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ABSTRACT
.

The Environmental Transport Model is a compartment
model which represents radionuclide movement through a
surface hydrologic system. Some of the parameters in the
model are based on water and solid flow rates between var-
ious compartments in the system. Mean yearly flow rates
have been used in the calculation of these parameters,
whereas the flow rates are (at best) periodic functions
of time or (more realistically) periodic stochastic pro-

'

cesses. This report presents the_results of an investi-
gation into the effects that these variable hydrologic
patterns have on the Environmental Transport Model.
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Chapter 1
a

Introduction

The following report presents the results of an
investigation into the effects that variable hydrologic
patterns have on the Environmental Transport Model. The
Environmental Transport Model is a compartment model
which is used to represent how radionuclides would move
through a given surface water system of lakes and rivers
and how they would build up in the adjacent soil layers,
the upper groundwater aquifers beneath the soil layers,
and the sediment layers beneath the surface water system.
Detailed discussions of the model are given in Campbell,
et al., (Ca78) and Helton and Kaestner (He181b).

The model is based on the vector differential
equation

dX/dt = AX + R, (1.1)

where, if 1111 n, then Xi(t) denotes the number of
atoms of a particular radionuclide which are present
at time t in a certain subzone (GW ~ groundwater, SOIL ~
soil, SW ~ surface water, SED ~ sediment) of one of the
hydrologic zones in the system being considered. The
preceding terminology is explained in greater detail
in the next paragraph. The matrix A (called an
Environmental Transport or ET-matrix here) contains
the transfer coefficients (units: yr-1) between the
subzones and has a special character which will be
indicated. The vector R represents the rates (units:
atoms /yr) at which the radionuclides under considera-
tion are entering the subzones in the system being
considered. In the following, R is a'sumed to bes
constant.

The elements of the matrix A are derived from the
~

flow rates for water and solid material between the
various subzones in the system. These flows are shown
for a single zone in Figure 1-1. Further, the linkage,

of zones to represent the movement of a decay chain
containing N radionuclides through a system of M zones
is shown in Figure 1-2. As discussed in Campbell, et
al., (Ca78, Chapter 4) a total of 4MN compartments is,

used to represent the movement of a decay chain with N
radionuclides through a system of M zones. With

-1-
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L = 4N(I - 1) + 4(J - 1) +K -

'

and under the notation used in conjunction with the
computer program (Hel81b) which implements model, the
Lth compartment is the compartment associated with the
presence of Radionuclide J in Subzone K ( l ~ GW , 2 ~ SOIL,
3~SW, 4 ~ SED) of Zone I. That is, the function XL in
the radionuclide transport equations represents the
amount of Radionuclide J in Subzone K of Zone I.

n a

SURFACE-SEDIMENT WATER;

a a

U U

GROUNDWATER SOIL;

v v

Figure 1-1. Division of a Zone Into Subzones.
Arrows represent potential direc-
tions of movement for water and
solid material. Radionuclide
movement should follow the same
pattern since it is these flows
that dominate radionuclide -

transport.
i

*
<
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l I i 1
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| | 1 |
O fl I I

| 1 '

ZONE M | __/'dEJU_,,, j _ _, jggy,_,, _ _ __ _ ,,, |

REMOVAL REMOVAL REMOVAL

FROM FROM FROM

SYSTEM SYSTEM SYSTEM

!
,

Figure 1-2. Compartments and Flows Associated With the Movement of a Chain !

of N Radionuclides Through a System of M Zones. Each subzone
has N compartments associated with it. Each radionuclide has
4M compartments associated with it. Solid lines represent
physical flows of radionuclides; dotted lines represent decay.
With the exception of the surface-water subzone of Zone M,
arrows which represent possible physical flows out of the
system are omitted.
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In the simplest case where only one zone and one
-

i

radionuclide are considered, A = (aijl is a 4x4 matrix.
Then, Xi(t), X2(t), X3(t) and X4(t) represent the number ,,

of atoms of the radionuclide in question present at time |
t in the groundwater, soil, surface water and sediment
subzones, respectively. The flow rate constant aij
(units: yr-1), representing flow from Subzone J to
Subzone I, is defined by the equation

aij (1 - Sj)RWij/VWj + (Sj)RSij/MSj,=

where VWj is the volume (units: L) of water in Subzone J,
MS is the mass (units: kg) of solid material in SubzoneJ,j RW j is the rate of water movement (units: r,/yr ) fromi

Subzone J to Subzone I and RSij is the rate of solid move-
ment (units: kg/yr) from Subzone J to Subzone I. The
term Sj is a weighting f actor based on the distribution
coefficient (KD-value) for the particular radionuclide
and subzone under consideration. Specifically,

Sj = KDjMSj/IMDjMSj + VWj),

where KDj is the distribution coefficient for the radio-
nuclide in Subzone J. The distribution coefficient
(units: ci/kg per ci/L) is a measure of the tendency of
the radionuclide to become sorbed to solids and has gen-
erally been found to range between 100 and 105 (To79,
Ap77). If the distribution coefficient is large, S is
close to 1; if the distribution coefficient is small, S
is closer to 0. For i = 5, the term aij defines a move-
ment out of Subzone J and out of the zone. Such terms do
not appear by themselves as elements of A as do the other
aij; however, they are used in the calculation of the diag-
onal elements of A. Specifically, such diagonal elements
are given by

ajj = ,E, aij -A,

1/3 *

~

where A is the decay constant for the radionuclide. With
respect to the preceding equality, each diagonal element
is the rate constant for movement out of a particular sub-
zone and thus is the sum of all rate constants for movement
out of that subzone.

-4-
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* The preceding paragraph describes the elements of A
for one zone and one radionuclide. That is, A is defined
for a system of the form represented in Figure 1-1. The,

elements of A are defined similarly for a system of the
form represented in Figure 1-2. Here, A is a 4MNx4MN
matrix and it is necessary to incorporate into the ele-

| ments of A the linkages which result from radioactive
decay and from physical flow through the system.

In the Environmental Transport Model, mean yearly
and RS j are used in thevalues for the flow rates RW ji i

calculation of the aij and A is treated as a constant
matrix. These flow rates are (at best) periodic func-
tions of time or (more realistically) periodic stochastic
processes. Here, the designation periodic stochastic pro-
cess is used to indicate a stochastic process for which
the expected values of the individual random variables
form a periodic function. This study examines the rates
at which radionuclide buildup occurs when this variability
in A is taken into account. The desire is to determine if
such variability has sufficient effects on predictions by
the Environmental Transport Model to require some method
for its incorporation into model predictions. In investi-
gating these processes, the intent is to perform bounding
calculations to develop a feeling for the extent of their
effects rather than to develop detailed models which incor-
porate these effects into the Environmental Transport Model.

For this study, the solutions Y to the following
equations are considered as models of the periodic case:

dY/dt = p(t)AY + R (1.2)

!
and

dY/dt = (p(t)F + D)Y + R. (1.3)

The function p(t) is called a hydrologic pattern and is a
~

continuous (or, at least piecewise-continuous), periodic'

(with period 1 year), positive-valued function with
.

1

p( t)dt = 1.

0

-5-
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The function p(t) is unitiess and thus the units for
the preceding integral are years. The matrix A is the
Environmental Transport Matrix computed with mean yearly *

!

values for the flow rates as previously indicated.
Further, F is the resulting matrix when the decay rates
are not included and D is the decay rate matrix; that
is, A = F + D. The matrix D is a lower triangular matrix

i with nonpositive diagonal elements and nonnegative off-
diagonal elements. The diagonal elements correspond to
radioactive decay rates; the positive off-diagonal ele-
ments correspond to generation rates of daughter isotopes
due to the radioactive decay of parent radionuclides.

Replacements of the form indicated in the preceding
: paragraph are common in biological and ecological model-

ing. Specifically, a periodic parameter A(t) with period 7
may be replaced by its mean value

! r

A= A(t)dt/r.

i

!

Or, a periodic stochastic paramet er A( t, . ) with period 7i

may be replaced by its expected value

f f* \ (T

A = Ei|A(t,*)dt/7}
E[A(t,=)]dt/7=

See Rykiel and Kuenzel (Ry71), Heathcote (Hea73) and
Tiwari, et al., (Ti78) for some linear and nonlinear
models where this is done and some comparisons are made.

It is obviously assumed in Equations (1.2) and (1.3)
that variations in flov ates of water and sediments occur
simultaneously in all a:2Lzones of the system. This is
only an approximation of true hydrologic phenomenon and -

tends to overestimate flow rates for other subzones rela-
tive to those for the surface water subzone. As discussed

~

in Section 4.1, this does cause some potentially misleading
results. It is also inherently assumed in (1.2) that, if
the decay rates are included in the computation of the
diagonal elements of A, then they vary along with the
flow rates; this obviously does not agree with reality.

-6-
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l

| Equation (1.3) avoids this dif ficulty. However, Equation
*

: (1.2) yields to a certain change of variables which greatly
; simplifies the analytical comparison of its solution to,

: the solution X of (1.1). Also, certain computational
i difficulties are encountered in generating solutions to
j (1.3) which do not occur in generating solutions to (1.2).
'

Therefore, this study ccncentrates primarily on (1.2).
For a radionuclide chain with equal distribution coef-

: ficients, it is possible to omit consideration of the
! decay rates, in which case a comparison of the solutions
j to (1.1) and (1.2) is the pertinent comparison. In most
j cases of interest in geologic waste disposal, the decay
'

rates in D are much-smaller than the elements of F, so
that p(t)A is almost the same as p(t)F + D. Indeed, it !

will be shown that in the case of a single radionuclide |

.
with long half life, there is limited difference between

| the solutions to (1.2) and (1.3).
,

As a model of the stochastic case, the solution to
! the following equation is considered: ;

i dz(t,w)/dt = S( t,w)p( t) AZ( t,W) +R, (1.4) !
i

'

i ;

i,

where p(t) is a hydrologic pattern and S(t,w) is a cer- !
i

I tain kind of stochastic process with E[S(t,-)] = 1. The i
particular stochastic process considered is described in i

Chapter 3.
.

