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CIIARACTERIZATION METHODS FOR ULTRASONIC TEST SYSTEMS

ABSTRACT

Methods for the characterization of ultrasonic trans-

ducers.(search units) and instruments are presented. The in-

strument system is ccasidered as three separate components

consisting of a transducer, a receiver-display, and a pulser.

The operation of each component is assessed independently.

The methods presented were chosen because they provide the

greatest amount of information about component operation and

were not chosen based upon such conditions as cost, ease of

operation, field implementation, etc. The results of evalu-

ating a number of commercially available ultrasonic test

instruments are presented.
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SUMMARY

A common goal of those working in the area of ultrasonic

testing is the development of effective and reproducible test

results. To meet this goal, ultrasonic instrument operation

must be repeatable and predictable. This document presents a

series of measurement techniques that are being used at

Pacific Northwest Laboratory (PNL) to quantify the perform-

ance of ultrasonic test instruments. The purpose of these

techniques is to provide the greatest amount of information

about the operating characteristics of the individual compon-

ents that make up an ultrasonic test instrument.

Ultrasonic test instruments are considered'as three

subsystems: a transducer or search unit, a receiver-display,

and a pulser. The performance of-each subsystem is assessed

independently. The measurement procedures described allow

the following properties to be determined:

1. Transducer

acoustic frequency response (spectrum).

efficiency (insertion loss or pulse echo.

sensitivity)

time domain response.

electrical impedance.

sound field patterns.

2. Receiver-Display

frequency response (bandwidth).

amplitude response (linearity).

noise (referred to input).

input sensitivity.

3. pulser

time domain response.

frequency response.

output impedance.
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Measurement procedures have been-demonstrated on com- ,

mercia11y available transducers and test instruments. A I

discussion of the results is presented as well as some gen-

eral suggestions for improvement'of instrument performance.
;
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CilARACTERIZATION METilODS FOR ULTRASONIC TEST SYSTEMS

1.0 INTRODUCTION

The need for standardized and reproducible ultrasonic

test instrument performance underlies all efforts aimed to-

ward developing reproducible test procedures (Sachse and lisu

1979; 0'Donnell, Busse and Miller, 1980; Lidington and Silk

1972; Papadakis 1977). liere " reproducible" means that re-

sults obtained with the instrument must be repeatable from

day to day at a given location and also that test procedures

can be reproduced at many locations by different personnel.

This report presents methods designed to measure.the opera-

tional characteristics of ultrasonic test instruments. These

methods are based largely on automated (i.e., computerized)

procedures so that large amounts of data can be accumulated

and handled conveniently using a laboratory analysis system.
,

These methods were implemented at Pacific Northwest Labora-

tory (PNL) , t'o help document the performance characteristics
of typical inspection units currently being used in industry.

This work supports the program, " Integration of NDE Reliabil-

ity and Fracture Mechanics," which is sponsored by the Nu-

clear Regulatory Commission. The NRC program was established

1 to determine the reliability of current in-service inspection

] (IS1) techniques and to develop recommendations that will

assure a suitably high inspection reliability. From the

basic knowledge of the operational characteristics of avail-

able ultrasonic test equipment, improved test procedures and

equipment specifications can be developed.

Ultrasonic test instruments can be divided into three

major subsystems: 1) the transducer, 2) the receiver-dis-

play, and 3) the pulser. The characterization methods pre-

sented in this document use linear circuit theory to charac-

terize these subsystems individually.

-1-
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The ultrasonic transducer and a fixed length of coaxial

cable are considered here as a single functional unit. The

transducer unit is characterized under experimental condi-

tions closely re-- -d to the actual operating conditions of

the transducers, e.g., transient pulse excitation and proper

mechanical (i.e., acoustic) loading of the transducer front

surface. The transducer properties which are measured in-

clude the complex electrical impedance of the device, the

insertion loss, the relative pulse echo sensitivity, and the

bandwidth and center frequency of the unit. The sound field

produced by these transducers is also mapped.

The measured properties of the receiver-display subsys-

tem are bandwidth, linearity, input noise and input sensitiv-

ity. These properties of the receiver-display may vary as

the sensitivity, rf filtering and video filtering of the

instrument are varied. Because of the many possible combina-

tions of tunings and adjustments, the receivers are charac-

terized at a limited number of settings. Receiver-display

systems with analog outputs that are normally used to drive

strip chart recorders can be characterized using an automated

measurement system. If no analog outputs are provided, a

semiautomated measurement system can be used to record the

video display of the instrument. With these two measurement ,

systems it is also possible to compare the video display

output with the analog or chart recorder output. In this

way, problems with the recorder system can be identified.

The pulser or transmitter subsystem is the most non-

linear component in the ultrasonic test instrument. For this

reason, pulser characterization is limited. The pulser pro-

perties measured include the frequency spectrum of the high-

voltage pulse under different electrical loading conditions

and an estimate of the output impedance of the pulser cir-

cult.

-2-
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The results of experimental measurements made for

several commercially available ultrasonic test instruments

and tranaducers are presented as demonstrations of the test-

ing methods. The results show the utility of the methods

proposed for evaluating ultrasonic test systems and also give

some insight into the variability found in present test

equi 9 ment.

The following three sections (2.0, 3.0, 4.0) describe

the test methods and demonstration results for the trans-

ducer, receiver-display, and pulser subsystems, respectively.

