80-555 #5

XID

NUCLEAR POWER PLANT SIMULATORS

AND

THEIR USE IN OPERATOR TRAINING AND REQUALIFICATION

A SURVEY PERFORMED BY

MEMPHIS STATE UNIVERSITY/CENTER FOR NUCLEAR STUDIES

FOR

U. S. NUCLEAR REGULATORY COMMISSION

PRINCIPAL INVESTIGATOR: D. WAYNE JONES ORNL PROGRAM MANAGER: PAUL M. HAAS

8203040211 810804 PDR FOIA MADDEN80-555 PDR

PRIMARY GOALS

- ASSESS CAPABILITIES OF CURRENT SIMULATORS FOR TRAINING IN ABNORMAL/EMERGENCY EVENTS
- ASSESS CURRENT USE OF SIMULATORS IN TRAINING PROGRAMS
- MAKE RECOMMENDATIONS FOR IMPROVEMENT OF SIMULATORS AND THEIR USE IN TRAINING

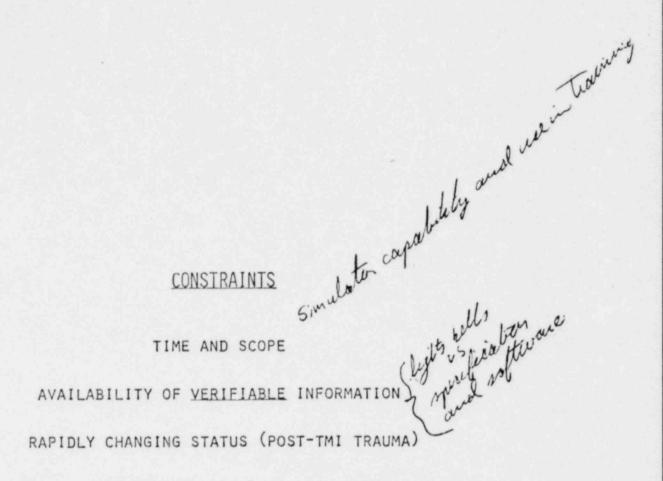
SPECIAL EMPHASIS

• TMI-2 EVENT AND ITS IMPLICATIONS

ADDITIONAL TASKS

- REVIEW AND ASSESS EXISTING STANDARDS FOR SIMULATORS AND (AS THEY PERTAIN TO SIMULATORS) OPERATOR TRAINING
- REVIEW RELATED DOCUMENTS

NUREG-0560 GAO LETTER TO SENATOR SCHWEIKER INFORMATION REPORTS FOR COMMISSIONERS (SECY-79-330 SERIES) NUREG-0578 <u>RESOURCES</u> <u>المنال</u> MSU/CNS STAFF EXPERIENCE


NRC (OLB) RECORDS, FILE MATERIAL BID SPECS problem.

DISCUSSION WITH SITE OPERATORS AND VISITS

LER'S

UTILITY DOCUMENTS

NON-NUCLEAR INDUSTRY - REPORTS AND PERSONAL CONTACTS

LACK OF CLEAR DEFINITION OF NEEDS

RESULTS TO DATE INCLUDE

COMPARATIVE SUMMARY, GENERAL SIMULATOR CAPABILITIES CAPABILITIES TO SIMULATE TMI-2-RELATED PROBLEMS COMPARATIVE SUMMARY, USE OF SIMULATORS IN TRAINING BRIEF REVIEW OF SIMULATORS IN NON-NUCLEAR INDUSTRY

REVIEW OF STANDARDS

RECOMMENDATIONS FOR IMPROVEMENT, FURTHER WORK

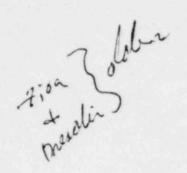
GE TVA

.