.

m
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Chapter 2

*
General Description of A, X and Y

;

An Environmental Transport Matrix is an example of
.

a class of matrices each of which is a square matrix
'

with (1) off-diagonal elements nonnegative, (2) diagonal
elements nonpositive, and (3) the jth diagonal element
ajj = -dj satisfyingi

;

)[ aij .dj >
1/j

With respect to the structure of an Environmental
Transport Matrix A, each element aij, i/j, corresponds
to a movement from Compartment J to Compartment I; thus,

: strict inequality holds in the preceding relation only
', if there is a direct movement of radionuclide (due to
; radioactive decay or physical transport) out of

Compartment J and out of the system under consideration.
A compartment system such as the one represented in Fig-
ure 1-2 is said to be open if material can move out of
the system; conversely, a system is said to be closed
if it is not open. Further, a system is said to be
completely open if it is open and contains no closed
subsystem. If all the flows represented in Figure 1-2
are nonzero, then the indicated system is completely
open. If the system represented by an Environmental
Transport Matrix is completely open, then (4) each
diagonal element is negative and (5) there exists at
least one diagonal element ajj = -dj such that

)[ aij .dj >
i/j

But, validity of conditions (1) through (5) does not
necessarily imply that the underlying system is com-

~

pletely open. However, if the system is completely
'open, then the corresponding Environmental Transport ,

Matrix A is nonsingular and all eigenvalues of A have
negative real part. Additional discussion is available
in Franklin (Fr68, Section 6.8), Thron (Thr72) and
Helton, et al., (Hel81a, Section 1.2).

-8-
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-The general mathematical nature of the solutions
to (1.1),.(1.2) and (1.3) is now discussed. For-con-

* venience, the terminology and notation of Brauer and'
Noel (Br69) are used. There will be scalar, vector and
matrix quantities mixed in various equations. It should
be clear from context which is which. For example, in -

the expression p(t) eat R, the following is intended: t

and p(t) are scalars; A, At and eat are matrices; R is
a vector;.and so the product is a vector. The equivalent
expressions eat and exp(At) are used to. represent matrix
exponentials. As discussed in Bellman (Be170) and
Dollard and Friedman (Do79), auch functions can be
represented as infinite series or multiplicative inte-
grals. If V is a vector and a is a scalar, then the

) expression V > a is used to indicate that every element
1 of V is greater than or equal to a.: In the following,

the underlying system is always assumed to be completely
open.

The solution to (1.1) is examined first. A con-
venient representation for the solution X to (1.1)
with X(0) =vo is

t

0 + i g( t-s) AAtX(t) =e y Rds (2.1)
0 *

[Br69, p. 72]. The equality in (2.1) remains valid when

R is assumed to be a function ggther than a constant.Further, the vector function e VO can be expressed agAa linear combination of elements of the form pi(t)e i ,
where the pi(t) are vector polynomials in t and-the Ai
are the eigenvalues of A (Th72, Theorem 8). Since the
eigenvalues of A have negative real part, it follows
that

Ate V O as t e. (2.2)O,

It is easily shown by direct substitution that the
.

constant vector

SX = -A-lR

-9-
_ _ _ _ _ _ _ .



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .

k

.

!
!
4

i is a solution for (1.1). Now, by using the relations -

) in (2.1) and (2.2), it follows that SX is the constant
j asymptotic solution for (1.1) to which every solution
. converges. -

}
'

The following relationship involving the nonnega-
tivity of solutions to (1.1) with initial value X(0) =

Vo is often useful:

Atif VO 2 0, then e VO 2 0. (2.3)

{This result can be established by using the equality
j

i

O " lim (I + At/j)$Ate V V*O
3 e i

Once j is sufficiently large, all elements of (I + At/j), !

j and hence of (I + At/j)], are nonnegative. The result
j now follows readily.

1

i !

! The solutions to (1.2) and (1.3) are examined next.
| The unique solution to a nonhomogeneous system
I

i

! i

| dY/dt = M(t)Y + G(t), Y(0) = Yo !

! !

!,

! is given by
i
1 1

t |

Y(t) = 4(t)YO + 4(t) 4-1(s)G(s)ds, (2.4)
0

!

I where 4 is the fundamental matrix solution for the

| corresponding homogeneous system dY/dt = M( t)Y with ;

I (Br69, Section 2.4). The preceding result '

i 4(0) = .

is now used to show that there exists a unique periodic
asymptotic solution SY to (1.2) to which every solution

1

of (1.2) converges. For convenience, the functions P -

|
and Q are introduced, where j,

i

I 1

|
'

:

-10- !
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|-

,

t t t .

,

p(s)ds = ids + (p(s) - 1)ds = t + Q(t).P(t) =
j

0 0 (2.5)
1

,

The function P is increasing with P(n) = n for each |;
~ positive integer n, and the function Q is periodic with .

.

Q(n) = 0 and |Q(s) - Q(t)| < 1 ('

l
!

I

I for all s and t. Since
=

| d (eP(t)A) = p(t)AeP(t)A,
!

dt

it follows thatl
t
i

eP(t)A = eQ(t)Ae At

is a fundamental matrix solution to the homogeneous equa-
tion dX/dt = p(t)AX. Thus, since every eigenvalue of A
has negative real part, the relation indicated in (2.2)
implies that every solution to the preceding homogeneous (
equation must converge to zero and so the equation can |

have no nonzero periodic solutions. This is sufficient |

to imply that (1.2) has at least one periodic solution !

(Br69, Theorem 2.14). Now, by using the relations in f
(2.2) and (2.4) and noting that G(s) = R is a constant,
it follows that this periodic solution SY is unique and
that every solution to (1.2) converges to SY. For (1.2)
with the initial value condition Y(0) =V, the repre-O
sentation in (2.4) becomes

.

t
P e(P(t)-P(s))ARds. (2.6)= e (t)AV +Y(t)-

0

1The matrix function eQ(t)^ is the periodic function
appearing in Floquet's Theorem (Br69, Theorem 2.12).

-11-
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The preceding discussion of the behavior of (1.2) would -

not be valid if p(t) were replaced by a periodic matrix
B(t) due to complications associated with the noncommu-

,

tativity of matrix multiplication.

In general, it is not possible to express the solu-
tion to (1.3) in a form involving matrix exponentials as
is done in (2.6) for the solution to (1.2). This results
because it is not necessarily true that FD = DF. However,
in the 1-radionuclide case, such commutativity holds
because D is a diagonal matrix, and in this case, the
solution to (1.3) with initial value VO can be expressed
as

Y(t) = e(P(t)F+tD)V e(P(t)F+tD-P(s)-sD)Rds.+

40
(2.7)

It has now been shown that both (1.1) and (1.2) have
unique asymptotic solutions to which all other solutions
converge.4 The manner in which individual solutions to
these equations approach their asymptotic limits is now
considered. For (1.1) with X(0) =0, the components of
X are nondecreasing functions on [0, e l . To establish
this statement, the equality in (2.1) is used to show
that, if 0 < t < t+c then,

t t

= S
+t

e(t+c-s)ARds - e(t-s)ARdsX(t+c) - X(t)
0 0

t t+ E t

e(t+f-s)ARds + e(t+c-s)ARds - e(t-s)ARds.=

'0 0

*

,

2A definition of convergence which is applicable for both
,

(1.1) and (1.2) is the following: The statement that
the function.F converges asymptotically to the function
G means, if C > 0, then there. exists a positive number
N such that, if t > N, then liF( t) . G ( t) ll <( .

-12-
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Now, the change of variable s = Z +E in the second
integral cancels the last integral and thus leads to
the relationship.

E

e(t+E-s)ARd s > 0 ,X(t+() - X(t) =

O

where the inequality follows from (2.3). This estab-
lishes the result.

The behavior of solutions for (1.2) is considered
next. As the asymptotic solution SY to (1.2) is periodic,
the components of other solutions cannot " increase mono-
tonically to their limits." However, the following
result is true. For (1.2) with Y(0) 0, the inequalityn

Y(t) < Y(t+1) is valid for t > 0, and hence, if Yi is a
component of Y, then Yi(t) < SYi(t) for t > 0. The first
inequality can be established by an argument similar to
that used to establish the nondocreasing nature of the
components of X. The second inequality follows immedi-
ately since its failure would contradict the convergence
of Y to SY.

,

e

1

1

1

1

-13-,
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Chapter 3
} .

J

Computer Simulation Results

The results of a number of simulations using the
Environmental Transport Model are presented in this
chapter. Specifically, solutions to the equations in ;

(1.1), (1.2) and (1.4) are given. The intent is to
illustrate the behavior of solutions to (1.1) as the
asymptotic solution SX is approached and to provide

fcomparisons of representations for a given site with
(1.1), (1.2) and (1.4). !

Each simulation involves a representation for one ;

zone and one radionuclide. Two different sites are ;

considered. The first site is a " typical river zone" i
and is the zone designated as Zone 1 in the Reference
Site defined by Helton and 7 man (Hel80, Chapter 2). I,

i The second site is a " typical lake zone" and is the j
| zone designated as Zone 2 in the preceding Reference '

]

i Site (Hel80). The radionuclide used is Cm245 (Half
' Life = 8.3 x 103 yr, Decay Constant = 8.4 x 10-5 yr-1). '

With an assumed distribution coefficient of 1000 L/kg,
the resulting Environmental Transport Matrices for
these two sites are'

l ~

-3.2x10-4 8.9x10-4 0. O.
l 0. -2.3x10-3 5.9 0.

|
A= 2.3x10-4 1.4x10-3 -960.0 1.0x10-1 |

' O. O. 90.0 -1.0x10-1 (3.1) i

; - -

!
i and
1

4
_

_-3.2x10-4 8.9x10-4 0. O.
O. -1.4x10-3 2.5x10-3 0.

A= 2.3x10-4 4.5x10-4 -1.6 .10 1

0. O. 4.0x10-1 .15, (3.2) .

_

respectively. The units for the elements of the preceding -

matrices are yr-1 The input data for the Environmental
Transport Model which defines the two preceding matrices
are derived in Helton and Iman (Hel80, Chapter 2).

