
=f e(n-u)A fh(u+z)dz Rdu
0 0

n
" - f e(n“U)ARdu = X(n),
0

it follows from the mean value theorem for integrals that,
for the kth element Xy of X and each positive integer n,
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there exists a choice zy, of z, 0 ¢

< 2Zgp < 1, such that
n
f e("'“’Ah(u+zkn)Rdu
0 k

= X (n).
k
(4.17)
It now follows by combining (4.16) and (4.17) that
Zkn
Wy (n+z, ) = Xp(n) = e(N+Zy =S)Ap(g)Rras| .
k kn k
0 k
(4.18)
It is next shown that
z
lim f e(n+z-s)Ap(s)Rds = 0, (4.19)
N0 0
with the convergence being uniform for ze[(0, 1). This

result in combination with the equality indicated in (4.18)
is sufficient to establish the limit in the theorem. For
0 < z <1 and any positive integer n,

z 2z
[ e(n+z-s)Ah(s)Rd3 - enA f e(Z‘S)Ah(s)RdS
0 0

= eNA W(z),

where the second equality follows from the relations in
(4.11) and (2.1). Further,

e Awiz) < 1eMy - W(z) < eNA; 4, (4.20)
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where '+ indicates the Euclidean vector or matrix norm,
as appropriate, and

pu= max IW(z).
0<z<1

As noted in (2.2), it follows that

lim eNA = 0
N—e o0

because all eigenvalues of A have negative real part.
The inequality in (4.19) can now be established from the
relations in (4.20) and (4.21). As already noted, this
result is sufficient to establish the desired limit in
the conclusion of the theorem.

It is now shown that each component of SY equals
the corresponding component of SX for at least one t in
every time interval [n, n+lj. Let Xy and Yy be corres-
ponding components of X and Y. It follows from the
previously established limit that there exists a sequence

*sn*:=l

such that n < sy < n + 1 for each positive integer n and
also such that

lim |Xk(sp) = Yk(sp)| = 0.

i w00

Further, there exists a number te(0, 1] and a subsequence

L




of
o

‘sn*n=1

such that

lim mod(s;. 1) = t.

T 00

Now, since

' '
lim  Yg(sp) = SYk(t) and lim Xg(sp) = SXk(t),

n——so n—esw

it follows that SXk(t) = SYk(t). This completes the proof
of Theorem 4.3.

It is now shown how use of Theorem 4.3 in conjunction
with Theorem 4.2 can yield tighter bounds on the difference
between corresponding elements of SX and SY than use of
Theorem 4.2 alone. This technique is applicable to a
particular subzone when the rate constant dy for movement
out of that subzone is "small." Specifically, it is
established that

[1 - (max p/min p)dk] SXg
< SYk(t) < [1 + (max p/min p)dg] SXk (4.22)

for t > 1.

Suppose the kth components of SX and SY are under
consideration and dx is the unperturbed (i.e., not
multiplied by a hydrologic pattern p(t)) rate constant
associated with that component. For example, as indicated
in (3.1) and (3.2) the unperturbed rate constant dl asso-
ciated with the groundwater subzones of both the River
Zone and She Lake Zone used in the simulation studies is

.2 x 107%, An inequality involving the derivative of SY,
is established first. Since =-p(t)dyxSYx is the only nega-
tive term in the differential equation involving SYy, it
follows that
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dsyg/dt > -p(t)dgSYy

8%

-(max p)dgSYk

| v

-(max p/min p)dxSXk., (4.23)

where the last inequality is obtained from Theorem 4.2.

