TURNPIKE ROAD (RT. 9)

B4.1.1
WMY 80-149

November 4, 1980

```
United States Nuclear Regulatory Commission
Office of Inspection and Enforcement
Region I
6 3 1 \text { Park Avenue}
King of Prussia, Pennsylvania 19406
```

Attentior: Mr. Boyce H. Grier, Director

References: (1) License No. DPR-36 (Docket No. 50-309)
(2) USNRC Letter to MYAPC dated May 8, 1980; IE Bulletin No. 80-11
(3) MYAPC Letter to USNRC, dated June 30, 1980 (WMY 80-103)

Subject: Response to IE Bulletin 80-11: "Masonry Wall Design"
Dear Sir:
Your letter, Reference (2) identified a potential problem with the structural integrity of concrete masonry walls. Our letter, Reference (3) provided the information requested in Items 1, 2a, and 3 of the subject bulletin. Attached hereto is Maine Yankee's response to Item 2.b. which provides details regarding the function of the masonry walls, construction specifications, and the re-evaluation methodology.

Manpower requirement statistics have been requested in recent bulletins, and since the manpower expended in response to this bulletin has been significant, we have elected to provide the following estimates associated with this bulletin:

Manpower Requirements

Bulletin Response Corrective Actions

Hours
350 Manhours
500 沼的hours

It should be clearly understood that this information is not adequate to enable a value impact assessment. We beli.eve a determination of the safety improvement, as a result of this bulletin, would be necessary before the staff could perform an accurate value impact assessment.

> THIS DOCUMENT CONTAINS POOR QUALITY PAGES

We trust this information is satisfactory; however, should you require additional information, please contact us.

Very truly yours,
MAINE YANKEE ATOMIC POWER COMPANY

RHG/kab
COMMONWEALTH Or' MASSACHUSETTS)
)ss
COUNTY OF WORCESTER)
Then personally appeared before me, W. P. Johnson, who, being duly sworn, did state that he is a Vice President of Maine Yankee Atomic Electric Company, that he is duly authorized to execute and file the foregoing request in the name and on the behalf of Maine Yankee Atomic Electric Company, and that the statements therein are true to the best of his knowledge and belief.

Submittal of Information Required by IE Bulletin 80-11

Item 2.b.i: Refer to reference (a), Table 1 for the complete list of masonry walls in proximity to safety-related equipment.
3. Service Building, Switchgear Room El. 45'-6", Battery No. 1 \& 2 Area

The Battery No. $1 \& 2$ area is separated from the remainder of the switchgear room by three 12 -inch thick, hollow block walls. Refer to drawing $11550-F A-1 B$ for the relative location of these walls. The function of these walls is to act as a partition separating the battery room from the rest of the switchgear room. The south wall is $14^{\prime}-10^{\prime \prime}$ high and the west walls are approximately $12^{\prime}-6^{\prime \prime}$ high. The south wall is mortared to the bottom of the $2^{\prime}-0$ " thick roof slab while the west walls are mortared below one of the roofs 21 " wide concrete support beams. The walls are single wythe and essentially unreinforced. The blocks were purchased under Specification \#MYS-1469 (see Attachment \#2) and met ASTM C90 (Grade A) standards. Since prisms test records were not available, the compressive strength ($f^{\prime} m$) was assumed to equal 1350 psi in accordance with the 1979 Uniform Building Code Section 2404.D.3. The mortar strength used in any particular wall is not readily discernable from existing historical records particularly since the specificatio. calls for either Type M or Type N. Workers involved in supervising the construction of the block walls believe that the stror jer mortar (Type $M)$, was used in safety-related areas, and that Type N was used in the remaining ion-safety related areas. Since we could not document this belief, ve conservatively assumed that Type N was used throughout our analysis.

2. Service Building, Cable Tray Room El $35^{\prime}-0^{\prime \prime}$, Battery No. 3 \& 4 Area

The Battery No. $3 \& 4$ area is separated from the remainder of the Cable Tray Area by four, 12 -inch thick, hollow block walls. Refer to drawing $11550-\mathrm{FA}-1 \mathrm{~B}$ for the relative location of these walls. The furction of these walls is to act as a partition separating the battery room from the rest of the cable tray room. The north and south walls are $9^{\prime}-3^{\prime \prime}$ high and are mortared below the El. $45^{\prime}-6^{\prime \prime}$ siab. The west walls are $7^{\prime}-0^{\prime \prime}$ high and are mortared below a $30^{\prime \prime}$ wide concrete support beam. The walls are of single wythe construction, unreinforced and are constructed of the same materials as the battery room, discussed in item 1 .
3. Service Building, Cable Tray Area, El. 35'-0", Elevator Enclosure

