AVERAGE DAILY UNIT POWER LEVEL

DOCKET NO.	50-285		
UNIT	Fort Calhoun Station		
DATE	August 10, 1982		
COMPLETED BY	R. W. Short		
TELEPHONE	(402)536-4543		

MONTH	July, 1982
DAY	AVERAGE DAILY POWER LEVEL (MWe-Net)
1	469.5
2	470.2
3	467.1
4	464.5
5	459.2
6	458.3
7	461.1
8	460.8
9	460.7
10	461.7
п.	461.5
12	460.3
13	458.7
14	457.0
15	456.6
16	454.6

DAY	AVER AGE DAILY POWER LEVEL (MWe-Net)
17	342.4
18	459.3
19	462.7
20	461.4
21	461.1
22	459.7
23	459.4
24	459.6
25	460.9
26	460.7
27	459.8
28	460.9
29	462.0
30	461.4
11	461.2
51	

INSTRUCTIONS

.

On this format, list the average daily unit power level in MWe-Net for each day in the reporting month. Compute to the nearest whole megawatt.

OPERATING DATA REPORT

DOCKET NO.	50-285
DATE	August ID, 1982
COMPLETED BY	R. W. Short
TELEPHONE	(402)536-4543

OPERATING STATUS

1. Unit Name: Fort Calhoun Station	Notes
2. Reporting Period: July, 1982	
3. Licensed Thermal Power (MWt): 1500	
4. Nameplate Rating (Gross MWe): 501	
5. Design Electrical Rating (Net MWe): 478	
6. Maximum Dependable Capacity (Gross MWe): 501	
7. Maximum Dependable Capacity (Net MWe): 478	

8. If Changes Occur in Capacity Ratings (Items Number 3 Through 7) Since Last Report. Give Reasons: None

N/A

10. Reasons For Restrictions, If Any: ____

		This Month	Yrto-Date	Cumulative
11. Hours In Reporting Perio	d	744.0	5,087.0	77,568.0
12. Number Of Hours Reacte	or Was Critical	744.0	5,020.9	61,259.9
13. Reactor Reserve Shutdow	vn Hours	0.0	0.0	1,309.5
14. Hours Generator On-Line		744.0	5,011.8	60,101.8
15. Unit Reserve Shutdown H	lours	0.0	0.0	0.0
16. Gross Thermal Energy Ge	enerated (MWH)	1,094,321.9	7,378,242.5	74,080,072.6
17 Gross Electrical Energy G	enerated (MWH)	357,514.0	2,481,297.9	24,555,243.5
18. Net Electrical Energy Ger	nerated (MWH)	340,183.1	2,366,498.3	23,214,366.8
19. Unit Service Factor		100.0	98.5	77.5
20. Unit Availability Factor		100.0	98.5	77.5
21. Unit Capacity Factor (Us	ing MDC Net)	95.7	97.3	65.1
22. Unit Capacity Factor (Us	ing DER Net)	95.7	97.3	64.8
23. Unit Forced Outage Rate		0.0	1.5	3.7
24. Shutdowns Scheduled Ov 1983 Refuelin Three Months.	er Next 6 Months (Typ ng Outage Schedu	pe, Date, and Duration iled to Commence	of Each) January 3, 19	983 for
25. If Shut Down At End Of	Report Period, Estima	ted Date of Startup	N/A	
26. Units In Test Status (Prio	Units In Test Status (Prior to Commercial Operation): None		Forecast	Achieved
INITIA	LCRITICALITY		<u></u>	
INITIA	LELECTRICITY		100 miles	
COMMI	ERCIAL OPERATION			1000

Fort Calhoun Station DATE August 10, 1982 R. W. Short (402)536-4543 COMPLETED BY REPORT MONTH July, 1982 TELEPHONE Method of Shutting Down Reactor³ Component Code5 Reason? Duration (Hours) Cause & Corrective System Code⁴ Licensee Typel Action to Date Event No. Prevent Recurrence Report # There were no unit shutdowns during the month of July, 1982. 3 4 2 Exhibit G - Instructions Method: F: Forced Reason for Preparation of Data 1-Manual A-Equipment Failure (Explain) B-Maintenance or Test S. Scheduled Entry Sheets for Licensee 2-Manual Scram. Event Report (LER) File (NUREG-3-Automatic Scram. C-Refueling 4-Other (Explain) 0161) D-Regulatory Restriction E-Operator Training & License Examination 5 F-Administrative Exhibit 1 - Same Source G-Operational Error (Explain) H-Other (Explain) (9/77)

UNIT SHUTDOWNS AND POWER REDUCTIONS

50-285 DOCKET NO. UNIT NAME

Refueling Information Fort Calhoun - Unit No. 1

Report for the month ending July 1982

- Scheduled date for next refueling shutdown. 1.
- Scheduled date for restart following refueling. 2.
- 3. Will refueling or resumption of operation thereafter require a technical specification change or other license amendment?
 - a. If answer is yes, what, in general, will these be?