Suppose t > 1. The left inequality in (4.22) is
established first, It follows from Theorem 4.3 that
there exists tgp < t such that SXx = SYk(tp) and also
such t - tg < 1. Now,

t
SYk(t) - SYk(tp) _>_f -(max p/min p)dyxSXyds
t
0 (From (4.23)]

-(max p/min p)dyxSXk(t - tg)

v

-(max p/min p)dxSXk.,
and thus from the equality SXg = SYk(tp),
SYk(t) > [1 - (max p/min p) dg] SXk. (4.24)

The right inequality in (4.22) is established next. It
follows from Theorem 4.3 that there exists t < ty such
that SXx = S¥Yk(tg) and also such that tg - t < 1. Now,

to
SYk(tpg) - SYg(t) _>_f -(max p/min p)dyxSXkds
t

-(max p/min p)dgSXk(t - tg)

\v

-(max p/min p)dgSXk.




and thus from the equality SXx = SYk(tg).
(1 + (max p/min p)dg] SXg > SYk(t). (4.25)

The expression in (4.22) now follows by combining the
inequalities in (4.24) and (4.25).

As already noted, the value used for d4; in the
simulation studies is 3.2 x 10~4. Further, for these
simulations, max p = 3.8 and min p = ,2. With these
values, (4.22) yields the followiny relationship
between SX; and 8Y; for t > 1:

[1 - (15.0)(3.2x107%)]) sx; < sy, (t)
< (1 + (19.0)(3.2x107%)) sx,,
or equivalently,
(1 - .006) SX; < Syj(t) < (1 + .006) SX;.
In contrast, use of Theorem 4.2 alone yields
.26 SX; < 8Y;(t) < 5.0 SX;.

However, use of Theorem 4.3 to improve bounds is
dependent on dx being small. When this is not the
case, Theorem 4.2 will produce sharper bounds.

At present, the tight bounds on solutions to (1l.1)
and (1.2) obtainable through use of Theorem 4.3 are
applicable only to the steady state solutions SX and SY.
However, as is clear from the computer simulations
presented in Chapter 3, there may be little difference
between the corresponding groundwater, soil and sediment
components of X and vV in the time period before steady
state is reached, As an examination of the arguments
which establish the inequalities in (4.24) and (4.25)
will reveal, the bounds indicated in (4.22) for steady
state solutions can be extended to solutions Xk(t) and
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Y(t) if Theorem 4.3 can be generalized to show that

the corresponding components of X and Y have a common
value (i.e., Xk(t) = ¥Yk(t)) in every interval of length
1.). As already noted, a proof for this has thus far
eluded the authors. Should it be possible to establish
such a result, then it would follow that the corresponding
components of X and Y ave practically indistinguishable

as long as the associated rate constant for movement out
of that component is small.
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Chapter 5

Further Discussion of the Stochastic Case

For linear stochastic differential equations of the
type

dz/dt = AZ + R, 2(0) = Zg (5.1)

if the randomness occurs only in the initial condition Zj
or in the inhomogeneous part R, it is usually possible to
treat the derivative as a mean square derivative, and the
theory is much the same as for deterministic eguations.
Additional discussion is given by T. T. Soong (So73,
Chapter 7). 1In such situations, the expected value of
the stochastic solution E[Z(t,*)] will be the same as

the deterministic solution of (5.1) with the stochastic
parameters replaced by their expected values.

Analysis of equations of type (5.1) where the
randomness occurs in the coefficients of A is much more
complicated. The reader is referred to the paper by
J. L. Strand (St70), where relaticaships between the
mean square theory and the “"sampl: path" theory (or "Sp"
approach, as Strand calls it) are explored. We have taken
the "sample path"™ approach in this report because the paths
of the process S(t,w)p(t) are well-behaved enough to allow
this. Indeed, all sample path solutions exist for the
numerical example considered in Chapter 3. However, there
can sometimes be a problem with trying to apply the mean
square theory to a linear model when the distribution of
A(t,+) is taken to we log normal. For example, Strand
states that "if A(w) > 0, x' = A(w)x, x(0) = 1 has a
‘mean square' solution on [0, b] if, and only if, the
Laplace transform of A is analytic for s < 2b".6 He is
considering the scalar case here and A is just a random
variable. If the Laplace transform of a distribution is
analytic on |s| < 2b, then the moment generating function
exists on the real part of that interval. However, we
are dealing with the log normal distribution, which has
no moment generating function.