-14-
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Solutions for (1.1) were obtained using the coeffi--

cient matrices in (3.1) and (3.2). However, to consider
(1.2) and (1.4) it was first necessary to define the

~

hydrologic pattern p(t). Initially, a study was made
of stream hydrographs available from the United States
Geological Survey and data in the recent literature on
synthetic hydrology (appearing mostly in the journal
Water Resources Research) to determine what assumptions
were reasonable with respect to p(t). Such patterns are
usually bimodal (sometimes unimodal), typically attaining
a minimum value, min p, in the fall and a maximum value,
max p, in the spring. For examples, see Harms and
Campbell (Ha67), Thomas and Fiering (Tho62) and Moreau
and Pyatt (Mo70). The intervals (min p, max p) generally
range from (.4, 2.0), see Harms and Campbell (Ha67, Fig-
ure 4), to more extreme values like (.2, 3.8), see Thomas
and Fiering (Tho62, Table 12.2). Although one might imag-
ine an environment so extreme that p(t) would be less than
.1 for 11 months of the year and then greater than 10.9
for one month, this appears to be an unusual case. In all
computations of the solutions Y(t) and Z(t) to (1.2) and
(1.4), respectively, the hydrologic pattern is assumed to
be the following mildly extreme one:

p) .4, p .3, p3" ' ' P = 2.0, p . , P6"= = * '4 52

'
.7, P8" 'f P9 yg 11 12

.2, p .3, p .4, p'2 = = = *=p * '
7

(3.3),

where p = p(t), (m-1)/ 2 < t < m/12, and can be considered
'

as the Tevel of hydrologic activity during the mth month.
This is essentially' the p( t) appearing in Table 12.2 of
Thomas and Fiering (Tho62).*

To generate' solutions for the equations in (1.2) and
(1.4), it i.s assumed that the hydrologic activity through-
oct the mth month of the nth year is equal to

- (1) .p, in incrementing Y(t) for'(1.2)

and
12n+m Pm in incrementing Z(t)'for (1.4),(2) v

-

where the vi are elements of a suitably defined Markov
'

process. The definition of this process is now considered.'

.

)..'

-15-
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Discussions of accepted methods of simulating the
stochastic process S(t,u) appearing in (1.4) are given
by Yevdjevich (Ye72, pp. 252-253) and in greater detail '

by Matalas (Mata67). For such simulations, Thomas and
Fiering (Tho62) proposed a model for the mathematical
synthesis of streamflow data which would preserve the
monthly means and variances and the month to month serial
correlation 3 and also give the monthly streamflow variable
a (truncated) normal distribution. Harms and Campbell
(Ha67) extended the Thomas-Fiering model to give the
monthly streamflow variable a log normal distribution.
However, as Matalas (Mata67) pointed out, the model
preserves the means, variances and month to month serial
correlations of the logarithms of the monthly streamflow
rather than the corresponding parameters of the streamflow
itself. Matalas (Mata67, p. 939) gave the formulas to be
used in synthesizing a monthly streamflow sequence which
preserves means, variances and lag-1 correlations of
historical streamflow data and also gives the streamflow
variable a log normal distribution. It is this technique
given by Matalas which is used to define the stochastic
process S(t,u).

3

{xi}i=1
" , the lag-1 or serial correlationFor a sequence

coefficient is defined to be the quotient

% \ \
a'i x | xi+1 - E I

1
{ xin-1 i= ( / /

p=

1f[[xi-y 2

n i.1 ( /

.

1 n
where x = n )5 Xi . This number provides a measure of

-

i=1
the extent to which xi and xi+1 vary together. Additional
discussion is given by Yevdjevich (Ye72, Chapter 2).

-16-
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Specifically, after an examination of the literature,
it was decided to define the vi such that each vi has a,

log normal distribution and also such that E(vi) = 1.0,
var (vi) = 0.25 and the month to month serial correlation
is 0.5. The sequence {vi} is generated by first defining
a sequence {ui} such that

ui = acy and ui+1 = 4 + p (ut-9) + (1-92)1/2 yci+1,

where a 2 = 0.2231, g= -0.1116, ( i . e . , mean {0 a} nd
p= 0.5278 and (i is

a sequence of independent, standard
variance 1), normal variates. The preceding values for

2, and p were obtained by solving the followinga
equations:

1.0 = E(vi) = exp(1/2a2+g) (3.4)

0.25 = var (vi) = exp[2(o2 + g )] - exp[o2 + 2g] (3.5)

[exp(a29) - 1]/[exp(o2) - 1). (3.6)0.5 =

The preceding equations are Equations (7), (8) and (12),
respectively, of Matalas (Mata67), where a = 0 is assumed
in Equation (7). In the solution of these equations,
(3.4) and (3.5) are solved first; then, the value for a
so obtained is used in the solution of (3.6). Each vi is

As indicated by Matalas (Mata67,

defined by vi = exp(ui){v.the beginning of this par}agraph.p. 939), the sequence i has the properties stated at

The following simulations were performed with the
coefficient matrix appearing in (3.1). This is the matrix
for the " typical river zone." First, calculations were
performed to illustrate the manner in which the solution
X of (1.1) approaches its asymptotic solution SX. Specif-
ically, (1.1) was solved four times. For each solution,

, the initial value is taken as X(0) = 0 and a different
subzone is assumed to receive a radionuclide input of 1
atom / year. For example, this yields R = [1, 0, 0, 0]T

.

when radionuclide input is to the groundwater subzone;
the units for R are atoms /yr. As the solution of (1.1)
is linear with respect to R with the initial value
condition X(0) =0, the solutions obtained here can be
scaled to represent other rates of input. Then, com-

ponents of X and the corresponding components of SX were

-17-
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graphed. Each graph illustrates the behavior of a single
-

component of X from time t = 0 until the time at which
the component of X has reached approximately 90% of its ,

asymptotic value. These graphs appear in Figures 3-1
through 3-4.

Second, calculations were performed to compare the
solutions of (1.1), (1.2), and (1.4) for the 100th year
after the initiation of radionuclide input. Specifically,

-plots were generated which show (1) a component of the
solution X of (1.1) for that period, (2) the corresponding
component of the solution Y of (1.2), (3) the average value
EZ of the corresponding component of 100 Monte Carlo simu-
lations of the solution Z of (1.4), and (4) EZ + SDZ,
where SDZ(t) is the standard deviation of the 100 observed
values of the component of Z(t). These plots appear in
Figures 3-5 through 3-8.

Third, similar plots were generated for the 1000th
year after the initiation of radionuclide input. These
plots appear in Figures 3-9 through 3-12.

Next, the same sequence of simulations was performed
with the coef ficient matrix appearing in (3.2) . This is
the matrix for the " typical lake zone." These plots

appear in Figures 3-13 through 3-24.

A listing of the program XYZ1 which generated the data
used in preparing the plots of X, Y, EZ, and EZ + SDZ is
given in the Appendix in the form used for the following
case: Year 1000 of input to the soil subzone of the River
Zone. Figure 3-10 presents the results generated by this
version of the program. Each of the 8 " Year 1000" runs
(each run involving 100 Monte Carlo simulations of 1000
years for Z) took approximately 34 minutes of CDC 6600
CPU time. The " Year 100" runs were of course shorter by
a factor of 10. It is a fairly expensive proposition to
simulate repeatedly over long time periods, but if it is
deemed desirable to do so, the program XYZ1 is adaptable
to fit the estimated hydrologic parameters of other sites.

The computational results presented in Figures 3-1
'

through 3-24 are now discussed. First, Figures 3-1
through 3-4 and 3-13 through 3-16 indicate the asymptotic _

behavior of solutions to (1.1). As discussed in Chapter 2,
such solutions increase monotonically towards a constant
solution. For radionuclide input to the groundwater sub-
zone, it takes approximately 10,000 years for the systems
to reach equilibrium. For radionuclide input to the soil

-18-
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sub zone , it takes approximately 1000 years for the soil

'
subzone in nhe River Zone to reach equilibrium and
approximately twice as long for the soil subzone in the
Lake Zone to reach equilibrium. This difference results
from the fact that the soil subzone of the River Zone
was defined with more active processes that influence
radionuclide movement. Also, it takes approximately
5000 years for the surface water and sediment subzones
to reach equilibrium in the River Zone and somewhat
longer for these subzones to reach equilibrium in the
Lake Zone. As indicated in a previous sensitivity anal-
ysis (He181a) for radionuclide input to the soil subzone,
the surface water and sediment subzones approach their
equilibrium concentrations tuore slowly than the soil
subzone due to radionuclide movement through the ground-
water subzone. For radionuclide input to the surface
water or sediment subzones, both the surface water and
sediment subzones move rapidly towards their equilibrium
concentrations. Here, the times required to reach equi-
librium vary from a year to a few tens of years. In
contrast, it requires on the order of 1000 to 2000 yearn
for the soil subzones to reach equilibrium.

Figures 3.5 through 3.12 and 3.17 through 3.24 con-
tain comparisons of X, Y and Z, the solutions to (1.1),
(1.2) and (1.4), respectively. The most striking feature
of these figures is the relatively small differences
indicated in these solutions.

The comparisons of X and Y are considered first.
With the exception of the surface water component for
radionuclide input to the surface water subzone, there
is little discernable difference between X and Y. For
input to the surface water subzone of the River Zone, Y3
appears to oscillate between 1/(max p) SX3 and 1/(min p)

3 In fact, Y3(t) behaves approximately as SX /p(t).SX
A similar but less pronounced pattern holds for when3
radionuclide input is to the surface water subzone of'

the Lake Zone. This behavior can be related to the
large rate constants associated with radionuclide move-

- ment out of the surface water subzones. An explanation
of the observed behavior of X and Y is provided in
Chapter 4.