A Technical Specification Change

- b. If answer is no, has the reload fuel design and core configuration been reviewed by your Plant Safety Review Committee to determine whether any unreviewed safety questions are associated with the core reload.
- c. If no such review has taken place, when is it scheduled?
- 4. Scheduled date(s) for submitting proposed licensing action and support information.
- 5. Important licensing considerations associated with refueling, e.g., new or different fuel design or supplier, unreviewed design or performance analysis methods, significant changes in fuel design, new operating procedures.

January 3, 1983

April 1, 1983

Yes

November 1, 1982

0	(TTL	ma male or as	-F	Ena 1	a cananda 1	100
0.	ine	numper	OL	ruer	assenol	les

- : a) in the core

 - b) in the spent fuel pool c) spent fuel pool
 - storage capacity d) planned spent fuel pool

storage capacity

237 ... 483 -728

133

1985

assemblies

7. The projected date of the last refueling that can be discharged to the spent fuel pool assuming the present licensed capacity.

Prepared by JR Dames

Date August 2, 1982

OMAHA PUBLIC POWER DISTRICT Fort Calhoun Station Unit No. 1

July, 1982 Monthly Operations Report

I. OPERATIONS SUMMARY

Fort Calhoun Station operated at a nominal 100% power for the month of July, 1982. One 24 hour power reduction to about 65% occurred on July 17, 1982 for the purpose of cleaning the condensate cooler and the bearing water coolers. The power reduction and cooler cleaning went very well and power was returned to 100% on the evening of July 17, 1982.

During July, the Auxiliary Boiler Fuel Oil Tank and the Diesel Fire Pump Fuel Oil Tank were drained, cleaned and refilled.

Also during July, the QA vault was upgraded to comply with appropriate records storage standards. In addition, the Sigma II computer was removed in preparation for the installation of the QSPDS/ERF computer.

No safety valve or PORV challenges occurred.

A. PERFORMANCE CHARACTERISTICS

LER Number

Deficiency

LER-014

During normal power operation, in the process of switching component cooling water heat exchangers, the associated inlet valves HCV-489A, HCV-490A and HCV-492A did not open. The consequence of this event was that only one component cooling water heat exchanger was operational. Tech. Spec. 2.3(1)g. requires three of four CCW heat exchangers to be operable which may be modified to two of four CCW heat exchangers operable for not more than 24 hours under Tech. Spec. 2.3(2)c.

LER-015 During the performance of surveillance test ST-ISI-WD-1, F.1, HCV-507A (the gas vent header containment isolation valve) failed to close via the control room switch. The valve was immediately closed by failing the air to the operator. Emergency Procedure EP-25 "Loss of Containment Integrity" was implemented and a Maintenance Order was written to investigate/correct the problem. Throughout the incident, the redundant gas vent header containment isolation valve remained operable and was in the closed position.

B. CHANGES IN OPERATING METHODS

NONE

Monthly Operations Report July, 1982 Page Two

C. RESULTS OF SURVEILLANCE TESTS AND INSPECTIONS

Surveillance tests as required by the Technical Specifications Section 3.0 and Appendix B, were performed in accordance with the annual surveillance test schedule. The following is a summary of the surveillance tests which results in Operations Incidents and are not reported elsewhere in the report:

 Operations
 Deficiency

 OI-1557
 ST-FP-1
 FP-1B Failed to run properly

D. CHANGES, TESTS AND EXPERIMENTS CARRIED OUT WITHOUT COMMISSION APPROVAL

Procedure

Description

SP-BTUGEN-1 Control Room BTU Generation Study for air conditioning system requirements.

> This procedure did not constitute an unreviewed safety question as defined in 10CFR50.59. This procedure was used to measure and calculate the heat generated from equipment, personnel, and structures in the control room. Approved procedures were prepared prior to the start of work.

