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1.0 INTRODUCTION

This report describes the theory, design and performance of two
computer codes usec by Comoustion Engineering, Inc. for the design of
pressurized water nuclear reactor cores. The two codes are:

- ROCS, for two- and three-cdimensional neutronics analysis;

- DIT, for the generation of coarse-mesh and fine-mesh,
spectrum and space averaged, few-group cross sections.

The use of ROCS for coarse-mesh two- and three-cimensional neutronics
analyses has previously Deen described in individual license
appiications (References 1.1 and 1.2, for example). This report
provides a detailed odescription of the ROCS code, demonstrates the
accuracy of the code through comparisons with experiments, and
discusses current applications as well as anticipated future uses of
the code. In addition to the coarse-mesh neutronics applications,
ROCS can calculate local flux and power peaking using the MC module.
This capability will eventually replace the current usage of
fine-mesh PDQ in future license applications. -

DIT has been used in license submittals since 1578 to ensure
consistency in local power peaking between a transport theory
calculation and the diffusion code PDQ. This use has been reported
to the NRC in References 1.3 and l.4. Coarse-mesh and fine-mesh
few-group cross sections generated by DIT have been used in previous
license submit*als, Reference 1.5 for example.

purpose of the Report

The purpose of this report is to document the methods, verification
and level of accuracy for the computer codes ROCS (including an
alternative numerical solution method, NEM) and DIT as well as for
the computer code module MC for their use in new core and reload core
design, This report will be referenced in future license submittals
utilizing these computer codes.
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Applicahility of the Report

The computer codes and methods described in this report are intended
for use in both new core and relced core design of nuclear reactor
cores of the pressurizeo water (PWR) type., Their capabilitiec and
levels of accuracy are concluded to be sufticient for the neutronics
design Including all safety related parameters dependent on two-and
three-dimensional, coarse-mech and fine-mesh flux and power
distributions, control and absorber worths, the depletion and power
dependert reactivity level, reactivity coefficients and reactivity
differentials. It is also concluded that the ROCS code, including
the fi~e-mesh module MC, is of sufficient accuracy for the generation
of coefficient libraries for the incore instrumentation, replacing
the usz of two-dimensional PDQ in the procedures described in the
topical repurt on the CECOR code system(l'a) .

This report quantifies the level of accuracy, in the form of
statistical tolerance limits for example, for each particular
application with the purpose of indicating that the accuracy of the
- cooce system is sufficient for the applications stated above.
numerical values of tolerance limits are in all cases smaller than
the conservatisms applied by C-E to the input for safety analyses.
The levels of accuracy demonstrated in this report are such that they
equal or exceed the levels of accuracy of previously employed design
computer codes and methods.
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Organization of the Repcrt

Chapter 2 of this report descrivas the neutronics, depletion,
thermal-hydraulic and feedback calculations performec by the ROCS
code. Both the Higher Order Difference (HOD) method and the newer
Nodal Expansion Method (NEM) are presented. Assembly power
gistributions obtained with both neutronics formulacions are compared
in Section 2.1. Calculative comparisons between PDQ and the local
flux and power peaking MC module of ROCS are provided in Section 2.5.

Chapter 3 of this report cescribes the logic structure, trangport
theory methods, basic cross section library and depletion calculation
used in the DIT code. It also describes the verification of OIT
predictive capability by compsrisons of reactivity and reaction rates
with critical experiments. Reference 1.4 contains a detailed
verification of the performance of DIT in fine-mesh applications for
the purpose of predicting local power peaking. This verification is
not repeated in this report. verification of the application of DIT
for the generation of cross sections for ROCS and MC is proviced in
Chapters 3 (critical experiments) and 4 (plant operation).

Chapter 4 contains the details of the ROCS/DIT verification. The
performance for normal operating conditions is describec in Section
4.1 by giving the results for extensive sets of comparisons with
measurements. The performance of ROCS/DIT for upset core conditions
is described, also by comparison to measured gata, in Section 4.2.

Chapter 5 presents estimates of the uncertainties in the local fuel
pin power peaking calculated with ROCS and MC wusing DIT cross
sections. This is done by combining the assembly power results from
section 4.1.2 with the local power peaking results from Section 2.5.4.