,

The comparisons of X and Z are now considered.
These comparisons are similar to those for X and Y.
Again with the exception of the surface water component
for radionuclide input to the surface water subzone,

-19-
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there is little difference between X and Z. The following -

is presented in justification of the preceding statement.
First, let us assume that it is "unlikely" that a random
variable will exceed its mean plus 2 times its standard -

deviation. Chebyshev's inequality guarantees that the
probability is less than .25, and it is usually more like
.0228, which is the value for normal variables. Let us
also assume that the estimates EZk(t) and SDZk(t) are
good estimates of the true moments E(Zk(t,*)) and
SD(Zk(t,*)). If one examines each graph to determine
the maximum amount that EZk(t)+2*SDZg(t) exceeds Xk(t),
it is found that in most cases this is a small percentage
of the value of Xk(t). The results of such a comparison
are listed in Table 3-1. In every case except for the
surface water component with radionuclide input to the
surface water subzone, it can be said that it is unlikely
that Zk( t, u) exceeds 1.2X (t). In the case of input tok
the surface water subzone of the Lake Zone, it appears
unlikely that Z3(t,u) will exceed 1.8X (t); even for j3
the case of input to the surface water subzone of the
River Zone, it appears unlikely that Z3(t,u) will exceed
12X3(t). Further, the expected behavior of Z is very
close to that for Y. Additional discitssion of (1.4) is
provided in Chapter 5.

I

l

|

|

1
-

.
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Table 3-1

.

- X ( t)] /X I DIMax [EZk(t) + 2*SDZk(t) k k

Expressed as a Percentage

RIVER ZONE LAKE ZONE

Year 100 Year 1000 Year 100 Year 1000

5
GW .15% .11% .3% .4%

3 SOIL 8.4 % 2.2 % 9.0% 1.6%
SW .15% .3 % .6% .4%a

g SED 1.8 % .4 % 2.1% .4%

5

?
o
O GW 7.4 % .9 % 7.1% 1.5%
o SOIL .9 % 2.1 % .6% 1.5%
# SW .7 % 1.5 % .6% .9%
y SED 1.7 % 1.7 % 1.6% .9%

&
H

$
GW 9.2 % l.0 % 7.2% 1.7%

o
v SOIL .8 % 2.0 % .7% 1.4%
a SW 1200. % 1200. % 80.0% 80.0%

$ SED 20. % 20. % 17.0% 16.4%

5

e
GW 7.8 % 1.3 % 8.3% 1.6%*'

3 SOIL 1.4 % 1.9 % 1.7% 1.2%
SW 16.0 % 17.3 % 16.4% 16.4%

.

$ SED 15.0 % 16.2 % 20.0% 20.0%

&
H
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Chapter 4

Comparison of X and Y -

In this chapter, the solutions X and Y to the dif-
forential equations in (1.1) and (1.2), respectively,
are discussed. In Section 4.1, a heuristic discussion
of the similarities and differences between X and Y is
given. This discussion is based on the comparison of
components of X and Y to solutions of scalar differ-
ential equations. Then, in Section 4.2, several results
are presented which provide exact comparisons between X
and Y.

4.1 Heuristic Comparison of X and Y

To - ovide a basis for a heuristic discussion of the
graphs jpearing in Chapter 3, the following two scalar
differ.ntial equations are introduced:

dx/dt = -ax( t) +r, x(0) =0 (4.1)

and

dy/dt = -p( t)ay( t) + r, y(0) =0, (4.2)

where a and r are positive numbers and p is a
positive-valued, periodic function with period 1 such
that

1

p( t)dt = 1.

O

The solutions to the two preceding equations are given
by .

r
[1 - e-ta) (4.3)x(t)

-=-

a
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a

h

7

.

and

.
-

ft ) f (t )
-t

t
,

= r expl -adu 1. exp| -h(u)du ds,y(t)

0 (s ) (J
- )- (4.4)

s

where the function h is defined by

h(u) = p(u)a - a. (4.5)

It follows from the properties of p that h is. periodic
with period 1 and that

/s+1h(u)du = 0.s

A bound for solutions to (4.') is now' established.2
This will help to explain-the limited variation which
appears in some of the ' solutions graphed dn Chapter 3.
Suppose u < v are two nonnegative numbers; further, sup-
pose n is the largest integer such that u < u + n < v.
Then,

)} [[ vev
expl h(w)dw I= exp - h(w)dw-

)( Ju ) ( u+n
,

){ v
' > exp - (max h) dw .

"*" ).

> exp(-max h)
.

D = exp(1 - max p)a, (4.6)
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and similarly,

'

{ ) { )vv e
exp - h(w)dw exp| - h(w)dw

/ (Ju+n /( u

)f v
(min h) dw iI exp -

)( u+n

f exp(-min h)

= exp(1 - min p)a. (4.7)

Juppose t is an arbitrary positive number. Then, by using
the two preceding inequalities, it follows that

_

t ) { Pt het {
exp, -h(u)du i ds= r exp -aduy(t) -

0 gs ) (*s )_
_

[From (4.4)]

)p [t t

exp(1 - max p)a ds> r exp -adu -

0 \s )
.. -

[From (4.6)]

.

= x(t) exp(1 - max p)a
[From (4.3)]

.
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and also that

- _

pt [ pt ) [t )
= r exp| -adu exp -h(u)du dsy(t) -

_ W' ) \" )_
[From (4.4)]

__

ft )t

exp(1 - min p)a dsI r exp -adu +

_
\" )

_

[From (4.7)]

= x(t) exp (1 - min p) a.
[From (4.3)]

Thus,

x(t) exp[(1 - max p)a]

f y(t) 3 x(t) exp[(1 - min p)a). (4.8)
,

It is now shown that the solutions of (4.1) and (4.2)

|.
intersect in every interval of length 1. Suppose s is a
positive number. Further, let Q be defined as in (2.5);

I then,

v vp
h( t)dt = [p(t)a - a]dt

du u
,

vr.
' = a [p(t) - 1]dt = a[Q(v) - Q(u)].

J u

!
'

!
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As noted in Chapter 2, Q(0) = 0 and Q is periodic with -

period 1. Since Q is continuous, there exist ti and t2
in [s, s+1] such that Q assumes its maximum and minimum *

at ti and t2, respectively. It now follows from the
representation for y given in (4.4) that

< - -
,

ptlt

=fi -adu exp[-aQ(ty) + aQ(v)] dv*y(ty) r\exp J0 |
- - >

v j

u

r - _3

f. t1 t1
< r<exp -adu edy = x(ti)

J O v
< - ->

and

e - _
3

tt2 f2
y(t2) r4exP -adu exp[-aQ(t ) + aQ(v)] dv-

2 .=
j

v |0 j
< - - >

r - >

p2 f2 [dv=x(t)*
t t

> r<exp -adu > 2

f- J 0 v
r - >

Thus, it follows from the continuity of x and y that
there must exist a number t between ti and t2 such
that x(t) = y(t). Hence, the solutions of (4.1) and
(4.2) intersect in every interval of length 1.

In the following, three aspects of the graphs
appearing in Chapter 3 are discussed: (1) the limited
difference in the solutions to (1.1) and (1.2) for the
groundwater subzone when radionuclide input is to the

-

groundwater subzone, (2) the noticeable difference in
the solutions to (1.1) and (1.2) for the surface water *

subzone when radionuclide input is to the surface water
subzone, and (3) the limited difference in the solutions
to (1.1) and (1.2) for the surface water subzone whenradionuclide input is to the groundwater subzone.

|
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In this paragraph, we consider the limited
difference in the solutions to (1.1) and (1.2) for the*

groundwater subzone When radionuclide input is to the
groundwater subzone. That is, the differences in X1
and Y are considered. For this situation, the amount
of rabionuclide in the groundwater subzone is repre-
sented by equations which are similar to, but slightly
different from, the equations appearing in (4.1) and
(4.2). The difference is that, in addition to the
constant radionuclide inflow r, there is also a
radionuclide inflow from the soil subzone. However,

this inflow is small in comparison to r and thus has a
limited effect on the solution. The result is that Y 1
is bounded by X in a manner similar to that shown in

1
(4.8) for the scalar equations. As the value corre-
sponding to a in (1.1) and (1.2) is 3.2 x 10-4 and the
values for max p and min p are 3.8 and 0.2, respectively,
this bound should be reasonably tight. As indicated in
the figures contained in Chapter 3, such is the case.
Further, as previously shown, the solutions to (4.1) and
(4.2) intersect in every interval of length 1. Again,

and Y and suchsimilar behavior can be expected from Xi 1
is indicated to be the case in Chapter 3. Although only
the behavior of X and Y with radionuclide input to the

1 1groundwater subzone has been discussed, similar behavior
and Y with radionuclide inputis also exhibited by X2 2

and Y with radionuclideto the soil subzone and by X4 4
input to the sediment subzone.

We now consider the noticeable difference in the
solutions to (1.1) and (1.2) for the surface water subzone
When radionuclide input is to the surf ace water subzc.ne.

and Y are considered.That is, the differences between X3 3|
Again, the amount of radionuclide in the surface water
subzone is represented by equations which are similar to,
but slightly different from, the equations appearing in
(4.1) and (4.2). The difference is that, in addition to
the constant radionuclide inflow r, there are also radio-
nuclide inflows from the groundwater, soil and sediment
sub zones . Ho wever, these inflows are small in comparison-

to r and thus have a limited effect on the solution. Thus,

X and Y tend to behave as indicated in (4.3) and (4.4). ,
3 3 and Y fr m the cases con-M e difference in behavior X3 3*

sidered in the preceding paragraph is due to the large

|
rate constant (i.e., 960 for River Zone and 1.6 for Lake
Zone) for flow out of the surface water subzone. The
effects of this can be realized by considering (4.3),

i Where a corresponds to the rate constant for flow out of
the surface water subzone. With a large, the solution
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to (4.1) moves very quickly to its asymptotic value r/a. ~

That this is the case can be seen by considering Figures
3-3 and 3-15. Replacement of a in (4.1) by the product

,

pia changes the asymptotic value to r/ pia. The differ-
ences in X3 and Y3 result from the tendency of these
solutions to behave as indicated in (4.3); the relatively
large values associated with pia tends to keep Y3 close
to r/ pia. This pattern is more pronounced for the surface
water subzone of the River Zone than the surface water sub-
zone of the Lake Zone as it has a larger rate constant for
radionuclide outflow.