NO.	PLANT SIMULATED	REACTOR TYPE AND NSSS VENDOR	NPPS VENDOR	NPPS OWNER	NPPS LOCATION	SERVICE	UNIQUE FEATURES
1	Dresden-2	BWR/3 (GE)	GE	GE	Morris, 111inois	1968	First Nuclear Power Plant Simulator
2	Browns Ferry	BWR/4 (GE)	s	TVA	Daisy, Tennessee	1976	Physically Large Control Room Boards
3	Susquehanna	BWR/4 (GE)	S	PP&L	Berwick, Pennsylvania	1979	PP&L Advanced Control Room
4	Perry-1	BWR/6 (GE)	S	GE	Oklahoma City, Oklahoma	1980	BWR/6 Compact Control Room
5	Black Fox-1	BWR/6 (GE)	S	GE	Oklahoma City, Oklahoma	1980	Nuclenet Control Room
6	Limerick	BWR/4 (GE)	· S	GP	Pottstown, Pennsylvania	1980	Latest Link/Singer Contract
7	Rancho Seco	PWR (BSW)	s	B&W	Lynchburg, Virginia	1970	First Babcock and Wilcox Reactor Simulator
8	Zion-1	PWR (W)	W	AEP	Zion, Illinois	1972	First Westinghouse Reactor Simulator
9	Calvert Cliffs-1	PWR (CE)	s	CE	Connecticut	1972	First Combustion Engineerin Reactor Simulator
10	Indian Point-2	PWR (W)	s	Con Ed	Buchanan, New York	1973	Advanced Core Model
11	McGuire-1	PWR (W)	s	Duke	North Carolina	1976	Color CRT's
12	Sequoyah	PWR (W)	s	TVA	Daisy. Tennessee	1976	New Improved Core Model
13	Shearon Harris-1	PWR (W)	S	CPSL	Apex, North Carolina	1978	Advanced Instructor's Console
14	Surry-1	PWR (W)	EAI	VEPCO	Gravel Neck. Virginia	1978	Simulation of All Major Plant Systems
15	WNP-1	PWR (88W)	S	WPPSS .	Richland, Washington	1979	Advanced Control Room
16	Palo Verde	PWR (CE)	EAI	APS	Wintersburg, Arizona	1980	High Degree of Simulator Fidelity
17	Seabrook-1	PWR (W)	S	PSNH	Seabrook. New Hampshire	1981	Plant Processor Stimulated Rather Than Simulated

TABLE 1.1 U. S. NUCLEAR POWER PLANT SIMULATORS

1


Ca

NO.	PLANT	NPPS VENDOR	TRAINING FEATURES	INITIAL CONDITIONS	SYSTEMS SIMULATED	PREPROGRAMMED MALFUNCTIONS	COMPUTER	SERVICE
1	Rancho Seco	s	NA	NA	27	73	GP48	1970
2	Zion		3	16	NA	. 99	PDP 11/35	1972
3	Calvert Cliffs	s	NA	20	22	100	GP48	1972
4	Indian Point-2	s	NA	NA	25 -3	NA	PDP 11/45	1975
5	McGuire	s	NA	19	22	256	PDP 11/45	1976
6	Sequoyah	s	9	21	29	140	SEL 85	1976
7	Shearon Harris	s	NA	NA	23	NA	SEL 32/77	1978
8	WNP 1,4	s	NA	NA	25	NA	SEL 32/55	1979
10	Surry-1 SNUPPS	EAI	9	21	19	231	SEL 32/55	1978
M	Palo Verde	EAI	9	21	. 28	214	SEL 32/55	1979
н	Seabrook	s	NA	NA	24	. 152	SEL 32/55	1981

Table 2.1 PWR Simulator in the United States

Table 2.2 BWR Simulators in the United States

NO.	PLANT	NPPS VENDOR	TRAINING	INITIAL CONDITIONS	SYSTEMS SIMULATED	PREPROGRAMMED MALFUNCTIONS	COMPUTER	SERVICE
1	Dresden-2	GE	- :	21	33	· 107	GEP 4020	1968
2	Browns Ferry	s	9	18	47	149	SEL 85	1976
3	Susquehanna	s	6 ,	26	34	100	SEL 32/55	1979
4	Black Fox	s	12	26	27	142	SEL 32/55	1980
5	Perry	s	NA	NA	25	NA	SEL 32/55	1980
6	Limerick	s	NA	NA	31	NA	SEL 32/55	1981