Chapter 6 summarizes the numerical results of the analyses contained
in this report.
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depletion, thermal-hydraulic and feedback models in Sections 2.2
through 2.4. The MC module for imbedded fine-mesh diffusion theory
calculations of local flux and power distributions is described and
results for assembly and quarter core calculations are shown in
Section 2.5.

Mocel Specification

The ROCS code is designed to perform two- or three-dimensional
coarse-mesh reactor core calculations with full-, hasif- or
quarter-core symmetric geometries. The mesh consists of rectangular
parallelepiped "nodes" arranged contiguously in the xy-plane, with
one or more axial meshes (or planes) in the z-direction. In most
applications, only the active core region is represented, with
albedo-like bouncary conditions assigned to exterior nodes. A
typical ROCS core geometry uses[ ]nodes per assembly in the xy
plane and[ ]axial planes depending upon core height and in-core
instrument locations.

The nodal macroscopic group constants used in the neutronics
calculation are constructed from detailed isotopic concentrations and
microscopic cross sections processed by the coce. The isotopes
specifiec include fixed depletable isotopes and a lumped residual
representing nondepletable isotopes. The depletable isotopes incluce
fission chain isotopes, fissiorn oroducts and burnable absorbers.
Control roos are represented by macroscopic cross sections specific
to different rod banks.

Code Structure and Capabilities

The ROCS code is modular in design. The primary modules consist of
a) the basic core simulator module, b) the thermal-hydraulic
module, and ¢) the cross section and depletion module. The program
control and dynamic storage allocation are contained in the basic
simulator module, in addition to the majority of input/output
processing, the neutronics calculation, and control of feedback and
criticality search calculations. The thermal-hydraulic mooule
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performs the general thermal-hydraulic calculaticn for feeobacks used
in the neutronics calculation. The thirc module procerw ¢ cross
sections for use in the flux c=lculation, anc performs isotopic
depletion calculations.

The basic calculational flow structure for the ROCS simulator is
snown in Figure 2-1. The outer loop of the flow ciagram corresponags
to execution of one or more maneuvers specified for the simulation.
Each maneuver consists of a specific sequence of calculations which
include tne processing of cross sections, the neutronics calculation,
and an optional depletion or short term xenon time-stepping
calculation. The neutronics calculation allows various options of
iterative calculetions for  thermal-hydraulic feedbacks and
equilibrium xenon, and for criticality search caslculations for power
level, control rod bank insertion, soluble boron concentration or
inlet mooderator temperature.
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2.1.1.

Neutronics Models

The ROCS neutronics models employs a nodal solution method for the
standard two-group diffusion equations:

"'D".‘ + (:.‘ + tl‘, .‘ . ‘r (V:n“ ¢ V:fz.z, (2."‘)

“0'D,78, + I8 " Iy (2.1-2)

The original Higher Oroer Difference (HOD) method used in the ROCS
code was based on a modified one-group oiffusion equation and has
been described in References 2.1 and 2.4. The HOD method has since
been extendes to a full two-group formuiation as described in Section
2.1.1 below. A two-group Nodal Expansion Method (NEM) has also been
geveloped for wuse 4in ROCS; NEM provides higher computational
efficiency (with comparaole accuracy) than the present HOD method.
The NEM model is described below in Section 2.1.2, and typical
results are shown. The coarse mesh cross section representation used
in the ROCS neutronics models is described in Section 2.1.3.

Higher Oroer pDifference (HOD) Method

Difference Approximation

The HOD formulation is derived using a Taylor series expansion
representation of the flux in xyz directional coordinates. The
coarse-mesh geometry consists of a lattice of rectanguiar noces, each
treated as having uniform properties. Figure 2-2 illustrates the
geometry for a node ijk with center point ("1' yJ, zk) and
boundaries at x; + h,/2, Yy 2 hj/2 and z, + h /2.