We now consider the limited difference in the solu-
tions to (1.1) and (1.2) for the surface water subzone
when radionuclide input is to the groundwater subzone.
That is, the similarity between X3 and Y3 is considered.
This similarity is much greater than one would expect.
Specifically, there is almost no difference between X3
and Y3 when input is to the groundwater subzone while,
as already discussed, there is noticeable difference
when input is to the surface water subzone. This
behavior results from the introduction of variation in
(1.2) by the multiplication of the coefficient matrix A
by the scalar hydrologic pattern p(t), which causes all
flow rates in the system to vary up and down together.
For the situation under consideration, this causes more
variation in the discharge of the groundwater subzone
than is physically appropriate and in turn this discharge
cancels out the effects of increased discharge from the
surface water subzone.

The manner in which this occurs can be realized by
considering X3 and Y3 as solutions to equations of the
form given in (4.1) and (4.2). There will be inflows
to the surface water subzone from the groundwater, soil
and sediment subzones. As initial radionuclide input
is to the groundwater subzone, the largest radionuclide
inflow to the surface water subzone will be from this
subzone. Further, as indicated in the two preceding
paragraphs, the amount of radionuclide in the ground-
water subzone will change very slowly relative to the

'

changes in the surface water subzone and further will be
little affected by the hydrologic pattern. The result
is that X3 and Y3 will behave similarly to solutions for ,

(4.1), where a is the rate constant for outflow from the
surface water subzone and r is the rate of inflow from
the groundwater subzone. The reason for this is
indicated in the next paragraph.
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Although multiplication of A by.the hydrologic
pattern p(t) has little effect on Y4, it does have the
effect.of multiplying the radionuclide flow r from the.-

,
groundwater subzone to the surface water subzone by p.

1 The result is that X3 and Y3 can be approximated in each
| month by solutions to equations of the form

dX /dt = -aX (t) +r3 3;

:

and
4

dY /dt = -piaY3(t) + pir.3

In turn, these equations have asymptotic solutions given-
by

r/a and pir/ pia = r/a,

j respectively. Thus, due to the large rate constant
associated with the surface water subzone which results
in rapid attainment of equilibrium, the effects of the
ine eased outflow from the surface-water subzone which
re_ alt from multiplication of A by the hydrologic pat-
tern p(t) are canceled by the increased inflow from the,

groundwater subzone. This is not a normal situation;
one would not expect groundwater discharge to vary so.
directly with surface water discharge. The indicated

J patterns for direct radionuclide input to the surface
water subzone are probably the most' meaningful (i.e.,'-

,

revealing) of those presented. Similar behavior to that ,

!of X3 and Y3 with radionuclide input to the groundwater
subzone is also exhibited by X3 and Y for input to the
soil subzone and for input to the sed)iment subzone.

: 4.2 Analytic Comparison of X and Y
'

; In the preceding section, a heuristic discussion of
the similarities and differences between X and Y is
provided. This section contains several results which.

provide analytic comparisons between X and Y.
i

j We start by reminding the reader that Y is the solu-
tion of (1.2). In this equation, variation is introduced

'

by multiplying the coefficient matrix A by the hydrologic

i
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pattern p(t). In contrast to the situation represented
by (1.3), such a procedure results in a variation in the *

decay constants for the radionuclides involved. The
relationship in (1.2) is more convenient to deal with
than that in (1.3) as a suitable change of variable
transforms (1.2) into an equation of the form

dW/d t = AW + h ( t) R, (4.9)

where h(t) is another hydrologic pattern (i.e., a piece-
wise continuous, periodic, positive-valued function with
a period of one year and

1

h( t)dt = 1).

O

Specifically, let

W(t) =YP-1(t)\, (4.10)
( /

with P(t) defined as in (2.5). Then,4

- _
-

d d
dW/d t = Y(u) P-1(t)

du u=P-1(t) dt

- - -
.

[p(P-1(t)) AY(P-1(t)) + R] [l/p(P-1(t))]=

[l/p(P-1( t) ) ] R= AY(P-1( t) ) +

= AW(t) + h(t)R, (4.11)
*

4The reader is reminded of the following result on the
existence of inverses and their derivatives: Suppose F
is a one-to-one functibn with domain [a,b] and range4

[F(a),F(b)] whose derivative exists and is positive on
(a,b). Then, F has an inverse q; ind if y = F(x), then

1/F'(x) for a < x < b.q'(y) =

-78-
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- where

h(t) = 1/p(p-1(t)) (4.12)*

is a hydrologic pattern such that

t

h(s)ds = P-1(t). (4.13)H(t) =

0

A result is now established which indicates the
similarity between the solutions to (1.2) and (1.3).
In essence, this result states that, when the decay

for a radionuclide is "small," the differenceconstant
between the solutions to (1.2) and (1.3) is "small."
Although the following theorem is stated and proved
for the 1-radionuclide case, it should be possible to
obtain similar results for multi-radionuclide cases.The 1-radionuclide case is particularly tractable due
to the commutativity of certain matrices.

Theorem 4.1. Suppose Yi and Y2 are solutions to
(1.2) and (1.3), respectively, in the 1-radionuclide
case with decay constant A and with initial values

= Y (0) = 0. Then,Y (0) 2l

2A$ Y (t) i e Y (t)-2Ae Y (t) 21

for t > 0.

Proof. Suppose t is a nonnegative number. Then,

t

e [P ( t) F+tD-P( s ) F-sD] Rd s
[From (2.7)]

Y2( t) =

0*

t+

e [P( t)-P( s) ] [F+D] e [ t-P( t)-s+P ( s) ] D ds .R"

0 (4.14)
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Now, since
.

,

.

e [ t-P( t)-s+P( s ) ] D = e [ t-P( t)-s+P( s) ] [- A] 1

where I denotes the identify matrix, it follows that

e-2A i e[t-P( t)-s+P( s)] D 1 e2A , (4.15)

The desired result can now be obtained from the relations
in (4.14) and (4.15) and the following representation for
Y1:

t

=fe[P(t)-P(s)]AYl( t) Rds.
0 [From (2.6)]j

This completes the proof of Theorem 4.1.

Next, a result is established which places
conservative bounds on the difference between X and Y.
These bounds are related to the extremes of the hydro-
logic pattern p(t).

Theorem 4.2. Suppose X and Y are solutions to (1.1)
and (1.2), respectively, with initial values X(0) = Y(0)
= Vo. Then,

[1/ max p] X[P(t)] i Y(t) < [1/ min p) X[P(t)]

for t > 0.

Proof. Suppose t is a nonnegative number. Then,

.

t

Y(t) = eP(t)Ay + e[P(t)-P(s)]A dsR0 ,

0 [From (2.6)]
t

[l/p(s)]p(s)e[P(t)-P(s)]ARds."eP(t)A +
VO,

'O
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Thus,

P(t)*

YO + (1/"i" PI *[P(t)-z] ARdzY(t) i e (t)AP

o

and

P(t)

> e (t)AVO + (1/ max p) e[P(t)-z] ARdz.P
Y(t)

O

The desired result now follows from the two preceding
inequalities and the representation for X given in (2.1).
This completes the proof of Theorem 4.2.

The implications of Theorem 4.2 are now discussed.
For a hydrologic pattern with min p = .2 and max p = 3.8
(such as was assumed for the computer simulations pre-
sented in Chapter 3), Theorem 4.2 implies that within
any interval [s, s+1] each component of Y becomes no
more than five times as large as the maximum of the
corresponding component of X and no less than 1/4 as
small as the minimum of the corresponding component of
X. For the simulation results presented in Chapter 3,
this is very close to the situation observed in the
surface water subzone when radionuclide input is to that

f Y tends tosubzone. In this case, the component Y3
oscillate between (1/ max p) SX3 and (1/ min p) SX . As3
discussed in the preceding section, there are often
other processes involved which result in less variation
in Y than indicated by the bounds in Theorem 4.2.

If Y is the solution to (1.3) for the 1-radionuclide
case with decay constant A, then the combined application
of Theorems 4.1 and 4.2 yields'

[e-2A/ max p] X[P(t)] i Y(t) i [e2A/ min p] X[P(t)].*

For this case when the decay constant A is small, the*

implication is that similar bounds exist for the solutions
to (1.2) and (1.3).
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As indicated by the simulation results presented in -

Chapter 3, the similarity between solutions to (1.1) and
(1.2) is often much greater than that indicated by Theorem
4.2. Early in the investigation, it became clear that *

a satisfactory explanation of this behavior would result
if it could be proved that in each interval [n, n+1],
each component of Y agrees with the corresponding compo-
nent of X for at least one t. If this is true, a proof
has thus far eluded the authors. However, a proof to
establish that such behavior does eventually occur was
obtained. This result is presented as Theorem 4.3.
After the proof of this result, it is shown how it can
be used to construct bounds on the dif ferences between
the asymptotic solutions SX and SY to (1.1) and (1.2),
respectively.

Theorem 4.3. Suppose X and Y are solutions to (1.1)
and (1.2), respectively, with initial values X(0) = Y(0)
=05 Then,

lim min |Xk(t) -Yk(t)| = 0
n :* tc[n,n+1]

for corresponding components Xk and Yk of X and Y.
Further, each component of SY equals the corresponding
component of SX for at least one t in every time inter-
val [n, n+1].

Proof. For convenience, the result is
established for W(t) = Y(P-1(t)). Since P-1(t) is a
continuous, increasing function, P-1(n) = n for every
positive integer n and X has a constant asymptotic
solution, a proof that the limit equals zero with Y
replaced by W will imply that the limit equals zero as
stated in the theorem.

If n is a positive integer and z is a number between
0 and 1, then

.

.