SUMMARY, TRAINING FEATURES

MAJOR FEATURES

 REAL TIME, FAST TIME, SLOW TIME, FREEZE, SNAPSHOT, BACKTRACK, CRY WOLF, RECALL, REPLAY, CONDITION
 OVERRIDE, DIAGNOSTICS

MAIN POINTS

- MOST SIMULATORS HAVE MOST FEATURES; OLDER ONES FEW, BUT CLAIM TO BE ABLE TO BE UPDATED
- OPTIONS AVAILABLE PERMIT GREAT VERSATILITY, BUT APPLICATION VERY MUCH DEPENDENT ON INSTRUCTOR
- CONDITION OVERRIDE IS ESPECIALLY IMPORTANT FOR SIMULATING ABNORMAL EVENTS
- CURRENT CAPABILITY CONSIDERED GENERALLY ADEQUATE FOR REQUIRED TRAINING
- SITE BY SITE EXAMINATION IN DETAIL NECESSARY TO SPOT SPECIFIC WEAKNESSES

INITIAL CONDI- TIONS	TEMP. OF	PRESS. PSIA	POWER LEVEL	XENON LEVEL	CRITICAL STATUS &K/K	FUEL BURNUP STATUS STATUS	COMMENTS
1	70	15	0	0	10% sub- critical	0	
2	70	15	0	0	li sub- critical	0	
3	300	Norm	0	0	l% sub- critical	0	
4	565	Norm	0	0	1% sub- critical	0	
5	Norm	Norm	0	0	Critical	0	
		Norm	10	0	Critical	0	Turbine not yet on line
6 7	Norm	Norm	20	0	Critical	0	Turbine on line, steady- state condition
	No. 199	Norm	50	EQ	Critical	0	Steady-state conditions
8	Norm		100	EQ	Critical	0	Steady-state conditions
9	form	Norm	0	75% peak	Critical	0	Xenon increasing
10	Norm	Norm		0	1% sub-	40	
11	565	Norm	0	U	critical		
12	565	Norm	0	Increasing from EQ	1% sub- critical	40	Hot startup condition
13	565	Norm	0	0	1% sub- critical	40	Hot reactor coolant system, cold turbine
14	Norm	Norm	50	EQ for 100% power	Critical	40	Steady-state conditions
15	Norm	Norm	100	EQ	Critical	40	Steady-state conditions
15	350	400	0	Increasing	1% sub- critical	40	Normal shutdown, cool- down after full-power run
	Norm	Norm	0	75% peak	Critical	40	Xenon increasing
17 18	Norm 350	400	0	0	1: sub- critical	80	
		Norm	0	75% peak	Critical	80	Xenon decreasing
19	Norm		10	0	Critical	80	Turbine not yet on line
20	Norm	Norm	100	EQ	Critical		Steady-state conditions
21	Norm	Norm	100				Constraint and the second second
22	Snapshot						
23 24	Snapshot Snapshot	(or spare) (or spare)					
25	Snapshot	(or spare)					
26	Snapshoi.	(or spare)					
27	Snapshot	(or spare)					
28	Snapshot	(or spare)					
29	Snapshot						*
30	Snapshot						

Table 2.3 Typical PMR Initial Conditions*

* Sequoyah Power Plant Simulator operated by TVA.

9

SUMMARY, INITIALIZATION CONDITIONS

- TYPICALLY 30 SETS, APPROXIMATELY 20 PRE-SPECIFIED
 - EXTREMELY FLEXIBLE WITH USE OF FREEZE, BACKTRACK, SNAPSHOT
 - LITTLE CHANGE, OLDER TO NEWER SIMULATORS
 - CAPABILITY TO INITIATE WITH OFF-NORMAZ Wat down that the conditions does exist
 - CURRENT CAPABILITY CONSIDERED ADEQUATE FOR TRAINING NEEDS