The flux for energy group g at any point (x,y,z) in node ijk is




expressec Dy the expansion

09 (xuy.2) = ok s n- Mg (x - %) (2.1-3)

+ (’1 yj)fijk(y - YJ)

+ (2 - zk)l;';"(z -z,)

K
where O;Jk is the flux at tne center of the node and fij is a
polynomial function of oegree n. Thus, f:gk has the following
representation:

-1 310;Jk(‘0102)

13k(x - X ) = ; 5 - ‘1) (2.1-4)
!g g=] ! axt
: *$Y 5%k
n(x - )b ;
i 1Jk
" tf1"_'°iT‘""' ¢ixg(XeY2) SIS
Y
ik
with f;gk and f;gk similarly gefinec and with

’11:(’1’y3’z ) the "g"'tn order partial Jerivative of the
flux in node i{jk at the center of the nooce.

For the following cerivations , it is convenient to make use of the
one-gimensional expansion for the flux,

1
-o;* (x = x3) oig*-lr(x-x, 12 o *2xg
% (= x)? ‘3:9 ZT (x - xi) ‘dxg
ang for the gradient,
1 i
(%) = f (x-x)*(x-x)-f" (x -
xg lg i i"Tg (x-x) (2.1-6)

} 2 1
.‘9 (x - li) .219 2’ (x = X‘) ‘3!9

¢ (x - x)3 tixg *
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Two-group Nodal Equations

The two-group nooal equations for the HOD formulation can be cerived
through the standard procedure of integrating the two-group diffusion
equations over the nodal volume, and using the flux ang current
continuity conditions at the interfaces to couple with adjacent
nodes. The flux expansion approximation given above is used in tne
derivation and serves to give a higher order correction to the coarse
mesh representation of the gradient and noce-average flux.

The derivacion starts by evaluating the integrals of the two-group
giffusion equations, Egs. (2.1-1) and (2.1-2), over the nodal volume
v1Jk using the higher order expansion. The exact integrals are
expressed by

1 1
- ! 9090y &V [(z,, + Ipy)8 (2.1-7)

- ;- ("zfl.l + thz.z)]dvo

and

1 1
! v-D,9¢, dV = ;o [r,.8, = Ioaey ] &V (2.1,
mEL /13K 2'%2 vk S a2*2 ” 1" (2.1-8)

The left hand sides of Egs. (2.1-7) and (2.1-8) can be evaluated
using the divergence theorem and then substituting expansion forms
given by EQs.(2.1-3) tnrough (2.1-6). Thus for each energy group g,
by the divergence theorem,

v-D_ws dvV - 1 13k - o
e *9 5;535; l’”k Dg Vog n ds (2.1-9)

S

which in expanded form becomes:



= 0¥/ Togd (xyohir2) - 0g¥(xg-hy/2) ]
13k - 45k ijk
+ (ng /hj)xvgi (Yj‘hj/z) - OQy (YJ'hJ/z) ]

iik ijk

+ O3 /m ) Legd (2, h/2) - 053" (2,-hy/2) ]
1ikp 13k 1jk ijk ijk 1jk 2
- DgJ [‘zig ‘2.39 ‘zj ) + (.41 ‘4yg j

+ ’3: E)/zq B

where S1Jk is the total nodal surface area and A the outward normal.
Egs. (2.1-7) and (2.1-8) can then be approximated by

14k 13k,2 , A3k2 , 3k he
o{j"[(o;i'{ id ozjx . ‘211’ + (ogahy * gy * tan /] (2.1-10)

ijk
« (I‘] + [R‘ - thllx) .11Jk - (szzll) .z

ang

k ik 2 1ik,2 ik 2
ok (o33K o ,;;; TR ORI B L YR
14k m 15k
= -t J ‘1 z »

respectively, where O;Jk

ang !;Jk represent the volume

average nodal flux for groups 1 and 2. For each group g, this term
can be approximated using the expansion in Eq. (2.1-3) as follows:
ik 1
el ! ¢ (x,y,2) dv "
lg ;131' vijk g (2.1-12)
1 1"1/2 IhJ/Z Ihk/Z [‘1jk
AP “-hizz “hiz TPz S

+ }'.f}g"(}z) + }'-flgk(}) + }-f;g"(i)] d¥ dy d¥

¥ ol s Lrodrmelly + (n3/81e70g + (GBIl
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with tnhe fourth anc higher oroer partial derivative terms eliminated.