Two 12-inch thick block walls separate the elevator from the Cable Tray Area. Refer to drawing $11550-\mathrm{FA}-1 \mathrm{~B}$ for layout of these walls. The function of these walls is to provide general occupational safety. Both walls are approximately $8^{\prime}-8^{\prime \prime}$ high and extend to the bottom of the El. $4^{\prime}-6^{\prime \prime}$ elevaior steel framing (W12, W14). The horizontal clear span lengths of the south and west walls are $7^{\prime}-10^{\prime \prime}$ and $9^{\prime}-4^{\prime \prime}$ respectively. The walls are unreinforced, single wythe, and are constructed of the same materials as the battery rooms.
4. Service/Turbine Building, El. $35^{\prime}-0^{\prime \prime}$, C-line Between Colo 7-8

A 12-inch thick, hollow block wall separates the unprotected cable tray area and the elevator frea the turbine buil ing. Refer to drawing $11550-\mathrm{FA}-1 \mathrm{~B}$ for the location of this wall. The function of this wall is to act as a partition dividing the cable tray area from the turbine building. The wall is $7^{\prime}-4^{\prime \prime}$ high and extends to the bottom of the El 45'-6" floor framing (W30). The wall is unreinforced, single wythe and is constructed of the same materials as the battery rooms.
5. Service Building, Control Room Bathroom Walls, El. 21'-0"

Two of the control room bathroom walls (south and east walls), are in proximity to the rear of the control panel. Refer to $11550-\mathrm{FA}-1 \mathrm{~A}$ for the layout of these walls. The function of these walls is to provide pr.vacy. The walls are ten feet high, free at the top and are constructed of eight inch thick hollow concrete block purchased and installed in accordance with Specification MYS-1469.
6. Service Building, Cable Tray Area, El. $35^{\prime}-0^{\prime \prime}$ \& $39^{\prime}-0^{\prime \prime}, ~ 7-1 i n e$

The south wall of the cable tray area is composed of $8^{\prime \prime}$ thick hollow block interrupted by the El. 39'-0" ventilation and air conditioning equipment room floor framing. Refer to drawing 11550-FA-1B, section $1-1$ for the location of these walls. The lower section of this wall is approximately fifteen inches high and is restrained at its top by a steel channel attached to the underside of a W27. The upper portion of this wall is approximately 32 inches high and is supported similarly to the lower section. The vertical joints at the columns are caulked in accordance with the specification. The function of this wall is to act as a partition separating the unprotected cable tray area from the ventilation ard air conditioning room.
7. Service Building, E1. $45^{\prime}-6^{\prime \prime}$, South Wall (7-line) Between E \& F Lines

This wall panel acts as a partition separating the unprotected switchgear area from the ventilation and air conditioning equipment room. Refer to $11550-F A-1 B$ for wall location. The wall is constructed of 12 -inch thick hollow block and is thirteen feet four inches high. It rests on the El. $45^{\prime}-6^{\prime \prime}$ slab and is supported at the top by a steel channel attached to the underside of a roof girder. The vertical joints at the columns are caulked. The wall is unreinforced and is constructed of the same materials as the battery rooms.
8. Primary Auxiliary Building, El. $36^{\prime}-0^{\prime \prime}$, Waste Gas Surge Drum Area

This removable block wall is constructed of 12 -inch thick solid blocks which are stacked without mortar in an "L-shaped" opening in the waste gas surge drum's $2^{\prime}-6$ ' thick concrete wall. Refer to drawing $11550-\mathrm{FA}-11 \mathrm{~A}$ for the location of this wall. The purpose of this wall is to provide an opening to allow for the possible replacement of equipment. It also provides radiation shielding for the waste gas surge drum. The "L-shaped" opening can be described as being two rectangles, one being $13^{\prime}-8^{\prime \prime}$ by $5^{\prime}-0^{\prime \prime}$ and the other being $3^{\prime}-0$ " by $4^{\prime}-8^{\prime \prime}$. As a
result of this bulletin, a deflection shield has been installed to prevent blocks from falling into the surge drum area.
9. Primary Auxiliary Building, El. $36^{\prime}-0^{\prime \prime}$, Charcoal Filter frea