(

APPENDIX A. PWR SYSTEMS AND MALFUNCTIONS SIMULATED

					PL	ANT	SI	MUL	ATED		
SYSTEM-MALFUNCTION	SYSTEM CROSS REFERENCE	SURRY	RANCHO SECO	MCGUIRE	SEQUOYAH	CALVERT CLIFFS	ZION	PALO VERDE	INDIAN POINT SHEARON HARRIS	OCONEE	SEABROOK
REACTOR COOLANT									5	>	
SG Tube Rupture RC Pipe Rupture Leak into Containment RV Head Flange Leak RC Pump Shaft Shear RCP Lube Oil Loss RCP High Oil Level RCP Flow Degradation RCP Seal Failure RCP Rotor Locked Loss of CCW to RCP Loss of RC Flow RCP High Vibration RTD Failure in Hot Leg RID Failure in Cold Leg PZR Pressure Control-High PZR Pressure Control-Low PZR Level Control-Low PZR Level Control-Low PZR Relief Valve Leak PZR Spray Valves Fail-Closed PZR Spray Valves Fail-Open PZR Heaters Fail On PZR Heaters Fail Off Fuel Leaks-Variable RCP Electrical Failure Failure of RCP Seal Temp. Trans. Loss of RC Pressure	CCW NI NI	*****	x x x x x x x x x x x x x x x x x x x	X X	* * ** *******	x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x	*** ** ********************************	rode	,	x x x x x x x x x x x x x x x x x x x
COMPONENT COOLING WATER Loss of CCW to RCP Loss of CCW to RHR HX Loss of CCW Pumps Loss of CCW to NR HX Loss of CCW to SW HX	RC RHR CVCS CVCS	XXXXXX	x		X		x x x	Х			* * * * *

A-1

SYSTEMS SIMULATED

- PWR'S, 19-29; BWR'S, 25-47
- SELECTION BY OWNER, BASED ON TRAINING FOR NORMAL OPERATIONS PLUS ANSI/ANS 3.5 EVOLUTIONS AND EXERCISES
- IMPORTANT DIFFERENCE OLD VS. NEW IS TABLES VS. DYNAMIC MODELING. DYNAMIC MODELING MORE FLEXIBLE BUT MORE TIME CONSUMING; IMPROVEMENTS DESIRED IN MATH MODELS
- NUMBER OF SYSTEMS SIMULATED ACCURATELY LIMITED BY CURRENT COMPUTER CAPABILITY. SIGNIFICANT INCREASE IN NUMBER SYSTEMS OR ACCURACY WOULD REQUIRE ORDER MAGNITUDE INCREASE IN COST OF COMPUTER
- SYSTEMS (SUBSYSTEMS) MODULAR; EXTENT OF INTERACTION KEY TO FIDELITY. ANSI/ANS 3.5 REQUIREMENTS INDIRECTLY DO GOOD JOB OF REQUIRING INTERACTION No mutore of how
- NO REG. GUIDES

 FIDELITY, PERFORMANCE INDUSTRY APPEARS TO BE SATISFYING ANSI/ANS 3.5 WITHOUT REG. GUIDES
 UPDATING (FSAR DATA) - NOT ENOUGH VERIFIABLE INFO TO ASSESS INDUSTRY COMPLIANCE TO 3.5; SUGGEST INVESTIGATION

MALFUNCTIONS SIMULATED

- SIGNIFICANT SITE-TO-SITE VARIATION @
- INCREASING NUMBER WITH TIME
- TYPICALLY 10-20 MULTIPLE MALFUNCTIONS (SEQUENTIALLY OR SIMULTANEOUSLY) multiple future
- MALFUNCTIONS ARE USUALLY MODULAR SUBROUTINES, EASILY UPDATED, MODIFIED; DEGREE OF INTERACTION IMPORTANT; NOT READILY VERIFIABLE

MAJOR PROBLEM

• SPECIFICATION OF MALFUNCTIONS IS KEY TO TRAINING FOR ABNORMAL EVENTS, AND THERE IS NO CONSISTENT PROCEDURE NOR RESEARCH BASE FOR SELECTING THEM