By using the flux and current continuity conditions at the noge
interfaces, the left hand sides of Egs. (2.1-10) and (2.1-11) can be
put in terms of fluxes in nocde ijk and its adjacent neighbors. For
the interface between nodes ijk and is+l,jk the respective conditions
for energy group g are:

‘Jk(x1*h /2,y.2) = 0' "k(x,,1 his1/2::2) (2.1-13)
0K ord (xy + hy/2,y.2) (2.1-18)

1414k, 1+1 K
" 0 Hingay - Ma/2y.2)

Using the expansions given by Egs. (2.1-5) anc (2.1-6) these
respective congitions can be expressed for the point (xi¢ hi/2,

yj’ zk) Dy:

K+ (hy/2M 3" (h/2)

(2.1-15)
o 3 - (hyay/2M1g DK (-hy4q/2)
13K (n /2,3 (hy72) + 113K (y/2)]) (2.1-16)

i D;*ljk[(°“1+1’2)'11*1jk( hi1/2)

1tljk(_h“‘/z)]

Thus, following tne form of the one-group HOD derivation in Reference
2.4, one algebraically combines Egs. (2.1-15) and (2.1-16) to obtain
the following equation representing the internodal leakage for group
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g between noces ijk and i+l, jk:

13K 13k ik 11& (2.1-17)
Wke I o M m e} 3k i r2)
R [o"*/z - (hy2)2 wdie, SHKing2)
DR OB CORVEIL AR LICUIRYE 0D
where

h h
wiik o 2 i i+1, -1
xg, (ﬁ;) (-ETI[ ad EE:TIF)

9

A similar equation connecting nodes i-l1,jk and ijk has the following
form:

kK 1ik ijk 13k -
:g_ gJ - (0} \ /) fig (=hy/2) (2.1-18)

v 01372 - (v W6 KR r2)

1ék[ ;-Ijk : (h‘-‘/z)z,.ijk(h‘ /2]

with u;%f similarly cefined. By adoing Egs. (2.1-17) and
(2.1-18) and substituting the fourth orcer expansions for f{jk and
f;;jk the following x-direction coupling equation results,
representing the net leakage for node ijk, group g in the x-direction:

7 m o et 3R - e

! [.‘3* - (n2/8)el3K - (ndj2a)el3k - (h,/lze)o"*]}

g 2xg 3xg 4xg
1jk {[.1 15k (hf-,/s)oé;;J* i (h?-‘/24)¢;;;5k o (h:-1/1za)¢1;;ik3
i3k S9N . ol A6 allosans S9N
. [.95 - (h2/8)ezls + (h3/28)e350 - (n/1280egec])
= 033 o3l + (w2200 00) (2.1-19)
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Similar eguations can pe obtained to represent the leakags~ in the y-
ang z-directions. Combining all three of these equations gives the
total leakage for noce ijk:

1Jk 1jt 1Jk 2

ke, d05 , 15k, 15k
N ) (04"9 i * tayghs * e4zghi)/24]

2xg * %2yq * %229

. 2.1-20
v el ( )

where )(g is the left side of EQ.(2.1-19), with Yg and Zg the
left sides of similar equations.

The two-group nodal equations in the HOD formulation are obtained by
substituting €g.(2.1-20) into the left sices of Egs. (2.1-10) and
(2.1-11) from the first part of the derivation ang then eliminating
the remaining third and fourth order cderivative terms.* The

resulting equations for group 1 and 2, respectively, are:

1Jk[ 1415k (q _ '141Jk) | .:Jk a- 1jk)]

Wl (2.1-21)
e AN U R UV R AT &
- (1 * Iy - i) e
Koy L o1415ky o 1K ik -
B GG 5 - - @122
o KRG 1) o' %0 - N1 . Y, + 1,
15k 13k 13k 13k
g0 g %

These derivative terms have been foung Lo be negiigible for
most PWR calculations (Reference 2.1)
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where

gk _ 2 13k, 1
B = (R/8) (o338ra1dk)

fik 13k
and 8 ’go [} 29

centerpoint flux ratio is

are similarly defined. The node-average to

13k | Jik 13k ik , ijk , 15k
Y o | 4 1+ “xo *eg * 8 )/3

The 'Vg and 79 represent the truncated y- and z-direction terms

as in Eq. (2.1-20).