The south and east block walls surroundine the non-nuclear safety class charcoal filters are the only multi-wythe block walls near safety-related equipment at Maine Yankee. The walls are eighteen inches thj.ck and are constructed of two eight inch blocks, fuily grouted, separated by a two inch grout center core. The walls are $12^{\prime}-0^{\prime \prime}$ high, free at the top, and surround the charcoal filters as shown on drawing 11550-FA-11A. The walls were grouted in accordance with the specification and are essentially unreinforced. Wall ties are mentioned in the specification as being No. 20 U.S. gage galvanized crimped steel $3 / 4-$ inch wide, but spacing was not detailed on the construction drawings. Inspection with an R-meter produced some readings but no readily discernable pattern, therefore, the wall was analyzed as unreinforced. The major function of these walls is to provide radiation shielding for the charcoal filters. In addition to its shielding function there is a pipe support anchored to the east wall at its intersection with the south wall. This support is a dead load hanger for the $2^{\prime \prime}$ diameter hydrogen purge line (incorrectly identified as $4^{\prime \prime}$ diameter in Reference (a). A $l^{\prime \prime}$ diameter degassifier vent cooler vent line is also attached to the same embedded plate as are two $2^{\prime \prime}$ diameter conduits.

Item 2.b.ii
The construction practices employed in the construction of Maine Yankee's block walls are discussed in detail in Specificatior. MYS-1469 under the heading of "Workmanship." These detailed instructions, coupled with our consultant's on-site engineering supervision, ensured block wall construction of high quality.

Item 2.1.iiia
In order to insure that safety-related systems in the proximity of block walls were not endangered by the collapse of the block walls, our re-evaluation effort used conservative load combinations to determine the wall's state of stress and conservative allowable stress criteria to accept these calculated stresses.

In general each wall panel was analyzed individually using working stress design. Analyzed loadings include dead, live, seismic inertia, seismic displacement, and the effects of attached safety and non-safety class equipment. In all cases, the controlling load combination was the combined effects of SSE inertia + SSE displacement. The typical analytical procedure follows.
a) Determine panel boundary conditions.
b) Calculate panel's fundamental frequency, f_{1}.
c) Select the pe acceleration from the appropriate curve in the frequency range between f_{1} and $f_{1} / 2$ to account for uncertainties in block properties. ARS curves at the top and bottom of the wall with 2% damping
were studied and the larger value was chosen.
d) Increase selected acceleration by a 1.3 factor to account for the effects of higher modes. Computer studies of wall panels similar in geometry to those being re-evaluated show first mode contributions of 99%; thus, an increase factor of 1.05 would be sufficient. We used the 1.3 factor for added conservatism.
e) Calculate stresses due to SSE seismic inertia.
f) Calculate stresses due to attached equipment (dead load and SSE inertia) and add them absolutely to those calculated in step (e).
g) Calculate stresses due to SSE displacements and add them absolutely to those calculated in step (f).
h) Compare total computed stress with ACI 531-79 allowables. ACI 531-79, "Building Code Requirements for Concrete Masonry Structures," is a widely used, and highly respected code nationwide. Its values of allowable stress are substantiated by testing done by the ACI and the NCMA (National Concrete Masonry Association). In general, the ACI allowable stresses have factors of safety of 3 to 4 over the applicable test results. Considering the abnormal severity of a SSE event these factors of safety could be reasonably reduced and an increase of 1.5 to 1.67 over the given ACI allowables taken. Although we feel that this increase is defendable we did not use it but rather chose to limit our SSE induced stresses to ACI allowables.
i) If computed stresses are less than ACI allowables, verify boundary assumptions and accept the wall as-is.
j) If computed stress is greater than the ACI allowables, determine if any technical specifications are affected, design and install required modifications to bring the panel within ACI allowables.

Due to mortar's relative weakness in tension perpendicular to the bed joint, the combination of SSE inertia and displacement of ten results in mid-span cracking for those walls whose aspect ratio result in their spanning vertically. When safety-related equipment is endangered only by the collapse of these cracked walls, a more detailed investigation of the effect of this cracking was undertaken. Based upon tests conducted by Gabrielson, Kaplan and Wilton (References $b, c, \& d$), it has been shown that confined wall panels exhibit a great degree of additional capacity and stability after initial cracking. This additional strength is due to the shallow arch action illustrated in Figures 1 and 2 of Attachment 3. In order for the wall to collapse out of plane, when confinement is provided top and bottom, either a shear or compression failure must occur in conjunction with the initiating tensile cracks. The full scale test program described in References b-d confirmed that confined block and brick walls did indeed undergo arch action and withstood pressure loadings as high as 19 psi, equivalent to about 34 g . These walls cracked in flexure but did not fail, and then withstood many cycles of reverse loadings with maximum equivalent to accelerations greater than 1 g . Considering these test results along with the field evidence cited by the authors it was decided to use the rigid arching analysis where the boundaries were appropriate (i.e., the battery room west walls). It was
decided to limit the peak bearing pressure on the face of the blocks to the ACI allowable of 0.33 f 'm (445 psi) which as mentioned previously has a built-in factor or safety of 3 to 4 . In actuality the peak compressive stress determined by our re-evaluation due to arch action was 74 psi or approximately .05 f 'm. Arch action was not used for walls which were not vertically confined or for wall with gaps at the top.