A final section, Section 5.0, discusses the measurements

needed to evaluate ultrasonic test system performance.

-
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2.0 TRANSDUCER CllARACTERIZATION

The taeory and measurement procedure for evaluating the
electrical, electromechanical,'and mechanical performance of

|
transducers are presented. The methods used for electrical

and electro-mechanical transducer. evaluation are based on
transient electrical excitation of the transducer. Spectrum

! analysis and application of linear circuit theory then allows

the performance parameters, such as complex impedance, inser-
tion loss, bandwidth, and bandwidth center frequency to be

measured. The methods presented are generally applicable and

can be used to evaluate the performance of many different

designs of ultrasonic transducers, i.e., immersion or contact

(both angled and normal beam) units. Care must be taken,

however, when evaleating these different transducers. For

example, it is important to maintain the proper mechanical

loading of the transducers--immersion transducers must be

evaluated in water; contact transducers must be coupled to

metal; sed angled beam transducers must be operated into a

plastic wedge material. Experimental results are presented

from transducers of different electrical, mechanical, and

acoustic design.

The mechanical evaluation of the transducer is accom-
plished by mapping the sound field produced by the device.

This evaluation is straightforward for immersion transducers

(posakony 1975). A technique is presented for direct mapping

of the sound field produced by angled beam transducers in

metal (Wuestenberg 1970, 1979).

2.1 MEASUREMENT TilEORY

The measurement procedure presented is based on linear

transfer functions (Sittig 1967; Sachse and lisu 1979) . Ap-

plication of linear theory to transducer operation requires

simplifying assumptions. First, the analysis is restricted

_4_
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to a single mode of operation. .In other words, a transducer

designed to launch and receive longitudinal elastic waves

will not-transmit or respond to any other type of elastic

wave. Second, a linear system response is assumed. Electri-

cal and acoustic excitation ~ levels are assumed to be small

enough that they can be adequately described by linear equa-

tions of motion. The assumption of "small signal". response

is not overly restrictive.and is, in fact, the normal mode of

operation for ultrasonic transducers.

2.1.1 Electrical Characterization

The recommended practice for characterization of the

electrical properties of. transducers requires that the com-

plex electrical impedance (resistive and reactive components)

of the device be measured (ASA 1970). For this measurement,

both the voltage and current magnitudes and' phases must be

measured as a function of frequency. This measurement is

generally carried out using a continuous-wave measurement

instrument such as a vector impedance' bridge.- It is also

possible to make a similar determination using transient
3

voltage excitation.and signal processing techniques (Sachse).
' Figure 1 describes the two-step measurement process for

! determining the complex impedance of an unknown' load,'Zg.
|

| In Step 1 the transient voltage, u1(t), is recorded by
1
; means of a transient waveform recorder or sampling scope.

From this time domain signal, the complex Fourier transform

| 1s calculated:
?

- m .

dt. (1)
~

fu1(t)eJwtV (w)i
=

s

m
)
i

I
| In practice, this Fourier transformation is performed using a

Fast Fourier Transform subroutine in a microcomputer. In the

i
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STEP 1 | i(t)
g

i 1 *
s

|

I ~

y,(t) | Z # (t)RU 1

I "::

PULSER :
|---> KNOWN LOAD

STEP 2 i(t)
r 1 -.

s 4-

I

I _

Z # (t)
v(t)(~) L 2g

i

. TRANSDUCERPULSER ',
| ' UNKNOWN LOAD

Figure 1. Equivalent Circuit Used to Measure the Complex
Impedance of a Transducer

following equations the convention is that all capitalized

variables are complex (have real and imaginary parts) and are

functions of frequency. The voltage divider formed by ZREF

and Z3 allows the calculation of V :o

REF + ZS y1 (2)Vo=
ZREF

A signal generator with a known output impedance (Z3= (50 +
J0) ohms] and a known reference load (ZHEF = (50 + jo) ohmsj
is used, so

Vo = 2Vi (3)

-6-
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Step 2 again_ involves recording a transient voltage,

u2(t), where now the reference load has been replaced with

the unknown electrical load, ZL. This unknown load repre-

sents the ultrasonic transducer and an appropriate length of

coaxial cable. The Fourier transform of v2(t) is again re-

lated to u (t) by the voltage divider:o

2Z VL1L Vo= (4)V2=
Z3+ZL Z3+ZL

Now, calculating ZL is a matter of algebra:

V2
L (2Vi-V)Z3 (5)2

For this method to work properly, some care must be

exercised in the choice of the transient waveform v (t). Theo

magnitude of the transform pair of this signal (IVol) should

have reasonable amplitude over the entire frequency range of

interest. A square wave pulse of duration T, where T is less

than one over the maximum frequency of interest, is suffi-

cient for this purpose. The maximum frequency of interest is

generally greater than twice the center frequency of the

transducer.

Once the complex electrical impedance of the load has

been determined, it is possible to calculate other useful

electrical parameters such as the electrical power delivered

to the transducer, P:T

IV2I21
Re[I* x V2 ] = Re[ ZL] (6)PT=3 2 2

liere "Re" refers to taking the real part of the quantity in

brackets.

_7_
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I 2.1.2 Electromechanical-Transducer Characterization
,

Electromechanical efficiency refers to the efficiency of;
i,

the transducer-for converting' electrical to mechanical energy

I 'and the-inverse process.
!