Boundary Conditions

The two-group boundary conditions used in the HOD formulation
physically represent the ratio of outer face current to the
node-average flux of the nodes at the core-reflector interface for

each energy fTo.f.
-

- =

The form of the HOD boundary condition is illustrated for a node ijk
with the x+ face bounding the active core. The two-group boundary
conditions are gefined by

ijk

J

ik _ + .

Fxg+ —%T[:g v 9=1,2 (2.1-23)
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where J:jk

face,represented by

is the net current for group g at the x+ nodal

19k _ptik 1Jk
xg+ g

(2.1-24)

J (x; + h §/2)

The x+ bouncary condition form in EqQ. (2.1-23) corresponds to the
gradient term at x1¢hi/2 in Eqg. (2.1-9). Thus the Dboungary
condition can ve substituted into the left hand side of Eq. (2.1-21)
or (2.1-22) using

15k 13k, : »
o «,J My o= g m) o3 (x4 ny2) (2.1-25)

1Jk [.1+|jk i - 1+ljk) 1Jk ' 1jk)]

Similar bouncgary condition forms apply for the other node faces.

Two-group Matrix Solution

The two-group HOD equations for the core model are obtained by
combining Eqs. (2.1-21) and (2.1-22) with boundary conditions as
represented by Eq. (2.1-25). The resulting system can be represented
by two-group matrix equations of the form

M *+hApe=0 (2.1-26)
‘2‘ ‘.' - Azz ‘2 =0 (2.‘-27)

The solution vectors 01 and 02 contain the elements 0“k and

;Jk. respectively.

The matrices All and A correspond to group 1 and 2 operators

22



for the seven-point finite difference equations:

13k
1ik 1°ljk 1ik 13k RN 1jk ¢ =0
";..g | LB .g .9 lg-b 9
(2.1-28)
with coefficents
1jk 1 k 1¢1jk 1jk 3
":i = j (l ) c , 97 1,2
ijk
‘:Jk [(Iijk ;{k 1Jk(x) vijk {k FAE bz€+]
ik | fik 1jk 1jk 1jk
%, [1: bo. * .- 124']
and 61j = 0, if the i+l node does not exist (i.e., the ijk node is

acjaﬁent to the reflector)

1ik = 1, if the i+l node exists,
fik _ 13k 1jk 1jk 1ik 1Jk 1jk
bxg: ng:l(I ) 6 + ox9§ g (1 - )/h

:g: = boundary condition for group g at x+ face of node ijk.

Additionally,

By = (en/8) adeseldk
A\ LI 1jk gldk |, gidk
Yg 1+ (8, Byg * 82 )

where E 1is an wunderrelaxation factor wused in the iterative
calculation.

The matrix A, contains diagonal elements (vt;ik/x)ctiik
representing the thermal to fast group source in Eq. (2.1-26).
Similarly A21 is @& odiagonal matrix with elements :;{kel“k
representing the fast-to-thermal source in Eq. (2.1-17).

Eqs. (2.1-26) and (2.1-27) contain additional unknowns in the second

Cerivative terms 8., Byg 30 Byg, and the eigenvalue A . Tnese
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values are obtained using auxiliary equations in the {terative
solution, The se2cond cerivative term 'xg' for example, is obtained
by sulving the x-direction leakage equation given by EQ. (2.1-19)
for 02,9 with higher derivative terms eliminated. The resulting

equation with boundary congition terms included is

13k 1jk

O %2 * (2.1-29)
15k 1415k
u,,g. - o . [o;"‘ : (»fm.;g; ol

1Jk 13k ’Jk 15k 1 k 1]&

cage g (1= &3 )/my ‘: 3 8 - )/hy

The flux and derivative values from the previous iteration are used
for the right hand side of Eq. (2.1-29). Similar equations are used