6The Laplace transform is a function of the variable s;
see Strand (St70) for the exact form of the Laplace
transformation under consideration.
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We now try to apply Strand's criteria for the
existence and uniqueness of a mean sguare solution to
our equation

dzZ(t,w)/dt = S(t,w)p(t)AZ(t,w) + R, 2Z(0) =0 {5.2)

on the first one-month interval [0, 1/12]. As S(t,w) 1is
just a log normal random variable V which is not dependent
on t, we will just need to show that condition (a') of
Strand's Corollary 10 holds. In our case, this condition
reduces to showing that

o0
2 \/E(VZ,E) £ tk < o for t = Py A",
k=1

where A" = sup ij lajkx| and pl is the value of p on the
i

first one-month interval. However, for a log-normal vari-
able Vv, the indicated summation turns out to be of the
form

o
T elkusak®o?) . gk,
k=1

which diverges for any t # 0. Thus, it cannot be
concluded from application of Corollary 10 that (5.2)
has a unigue mean square solution.

The preceding test for the existence of a mean square
solution is mainly useful for linear equations d4z/dt =
A(t,w)Z + R, where A has eigenvalues with positive real
part, Our equation is much better behaved than this, so
we are assured of the existence of a mean square solution
by Theorem 3(a) of Strand's paper. To obtain this result,
it is only necessary to verify that the integral

b
f 1S{t,w)p(t)AZ(t,w) + RIpdt
0



is finite for all b > 0. The integrand is less than or
equal to

Is(e,wh 2 * p(t)* nal * Hz(t,w 2 * 1

since R > 0 and Z:Ri = 1. Hence, the integrand is
bounded for 0 < * < b since IS(t,w)l = 1 for all t
and Z(t,w) < 1+t for all t and w. Thus, the integral
is finite for all b > 0 and so a mean square solution
exists., However, this solution is not unique.

The dependence properties of the process S(t,w) make
it very difficult to obtain analytical expressions for
the moments E(2Zy(t,*)) and SD(Zy(t,")). A search of the
literature has %ailed to locate an analytical treatment
of a problem as complicated as (5.1). The closest thing
found was a paper by Becus (Bec79), which yields formulas
for E(Zg(t,*)) to an equation of type (5.1). In this
paper, the matrix A can assume only finitely many states
(ours can assume a continuum of states and the coeffi-
cients ajj(t,w) for a given t are unbounded in w in a
very strong way), with Poisson "switching times" (at
least our switching times are determinicstic).

We know that the expected value E(Z(t,+)) will not
be the same as Y(t), which is the Jdeterministic solution
to (5.1) with all stochastic parameters replaced by their
expected values, In fact, it is surprising that in many
of the plots EZ(t) is running below Y(t). Matis and
Wehrly in their excellent survey paper (Mati79) on
stochastic compartment systems point out that in the one
compartment model dz/dt = az + r, where a and r are inde-
pendent random variables, it is necessarily true that "the
mean of the stochastic model exceeds the deterministic
model evaluated at the mean rates."

The problem of an analytical determination of the
nature of E(Zp(t,")) and SD(Z)(t,")) under various
assumptions concerning the distribution of S(t,w) is
deserving of further study. However, the Monte Carlo
simulation study indicated that there is probably not
enough difference between Z and X to warrant any real
concern about the practice of using X as the model.
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The greatest difference between Z and X occurs
between the surface water components X3 and Zj3 of the
River Zone for radionuclide input to the surface water
subzone. As already noted, Z3(t,w) behaves approximately
like Sx3/S(t,w)p(t) in this case. It would be interest-
ing to 1nvestigate further just how much like the process

Q(t,w) = SX3/S(t, yp(t)

the component Z3 behaves., For fixed t, S(t,w) is a log-
normal variable with mean 1 and variance .25, so 1/S(t,w)
is a log-normal variable with mean 1.255 and variance
.3906 or standard deviation ,625. This implies that
E(Q(t,*)) = 1.25 SX,/p(t), and thi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>