It is generally accepted that piezoelectric transducers
:

:

operating into a fluid medium are reciprocal devices. The

term reciprocal has many interpretations (Foldy and Prinakoff

{ 1945; Primakoff and Foldy 1947; MacLean 1940; Carstensen
1947; Sabin 1964; Reid 1974); however, here the limited

j statement of reciprocity--the efficiency of the piezoelectric ,

i element as a transmitter is equal to the efficiency of the

f device as a receiver--is assumed. [

Measurement of insertion loss combined with assumptions |
1

} of reciprocity provides a means for determining the electro-

! mechanical efficiency of a transducer. .The two-way insertion

loss is defined as the ratio of the available electrical

j power generated by.the transducer as a receiver to the elec-

trical power dissipated in the device as a transmitter. The
| ,

i acoustic wave produced in the transmit mode is assumed to

) propagate without loss, reflect from a perfectly reflecting
-

,

! interface, and be received by the same transducer.
,

i

j As seen in Section 2.1.1, Equation (6), knowledge of the

f complex impedance, Z , of the transducer and the complexL

i
spectra of the transmit waveform V2 allows the calculation of (

>

P, the electrical power dissipated in the transducer in the-T,

!
>

t transmit mode. Now consider the receive mode, described in

Figure 2. Operating as a receiver, the piezoelectric action f
i of the crystal can be represented as a voltage source in
!

j series with Z , the complex impedance of the transducer. '

L
.

This simple circuit must now drive the load presented to it
'

}

by the pulser circuit (in this example, a 50-ohm resistive
,

<

load). By Fourier transforming the observed voltage waveform :

I ,

j -8-
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PULSER : : TRANSDUCER
I

lj(t) |
+-- 1 7

L
J

"

l~

*b (~)v tt)L g

1,
.

FICTIT1005 : I
+ TRANSDUCER

LOAD |

Figure 2. Equivalent Circuit Used to Evaluate the Efficiency'

of the Transducer Acting as a Receiver

v3(t), the observed power delivered to the load in the re-
,

ceive mode can be calculated.

IV3|21 *

Pg = 5 Re[I3 3] = Re[ZSI
21Z3 12

The observed insertion loss is then simply the ratio of PR to

P. Similarly, the spectrum of the equivalent source voltageT
can be determined:

ZL (8)VR= (1 + g) V3

In order to determine the ideal insertion loss, the available

power generated by the transducer must be calculated. The

|

_9_



availatle power is the power which the transducer would de-

liver to a matched load. This is shown in' Figure 2B as a

fictitious matched Z*, the complex conjugate of Z . UnderL
these optimum loading conditions, the " observed" voltage can

be predicted:

ZL ZL yR (9)
3, =ZL + Z[ VR = 2Re(Z )L

Substituting the previous expression for V ,R

Z[ (ZS+Z)L
V3 (10)V3 ' ~~ ~2 Z RelZL]3

The power available to Zg is then

P;'t=hRe[I *xV3']=hRe (11)~3

Upon substitution of Equation (10) into (11):

(Z[ + Z )(ZL+Z)3 3
P , = pH ( ZL + Z[)(Z3 + Zj)g (12)

In other words, the available-power P' can be calculated from
the measured power PR if Z , the impedance of the transducer,L
is known. The available power is equal to the measured power

when the transducer impedance equals the output impedance,

Z , of the pulser circuit.3

It is now possible to evaluate the ideal insertion loss

and hence the electromechanical efficiency, n, of the trans-

ducer.

2 = _p'R_ (13)Insertion Loss = n
PT

where PT is defined by Equation (6) and P'g is defined byg

Equation (12). For some transducers, it is difficult to.

-10-
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determine ideal insertion loss because of numerical anomalies

which occur in the calculation of Ph. In these situations,

the simple ratiolof PR to PT must be used.

Other means for characterizing.the efficiency have been

proposed. For example, in a swept frequency sinusoidal mea-

surement (Erikson 1979) the relative loop sensitivity of the

transducer has been defined as the ratio of the observed

receive voltage to the loaded transmitter voltage at the

center frequency of the transducer. The information needed

for calculating relative loop sensitivity (and other indices

of transducer performance) are present in the proposed tran-

sient calibration technique and can be extracted with appro-

priate algebraic manipulation.

transmittervoltageVhcanbeFor example, the loaded

calculated from the ratio of the power spectral amplitudes of

V2 and V1

IVhl=IV2|/lVi l (14)

This normalization is necessary to simulate an unload trans-

mitter drive voltage that is frequency independent. The

relative pulse echo sensitivity, expressed in dB, is then

just

20 log (IV13) (15)
21

The value of S el is established at the bandwidth centerr

frequency.

The pulso echo sensitivity calculated in this way is a

function of the ultrasonic frequency, and so measurement of

useful transducer bandwidth, center frequency, and other per-

formance parameters can be based on this curve.

-11-



2.2 MEASUREMENT PROCEDURE

The basic block diagram of the system used to gather the

necessary data for transducer characterization is shown in

Figure 3. The pulser used at PNL consists of a pulse gener-

ator capable of producing a 50-volt pulse across a 50-ohm
load. A transient recorder with a high-impedance active

probe is used to record the transient waveforms, and a micro-
computer is used for control and the signal processing func-
tions described in the previous section.

U. T. INSTRUMENT - TRANSDUCER TEST
>

PULSER

M :
y,

Ys TRANSDUCER

Y REFERENCE
-

3
LOAD RM __3_

_. ; . .