COMPUTERS

- NEWER MODELS MULTI-PROCESSOR, RAPID ACCESS, INCREASED SPEED OF DATA HANDLING ORDER MAGNITUDE
- NON-NUCLEAR INDUSTRY DOES NOT HAVE SIGNIFICANTLY AD-VANCED COMPUTERS COMPLEXITY is big Sactor
- NUCLEAR SIMULATORS MAKING REASONABLE USE OF STATE-OF-THE-ART - SIGNIFICANTLY INCREASED CAPABILITY WOULD REQUIRE ORDER OF MAGNITUDE INCREASE IN COST OF COMPUTERS; NOT CONSIDERED NECESSARY NOW UNLESS MAJOR INCREASE IN NUMBER SYSTEMS DESIRED (E.G., SIMULATE BOP)
- INCREASED USE OF DYNAMIC MODELING (DESIRABLE) WILL REQUIRE IMPROVED COMPUTERS; MULTIPLE COMPUTERS POSSIBLE NEAR-TERM REMEDY

use multiple powerson.

L - Section 5 - Junilator

Table											
SHI	IFT		SS	SS	SS	SS	SS	SS	SS	SS	
Day Swi Mic	ing	LLLLL		SSSSS	\$\$\$\$\$\$ \$	LLLLL		SSSS	LLLLL		
Tablé SHIFT	3.3		k and l	<u>dilcox</u> SS	Cold Lic	cense Tr SS S	raining SS S	SS	SS S	SS	SS
Day Swing Mid		LLLLL SSSSS		LLLLL	LLLLL SSSSSS	LLLLL SSSSS	LLLLL SSSSS	SSSS	s rsssss	EEEEE	
Table	3.4	Genera SS	1 Elec	tric Co	old Lice	nse Tra	ining (SS	10 wee SS	ks of 12) ·	55
Table SHIFT Day Swing	LLLLI	SS	<u>1 Elec</u> SS SSSSSS	tric Co SS	SS LLLL	SS LL	ssssss	10 wee SS SSSSSSS	ks of 12 SS [°] LLLLLL	55	<u>SS</u> EEE
Table SHIFT Day Swing Mid		<u>SS</u> SS	<u>SS</u> SSSSSS	SSSSSS	SS LLLL	SS LL S:	<u>SS</u> SSSSSSS	<u>SS</u> SSSSSS	ks of 12 SS [°] LLLLLL	EEI	

COLD LICENSE PROGRAMS

- (1) SIMILAR PROGRAMS, ALL UTILITIES
 - TOTAL 8-12 WEEKS
 - 88-140 HOURS ON SIMULATOR
 - APPROXIMATELY 30% ON EMERGENCY/ABNORMAL EVENTS
 - TYPICALLY 3 OR 4 STUDENTS MAX AT SIMULATOR
 - TRAINEES WORK IN SHIF'S TO SOME DEGREE
- (2) EITHER NON-SITE-SPECIFIC, OR AT BEST, USE PSAR DATA CONSIDERED GENERALLY SATISFACTORY
- (3) CLASSROOM LECTURES COMPLEMENT SIMULATOR TRAINING
- (4) SIMULATOR TRAINING NOT REQUIRED, BUT RECOGNIZED BY NRC (PRE-TMI/2)

(CONTINUED)

HOT LICENSE PROGRAMS

- (1) CONSIDERABLE VARIABILITY AMONG UTILITIES DEPENDS LARGELY ON AVAILABILITY OF SITE-SPECIFIC SIMULATOR, COST AND SPECIFIC BACKGROUND OF OPERATOR
- (2) SITE-SPECIFIC SIMULATION MUCH MORE IMPORTANT

(3) TYPICAL PROGRAM 4-6 WEEKS, 80-140 HOURS ON SIMULATOR,

(4) PRE-TMI, NO REQUIREMENT FOR USE OF SIMULATOR

(CONTINUED)

REQUALIFICATION TRAINING

- (1) TYPICALLY ONE WEEK
- (2) MUCH OF TIME ON EMERGENCY/ABNORMAL EVENTS (SELECTION DEPENDS ON INDIVIDUAL NEEDS)
- (3) PLANT-SPECIFIC SIMULATION IMPORTANT
- (4) LIMITED EVIDENCE OF FEEDBACK OF OPERATING
- (5) PRE-TMI, NO REQUIREMENT FOR USE OF SIMULATORS