5 Theorem 4.3 remains true for the initial values X(0) =X 0
and Y(0) = Yo.

-82-



i

.

n+z
e(n+z-s)Ah(s)RdsW(n+z) =

* Jo [From (4.11) and (2.1)]

z .n+z
e(n+z-s)Ah(s)Rds + e(n+z-s)Ah(s)Rds=

0 *z

z n
e(n-u)A (u+z)Rdu,e(n+z-s)Ah(s)Rds + h=

'O O

(4.16)

where the last equality follows from the change of vari-
ables u = s-z in the second integral. Further, since

n

fe(n-u)Ah(u+z)Rdu
0

is continuous in z and

- _

l n

f e(n-u)Ah(u+z)Rdu dz

0
~ ~

_ _

n 1

e(n-u)A h(u+z)dz Rdu=

0 0
_ _

= fne(n-u)ARdu = X(n),*

0

it follows from the mean value theorem for integrals that,
for the kth element Xk of X and each positive integer n,
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there exists a choice zkn of z, 0 1 zkn I 1, such that
-

-
-

*n

e("-U)Ah(u+zkn)Rdu = X (n).k

-
-

It now follows by combining (4.16) and (4.17) that

-
-

zkn
el + kn-s)A (s)RdshW (n+zkn) -Xk(n) = .k k0

_
_ (4.18)

It is next shown that

z

fa
e(n+z-s)A (s)Rds = 0, (4.19)hlim

n e

with the convergence being uniform for zc(0, 1). This
result in combination with the equality indicated in (4.18)
is sufficient to establish the limit in the theorem. For

0 < z < 1 and any positive integer n,

z z

e(n+z-s)A (s)Rds = enA e(z-s)Ah(s)Rds1 h

0 0

=eA W(z),n

where the second equality follows from the relations in
(4.11) and (2.1). Further,

.

IlW( z)ll f Ile"All p , (4.20)lie ' A W( z )ll 1 fle"A ll *
,

,
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where H u indicates the Euclidean vector or matrix norm,
.

as appropriate, and

.

p= max HW(z)n.
01zil

As noted in (2.2), it follows that

ne An = 0 (4.21)nlim
n -m

because all eigenvalues of A have negative real part.
The inequality in (4.19) can now be established from the
relations in (4.20) and (4.21). As already noted, this
result is sufficient to establish the desired limit in
the conclusion of the theorem.

It is now shown that each component of SY equals
the corresponding component of SX for at least one t in
every time interval [n, n+1].- Let Xk and Yk be corres-
ponding components of X and Y. It follows from the
previously established limit that there exists a sequence

{sn n=1

such that n i sn i n + 1 for each positive integer n and
also such that

lim |Xk(sn) - Yk(s )| = 0.n
n m

Further, there exists a number tc[0, 1] and a subsequence
.

I m

'sn'n=1-
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of
s
n n=1 ,

such that

lim mod (s 1) = t.n,
n -e

Now, since

Y (sn) = SYk(t) and lim Xk(sn) = SX (t),lim kk
n m n ==

SYk(t). This completes the proofit follows that SXk(t) =

of Theorem 4.3.

It is now shown how use of Theorem 4.3 in conjunction
with Theorem 4.2 can yield tighter bounds on the difference
between corresponding elements of SX and SY than use of
Theorem 4.2 alone. This technique is applicable to a
particular subzone when the rate constant dk for movement
out of that subzone is "small." Specifically, it is
established that

[1 - (max p/ min p)d ] SXkk

i SYk(t) f [1 + (max p/ min p)dk] SXk (4.22)

for t > 1.

Suppose the kth components of SX and SY are under
consideration and dk is the unperturbed (i.e., not
multiplied by a hydrologic pattern p(t)) rate constant
associated with that component. For example, as indicated
in (3.1) and (3.2) the unperturbed rate constant d4 asso- .

ciated with the groundwater subzones of both the River

Zone and ghe Lake Zone used in the simulation studies is
3.2 x 10 . An inequality involving the derivative of SY '

is the only nega kis established first. Since -p(t)d SYkk
tive term in the dif ferential equation involving SYk, it
follows that
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dSY /dt > -p(t)d SYkk k-

> -(max p)d SYkk
,

> -(max p/ min p)d SXk, (4.23)k

where the last inequality is obtained from Theorem 4.2.

Suppose t > 1. The left inequality in (4.22) is
establishedofirst. It follows from Theorem 4.3 that

there exists to 3 t such that SXk = SYk(to) and also
such t - to f 1. Now,

t

1f-(maxp/minp)dSXasSYk(t) - SY (t0) k kk
t

0 [From (4.23)]

= -(max p/ min p)d SXk(t - t0)k

> -(max p/ min p)d SXkek

and thus from the equality SXk = SYk(t0)r

d] SXk. (4.24)SY (t) > [1 - (max p/ min p) kk

The right inequality in (4.22) is established next. It

follows from Theorem 4.3 that there exists t 3 t0 such
that SXk = SYk(t0) and also such that t0 - t 1 1. Now,

t

>fo k d-(max p/ min p)d SXk sSYk(t0) - SYk(t)
t

.

= -(max p/ min p)d SXk(t - t0)k
,

>,-(max p/ min p)d SXkek

-87-
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.

and thus from the equality SXk = SYk(to),

.

[1 + (max p/ min p)d ] SXk > SYk(t). (4.25)k

The expression in (4.22) now follows by combining the
inequalities in (4.24) and (4.25).

As already noted, the value used for di in the
simulation studies is 3.2 x 10-4 Further, for these
simulations, max p = 3.8 and min p = .2. With these
values, (4.22) yields the following relationship

between SX1 and SY1 for t > 1:

[1 - (19.0)(3.2x10-4)] SX1 1 SY (t)i

1 [1 + (19.0)(3.2x10-4)] SX1,

or equivalently,

!

(1 .006) SX1 i SYi(t) 1 (1 + .006) SX1

In contrast, use of Theorem 4.2 alone yields

.26 SX1 1 SYl(t) 1 5.0 SX1

However, use of Theorem 4.3 to improve bounds is
dependent on dk being small. When this is not the
case, Theorem 4.2 will produce sharper bounds.

At present, the tight bounds on solutions to (1.1)
and (1.2) obtainable through use of Theorem 4.3 are
applicable only to the steady state solutions SX and SY. -

However, as is clear from the computer simulations
presented in Chapter 3, there may be little difference
between the corresponding groundwater, soil and sediment -

components of X and Y in the time period before steady
state is reached. As an examination of the arguments

,

which establish the inequalities in (4.24) and (4.25)
will reveal, the bounds indicated in (4.22) for steady
state solutions can be extended to solutions Xk(t) and
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Yk(t) if Theorem 4.3 can be generalized to show that
the corresponding components of X and Y have a common,

value (i.e., Xk(t) = Yk(t)) in every_ interval of length.
1.). As already noted, a proof for this has thus far i

eluded the authors. Should it be possible to establish-
such a result, then it would follow that the corresponding
components of X and Y are practically indistinguishable
as long as the associated rate constant for movement out
of that component is small.

.

.
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Chapter 5 .

Further Discussion of the Stochastic Case
.

For linear stochastic differential equations of the
type

dZ/dt = AZ + R, Z(0) =Z0 (5.1)

if the randomness occurs only in the initial condition Z0
or in the-inhomogeneous part R, it is usually possible to
treat the derivative as a mean square derivative, and the
theory is much the same as for deterministic equations.
Additional discussion is given by T. T. Soong (So73,

Chapter 7). In such situations, the expected value of
the stochastic solution E[Z(t,*)] will be the same as
the deterministic solution of (5.1) with the stochastic
parameters replaced by their expected values.

Analysis of equations of type (5.1) where the
randomness occurs in the coefficients of A is much more
complicated. The reader is referred to the paper by
J. L. Strand (St70), where relaticuships between the
mean square theory and the "samplo path" theory (or "SP"
approach, as Strand calls it) are explored. We have taken
the " sample path" approach in this report because the paths
of the process S(t,w)p(t) are well-behaved enough to allow
this. Indeed, all sample path solutions exist for the
numerical example considered in Chapter 3 However, there
can sometimes be a problem with trying to apply the mean
square theory to a linear model when the distribution of
A(t,+) is taken to oe log normal. For example, Strand

1 has astates that "if A(w) > 0, x' = A(w)x, x(0) =

'mean square' solution on [0, b] if, and only if, the
Laplace transform of A is analytic for s < 2b".6 He is

-

considering the scalar case here and A is just a random
variable. If the Laplace transform of a distribution is
analytic on |s| < 2b, then the moment generating function
exists on the real part of that interval. However, we ,

are dealing with the log normal distribution, which has
no moment generating function.

.

6The Laplace transform is a function of the variable s;
see Strand (St70) for the exact form of the Laplace
transformation under consideration.

!
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We now try to apply Strand's criteria for the
existence and uniqueness of a mean square solution to
our equation*

dZ(t,w)/dt = S(t,w)p(t)AZ(t,w) +R, Z(0) =0 (5.2)

on the first one-month interval [0, 1/12]. As S(t,w) is
just a log normal random variable V which is not dependent
on t, we will just need to show that condition (a') of
Strand's Corollary 10 holds. In our case, this condition
reduces to showing that

m

tk<m for t = pi t! An ,)) /E(V2k) .

k=1

= sup, 13 k |aik| and p is the value of p on thewhere u A!I
1 1

first one-month interval. However, for a log-normal vari-
able V, the indicated summation turns out to be of the
form

*

}) e(kp+4k o2 2) tk,.

k=1

which diverges for any t / 0. Thus, it cannot be
concluded from application of Corollary 10 that (5.2)
has a unique mean square solution. ,

The preceding test for the existence of a mean square
solution is mainly useful for linear equations dZ/dt =
A(t,w)Z + R, where A has eigenvalues with positive real
part. Our equation is much better behaved than this, so
we are assured of the existence of a mean square solution
by Theorem 3(a) of Strand's paper. To obtain this result,'

it is only necessary to verify that the integral

.

b
tlS( t,w)p( t) AZ( t,w) + R"2dt

0
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is finite for all b > 0. The integrand is less than or .

equal to

.

IIS ( t , w)ll 2 * p(t)* IIAll IlZ ( t , w)ll 2+1*

since R > 0 and 1)Ri = 1. Hence, the integrand is
bounded Tor 0 < t < b since llS ( t, w)ll 2 = 1 for all t

7< 1 t for all t and W. Thus, the integraland Z(t,w)
is finite for all b > 0 and so a mean square solution
exists. However, this solution is not unique.