._,

w

TRANSIENT --

RECORDER | |

| I

COMPUTER

Figure 3. Block Diagram of the System Used for the Evalu-
ation of the Electrical and Electromechanical
Properties of a Transducer

1

For the measurement procedure three different voltage.

waveforms are recorded experimentally. The first is shown in

Figure 4. It is a record of the drive voltage supplied by

the pulser into a known and well characterized load--(50 +
j0) ohms. The pulse width is determined by the operating
frequency of the transducer, and the polarity is chosen to

,

-12-
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,

maintain the convention used in most ultrasonic. test equip-

ment. The second waveform recorded is shown in Figure 5. It

is obtained by removing the reference load and applying the

unknown load; the transducer, loaded by an appropriate mech-

anical load. For immersion transducers, the appropriate load

is water, for contact transducers--metal, and for angled beam

100

_

2
-

[e, -

D - (' '8 0 J
<
$ ->

-

~

i , ! , t ! ,

0 2 4 6 8 10

TIME (MICR0 SECONDS)

Waveform [V (t)] Measured with the Unknown LoadFigure 5. 2
Presented by the Transducer in Place
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transducers--plastic wedge material. Calculation of the

complex spectra (real and imaginary parts) and application of
Equiilon (5) allows the complex impedance of the transducer
element to be determined. The results of this procedure are

shown in Figure 6. This particular transducer was induc-

tively tuned--the reactance is positive below the operating
frequency, and the magnitude of the impedance goes to zero at
the low frequencies. In the time domain, tuning manifests

itself as an inductive overshoot following the turn off of

the drive pulse. The power delivered to the transducer is

calculated with Equation (G) and is shown in Figure 7.

The third waveform recorded is that of a receive echo
obtained from a large specular reflector. For nonfocused,

immersion transducers a flat, smooth glass block, not smaller

than 3 in, by 3 in. (75 mm by 75 mm) by 1-in. (25-mm) thick
is used. This reflector is placed 2 in. ( 50 mm) from the

face of the transducer. (Ideally, the reflector is placed at
2the_near to far field transition (a /A) for the transducer

i being tested. However, this is impractical for many types of

immersion units. Consequently, the lesser distance, either 2
.

in. (50 mm) or the near-far field transition, is chosen.

This compromise appears to work well with a wide variety of
transducer diameters and frequencies.) For focused, immer-

.

sion transducers, a flat glass block located at the focal

| plane is used as the specular reflector. For normal (straight)

i
beam contact transducers, the back surface echo from a 2-in.-

'

(50-mm-) thick rolled aluminum block is used as the reflec-
! tor. For angled-beam, contact transducers the corner re- ,

flection from a 900 corner in a 2-in.- (100-mm-) thick rolled
i aluminum block is used as the perfect reflector. Figure 8

shows the results of such a measurement. Panel A) shows the
time domain waveform and panel B) shows the relative pulse

echo sensitivity. Figure 9 shows the measured and ideal

i

! -14-
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insertion loss expressed in decibels after application of the

analysis presented in the previous section.

This particular transducer was designed to produce a

45 vertically polarized shear wave in steel, through the,

use of a plastic shoe. This unit was characterized with the

plastic shoe in place using the corner reflection in the

aluminum test block. It is essential to characterize angled-

beam transducers with the plastic shoe in place because many

transducers of this design employ " matching layers" on the

face of the piezoelectric elements which are specifically

designed to operate into plastic.

2.3 BEAM PATTERN MAPPING

The mapping of the ultrasonic field pattern produced by

a transducer is also important for complete performance eval-

uation. For immersion transducers, such beam pattern mapping

is usually accomplished in a water tank by scanning a point-

like receiver or reflector through the ultrasonic beam and

recording the transmitted or reflected signal (Papadakis

-17-



1977; Posakony 1975). For transducers meant to be used in
contact with metal, i.e., contact or angled-beam transducers,

beam mapping procedures have been developed using point-like
reflectors within the metal test block and also using small,

noncontacting electromagnetic transducers (EMATs) to map the
ultrasonic field within the metal part (Wuetenberg 1970,

1979).

The scanning EMAT technique has been implemented at PNL
to map the sound field produced in metal by 45-degree and 60-
degree, shear wave transducers. Figure 10 shows schematic-

ally the test block now in use. The block is made of A533

steel and has been machined to have a flat top surface with

angled sides. The angled side surfaces were machined at

TRANSDUCER SOUND FIELD PROFILING

EMAT RECEIVER

/

\ ys'"Y

,

Figure 10. Calibration Block Used to Map the Sound Field
Produced by Angled Beam Transducers in Metals
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angles of 30 and 45 respectively, with respect to verti-,

cal. These angles were chosen so that 60 and 45 shear wave

transducers would produce a sound field that would be inci-

dont at right angles upon the upper surface of the block. 13y

scanning the EMAT in a " raster" fashion over the top surface,
a two-dimensional profile of the transducer sound field pat-

tern is obtained. This procedure can be repeated for a num-

ber of different metal paths to more completely characterize

the beam spreading or focusing properties of the transducer

under test.