(CONTINUED)

GENERAL POINTS

- (1) TRAINING PROGRAMS HAVE DEVELOPED HISTORICALLY WITHOUT COMPREHENSIVE STUDY EMPLOYING FUNDAMENTAL HUMAN FACTORS PRINCIPLES - NOT OBJECTIVE ORIENTED
- (2) SIMULATOR USAGE (TIME AND SCOPE) IS RELATIVELY LIMITED IN NUCLEAR INDUSTRY

FOR EXAMPLE, COULD USE FULL-SCOPE HIGH FIDELITY SIMULATORS FOR:

- CERTIFICATION

- CONTINUOUS TRAINING, REVIEW OF OPERATING EXPERIENCE
- HUMAN FACTORS RESEARCH
- DEVELOPMENT, TESTING IMPROVED PROCEDURES, INSTRUMENTATION, ETC.

TMI-2 RELATED EVENTS/ISSUES

 MULTIPLE MALFUNCTIONS/COMPOUNDED AENORMALITIES DIDN'T DO?/CAN DO/WILL DO NO BASIS FOR SELECTION of carbuication of Abroadility STRONGLY DEPENDENT ON INSTRUCTOR Chock clear in the
 (2)

(2) SATURATED CONDITIONS IN PWR PRIMARY SYSTEM NONE DID PRIOR TO TMI-2 MOST HAVE ATTEMPTED, LIMITED SUCCESS MODEL DEVELOPMENT NECESSARY

(3) FEEDWATER TRANSIENTS "NORMAL" CASE - CAPABILITY EXISTS, COMMONLY PRACTICED COMPOUNDED ABNORMALITIES NOT STRESSED PRIOR TO TMI-2 COMPLETE SIMULATION SHOULD INCLUDE SATURATED CONDITIONS

(4) NATURAL CIRCULATION NOT MODELED OR INCLUDED IN TRAINING <u>EXPLICITLY</u> PRIOR TO TMI-2 VENDORS INDICATE NOW ARE MODELING (UNVERIFIED)

TMI-2 RELATED EVENTS/ISSUES

(CONTINUED)

(5) PRESSURIZER LEVEL CONTROL, INTERPRETATION GENERALLY TAUGHT ONLY AS PART OF OTHER EXERCISES SPECIFIC EXERCISES COULD/SHOULD BE DEVELOPED COMPLETE MODELING DEPENDS ON SUCCESS OF MODELING SATURATED CONDITIONS

(6) INITIAL BOARD CHECKS NOT GENERALLY DONE PRIOR TO TMI-2 CAN USE TRAINING FEATURES TO INITIALIZE INCORRECTLY, TRAIN OPERATORS

(7) PLANT SPECIFIC SIMULATION

COMPREHENSIVE STUDY OF NUCLEAR OPERATOR TASKS, TRAINING OBJECTIVES SHOULD BE MADE. WE ARE CERTAIN RESULTS WILL INDICATE NEED FOR SITE-SPECIFIC SIMULATION - FOR MANY APPLICATIONS OF SIMULATOR

FUNDAMENTAL PROBLEMS, NUCLEAR POWER PLANT SIMULATORS AND THEIR USE IN TRAINING FOR ABNORMAL/EMERGENCY EVENTS

- I. TRAINING PROGRAMS, USE OF SIMULATORS, DEVELOPMENT AND SPECIFICATION OF EXERCISES HAVE GROWN HISTORICALLY WITHOUT THE BENEFIT OF COMPREHENSIVE RESEARCH, ANALYSIS AND PLANNING. CONSEQUENTLY THERE IS LITTLE "SCIENTIFIC BASIS" FOR EVALUATION, OPERATION, REGULATION OR IMPROVE-MENT.
- II. REGULATORY REQUIREMENTS ON SIMULATORS AND THEIR USAGE HAVE NOT EXISTED TO PROVIDE CONSISTENT BASIS IN LIEU OF DESIRED SCIENTIFIC BASIS.