SP-SS-5

This procedure did not constitute an unreviewed safety question as defined in 10CFR50.59. The procedure involved inspection and disassembly of certain spent fuel assemblies for the purpose of evaluating fuel performance. Potential accidents were enveloped by FSAR Section 14.18, "Fuel Handling Incidents". Approved procedures were prepared prior to the start of work.

SP-SS-4 This procedure did not constitute an unreviewed safety question as defined in 10CFR50.59. The procedure involved inspection and disassembly of certain spent fuel assemblies for the purpose of evaluating fuel performance. Potential accidents were enveloped by FSAR Section 14.18, "Fuel Handling Incidents". Approved procedures were prepared prior to the start of work. Monthly Operations Report July, 1982 Page Three

- D. (CONTINUED)
 - Procedure

Description

- SP-SS-3 This procedure did not constitute an unreviewed safety question as defined in 10CFR50.59. The procedure involved inspection and disassembly of certain spent fuel assemblies for the purpose of evaluating fuel performance. Potential accidents were enveloped by FSAR Section 14.18, "Fuel Handling Incidents". Approved procedures were prepared prior to the start of work.
- SP-SS-2 This procedure did not constitute an unreviewed safety question as defined in 10CFR50.59. The procedure involved inspection and disassembly of certain spent fuel assemblies for the purpose of evaluating fuel performance. Potential accidents were enveloped by FSAR Section 14.18, "Fuel Handling Incidents". Approved procedures were prepared prior to the start of work.
- SP-SS-1 This procedure did not constitute an unreviewed safety question as defined in 10CFR50.59. The procedure involved inspection and disassembly of certain spent fuel assemblies for the purpose of evaluating fuel performance. Potential accidents were enveloped by FSAR Section 14.18, "Fuel Handling Incidents". Approved procedures were prepared prior to the start of work.
- SP-FE-8 This procedure did not constitute an unreviewed safety question as defined in 10CFR50.59. The procedure involved inspection and disassembly of certain spent fuel assemblies for the purpose of evaluating fuel performance. Potential accidents were enveloped by FSAR Section 14.18, "Fuel Handling Incidents". Approved procedures were prepared prior to the start of work.
- SF-FE-9 This procedure did not constitute an unreviewed safety question as defined in 10CFR50.59. The procedure involved inspection and disassembly of certain spent fuel assemblies for the purpose of evaluating fuel performance. Potential accidents were enveloped by FSAR Section 14.18, "Fuel Handling Incidents". Approved procedures were prepared prior to the start of work.

Monthly Operations Report July, 1982 Page Four

D.	(CONTINUED)			
	Procedure	Description		
	SP-FAUD-1	Fuel Assembly Uplift Condition Detection		
		This procedure did not constitute and unreviewed safety question as defined by 10CFR50.59 since it only involved evaluating data from a surveillance test.		
	DCR 73-19	Insulate Process Radiation Monitor Sampling Lines		
		This modification did not involve an unreviewed safety question as defined by 10CFR50.59 as it only involved adding heat tracing to radiation monitor sample lines to improve the quality of the samples taken.		
	DCR 74A-92	Gai-tronics in Storeroom		
		This modification did not involve an unreviewed safety question as defined by 10CFR50.59 as it only involved the installation of a gai-tronics communications station to the Storeroom.		
	DCR 74A+106	PCV-1912		
		This modification did not involve an unreviewed safety question as defined by 10CFR50.59 as it did not involve a safety related system, replaced pressure control valve in Circulating Water System.		
	DCR 74A-118	NSSS Parameters Permanent Test Rig		
		This modification did not involve an unreviewed safety question as defined by 10CFR50.59 as it only provided a means to monitor NSSS parameters.		
	DCR 75A-19	Waste Filters WD-17A/B		
		This modification did not involve an unreviewed safety question as defined by 10CFR50.59 as it only involved changing the mesh sizing of the filters in the waste disposal system.		

Monthly Operations Report July, 1982 Page Five

D. (CONTINUED)

Procedure

Description

DCR 75A-25 Variable Overpower Trip

This modification did not involve an unreviewed safety question as defined by IOCFR50.59 as it added the variable overpower trip feature to the deactor Protective System to limit the extent of any reactor power excursions.

DCR 75A-44 Instrument Air Isolation Valves

This modification did not involve an unreviewed safety question as defined by 10CFR50.59 as it only provided a means to isolate portions of the instrument air system for maintenance.