Figure 11 shows a block diagram of the electronics asso-

clated with this system. The ultrasonic and the scanner

SOUND FIELD PROFILING SYSTEM

| SCANNER |

6 E. At A.T.

B K

POLSER RF AMP
I I

DELAY GATE

i

RECTIFY
i

CONTROLLER

SAMPLE AND HOLD

I

TRG | AID

COMPUTER
'

PE

GRAPHICS

Figure 11. Block Diagram of the Electronics of the Sound
Field profiling System
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systems are basically separate systems which run independ-
ently and are simultaneously monitored by the computer. The

output of the ultrasonic system is a DC voltage which rep-
resents the amplitude of the ultrasonic pulse sensed by the

EMAT probe. The output of the scanner system is a train of

pulses which are derived from the pulses used to drive the
stepper motors of the scanner. These pulses act to trigger

the analog-to-digital converter. This scheme for data col-

lection works well as long as the ultrasonic repetition rate

is greater than the rate at which trigger pulses are sent to

the A/D converter. At present, measurements are made over a

2-in. by 2-in. (50-mm by 50-mm) aperture with one measurement
every 0.024 in. (0.6 mm). This results in the generation of

rearly 6900 data points for each beam profile. This data is

recorded on magnetic tape for permanent record and subsequent

re-display. Figure 12 is an example of this beam profile

2.0

| el 0 - -3dB
''

| MiH|-3 -6dB
_

r-
- .6 - -14dB

( B= =f 1.0 - |==|-14 --20dB
* :
=-._ --|.

0.5

1
? ' ' ' '0,0

l.0 0,0 1,0

_

_

- BEAM CONTOUR

l.0-INCH METAL PATH
_

' '
0.0

-1.0 -0.5 0.0 0.5 1.0

Figure 12. Example of the Output of the Sound Field Profiling
System
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data. A contour map is produced as well as two 1incar " scan

1ine" plots through the maximum of the contour map. The

original presentation of the beam profile data is done in

color with contour levels chosen as follows: 0 to -3 dB, -3

to -G dil, -6 to -14 dB, and -14 to -20 dB. Other contour

levels can be chosen when the data is re-displayed. The x

scan direction corresponds to 1ines of constant metal path

within the test block and the y scan direction corresponds to

lines with variable metal path (see Figure 10 for detail).

Figure 13 presents the results of measurements made

using two di f ferent 2.25-Milz transducers with a 1-in. metal

path distance. panel A of the figure shows the beam produced

by a 1/2-in. by 1/2-in. (12.5-mm by 12.5-mm) square trans-

ducer, and panel B shows the beam produced by a 1/2-in.

(12.5-mm) circular transducer. Figure 14 shows data taken

from these same transducers when the metal path is increased

to 3.0 inches.

3.0
.

2.5 - jg - f_L - 3
# g Ka=

[ i T
2.0 - 6_ ) - ( )

_ \ r

N}
w - =

1.5 -
~= -

^1.0
A) SQUARE ELEMENT B) ROUND ELEMENT

Figure 13. Comparison of Beam profiles produced by Different-
Shaped Transducers.
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Figure 11. Comparison of Beam Profiles Produced by Different-
Shaped Transducers

PNL has formulated a procedure for the evaluation of

dual-element search units. Since the overall transducer re-

sponse of a dual-element transducer depends upon the combined
beam patterns of the transmitting and receiving element, this

evaluation procedure must measure both beam patterns inde-

pendently and then combine them in an appropriate fashion.

The relative spatial pulse echo response (PPE) of the
dual-element search unit can be estimated by multiplication

of the independently measured beam patterns, P1 and p2:

|p2(x,y)l. (16)|pPE(x,y)| = |p1(x,y)| x

Because only the magnitudes of the field patterns are iaea-

sured, |PI| and Ip2|, no interference offects are produced by

forming this product. This seems to be a fair representation

of the combined beam pattern because the physical " fields"

from the two different transducers are not simultaneously

present and therefore cannot interfere with one another.
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This method of combining the two beams allows the spa-

tial response of the transducer to be estimated as if the

transducer had been scanned past a point-like reflector in

the metal. Figure 15 shows this pulse echo beam pattern near

the overlap region of the two beams, P1 2and P , and Figure 16

shows the beam pattern for a metal path of 3.0 inches. The
three plots shown in the horizontal scan lines are 1) indivi-

dual profile from the right element (dotted line), 2) indivi-

dual profile from the left element (dashed line), and 3)

multip1ied prof 11e (solid 1ine). The curves have been nor-

malized with respect to the multiplled profile. The 3-dB

beam width of the dual-element transducer is seen to in-

crease somewhat when the metal path distance is doubled;

2.5 g

( le il 0 - -3dB3,o ,_(
% |illllilllil -3 -6dB

f '~ - 'k s, iMi!|i![ -6 -14dB
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Figure 15. Sound Beam Profile Produced by a Dual-Element,
Angled Beam Transducer (metal path length: 1.5 in.;
operating frequency: 1.5 Milz)

-23-



4.0 ,,

i!
%

i
3.5 \. l < il 0 -3dB

_
\ E -3 - -6dBJ+-

N= =

'%g E -6 -14dB
'

=g
3.0 - |ggj.14 --20dBg -

3
~

d''k p
j

). -|)i
2.5 - /h =

_= . .,
=__+2-2 = .,

'