The eigenvalue 1is calculated wusing the conventional two-group
formulation

Ay 4, (2.1-30)

where

T vtijk ’:jk .:jk vijk

15k
I R T ——
Vo (3R e gdF e L JTE) TF IR, T
13k
porifk ik K 15K
2, o P —HY L5 TR 6 LR AL R 51
’ to(rg 1) v

13k

and the rescnance escape probability is given by

13k _13k 15k 15k
I Iy N "o

1ik
P -
e 1§k (tzii + :;qk + L,jl) v:jk ‘:JR vk
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2:1.2

Tne boundary leakage terms L‘ijk and L‘zjk are given by

._;J* . .::‘_‘ (-t dfym oo .:‘;: (- cl{")/hk (2.1-31)

g=1,2

The overall solution of the two-group HOD equations is obtained by
the {terative procedure incicated in Figure 2-3. The matrix
equations given by EqQs. (2.1-28) and (2.1-27) are solved by the
successive overrelaxation (SOR) method. The iterati.n cycle consists
of a group 1 flux iteration followed by & group 2 iteration, with
second derivative terms updateg during each pass. Independent SOR
acceleration parameters are wused for the two energy group
calculations. At the erd of each ite ition cycle the eigenvalue is
calculated; also, the underrelaxation ractor for derivative terms is
increased accord: g to the degree of convergence, so that £=1 for the
converged solution.

Nodal Expansion Method (NEM)

The Nodal Expansion Method (nem)(2:712:10:2.12) L41) pe available
in ROCS as an alternative to the current HOD method. At present, NEM
has been incorporated in a special version of the C-E coarse-mesh
kirietics code, FERMITE.(z'D). NEM uses one-dimensional fourth
orcer polynomial expansions for each direction within the node to
establish highly accurate internodal currents.

The derivation of the method begins with the following form of the
two-group diffusion equation.

v Jg(F) + r‘g(F)og(F) + :' Iq g.(ﬂ og(?)

= T [t ' xg Vngl(F)] .gl(ﬂ (2.1'32)
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Neutron currents and fluxes are related by Fick's Law
Jg(M) + Dy(¥) 7 ¢ (r) =0 (2.1-33)

and the following equations for net current and flux

+

Jgu ' jgu - J;u (2.1-34)
+ -
0y * s, ¢ 79y (2.1-35)

Here jgu and ¢g are tre net current and flux respectively and the
subscript u represents either the x,y or z direction. The + or -
superscript on the currents ingicates a partial current in the + or -

u direction.

A mesh of M rectangular nodes is oefined to create a discrete problem
geometry. A given noce, M, is assumed to have sides a:,
am. a" and volume
y' 2
m._m_m
VT e ol al 2

The origin is positioned at a corner of the node sc that

The node has three "left" surfaces and three "right" surfaces. An
arbitrary surface is ogesignated Ug where u = x, y or z and s = L Or
r. Thus

= - m
0 and u. = a

Up u

The neutron balance for the node can be obtained by integrating Eg.
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(2.1-32) over the node and applying the divergence theorem and EQq.
(2.1-34). This results in the nodal balance equation:

1 o ! -
t 5 LI * T » (i 850 (2.1-36)
u

m m m 1 m m
+ + ' e '
(z:.g g‘ 25 o ) og = ;. (zg §*T% vzfg.) ¢g
where .'; represents the node-average flux and z':g and

z';'gare flux anc volume weighted cross sections for node m.

The interface conditions at abutting surfaces of adjacent nodes are
statements of the continuity of the average partial currents:

jm o Tl -m'

- * St - Tt (2.1-37)

These conditions are equivalent to the continuity of the face-average

flux, ?';us, and the net current as may be seen by applying Egs.
(2.1-34) and (2.1-35).
Thus
m m'
qur ® Jgut (2.1-38)
and B - '
Your Your (2.1-39)

where the average flux on face Ug is given by

@ ey ;"‘ dvdw og(F)

evaluated at s =gor s = r.



with v and w de'noting the two directions perpendicular to u.