RESULT

LESS THAN OPTIMUM USE OF SIMULATORS, ONE OF POTENTIALLY MOST POWERFUL TRAINING TOOLS AND PROBABLY ONLY VIABLE APPROACH FOR TRAINING FOR ABNORMAL/EMERGENCY EVENTS.

RECOMMENDATION

NRC SHOULD SUPPORT, ENCOURAGE, PARTICIPATE IN, COOPERATE WITH, COMPREHENSIVE PROGRAMS NECESSARY; AND INCORPORATE RESULTS INTO A CONSISTENT REGULATORY POLICY FOR TRAINING ON ABNORMAL EVENTS WHICH RECOGNIZES COMPLETE SCOPE OF TRAINING PROGRAM.

SPECIFIC PROBLEMS

(1) THERE IS NO CONSISTENT BASIS FOR SELECTION OF MALFUNCTIONS, WHICH IS KEY TO CURRENT TRAINING ON ABNORMAL EVENTS

(2) ADEQUACY OF TRAINING FOR ABNORMAL/EMERGENCY EVENT IS STRONGLY DEPENDENT ON INSTRUCTOR CAPABILITIES; YET NO NRC REQUIREMENTS EXIST (PRE-TMI)

(3) MUCH OF INDUSTRY USES NON SITE-SPECIFIC SIMULATORS FOR ALL TRAINING; <u>SITE-SPECIFIC SIMULATION IMPORTANT</u> FOR HOT LICENSE, REQUALIFICATION

- (4) RELATIVELY SMALL PORTION OF TRAINING TIME IS ALLOTTED TO SIMULATOR TRAINING; ONLY PART OF THAT TO ABNORMAL EVENTS. TIME AND FINANCIAL CONSTRAINTS PLUS OVERALL TRAINING GOALS MUST BE CONSIDERED. THERE IS NO CONSISTENT BASIS FOR SETTING PRIORITIES
- (5) VERIFICATION OF SIMULATOR FIDELITY APPARENTLY LEFT TO BUYER THROUGH ACCEPTANCE TESTING; NO NRC VERIFICATION EXISTS(?)

SPECIFIC PROBLEMS

(CONTINUED)

- (6) NO NRC PROCEDURES TO VERIFY UPDATE TO REFERENCE PLANT DATA
- (7) NO NRC ASSURANCE OF INCORPORATION OF OPERATING EXPERIENCE, LESSONS LEARNED IN TRAINING PROGRAMS(?)
- (8) TMI-2 SPECIFICS NEED TO MODEL SATURATED CONDITIONS, NATURAL CIRCULATION
- (9) CURRENT COMPUTER TECHNOLOGY PLACES CONSTRAINTS ON USE OF DYNAMIC MODELING AND NUMBER OF SYSTEMS THAT CAN BE MODELED ACCURATELY
- (10) MAJOR INCREASE IN SIMULATOR USAGE WILL REQUIRE TIME FOR DEVELOPMENT, CONSTRUCTION; PLUS SIGNIFICANT COST IMPACT