. - ---

./ /' ' ' ' ' ' '
2.0

l.0 - ,,, , s 0.0 1.0

\
'-

.,
- / \ DUAL BEAM CONTOUR

.\ 3.0-INCH METAL PATH/' i
/ *. \~

') ' -- - RIGHT ELEMENT_ , , , . - ,j ,,'\
*

" 7- --- LEFT ELEMENT~ -

0.0 ' I ,

-1.0 -0.5 0.0 0.5 1.0 PRODUCT

Figure 16. Sound Field Produced by a Dual-Element, Angled
Beam Transducer (metal path length: 3 in.;
operating frequency: 1.5 Mllz)

however it does not broaden as much as the beam patterns from
the individual elements. This behavior is similar to the

focusing properties observed with an axicon transducer
(Burckhardt, lloffman and Granchamp 1973). In general, the

multiplied beam that represents the two-way response of the
transducer appears sharper (i.e., more spatially compact)

,

than the single element sound field patterns. The multiplied

beam pattern is useful for understanding the observed pulse
echo response of these dual-element search units.
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3.0 RECEIVER-DISPLAY CHARACTERIZATION

The receiver-display portion of an ultrasonic test in-

strument is the second major component characterized. The

receiver is treated as a " Black Box" with an RF input port

and the scope screen or cha'rt recorder output at the output

port. This approach to receiver characterization allows only

total performance from a functional point of view to be eval-

uated. If a problem is indicated, a more detailed evaluation

would be necessary to isolate the problem to a particular

signal processing stage (e.g., detector, rf filter, video

ampl i f ier , etc.) within the instrument.

The overall measured properties of the receiver-display

subsystem include receiver bandwidth, linearity, noise level

referred to the input, and sensitivity referred to the input.

As described by the test results, these properties can vary

as the RF gain, video gain, RF filtering, and video filtering

of the instrument are changed.

3.1 MEASUREMENT SYSTEM

A semi-automated measurement system has been assembled

by pNL to facilitate the characterization of ultrasonic test

equipment. A block diagram of this system is shown in Figure

17.

The output pulse from the pulser section of the instru-

ment being tested provides the " clock" pulses for this sys-

tem. The limiter circuit / pulser combination providet a pulse

of fixed duration to the programmable oscillator. This pulse

"pate" the oscillator. A burst of RF, approxi-is used to

mately 10 mseroseconds long, is the input to the receiver

section of [ ele instrument under test. The time delay between

transmitter ,)utput and receiver input pulse is controlled by
the computer;, as is the amplitude and frequency of the oscil-

lator. By s$imul taneously varying the time delay and the
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Figure 17. Block Diagram of the Electronics Used to Charac-
terize the Performance of the Receiver-Display

oscillator frequency, a plot of the frequency response of the

tested instrument is displayed on the instrument's scope

screen. The 1inearity of the instrument can be evaluated in

a similar manner.

For instruments that provide no analog signal output,

the operator plays a critical role in the instrument evalu-

ation. Ile is required to manually make measurements from the
instrument scope screen and key them into the computer. For

instruments that provide an analog output, the A/D converter
can be used to totally automate the data collection process.

|
|
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3.2 INPUT NOISE AND INPUT SENSITIVITY MEASUREMENTS

The measurement of the input noise and sensitivity are

accomplished by the operator. The input noise recorded re-

fers to the amount of noise in microvolts RMS referred to the

input when the input is terminated into 50 ohms. This mea-

surement is generally made with the instrument at full gain.

The input noise is estimated using a simple measurement tech-

nique which requires only an oscilloscope (Franlin and flatley

1973; Gruchalla 1980). If the input noise is too high to

make this measurement at full gain, the gain is reduced to a

point where the noise can be measured. The quoted value of

input noise is normalized as if it had been measured at full
4

gain.

The input sensitivity of the receiver is defined as the

amount of signal in microvolts HMS required at the input of

the receiver, when the input-is terminated into 50 ohms, to

deflect the CRT trace to 50% of full scale. This measurement

is either made with the instrument operating at full gain or

else normalized to the full-gain condition.

3.3 MEASUREMENT RESULTS

In this section a series of measurements made upon the

receiver-display sections of two commercially available

I ultrasonic test instruments are presented. The purpose of

presenting these results is twofold: 1) to demonstrate how
the response of a single instrument is affected by changing

RF filtering and the video filtering of the instrument, and

2) to demonstrate the variation between different instruments

observed when nominally similar setup procedures have been

followed. Results are presented in terms of instrument fre-
'

quency response and linearity. The results are intentionally
~

presented in a manner that preserves the anonymity of the

instrument manufacturer.

'
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3.3.1 Frequency Response Measurnments

In Figure 18, the fr ';ency response as measured from a

commercially available instrument, Model 1, are shown. The

observed _ output (screen deflection) is plotted as a function

of the frequency of the input tone burst for a fixed input

amplitude. The three curves plotted in Figure 18 refer to

three different positions of the RF filter setting of the

instrument; 1.0, 2.25, and 5.0 MHz. The RF filter setting

appears to have two effects upon the instrument performance:
1) the setting determines the frequency of the peak of re-

ceiver response and 2) the setting changes the overall sensi-

tivity of the instrument. In Figure 19, the performance of

Model 1 for different filter settings (5.0, 10.0, and wide

band) is shown over a somewhat broader (0 to 20 MHz) fre-
quency range. Examination of Figures 18 and 19 indicate a

good correlation between the peak frequency of operation and
the indicated filter position for all settings except wide--

band. The wideband position exhibits a peak response at

approximately 2 MHz. The 10 MHz filter position appears to

provide a broader frequency response than the wideband posi-
tion. It should also be noted that for Model 1, the instru-

ment sensitivity is strongly affected by the RF filter posi-

tion. Several instruments cf this model were evaluated. The

results obtained are consistent on a unit to unit basis.
Figure 20 shows the results obtained from measurements

made upon a second commercially available ultrasonic test
instrument, Model 2. Measurements were made with the RF
filter of the instrument set at 1.0, 2.0, and 5.0 MHz. The

sensitivity of Model 2 does not appear to be strongly affected

by RF filter position. The frequency of maximum response,

however, does not appear to be well correlated with RF filter

position. Figure 21 shows the response of Model 2 over a

broader frequency range at two different RF filter positions;
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10 Mllz and broadband. The discontinuity in the response of