Item 2.b.iiib
The few major equipment loading (loadings greater than 100 pounds) were applied to the single wythe block walls by the use of through bolts and backing plates. The potential for block pullout and/or local shear failure was investigated and stresses were found to be well within ACI allowables.

The hydrogen purge line pipe support, mentioned in section 2.b.ii.9, is attached to the charcoal filters area's double wythe wall by six $1 / 2^{\prime \prime}$ diameter drilled in anchors. The total load on this support, dead + SSE, resulting from the $2^{\prime \prime}$ diameter purge line, the $1 "$ diameter vent line, and the two conduits is approximately 175 pounds. Local bolt loads and face block stresses were all well below allowables.

The double wythe wall surrounding the charcoal filters was analyzed assuming that shear transfer between the wythes would occur, and then the resulting collar joint stress was determined. The resulting SSE collar joint shear stress was 3.7 psi . Even though allowable stresses for collar joints are not contained in the ACI code this low value for the abnormal SSE loading appears quite conservative and was accepted on that basis.

References: (a) Response to IE Bulletin No. 80-11, "Masonry Wall Design" WMY 80-103
(b) Gabrielson, B. L., K. Kaplan, C. Wilton, "A Study of Arching in Non-Reinforced Masonry Walls" Report 748-1, Scientific Service, Inc., Redwood City , California, March, 1975.
(c) Gabrielson, B. L., Wilton, K. Kaplan, "Response of Arching Walls and Debris from Interior Walls Caused by Blast Loading," URS 7030-23, URS Research Co., San Mateo, California, February 1975.
(d) Gabrielson, B. L., C. Wilton, "Shock Tunnel Tests of Arched Wall Panels," URS 7030-19, URS Research Co., San Mateo, California, December 1974.

J.0.14. 11550 Kij-146?

SPECIFICATION FOR
CRFRPTS EIOCY AFD BETC: KICN
For.

MTH: U'
HISCAECT, MTV

J. J. No. 11550

N(3)-1462

> SPERIFICTTTC
> F:

$$
\begin{aligned}
& \text { FOT: }
\end{aligned}
$$

> WTSCASEE, NTI
> -:-

9Priv:2
Purnish, deliver, unlose, heul and erect the ooncrete and 115 woight ooborote block aceon? Wile for the hir Ionici hiomic Puwt Suilizi, of the Maise Iankee Atcilic Fover Con, ㅇ. at Wigeluille, Kinc.

SCOEE OF YOE:

The scope of work is show on the following drewine :

```
X11550-Fh-1A - Plem - Sh 1-Service ac:i Au:'liary BC1le" Azc
```



```
    <1153'ulh-50 - Eievator L::ilopure D-v's - Recotor Containece:.
        1155inPA-6 - DC:I F5* Dit's - E 1
```



```
11550-FA-10A - Floor and Roof Mane - Office BuildinE
1155U-FA-103 - Eevations and dall Sections - Uffice Buildinc
11550-FA-1OC - Misc. Dotalls - Sh 1 - Office Building
11550-FA-10D - Miec. Deteile - Sh 2 - Offioe Bu!lding
11550-FA-12h - Floor and Foof Plens - Pucl Bullding and RCA-jtoracg -
11550-FA-12U - Elevations - Fucl buildine and REN Storer'c
11550-FA-12u - Wmil Section and Misc. Lets - Fuel dulldine and RVii jtorare
STD-FA-1A - voor Frame Details
STD-FA-2A - jesh Deteila, Parapet & Flashing Details
STD-FA-6i: - Ladder Detai's
STU-FA-7A - Concrete Mesonry Walls
STD-FA-8i - Pressed Metal Door Frame Detalls
and auch other drawings as may hereafter be furnished or approved by the Engineers to explain the vork in gresier detail.
```


HOEN INCLUMETI

In addition to the furnishing and erection of the masonry walls, this specification covers furnishing and installing the following:

Wall ties

Control joints
Through-vall flashing
Hardvere eloth or other metal joint reinforcing
Calked joints
Loose lintels, sills and jambs
Strap anchors velded to the deams and solumns and extending into the masonry well

Materials to be furnished by others tut installed under this specifleation include the followinc:

Frames for doors, grilles, louvere, exheust fans, sesh, etc., required to be built into the masorry but which are not fastened to the structural steel frasinc and cirts

NGF. NO: INELUBE:
Others will orect all:
Conerete work
fincterwork
Tile walls or facinf: tile set on the block: rinish paintini:
J. O.No. 11550
4. $=146$

Whenever the letters ASTM are used herein, reforence is to The American Society for Testing and Materials, and in all cases of reference to their specification, the revision in effect at the date of the originel issue of the job specification shall apply.