RECOMMENDATIONS

- (1) A TASK ANALYSIS AND COMPREHENSIVE STUDY OF TRAINING GOALS SHOULD BE UNDERTAKEN TO DEVELOP SPECIFIC GOAL-ORIENTED TRAINING OBJECTIVES AND ESTABLISH BEST USE OF SIMULATORS, NECESSARY EXERCISES TO DEVELOP SKILLS
- (2) DEVELOP A CONSISTENT PROCEDURE FOR SELECTION OF MALFUNCTIONS. THIS PROCEDURE CAN BE USED TO:
 - EVALUATE EXISTING SIMULATORS, TRAINING PROGRAMS
 - EVALUATE, DEVELOP STANDARDS OR REGULATORY REQUIREMENTS FOR SIMULATION
 - DEVELOP IMPROVED SIMULATORS, PROGRAMS
- (3) USE RESULTS OF 1 AND 2 TO SPECIFY REQUIREMENTS FOR SITE-SPECIFIC SIMULATION. IT IS OPINION OF MSU/CNS THAT SITE-SPECIFIC SIMULATION IS NECESSARY FOR HOT LICENSE AND REQUALIFICATION, PROBABLY NOT FOR COLD LICENSE
- (4) A CONSISTENT FRAMEWORK OF REGULATORY POLICY ASSOCIATED WITH THE ENTIRE TRAINING PROCESS SHOULD BE DEVELOPED TO ADDRESS WEAKNESSES NOTED IN THIS AND OTHER NRC, GOVERNMENT AND INDUSTRY STUDIES. SPECIFICALLY EMPHASIZED FROM THIS STUDY:
 - MINIMUM QUALIFICATIONS FOR, POSSIBLY CERTIFICATION OF, INSTRUCTORS
 - REQUIREMENTS FOR VERIFICATION OF FIDELITY OF SIMULATORS
 - VERIFICATION OF UPDATING, USE OF REFERENCE DATA
 - PROCEDURES FOR ASSURING INCORPORATION OF OPERATING EXPERIENCE

RECOMMENDATIONS

(CONTINUED)

(5) TMI-2 "FIXES" - IMPROVED MODELING SATURATED CONDITIONS, NATURAL CIRCULATION

(6) RESEARCH SHOULD BE CARRIED OUT IN FOLLOWING AREAS:

- HUMAN FACTORS ANALYSIS OF CONTROL ROOM TASKS; TRAINING NEEDS; OBJECTIVES
- ASSESSMENT, VERIFICATION OF EFFECTIVENESS OF SIMULATOR TRAINING FOR SKILLS IN ABNORMAL EVENTS
- MATH MODELING
- (7) KEEP SIMULATOR TRAINING, ENTIRE TRAINING PROGRAM, IN PERSPECTIVE
- (3) RECOGNIZE CONSIDERABLE SUCCESS WITHOUT DETAILED REGULATORY CONTROLS, PERMIT FLEXIBILITY

Jummary of Safety critica

1. In tech ; ver rouse the are action at a time () 2. Onobily \$10 /=10 6 plant (2) 3. Reactor trips (D) 4. Release of radioculturely <100 FR 20 (D) 5. 1. 1. 1. Nog 710 CFR 20 (D) 6. 1. 1. 1. 7 10 CFR 20 (D) 7. Resume questi + mealfunct consectable 8. Outoge > this requiset to fix mealfunct (2) 9. Plant outoge any le requiset to fix mealfunct (2) 9. Plant outoge any le requiset to fix mealfunct (2) Gaund Glass 25

A MAJOR PROBLEM IDENTIFIED IS

LACK OF CONSISTENT PROCEDURE FOR DETERMINING WHICH MALFUNCTIONS TO INCLUDE WITHIN CONSTRAINTS OF TRAINING PROGRAM

WORK HAS BEEN INITIATED TO PROVIDE SUCH A PROCEDURE

- DETAILED STUDY OF LER'S (OPERATING EXPERIENCE)
- ASSESSMENT OF DIRECT SAFETY IMPACT OF MALFUNCTIONS
- ASSESSMENT OF AVAILABILITY IMPACT OF MALFUNCTIONS
 - ASSESSMENT OF POTENTIAL AS ACCIDENT PRECURSOR

PROCEDURE RANKS EVENTS BY THESE FOUR FACTORS, PRIORITY FOR INCLUDING IN TRAINING PROGRAMS DEPENDS ON RANKING

NEFD

MORE RIGOROUS METHOD FOR RANKING
 MORE RIGOROUS METHOD FOR IDENTIFICATION
 JUDGEMENT ON RELATIVE WEIGHTING OF FACTORS

Sevelope and test creterias for use in silecting specific. Equepment Thalfunction for Soundation the of Cuiterca A. Selection of merefee malfunctions for similation B. Evolvator & Facelities and programs. Inial Criteras falityholated nalfunters dons pts 3 12 Y 15 0-3 pts Frequently Oceaning The function Precursa to Solity related quests (One that makes it would B 5 Malfuntis thit result i plant outage 3 pt3