Model 2 on the 10-Milz filter position is noticeable and is a

reproducible feature of this instrument's performance. As

noted with Model 1, the 10-Milz filter position of Model 2

appears to provide a broader frequency response than the

broadband position. Again several instruments of this model

were evaluated to insure the test results were not unique to

a single instrument.

3.3.2 Linearity Measurements

Figure 22 presents the linearity as measured from Model

1. The observed output is plotted as a function of RF input

amplitude for a fixed tone burst center frequency of 2.25

Mil z . The three curves plotted in Figure 22 refer to three

different positions of the video filter in the receiver of

the instrument. The receiver is linear for two of the three

video filter positions, however, the third filter position

produces a limited or compressed output. Similar results for

Model 2 are presented in Figure 23. Measurements for Model 2

were made at 2.0 Mllz. The output amplitude of Model 2 is

seen to be linearly related to the input amplitude for all

video filter positions tested. The system gain (slope of

curve) appears to be affected somewhat by the video filter

position.
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4.0 PULSER CHARACTERIZATION

By far the most difficult portion of the ultrasonic test

system to characterize fully is the pulser or transmitter

su bsys t6iii. This difficulty arises because of the inherent

nonlinearity built into these circuits. Avalanche diodes and

silicon control rectifiers are commonly used by manufac-

turers, and these components are difficult to characterize

using simple linear circuit theory. Proper characterization

of these circuits requires a more general circuit theory that

is able to handle modest nonlinearities. Such an approach

would model the transmitter output " impedance" as a Volterra

Series and would allow the resistance and reactance of the

circuit as well as higher order impedance terms to be deter-

mined (Volterra 1959). This approach, while correct in the-

ory, was not implemented because the utility of the nonlinear

impedance information was not clear.

The procedure used by PNL to describe pulser performance

was to record the time domain voltage waveform produced across

two different, known electrical loads. From these measure-

ments the power spectral content of the drive pulses can be

derived as well as a Thevenin equivalent circuit for the

pulser. The equivalent circuit provides useful information

about the effective output impedance of the pulser. This

estimate of output impedance allows the efficiency of the

pulser to be estimated for a wide variety of transducer

loads.

' Figure 24 shows a block diagram of the present measure-

ment system. The sampling scope is used rather than a tran-

sient recorder because it can be used to record much faster

events. The two electrical loads are 50 ohms (from a stand-
ard terminator) and 500 ohms (the input impedance of the

high-voltage probe). Typical time domain signals are shown

in Figure 25A. The power spectra of the transmitted pulse
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Figure 24. Block Diagram of the System Used to Characterize
the Transmitter of Pulser

into these two reference loads is shown in Figure 25B. In

these plots the O dB refers to a 100-volt continuous wave

input. In other words, the electrical energy delivered by

the 300-volt transient electrical pulse into 50 ohms at 5 Milz

is equivalent to the energy delivered by a 5-Milz oscillator

running continuously at an amplitude of approximately 15

volts (-16 dB relative to 100 volts). From the observed

power spectra, as the electrical load which the pulser is

required to drive is decreased the high-frequency content of

the electrical drive pulse is not diminished as much as the

low-frequency content of the pulse. Both of the curves in

Figure 25 were taken with the internal damping control at its

minimum setting.

Figure 26 shows the effect of using a maximum value of

the internal damping adjustment (some instruments refer to

this setting as the minimum pulse length). In this case, the
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effect of the external load is minimal. Most of the electri-

cal pulse has been " shorted out" internally in the instru-

ment. As a result, a decrease in transmitter efficiency of

15 dB at 2.25 Milz into a 50-ohm resistive load is noted.

An estimate of the magnitude of the output impedance of

the pulser can be made using linear circuit theory. The

equivalent circuit assumed is similar to that shown in Figure

1; however Zg is replaced by a second reference load of (500
+ J0) ohms. Under these conditions, the output impedance of

the pulser can be calculated as:

2 - V )/(10V1 -V) (17)Z3 = 500(V 1 2

Because of the limitations of linear circuit theory,

only the magnitude of Z3 is displayed in Figure 27. The

output impedance is seen to be quite low and uniform when the

200

~

a

_1
3
8 100 -

a
t-

5 MINIMUM DAMPlNG

2
_

MAXIMUM DAMPING

~ ~~ _ _ _ _ , h - -- - ,- -- - -
- - -

0 2 4 6 8 10

FREQUENCY (MHz)

Figure 27. Calculated Output (Source) Impedance of the Pulser
Subsystem of Model 1 for Two Different Damping
Settings
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!.
j- instrument is used with a maximum value of the internal damp-

ing adjustment. With minimum damping, the output impedance
'

rises sharply at lower frequencies, indicating the capacitive
4

!' nature of this pulser circuit.