N:V1aLj

Generel

The following materials shall be in accordance with the reouireaent: of ASTM Specification as noted below and anended berein:

Yortland Cement	C150 (Types I or III)
Apcracate for Masonry Morter	C144
Hydrated Lime for Masonry Purposes	C207 (Type S)
Hortar for Unit Masonry	C270 (Type M or N)
M.sonry Units	
Hollow Load Bearing Partitions and Walls	C90 (Grade A)
Hollow Nonload Bearing Partitions	C129
Solid Units	C145 (Grade B)
Aegregate for Masonry Grout	C404 (Size Yo.
Concrete Juilding Brick	C55 (Grade B)
M1scellaneous Iron	136
Reinforcement	1305 and 2.615 Grade 40
Wire for Reinforcement	182 (Gade Sk)
Brick	C62 (Grade Sk)

Concrete 3lock Masony Units

dil concrete block masonry units shall be of a fuallty at lecet equel to the local building code and the requirements of this specificstion.

Concrete blocks shall be steam cured. They shall be delivered to the building site in a dry condition and shall be protectad gainet vottinc prior to laying in the valls.

All units shall be furnished in the sises iruleated on the drawings. j; teinl units shall be provided as called for on the drawlnge or as required to form cuntrol joints, oorners, returns or to maintain the bons.

setoncy Cment

The use of propared manonry ommant or masonry cement mortar will not bermitiad without the writton apfroval of the Engineeri.
J.O.Ro. 11550
x $\mathrm{C}=146$

Me:on-y $\sin -1$

Whanry oand shell be uniforaly graded from coarst to fine with all of the material passing a No. 4 mesh sieve, and cot more thes 25 per cent pessing a No. 50, and not more than 5 per aent passing through a 100 mesh sieve.
at.
The vater used shall be clean and free from injurious amounts of 011, acid, alkalies, organic matter or other substances deleterious to concrete or morter. Drinking vater is generally acceptable.

AdFixtures

Admixtures, other than plasticisers, shall not be used without the specific approvel of the Bngineers.

Plasticisers such as "Omicron," as manufactured by the Master Yoilders Compary or "Hydrailite Flue," as manufactured by the A.C. Horn Company, sheill be added to Type M mortar. Plasticizers may be used for Type N mortar if found desirable for better workability.

Conerete for Filline of Voids

For filling cores of block and lintel blocks, pes gravel erout composed of 1 part portland cement, not more than $1 / 4$ part hydrated lime, 2 to 3 parts fine aggregate and 1 to 2 parts pea gravel shall be used. In Do case shall the sum of the fine and coarse aggregate exceed 4 times the sum of the separate volume of the cament and lime used.

Hell Tie:

wall ties shall be formed of not lighter than No, 20 U.S. gage gelvanized crimped steel, $3 / 4 \mathrm{in}$. Wide, or equei, as approved by the Engine Herduere Cloth

Hardvare oloth shall be $1 / 4 \mathrm{in}$. mesh, galvanised and out in strips 1 ir , nerrover then the concrets unite f 0 . which it is to be used.

Thexuzh-ved Fieohios
Phrouph-vall flashing shall be Wasco copper-fabric flashing, as manufectures by the American Cyanmald Compeny, Building Products ilvision, corsistisf of 3 os oopper sheet betweer two layors of asphalt saturated ottlo: fabric, or equal, as approved by the Enpineers.

Hyestis Cement or Csikine Compound

Where elastic cement or calking compound is apecified or ealler for on the drewinfs, in connection with masonry work, it shell de ae manufactured by the Plastic Products Compeny, Jersey City, New Jeriay, or arual, as approved by the Encineers.

Storace of Cement

Coment stored at the job shall be kept in a waterticht bulidinf and ke; t off the ground. Tarpsulin covers shall not be considered suituble proteztion. Cenent which has caked shall not be used.