External boundary conditions are zero net current along axes of
symmetry

e SR
J qus Jgus (2.1-40)
and albedo boundary conditions elsewhere:
+ . m L Wm
J;us %gus J gus (2.1-41)

In order to obtain the node-average fluxes 0:. the interface and
boundary conditions are used to eliminate the incoming currents.
Traditional nodal methods define coupling coefficients to provide the
miscing equations. The Nodal Expansion Method differs from the
traditional nodal methods in the way the outgoing rurrents are
eliminated from the nodal balance equations. The flux distribution
within the node is taken into account and, in effect, the coupling
coefficients are determined as the sol.tion progresses.

For the nodal balance the face-average flux and net cuirent are
obtained by integrating the flux over the two directions (v and w)
transverse to u and, in the case of the net current, differentiating
with respect to u. Therefore, an average flux is defined as a
function of u to take into account the interior (nodal) flux
distribution:

a" a"
m 1 . W a ¥
'gu(“) = P b A og(r) dvis (2.1-42)
v “w
clearly
m = m m - m m
'guz \l'gu(O) and ’gur 'gu (au)
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.m
m_ u m
og Io vgu(u) du (2.7-43)
ang
m
ay
m _ oM u
i 0q —33- (2.1-48)

evaluated at u=0 at S= ¢ and Uzaz for S=r.
y " (u) 1is oetermined from an approximate

Qu
giffusion equation along direction u obtained by integration of Eq.
(2.1 -32) over the transverse girections:

one-dimensional

a_ a_ (M
3u °§ au vzu < ‘tag * :. zg g'u) vgu
] m m m
- ] * = ' ' a-
$ (Tggu * 3 % VTfg's) Yg'u - Dglgu (2.1-45)

where Dg Lgu is the transverse leakage given Dy

.
1 v w 3 a 3
g gu a® oM '% o dVd“(av 9 w ' aw g aw (r) (2.1-46)
v 'w

The one-dimensional flux !gu(u) is approximated by a fourth

order polynomial:

vgu(u) = 2gg, holu) + aly, hy(u) + a5 h)(u)
+ a3g, halu) + agg, hylu) (2.1-47)

The basis functions h (u) are polynomials of order i ang are given

pelow using u = u/a

2.19



o= (2.1-48a)

h‘ = 2y - (2.1-48b)
hy, = 6 (1-y) -1 (2.1-48c)
hy = 6w (1-4) (2u-1) (2.1-484)
Ny = 6 (1-y) (5,2-5, #1) (2.1-48e)

1f the face-average fluxes and currents and the node-average flux are
known, the coefficients l';'gu can be cemputed using Eqs. (2.1-48)
and (2.1-43) through (2.1-45). The transverse leakage term, -D:

L'“ , is approximated by the guadratic polynomial

Qu
Lgu * Q:— ‘7 (Lgu - Logu) M
. [n_—';u—- ¥ gy = Logu) Iz (2.1-49)
where
B e e @150

The coefficients of h1 and h2 In Eq. (2.1-49) were chosen so the
m m
L end ngu are the velues of Lgu assumed at the left

and right u-ends of the node respectively.

The boundary and interface equations together with the nodal balance
equation provide enough equations to account for three coefficients
of the quartic polynominal for v';u. Two more equations are

obtained by the weighted residual technique.

pefine the weighting functions "o r't1 and W, = hz and
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integrate w, times Dboth sides of Eq. (2.1-45) over 0< u_<_|:'.
Thus one obtains the "-1 weighted balance equation" after
considerable zlgebraic manipulation:

m 1 .m m
(tagu r ;. g s:'u) (3 Ngu * 5’ ‘3gu) + 12 D:u 33qu
1 m m 1 m 1 .m 1.m

‘s 0'; (L1gu ' l'Ogu) 3 ;. (zg'gu | 1 xg"rfg'u)(l' S PUTIE 1 ‘39'0)

=0 (2.1-51)
The "w, weighted balance equation" is similarly cerived:
m . 3 .m m m
(‘agu . g’ g g'u)(g 'Zgu "3 ‘dgu) - 12 Ogu 34qu

L™ 1 m
D [L 2'(L19u Ogu)] 5 ;. (zg'gu YT X “Ifg'u)
t 8 L& (2.1-52)
(3 azguu - 35 “glu) * 0 .