The dependence properties of the process S(t,w) make
it very difficult to obtain analytical expressions for
the moments E(Zk(t,*)) and SD(Zk(t,*)). A search of the
literature has failed to locate an analytical treatment
of a problem as complicated as (5.1). The closest thing
found was a paper by Becus (Bec79), which yields formulas
for E(Zk(t,*)) to an equation of type (5.1). In this
paper, the matrix A can assume only finitely many states
(ours can assume a continuum of states and the coeffi-
cients aij(t,w) for a given t are unbounded in w in a
very strong way), with Poisson " switching times" (at
least our switching times are deterministic) .

We know that the expected value E(Z(t,*)) will not
be the same as Y(t), which is the deterministic solution
to (5.1) with all stochastic parameters replaced by their
expected values. In fact, it is surprising that in many
of the plots EZ(t) is running below Y(t). Matis and
Wehrly in their excellent survey paper (Mati79) on
stochastic compartment systems point out that in the one
compartment model dZ/dt = az + r, where a and r are inde-
pendent random variables, it is necessarily true that "the
mean of the stochastic model exceeds the deterministic
model evaluated at the mean rates."

The problem of an analytical determination of the
nature of E(Zk(t,*)) and SD(Zk(t,*)) under various
assumptions concerning the distribution of S( t,w) is
deserving of further study. However, the Monte Carlo -

simulation study indicated that there is probably not
enough difference between Z and X to warrant any real
concern about the practice of using X as the model.

-
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'
The greatest dif ference between Z and X occurs'

between the surface water components X3 and Z3 of the
River Zone for radionuclide input to the surface water-

~

subzone. As already noted, 23 ( t , w) behaves approximately
like SX)/S( t,w)p( t) in this case. It would be interest-
ing to investigate further just how much like the process

= SX /S(t, )p(t)Q(t,w) 3

the component Z3 behaves. For fixed t, S(t,w) is a log-
normal variable with mean 1 and variance .25, so 1/S(t,w)
is a log-normal variable with mean 1.255 and variance
.3906-or standard deviation .625. This implies that

1.25 SX,/p(t), and this is almost exactlyE(Q(t,*)) =

what the plots EZ(tT look like in this case (see Figures
3.7 and 3.11). Also,

Max {E(Q(t,*)] + 2*SD[Q(t,*)] -SX}/SX33

.2, where it equals 11.5 S'i . Thiswill occur for p(t) = 3
agrees almost exactly with the information derived from
the plots, reinforcing our suggestion that the process
Q(t,*) is a good approximation to Z3(t,*).

.

9
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Chapter 6
.

Summary and Conclusion

The purpose of this investigation was to develop an
understanding of the effects that variable hydrologic
patterns have on predictions made by the Environmental
Transport Model. Specifically, it was desired to gain
insight as to whether it was appropriate to use " average"
annual water and sediment flow rates in the derivation of
model input parameters or whether such parameters should
be represented as periodic functions of time or, more
generally, as stochastic processes.

The investigation proceeded in the following manner.
First, the asymptotic behavior of the Environmental
Transport Model was determined for transport equation
coefficients derived with average yearly values for
flow cates. It was found that the model runs to a steady
state condition in time periods that are often short with
respect to the time periods considered in geologic waste
disposal. Then, comparisons were made between steady
state solutions and solutions obtained by perturbing the
system in periodic and periodic-stochastic manners.
Specifically, the coefficient matrix for the radionuclide
transport equations was multiplied by a periodic function
and a periodic stochastic process. The results of such
perturbations were investigated both analytically and
numerically. In performing the perturbations, the intent
was not to produce an exact reproduction of the behavior
of a natural system; rather, the intent was to develop a
system whose variation would be amenable to both analyti-
cal and numerical analysic and which would, at the same
time, provide a feeling as to how a real system might
behave.

The result of such perturbations was to cause the
predicted radionuclide concentrations to vary above and
below the predicted values for the unperturbed system of .

equations. However, even in the most extreme cases, the
transient variations were at most about one order of mag-
nitude larger than the values for the unperturbed system. .

Most of the time, the variations were smaller. On the
basis of the material contained in this report, it is
felt that it is reasonable to continue to use " average"
yearly values in defining flow rates for the Environmental
Transport Model. The decision is made for several reasons:
(1) to some extent the variations are offsetting in that
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concentrations observed When variable hydrologic patterns-

are considered are both above and below those obtained
When average rates are considered, (2) the highest con-
centrations occur for only part of a year, and (3) in the*

context of the geologic disposal of radioactive waste,
much greater uncertainty in surface radionuclide concen-
trations will result from variation in potential discharge
rates to the surface environment and in the actual nature
of the surface environment. Ho wever, the concentrations
obtained with average rates may be someWhat higher than
the expected concentrations Which result When additional
variability is taken into account. It is emphasized
that such observations are not " proved" in this report.
Rather, a collection of simulation and analytic results
is presented Which help give credence to the acceptance
of this modeling approach.

.

e
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APPENDIX

9

The PROGRAM XYZ1 was used to generate the data
points which were used in plotting the graphs of Figures
3-1 through 3-24. It is listed here in the. form used to
generate the graphs X, Y, AVEZ and AVEZ+SDZ of Figure
3-10 for the 1000th year, where the input is into the
soil subzone of the base case River Zone. The data
points (t, Xi(t)) for 1000 < t < 1001 in increments of
DDT = 1/120 are computed for i 7 1,2,3,4 and placed on
permanent files " TAPE 51" " TAPE 54". Similarly, the data
points (t, Yi(t)) are written onto tapes 61-64. After
100 simulations of the stochastic process Z(t) from time
T = 0 to T = 1001, the data points (t, AVEZi(t)) and
( t, AVE Z+SDZi( t ) ) are written onto tapes 71-74 and 81-84,
respectively. Then, the data points in these permanent
files are used to generate the graphs in Figure 3-10.
The plotting was actually done using the plotting
routine PLOTIT designed by H. E. Anderson of Division
1223.

Certain functions and subroutines used in the
program are special to the Sandia National Laboratories
computing system. NORDEV is a standard normal variable
generator and UDSET and RANDSET initialize the generator.
SAXB is a subroutine for solving a linear system of
equations AX = B, and RNAA is a subroutine for computing
the eigenvalues and eigenvectors of a matrix.

|

.

S

|
- l
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Pt
PROGRAM XYZi(INPUT,0UTPUT, TAPE 51, TAPE 52, TAPES 3, TAPE 54, TAPE 61,

1 TAPE 62, TAPE 63, TAPE 64, TAPE 71, TAPE 72, TAPE 73, TAPE 74, TAPE 81, TAPE 82,
1 TAPE 83, TAPE 84)

C
C PROGRAM FOR COMPUTING SOLUTIONS X, Y, AND Z TO DE'S X'=AX+R,
C Y'=P(T)AY+R, AND Z'=RV(T,U) PCT)AY+R AND COMPARING UALUES
C

REAL KD,MS,NORDEU
| DIMENSION A(5,4 ),R(4 ),IN(4 ),EUR(4 ),EVI(4 ),UEC(4,4 ),X(4 ),
i 1 A A( 4,4 ), B ( 4 ), SX(4 ),VV(4,4 ),UU(4 ),RU(5,4 ),MS( 4 ),RS(5,4 ),S(4 ),
' 1K D ( 4 ), EU ( 4 ) , Y ( 4 ), SY ( 4 ), P ( 12 ),2 ( 4 ), AVEZ ( 4,121 ), SDZ ( 4,121 ),

1U(4)
CALL KILL (115) S NYR=1000 $ TYR=1000. 8 DT=1/12. 5 DDT=1/120. ,

PRINT 19 ,

19 FORMAT (*-ENTER RANDON STARTER *)
READ *,NST
CALL UDSET(NST)
CALL RANSET(NST)i

* C
Y C DEFINE HYDROLOGIC PATTERN

C -

P( 1 ) = . 4SP( 2 ) = .3SP (3 ) = .6SP( 4 )=2.0SP(5 )=3.8SP(6 )=2.5 '

'

P ( 7 ) = .7 5P ( 8 ) = . 2SP ( 9 ) = . 2SP ( 10 ) = . 3SP ( 11 ) = . 4SP ( 12 ) = .6 ,

PRINT 81
) PRINT *,"THE HYDROLOGIC PATTERN P(I),I-1,12 IS'

PRINT 11,P
11 FORMAT (12FG.1/)

C
C CIVE NONUARIABLE VOLUMES, MASSES, AND FLOU RATES
C

UU(1)=1.4E12 S MS(1)=9.4E12 5 RU(3,1)=2.2E12
UU(2)=2.0E10 S MS(2)=1.1E11 S RU(1,2)=9.8E10
UU( 3 ) = 2.2E10 S RU(5,3)=1.9E13
UU( 4 ) = 8.7E9 5 MS(4)=2.3E10
K D ( 1 ) = 10 00. SKD ( 2 ) = 10 00. 5K D ( 3 ) = 1000. SKD ( 4 ) = 1000.
RU(3,2)=4.E10 $ RS(3,2)=1.1E8
MS(3)=3.5EG S RU(2,3)=RU(3,2) S RS(2,3 )=RS(3,2 )

..