2DPY N SHTF

beyine

All masonry walls shall be true and plumb and bullt to the dimension indicated on the pians. Such special units shall be provided and ple:, es mey be required to form all corners, returns, jambs and offeets an' : intsin the proper bond. Where no tond or pattern is indicated the welle shell be laid in straight uniform courses with the units in the courses above recularly oreaking foints with the courses below. All workzanship aball be of the lifehest frade.

No masonry units shall be laid in freezing weather, unless they are verm and dry and the proper protection and heat provided.

All mortar shall be mixed not less then 3 min in a drum type aixer. N1 morter shell be used within 1 hr fror the time coment is added to the mix. Rotecpering will not be permitted. No antifreeze liquid, salts or other subetences shall bo used in mortar to lover the freezing point.

It is recognized that variations in the characteristics of various accef taile inprediente, including building sands, ofter. have considerafis efic: upon the workability and suitability of mortar mixes. The proportions cf th. $\quad-1 x$ mey de modified when the masonry work gots under wey and the actual inftetlente are at hend and can be tried out. No permission to modify the witt ralx will be granted by the Engineers in advance of the ectuci cielivery to the jou and trial there of the mortar ingrediente.

Uniess othervise indicated on the drawinge, intels adove openinfs on I. De ecerited ainimus of 8 in , beyond each oide of the openitif for
 thr opening. At door and other openinger in interior partitione wher, at presast conerete or reinforect, poutel inntel ic indicated on the drakinfs, herdupe cioth extending 2 ft beyond each face of the openinf she.1 w piane: in the firat and seoond ourse above the opening. Hardwtre ciots. oxtan'sn ; ft veyond ench face of the opentinf ahall be place! in the firct and sncont couran undow all openinpo in intariur partitiona.

Mortar joints shall be $3 / 8 \mathrm{in}$. thick with full mortar coverare on vcrificul and horisontul face shells. Vertical joints shall be shoved tight. Courses shall be lald cut so thrt they occur at the undersides of sills end innteis. Where the top of the masonry is not shown to bo froentanding, it beest abovi. shere masonry is built into or around stacel colunn. "Eisetite" floerjoerd, as manurectured by Philip Carey M.f. Company, or equi i, 8 inill be pleced areinst all scotions of tho wobs and flances of the steul colu-ns in coniset with the masonry to reduce the risk of expansion arecks in the meson゙j.

Mortar joints on all masonry wells shell be struck off flush with v. 11 surface. Joints exposed to the vesther shell be struck flush with wall surface and when partially set shall be compressed and compacted with a pointing tool to form a concave joint as approved by the Engineers.

211 joints on the inside face of exterior walls and ooth faces of perifitions shall be struck and neatly tooled to give a flat, smooth surface.

Joints between masonry and door, sash or other frames around openings in masonry work shall be pointed with calking and pointing compound. Pointing shall be fircly forced into the joints and neatly finished.

Work reouired to be bilit in with the masonry work, includinf steel work, anchors, vall plucs, and other accessories shall be built in as the work Frogresses. Unlees otherwise reouired by the design, all spaces arouno built vork shall be completely and solidiy filled with masonry and the spaces be wee the masonry work and stoel work vell filled with zortar.

Bearing plates, intels and similar steel members shall oe set and solidly vedded in mortar in their desimated positions.
rockets, chases, recesses and other oreaks in mesonry work shell oc constructed where and as how on the drawings or in accordance with instruct piven prior to the laying of the units. pockets and other openings in mesonry work, formed for the conceslment of other work, shall be elosed with maconry af er such other work has been installed and when directed.

All well flashing ahnll ve built in with the masonry work and shall ∞ installed in strict accordance with the manufacturer's instructions. iars shell ve made at leont 6 in , and ahmil un sealed between layers and over the to; with marifc. When set in joints they shail bo set in morter anci the un!ts aoove ohnill tie bonded in mortar to rive the mortar joint the same thickncis: a* other jointa in the adjucent unitio.

Keplew for flashing, whare ahnum or directed, shall be rakej out. $11 / 2 \mathrm{Im}$. doc; .

Attantion is onllet to the furt that tipht joints arn atioulutel: necerary for exterior will in orior to menure whtertifith extarior mneont waibe, ded joints munt be full non! lavel and not furrownt. Head jolill. should de carefully buttarad to flll the jointa tiphtly. If all the jolfit: in the expowed facon of the walle arn tifhlily filled, there is liltile analatilty of leakare.

Where interior concrete manonry partitions meet other interior partitions or exterior valle, a masonry bond or the equivalent in approved ental ties shall ive provided.

When units are indicated an filled on the drawincs, the frout ohall be vell tamped so that all voids are sumplotoly filled with mortar. Reinforcesent shall be provided as requircit.