There are now two equations per energy group (2.1-51 and 2.1-52) for
each spatial direction plus a single overall nocal balance eguation
(2.1-36). In adagition, there are the conditions of continuity of
face-average flux and current at each internal interface and an
albedc at each boundary. These provide a sufficient set of
indepencent equations to solve for the partial currents on each nodal
face and for each node-average flux. These equations are solveo
iteratively for the fluxes, currents and the eigenvalue.

Results With The Nodal Expansion Method

The NEM and HOD methods for solving the neutron diffusion equation
have been compared to each nther and to fine-mesh calculations using
consistent two-cimensional quarter core models of the Arkansas
wuclear One uUnit 2 (ANO-2) Cycle 1 mioplane. NEM and HOD
calculations were also performed in three dimensions early in the
same reactor cycle.
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calculations were performeg in two cimensions with PDQ

L

calculations with ROCS ang the NEM calculations within

(5 113
- \ « A7)
HERMITE. ' © r

] External radial boundary conditions for
the NEM ang HOD models were obtained in parallel from the same
source, The same DIT runs were used to produce corsistent cross
section tables for the fine-mesh PDQ model and the coarse-mesh
ROCS/HOD and HERMITE/NEM models. The stancargc xencn equilibrium
equations and equivalent fuel temperature correlations were used in

all three reactor models. r
L
]
relative power censities calculatec by the NEM anc
dimensions are compareg to fine-mesh PDQ power
Figures 2-4 through 2-6 for BOC, MOC and EOC
Both coarse-mesh calculations closel) proximate the

The stendarc ceviations are [ ]": less and maximum

. ) e
jifferences from PDQ assembly powers are less tnaﬂL J

Three-dimensional comparisons of NEM with HOD were performec for
ANO-2 early in the first cycle with HERMITE and ROCS modeis that were
equivalent tc those used for the above two-cimensional comparisons.
The HERMITE host cooe used axial albedos for NEM that were consistent

with the axlial oboungary congitons in the ROCS calculations.

Figure 2-7 shows NEM and HOD racially averaged axial power
gistributions from unrodoed full power equilibrium xenon calculations
at beginning-of-life. Both solution methods produce essentially the
same axial shape. Figure 2-8 shows a comparison of the correspgonging

midplane assembly relative power censities. The standarg deviation

of assembly power cgifferences is aDOut[ j]ano the maximum difference

aOUutr J Consistently close agreement bDetween the two methods is
—

Obtained at other racdial planes. Figure 2-9 shows the standard

geviations and maximum errors resulting from these radial comparisons

between NEM and HOD as a function of axial position.




2.1.3

The standard deviations of the differences between the HOD and NEM
methods are of the order of[ while those for the HOD method vs.
measurement a 2 in the range of[ 1(Section 4.1.2). This
indicates that cross section mogels are more important than
neutronics models in ocetermining the overall uncertainty. with this
level of agreement, substitution of NEM for the HOD methoo in ROCS is
not expected to have any major impact on calculational uncertainties.

Cross Section Representation

Cross section information used in the ROCS system is derived from
microscopic cross sections supplied by DIT for each nuclide in two
energy groJps. This information is utilized in two basic forms.
First, two-group macroscopic Ccross sections are used in the basic
flux and eigenvalue calculation as described in Section 2.1.1. The
macroscopic contributions due to thermal-nydraulic feedbacks, xenon,
scluble boron and control rods are added prior to the flux
calculation. Second, two-group microscopic cross sections are used
explicitly in the depletion and xenon short-term time-stepping
calculations as described in Section 2.2.

The two-group microscopic cross sections for each nuclide are
supplied in table form. Represented for each nuclice and energy
group are:
Tpp = transport cross section (b)
absorption cross section (b)
op = removal cross section (b)
fission cross section (b)
= average number of neutrons released per fission
= average energy release per fission (watt-sec)

Q
]

a
< -
"

The tables represent the above values as nonlinear functions of
important independent variables [

]evah.ateo for nominal thermal-hydraulic
conditions. In addition, multipliers (called G-factors) may be
included in the table for any of the cross sect