i This type of analysis (based upon linear circuit theory)
'

although not entirely proper, has been found to be of value

j for estimating output impedance and for making comparison of

different pulser units.j

.i

4,

.I

!
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S.0 DISCUSSION i.-

4 s

A series of measurement. techniques have been presented |
"

which are being used to quantify the overall performance

characteristics of ultrasonic test instruments. The instru-
|

ment was considered,as three subsystems--a transduceroor ;

'

search unit, a receiver-display,-and a pulser. The methods e

presented were chosen because.they provide information about#

I instrument performance. In addition, these methods lend

i themselves to automated or computerized data gathering'and
~

I analysis techniques. Simplified evaluation techniques for

use in the field are under investigation and-will be reported.

on at a later date. Measurements upon a number of commer- ;.

i

| cially available instruments were reported, and in the fol-

| lowing sections a discussion of the measurement methods is

|. presented. The minimum amount of information needed to eval-
;

j uate instrument performance is also discussed.
-

,

i
; 5.1 ULTRASONIC TRANSDUCER / SEARCH UNIT
;

; The ultrasonic transducer or search unit-is the most

| variable component of the ultrasonic test instrument. This

variability results from the.many different transducer de-
~

r

signs, construction techniques, and materials used in trans-'

i
'

ducer fabrication. The transducer is also susceptible to

j
mechanical damage, wear, and deterioration due to aging. For "

this reason, search units should be evaluated and character- |

ized as completely as is practical. This characterization

| should include an estimate of transducer 1) bandwidth or-
| frequency response, 2) insertion loss or loop sensitivity, 3)
I a-measure of the time domain response of the devices, 4)

electrical impedance, and 5) sound field profiles.

!
i Some measurement of efficiency is necessary for trans-
!

! ducer evaluation. Either insertion loss or relative pulse
!

echo sensitivity are adequate for this purpose. A loss of"

8
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efficiency is the clearest indication of transducer change or

malfunction. The shape of an efficiency versus frequency t

plot is also helpful for determining if the faulty transducer

has an electrical or a mechanical defect.
t

The time domain or impulse response of the transducer

should be measured under well controlled and reproducible

conditions. Single-cycle excitation from a 50-ohm signal

generator or a transient pulse from a square wave pulser are

: well suited to this purpose. The use of a high-voltage pul-

ser circuit from a standard ultrasonic test instrument, even

though this is the pulse that.will be used in an actual in-

; spection, can lead to results which are difficult to inter-
,

pret. This difficulty can be attributable to the variable

and unknown properties of the pulser circuit.

Measurement of the transducer impedance is a relatively

fast means for quickly screening transducers. This measure-

ment can be accomplished using the transient methods de-
.,

scribed in this document or by using conventional RF imped-

ance bridges. Ideally, the impedance of a transducer should

be resistive over the frequency range of operation. Evalu-

ation of transducer impedance is valuable because it can have

a marked influence on the pulser and receiver performance.

For example, it is difficult to drive a transducer if its
'

impedance is substantially lower than the output impedance of I

the pulser.

The mapping of sound-field profiles for a transducer

provides the definitive verification of the performance of an '

ultrasonic transducer. Such an evaluation allows beam shapes,

focal properties, sidelobe levels, etc. to be measured

directly rather than inferred.

,
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5.2 RECEIVER-DISPLAY CHARACTERIZATION

The receiver frequency response and linearity for a

limited number of instrument settings are presently being

determined. The input sensitivity and noise are also re-

corded. All of these measurements are made with the instru-
ment in the transmit / receive (pitch / catch) mode of operation.

These measurements are all considered essential for receiver
performance evaluation. Measurement of receiver-display

linearity for a variety of instrument filter settings has

revealed a number of receiver nonlinearities. It has also

been noted that the chart recorder output of the receiver

section does not identically track the video display of the

echo amplitude. This condition is especially true for low-

amplitude signals where it seems to be the source of instru-
ment nonlinearity.

Other useful measurements have been identified but not
yet implemented in this system. These measurements include:
1) frequency response and linearity in the pulse-echo mode,
2) input impedance, 3) dead time after transmit pulse satur-
ation, and 4) dead time after echo saturation.

A good receiver-display section should have a center
frequency which is well correlated with front panel settings.
The bandpass should be sufficient to incorporate the fre-
quency of the transducer. The instrument should be linear
and its sensitivity should not be strongly affected by filter

settings. Some degree of overlap in the bandpass for these
different filter settings would allow the use of transducers

with " nonstandard" operating frequencies.

5.3 PULSER

For characterization of the high-voltage pulser section

of an ultrasonic instrument, it is necessary to measure

either the time domain or frequency domain characteristics of

-44-
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the output pulse. These measurements should be carried out

with the pulser working into at least two known electrical

loads. By comparing the response of the pulser working into

two different loads, some insight is gained into the "effect-

ive" output impedance of the pulser circuit. This insight

can be gained from either a time domain or a' frequency domain

measurement. Standard, linear circuit theory is inadequate

for fully analyzing-the output impedance of the high-voltage-

pulser because of the many nonlinear elements in the pulser

circuit.

For maximum ultrasonic output from the transducer the

" ideal" pulser circuit should-have as low an output impedance

as is practical. In addition, controls which influence the

drive characteristics, such as pulse length, damping, and

amplitude, should be designed to be recorded so that measure-

ments can be reproduced at a later time.
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