Concrete Hlofk

The first course of concrete blocks shall be laid in a full bed of mortar and vertical end joints slushed full of morter. On top of the first course and each succeeding course of exterior walls only, places contimious layer of hardware eloth, lapping end joints not less than 1 in . Hlaee a full bed of mortar on top of the hardware cloth and after buttering end ribs, olocks shall be set and shoved to position against precedine block, and vertical joints shall be sluched full of mortar to eliminate cerities between blocks. Hardware cloth shall not pess through vertical control joints. Furrowing of the mortar bed will not be permitted.

Indiscriminate vetting of concrete block shall not be permitted. Biock and wather conditions at the time of layinc shall determine whether the block shall be wetted or not. If conditions are such that the block will drav excessive amounts of water from the mortar, the block shall be vetted. It is preferable for block to be wetted 3 to $2 / \mathrm{hr}$ prior to laying. In no ease shall block be laid with water standing on the surface.

Brick

The office building and gate house brick shall be solid Coral Jlend A as manufactured oy the Belden Jrick Company, Canton, Ohio, or aryroved coual. drick ehall ecnform to ASTM-C6? Gracie $5 d$ and shall have an initial rate of weter sbsorption not exceedinf, $2 C$ c per min per 30 so in . With brick of this type no wetting shall be done prior to layinc.

Except where othervise shown or spacifled, orick work shall be lald in etretcher courses with every sixth coursp a bondinf course consistinf. of headers. The bonding shall extend throufh the wall from face to face. Running: bond or other brick work which is impracticable to bond with brick headers, ahall be bonded to backine with wall tins. Ties chall be spaced no more than 16 in , vertically and 24 in , horizonthily. Ties shall le ralvanized anc of - type epproves by the Encineers. Tine the 11 nxtend to $1 / 2 \mathrm{in}$. from the faze of walle and shall extend at leact 4 in , Luto the thekinf wall.

Aequetice concrete duusy

All soountic ooncrete block whnll un. 6 In . Suandulox Type A ar manufacturen by the rroudfnot Cumpeny, In of Graninwloh, Connecticut. They theld meet the current ATITM C-90 requirnmenter for "Hinl low Lond - denrdif Mesonry Units."

Soundblox units shall be laid in running bond with the open side of the cavities facine downvard. The slots shall be exposed toward the trans-- former. Care shall be taken to insure that the slots are kept free of morter or debris above the mortar joints. Otherwise acoustic block shall be subject to the eseg recuirecients as concrete block.

Heterproofing

The sxterior face of all concrete block exterior walls except acoustic concrete block walls shall be waterproofed.

Waterproofing shall be a surface treatment of two coats of a silicone type colorless vaterproofing such as Daracone, as manufactured by the Devey and Alry Chemical Division of W. R. Grace \& Co., or equal, as approved by the Bngineers. Waterproofing shall be applied in strict accordance with the路rufecturer's instructione.

Pretertion of Masoz:

Masonry shall at all times be protected from damage by the westher and by other work. Special precaution shall be takin to prevent the freezing of mortar. Nasonry vork obali be covered by boards, tarpaulins, or waterproof paper as directed by the Bagineers, where necessary, to prevent disfiguration caused by rain, drippings from mortar, or cement, or damage from other classes of work.

Clesing of Masony:

011 masonry work shall be cleaned at the completion of the work. All mortar droppings, dirt and stains caused by the masonry work shell be renoved, not only from the masonry surfaces, but also from all materials adiacent to mesonry which may have been spotted or stained by masonry erection. A dilute solution of rariatic acid and water mey be used to clean masonry urite. dire orushes may be used on concrete masonry units.

Paineinc

Others will paint all surfaces of structural steel framing and acollaneous iromwork which are in contact with masonry and are not accessivle after erection with one good cost of "Valdura" asphait paint, ac amufactured by American-Marietta Company, or equal, as approved by the Eipinarys, in addition to the shop cost before being enclosed in mesonry wrk. Whould any steel framine or iron work be covered before the apfilication of the peini, the manonry work shall de removed and replaced.

14115-15 Work

Yraree, intols and sils shall be oarsfully set, true to line, plus', ant level on full bad of morter, and they, alonp with donr bucks ant other oulit-in vork, shell be mantained in thelr proper pooition and no braces or tapen shall de removed from them untll they are asourely upported and fastened by the manonry.

cortel Joint:

Control joints shall be provided avery 50 ft for exterior minoriy walls and every 25 ft for interior masonry walls. No reinforcine or herdurpe eloth shall pass throuph control joints. Repid Control Joint ar merufectured by Dur-0-Witl rojucts Ine. of Syrecuse, New York, or approved ectuil, shs 11 de installes at all control jointe. The joints shall be calke with compound colored to metch adjacent mortar joints.