__

1

RU(4,3)=8.7ESS RS(4,3)=2.3E9
RS(5,3)=3.0E9 S RU(3,4)=RU(4,3) S RS(3,4)=RS(4,3)

C
C GENERATE MATRIX A ,

C
DO 3 J 1,4
S ( J ) = ( KD(J )*NS(J ) )/(KD(J )*MS(J )+UU(J ) )

! DO 3 I-1,5
-

j IF(I.EO.J )GO TO 3
A ( I , J ) = ( 1. -S ( J ) ) * ( RU ( I, J )/UU ( J ) )+S (J )* ( RS (1, J )/MS (J ) )

:
3 CONTINUE'

i A(1,1 )=- A( 3,1 )- A( 4,1 ) .000084
| A ( 2,2 ) =- A ( 1,2 )- A ( 3,2 ) . 000084

A( 3,3 ) =- A( 2,3 )- A( 4,3 )-A (5,3 ) .000084
A(4,4 )=-A(3,4 ) .000084

,

C
C DEFINE INPUT UECTOR

a C
R ( 1 ) = 0. SR ( 2 ) = 1. SR ( 3 ) = 0. SR ( 4 ) = 0.i m

, ' C
C COMPUTE STEADY STATE VALUES SX(I),I=1,2,3,4

.C
DO 5 I-1,4 5 DO 5 J-1,4 ,

5 AA(I,J)=A(I,J)
CALL SAXB(4,4,1,AA,R,0,IN,KER)
DO G I-1,4

6 SX(I)=-R(I)
C
C CET MAIN EIGEN UALUES AND EICEN UECTORS
C

DO 15 I-1,4 S DO 15 J-1,4
15 A4(I,J )= A(I,J )

CALL RNAA(4,4,AA,EUR,EUI,UEC,IERR)
,

C ,

C CET COEFFICIENTS B(I) USED IN COMPUTATION OF X(I)
C

DO 17 I-1,4 S B(I)=-SX(I) S DO 17 J-1,4

!
17 UU(I,J )=UEC(I,J ) -

,

.
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CALL SAXB(4,4,1,UU,B,0,IN,KER) ,

,

KK-2 s KN-121
URITE(51,*)KK,KN S URITE(52,1)KK,KN S URITE(53,*)KK,KN
URITE(54,2)KK,KN
URITE( 61,1)KK, KN S URITE(62,* )KK,KN S URITE(63,* )KK,KN
URITE( 64, * )KK,KN

! URITE(71,*)KK,KN 5 URITE(72,2)KK,KN S URITE(73,*)KK,KN ,

URITE(74,*)KK,KN
URITE(81,1)KK,KN 3 URITE(82,* )KK,KN 5 URITE(83,*)KK,KN
URITE(84,*)KK,KN .

C
C RUN Y OUT TO YEAR NYR

; C !.
DO 50 N 1,NYR
'D0 50 M-1,12

'

'Q-P(M)
00 35 I-1,4 S SCI)-SX(I)/Q S EU(I)=EUR(I)*Q S U(I)-Y(I)-SCI)
DO 35 J-1,4

1 35 UU(I,J )-VEC C I,J )

y CALL SAXB(4,4,1,UU,U,0,IN,KER)
'D0 41 1-1,4

41 Y( I )-U( 1 )*VEC ( I,1 )*EXP(EU( 1 )*DT )+U(2 )*UEC(I,2 )*EXP(EU(2 )*DT )
1+S(I) + U ( 3 ) *UEC C I,3 )*EXP ( EU ( 3 ) *DT )+U ( 4 )*UEC ( 1,4 ); EXP ( EU ( d )*DT )

50 CONTINUE
'

C
C COMPUTE Y(I) IN INCREMENTS OF DDT FOR YEAR NYR AND PUT ON TAPEGI
C

T-TYR S URITE(61,*)T,Y(1) S URITE(62,*)T,Y(2)
URITE(63,1)T,Y(3) $ URITE(64,*)T,Y(4)
DO 100 M-1,12

J Q-P(M)
DO 65 I-1,4 5 S(I)=SX(I)/O S EUCI)=EUR(I)*Q S U(I)=Y(I)-S(I)
DO 65 J-1,4

,

65 UU(I,J)=UEC(I,J)'

CALI SAXB(4,4,1,UU,U,0,IN,KER)
DO 230 J-1,10 S T=J*DDT
DO 82 I-1,4

82 Y ( I )-U( 1 )*VEC C I,1 )*EXP( EU(1 )*T )+U(2 )*VEC C I,2 )*EXP C EU( 2 )*T )

i
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1+S(I) + U ( 3 )*UEC ( I,3 )*EXP (EU( 3 )*T )+U( 4 )*UEC ( I,4 )*EXP C EU( 4 )*T )
L N-1
URITE(61,1)TYR+L*DT+J*DDT,Y(1) S URITE(62,*)TYR+L*DT+J2DDT,Y(2)
URITE(63,1)TYR+L*DT+J*DDT,YC3) $ URITE(64,* )TYR+L*DT+J*DDT,Y C 4 )

100 CONTINUE
ENDFILE 61 S ENDFILE62 S ENDFILE63 8 ENDFILE64-

DO 200 NREP-1,100
C
C RUN Z OUT TO YEAR NYR
C

RU EXP(.47238074*NORDEU(0))
Z(1 ) = 0. S Z(2) 0. S Z(3)=0. S 2(4 ) = 0.
DO 250 N-1,NYR
DO 250 M-1,12

0 P(M )*RUSRV-EXP( .40121505*NORDEU(0. ) .05268026 )*(RU**.52783527)-DO 135 I'-1,4 $ S(I)=SX(I)/0 S EUCI)-EUR(I)*Q S U(I)=Z(I)-SCI)
i DO 135 J-1,4
5 135 UU( I, J )-UEC(I,J )

CALL SAXB(4,4,1,UU,U,0,IN,KER)
DO 141 I 1,4

141 Z( I )-U( 1 )*VEC (I,1 )*EXP( EU( 1 )*DT )+U(2 )*UEC(I,2 )*EXP(EU(2 )*DT )
1+S(I) + U(3 )*VEC(I,3 )*EXP (EU(3 )*DT )+U(4 )*VEC C I,4 )*EXP ( EU( 4 )*DT )-

250 CONTINUE
,

C
C COMPUTE Z(I) IN INCREMENTS OF DDT FOR YEAR NYEAR, AT EACH STAGE
C SET AVEZ(I,J )- AVEZ( T .J )+2(I ) AND SDZ(I,J ) = SDZ( I, J )+2( I )**2
C

DO 161 I-1,4 5 AVEZ(I,1 )- AVEZ(I,1 )+Z(I )
161 SDZ(I,1 )-SDZ(I,1 )+2(I )**2 S JJ-2

DO 200 M'-1,12

0 P(M )*RUSRU-EXP( .40121505*NORDEU(0) .05268026 )*(RUR*.5278527)
DO 165 I 1,4 S S(I)-SX(I)/O 8 EU(I)=EUR(I)*Q $ UCI)=Z(I)-S(I)
Do 165 J-1,4

165 UU(I,J)-UEC(I,J)
CALL SAXB(4,4,1,UU,U,0,IN,KER)
DO 200 J-1,10 S T-J*DDT
DO 181 I-1,4

181 Z(I )=U(1 )*VEC( I,1 )*EXP(EU(1 )*T )+U(2 )*VEC(I,2 )*EXP C EU(2 )*T )

, . . .
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1+S(I) +U(3)*VEC(I,3)*EXP(EU(3)*T)+U(4)*VECCI,4)*EXP(EU(4)*T)
Do 182 I-1,4 5 AVEZ(I,JJ)=AVEZ(I,JJ)+ZCI)

182 SDZ(I,JJ)=SDZ(I,JJ)+Z(I)**2 s JJ-JJ+1
200 CONTINUE s T=TYR-DDT

C
C CONUERT AVEZ AND SDZ TO ACTUAL AVERAGES AND STANDARD DEVIATIONS
C AND URITE AVEZCI,JJ) ON TAPE 7I AND AVEZ(I,JJ )+SDZCI,JJ) ON
C TAPE 8I FOR JJ-1,121
C

-

DO 201 JJ-1,121 s T=T+DDT
DO 202 I 1,4 5 AVEZ(I,JJ )- AVEZ(I,JJ )/100.

202 SDZ(I, JJ )-( (SDZ C I,JJ )/100. )-( AVEZ(1,JJ ) )**2 )**.5
URITE(71,*)T,AVEZC1,JJ) 5 URITE(72,1)T,AVEZ(2,JJ)
URITE(73,1)T,AVEZ(3,JJ) s URITE(74,*)T,AVEZ(4,JJ)
UPITE(81,*)T,AVEZ(1,JJ)+SDZ(1,JJ)
UF ITE( 82,1)T, AVEZ(2,JJ )+SDZ(2,JJ )
UF ITE ( 83, * )T, AVEZ(3,JJ )+SDZ(3,JJ )
URITE(84,* )T, AVEZ(4,JJ )+SDZ(4,JJ )i

5 201 CONTINUE S ENDFILE 81 5 ENDFILE 82 $ ENDFILE 83 s ENDFILE 84
7 ENDFILE 71 s ENDFILE 72 s ENDFILE 73 5 ENDFILE 74

C
C COMPUTE X(I) IN INCREMENTS OF DDT FOR YEAR NYEAR AND PUT ON TAPE 5I
C

-

T-TYR-DDT
DO 400 J-1,121 S T=T+DDT
DO 381 I-1,4

381 X ( I ) = B ( 1 )*UEC ( I,1 )*EXP ( EUR ( 1 )*T ) +B ( 2 )*VEC C I ,2 )*EXP ( EUR( 2 )*T )
1+SX(I) +B ( 3 )*UEC ( I,3 ) * EXP ( EUR ( 3 )*T )+ B ( 4 )*VEC ( I,4 )*EXP ( EUR ( 4 )*T )
URITE(51,*)T,X(1) s URITE(52,*)T,X(2)
URITE(53,*)T,X(3) 5 URITE(54,*)T,X(4)

400 CONTINUEt

ENDFILE 51 s ENDFILE 52 s ENDFILE 53 $ ENDFILE 54'

i C
C PRINT OUT R AND A

~

l C
l PRINT 70
| 70 FORMAT (* THE INPUT UECTOR R IS*)
| R ( 1 ) = 0. 5R ( 2 ) = 1. S R ( 3 ) = 0. S R ( 4 ) = 0. .



_ _ _ _ .

i

:

PRINT 80,R
PRINT 81

81 FORMAT (/)
PRINT 76

76 FORf1AT( * THE A MATRIX IS*)
PRI NT 83, ( C A( I,J ),J = 1,4 ),I=1,5 )
PRINT 81

80 FORMAT (4E12.2)
83 FORMAT (4E12.6)

STOP S END
1 SUBROUTINE K1cL(NN)

DIMENSION IE(6)
DATA IE/-0,-0,-0,0,-0,-0/
CALL SYSTEMC(NN,IE)
RETURN
END .

! L
: 8
i

'
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