DCR 75A-45 Redundant Pressure Indication System for HCV-348

This modification did not involve an unreviewed safety question as defined by 10CFR50.59 as it only involved added redundant pressure indication to the shutdown cooling isolation valves.

DCR 75A-48 Shutdown Cooling Sampling System

This modification did not involve an unreviewed safety question as defined by 10CFR50.59 as it only provided for a sample connection in the shutdown cooling system.

DCR 76-20 Remodel Health Physics Station & Locker Room

This modification did not involve an unreviewed safety question as defined by 10CFR50.59 as it did not involve a safety related system.

DCR 76-27 RC Level Indication During Cold Shutdown

This modification did not involve an unreviewed safety question as defined by 10CFR50.59 as it provided an alternate method to monitor water level in the reactor during refueling outages. 'Monthly Operations Report July, 1982 Page Six

> D. (CONTINUED) Procedure Description DCR 76-104 Steam Dump & Bypass Valve Position Indication This modification did not involve an unreviewed safety question as defined by 10CFR50.59 as it only added position indication lights in the control room for the steam dump and bypass valves. DCR 77-91 Backflush Connections on Raw Water Pumps This modification did not involve an unreviewed safety question as defined by 10CFR50.59 as it only provided a means to backflush raw water pumps. EE/AR 78-6 Heating Coils for Auxiliary Building This modifiction did not involve an unreviewed safety question as defined by 10CFR50.59 as it only added preheater coils for the auxiliary building supply fans. EEAR 79-18 Auxiliary Building Ventilation System This modification did not involve an unreviewed safety question as defined by 10CFR50.59 as it only provided air conditioning to the Radio Chemistry Counting Room. EEAR 79-41 Condensate to Chemical Feed Isolation This modification did not involve an unreviewed safety question as defined by 10CFR50.59 as it did not involve a safety related system. EEAR 79-147 Trip Circuit Bypass for Auxiliary Building This modification did not involve an unreviewed safety question as defined by 10CFR50.59 as it provided a means to bypass the trip circuit on the auxiliary building ventilation fans actuated by smoke detectors, the freezestat, and duct pressure transmitters. The modification will help ensure the fans can be operated in a post-accident situation.

'Monthly Operations Report July, 1982 Page Seven

D. (CONTINUED)

Procedure	Description
EEAR 80-68	Dual Setpoints for RM-061
	This modification did not involve an unreviewed safety question as defined by 10CFR50.59 as it provided a means to account for temperature

EEAR 81-29 Thermal Stress in Piping Between Boric Acid Pumps

This modification did not involve an unreviewed safety question as defined by lOCFR50.59 as it was made to reduce stress due to temperature changes in the boric acid piping.

inversion effects on RM-061, Radiation Monitor

E. RESULTS OF LEAK RATE TESTS

Leakage for P.A.L. Door was 4200 sccm as measured per ST-CONT-2, F.2.

F. CHANGES IN PLANT OPERATING STAFF

Effective August 1, 1982 two positions were approved.

A. W. Richard became Tehonical Supervisor and

CH-4A/B

J. J. Tesarek became the Plant Engineer.

G. TRAINING

Training was continued as scheduled for general employee maintenance, licensed and non-operators, C/RP and Technical personnel.

- In addition, several special lectures were given to monitor team members and emergency response personnel.
- H. CHANGES, TESTS AND EXPERIMENTS REQUIRING NUCLEAR REGULATORY COMMISSION AUTHORIZATION PURSUANT TO 10CFR50.59

NONE

2 Lil

W. G. Gates Plant Manager

Monthly Operations Report July, 1982 Page Eight

II. MAINTENANCE (Significant Safety Related)

M. O. #	Date	Description	Corrective Action
15433	6-28-82	HCV-318 relay in breaker is chatter- ing.	Realigned contacts, cleaned and adjusted.
15273	6-25-82	Raw Water Pump AC-10A improper read- ings of amps.	Repaired per MP-AC-10.
15173	7 - 16-82	CH-1A Charging Pump. Packing Coolant Packing Coolant Tank is filling up when standing in idle.	Repaired per MP-CH-1-1.
15497	7-8-82	FP-1 not running properly.	Cleaned out clogged line.
15526	7-14-82	RM-050/51 stopped and won't restart.	Replaced pump.
15503	7-14-82	CH-1B charging pump is leaking into Packing Coolant Tank.	Repacked CH-1B and installed new discharge valve.