PREMS CONCFE E SHLLS

Menufacture

All precast concrete sills used in this work shall of the prodiact of a maufacturer having capacity and facilities for furnishinf the cusilty, sises and Guantities of cast stone required, and whose producte have oeen previously used and exposed to the weather whth satisfactory results for a period of not less than five years.

611 precast concrete shall preferably be cast in sand molds, out other methods of manufacture may be used, subject to the approval of the Bngineers. All precast concrete shall be well cured and kept moist for at least two veaks (six weeks, if possible) after manufacture and shall de protected from too rapid drying out and from freezing. Other methods of curing asy be used if approved by the Engineerz. Precautions shell de taken in the curing to prevent the formation of surface hair cracks.

No material shall be set. in plave until it has attained the ace of at least three veeks, and under no circunstances shall any precest concrete be set in place before it hes attained the strencth hereinefter specified.

All precact concrete shell be suitably reinforced with metel reinforcement, whother or not called fur on the drawine. This reinforcencht shell be suificient to care for the weight of the material during store, traneit, and handline before orection, and for the veight of the precest conerete and superimposec loade after erection in the building. Sufficie:it reinforce mant ohell De provided to prevent shrinkege cracks. Reinforcen - ctintif for on the dravinf:s wist be provided. Not less than four No. 3 rods shall of ured in each pince, with No. 9 wire ties 12 in. on center. Keinforcemot shall not be aplices.
d11 procant concrate membern shall conform to the etze, drintl and profllee ahow on the apfroved dravinfs, excopt that n tolere., fi.... $1 / 8$ in. will be allow 1 . Any member whone dimensions exceed this toin.....
 ovan without warja or bulpec, and all adpu: shall be sharp and trul? for: , is broketi, chipjej or ohecked material will he accepted.

N1l exterior sill shall be provided with a groove drip on the underside, unless othervise specified, and all members having exposed horisontal surfaces shall be finished with a vash on top. Reglets, reoater, alots, otc, shell be provided as required for setting vindows, and as Indioated on the drawirgs to allow for the installation of the work of other contractors in setting and seouring their work to or in connection with the precast ooncrete nembers.

The alnimum average oompressive atrength of precast concrete unita at the age of 28 days shall be 5,000 psi and the average absorption at the age of 28 days shall be not less than 3 and not more than 7 per cent of veter by dry veight of the specimen.

The color and texture of the finish shall match that of Indians Dolithic limestone.

Care shall be taken during shipping and handiing to avoid chipping of corners and edces, soiling and otherwise marring or disooloring the surfaces to be exposed. The precast members shall be properly protected during transit. Any pieces which are broken or damaged at the time of delivery shall be rejected and replaced.

Satitine Precast Concrete Sills

011 beds shall be accurately dressed and no concave surfaces will be peraitted. Each precast concrete mamber shall rest on a full bed of mortar in sufficient amount to fill out to the edges of the piece on all sides.

All bed and vertical joints shall be of a maximum width of $3 / 8 \mathrm{in}$., except where otherwise indicated.

All anchors and ties required for the proper anchorage of trim shell be furnisbed and set.

The ropairing of chipped or damaged members will not be permitted.
Mortar for setting precast concrete sills and lintels shall conform In all raspects to the mortar specified for masonry.

Through-wall flashing extending 6 in , beyond sach face of the openine shall be inetalled under all precast conerete sills.
dhere jointe occur on top of precast concrets sills, the uprer portion of tha joint shall be filled with olactic calking compound of the su-n color as the mortar joints. The joints shall be fllled siliphtly aoove the surface to allow for slump, and the materisl applied with a gun.
J.0.Kio. 11550
$\mathrm{MO}-14 \mathrm{O}^{\text {? }}$

All exposed faces of stones after cleaning shall be treated with two oonts of ellicone type coloriess ilquid vatarproofing of a brand approver - by the Enctineors. The applicstion of this vaterproofing must not chance the color or genersl appearance of the stone treete?.

Fig. 1. Sketch Illustrating the Oifferences in Hotion Between Rigid and Gapoed Arching.

Fig. 2. Free Body Olagrems shourng Forces in eigid and sapped Arehing.

PRINTS

$$
\begin{aligned}
& 11550-F A-1 B \\
& 11550-F A-1 A \\
& 11550-F A-11 A
\end{aligned}
$$

