

RECT NOV 115 1980 DOCUMENT NO. 81A0040 REV.

PAGE ______0F ____29

SEISMIC AND STRUCTURAL ANALYSIS

OF THE GENOA 3 STACK

USING THE NRC SITE-SPECIFIC GROUND RESPONSE SPECTRA

PREPARED FOR

DAIRYLAND POWER COOPERATIVE

Project Application	Precared By K. E. Kumal, T. Thank	Date
5101	R. E. Rumpf / T. Strad	11/20/80
	APPROVALS	
TITLE/DEPT.	SIGNATURE	DATE
truct. Analysis. Manager	total thesain	11-25-80
roject Manager	RA Milos	11-25-80
.P. Engineering	a.A. Yoli	11-25-80
). A. Manager	V. J. Potent	11-25-80
12080495		

.

DOCUMENT NO. _____81A0040

PAGE _____ 29

REV. NO.	DATE	PAGE NO.	DESCRIPTION	APPROVAL
			F. A.	
			「「「「「「「「」」」」、「「」」、「「」」、「」、「」、「」、「」、「」、「」	
		-		
				891
	(S. 12)			
	1.1			
-				
		-		

	DOCUMENT NO.		81A0040		
Π	NUCLEAR ENERGY SERVICES, INC.	PAGE .	3	OF_	29
	TABLE OF CONTENTS				
		Pag	e		
	SUMMARY	4			
	BACKGROUND INFORMATION	4			
e. 1	DESCRIPTION OF STACK	4			
	APPLICABLE CODES, STANDARDS AND SPECIFICATION	S 7			
,	LOADS AND LOADING COMBINATIONS	8			
ĸ.,	ANALYTICAL PROCEDURES	10			
	6.1 Seismic Analysis	10			
	6.1.1 Mathematical Model	10			
	6.1.2 Foundation Spring Stiffness	10			
	6.1.3 Eigenvalue Analysis	16			
	6.1.4 Dynamic (Seismic) Load Analysis	16			
	6.2 Structural Analysis	19			
•	ACCEPTANCE CRITERIA	21			
	RESULTS OF ANALYSIS AND CONCLUSIONS	22			
	REFERENCES	27			
	9.1 Cited References	27			
	9.2 General References	28			
PE	PENDICES	20			
	A Stack Analysis Calculations	27			
	B Foundation Analysis Calculations				
	LIST OF FIGURES				
	3.1 Schematic Sketch of Genoa 3 Stack	6			
	5.1 LACBWR Site-Specific Response Spectra	9			
	6.1 Mathematical Model of Genoa 3 Stack	11			
	6.2 Effect of Variation of Soil Properties on				
	Structural Response	13			
	6.5 Soli Spring Constants	15			
	8.4 Cannon's Solutions	20			
	s.i Summary of Seismic/Structural Evaluation(Moment)	24			
	LIST OF TABLES				
	6.1 Natural Frequencies of Vibration	12			
	6.2 Genoa 3 Stack Properties	14			
	8.1 Summary of Seismic/Structural Evaluation (Moment)	25			
	8.2 Summary of Seismic/Structural Evaluation (Shear)	26			

81A0040 DOCUMENT NO.

nes NUCLEAR ENERGY SERVICES, INC.

PAGE _____ 0F__ 29

1. SUMMARY

This report, prepared for Dairyland Power Cooperative (DPC), presents the results of the seismic/structural analysis of the GENOA 3 stack using the NRC site-specific ground response spectral for the Safe Shutdown Earthquake Event (SSE).

Linear seismic analysis, using the site specific spectra and modal superposition, was used to determine the response of the GENOA 3 stack for the SSE Event. Soil structure interaction effects were included using the information provided by Dames & Moore.² The foundation springs reflect the updated information of the most recent boring program. The seismic response of the stack is compared to the load carrying capacities of the stack at corresponding elevations. From the results of the analysis, it has been concluded that under an SSE seismic event, the GENOA 3 stack will experience a failure 150 to 200 feet from its top. The surviving 300 to 350 feet of the stack will remain upright and attached to its foundation mat. Since the GENOA 3 stack is located approximately 400 feet from the LACBWR Reactor Containment Building and other safety related structures, the failed section of the stack should not impact on these structures.

2. BACKGROUND INFORMATION

In response to recent NRC questions Dairyland Power Cooperative (DPC) requested Nuclear Energy Services (NES) to analyze the GENOA 3 stack. This analysis was made using the most recent soils data from Dames & Moore, most recent design codes, current NRC Regulatory Guides and Standard Review Plans, and the recently established site specific ground spectra. Investigation of the following variables was made: soil properties, cracked, and uncracked section properties of the concrete. The results are presented within.

3. DESCRIPTION OF STACK

The GENOA 3 stack is a 500 foot high, tapered, reinforced concrete chimney with an independent steel liner. The outside diameter at the base is 38.198 feet with a wall thickness of 24 inches; the stack tapers to the top diameter of 17.42 feet with a wall thickness of 7 inches. The independent steel liner has an inside diameter of 15.25 feet

		8140020
DOCUMENT	NO.	01A0340

1125

PAGE _____ 5 ____ 29

for most of its height, bells out at its base and is supported on a concrete pedestal. Both the stack and its liner are founded on a 75 foot reinforced concrete octagonal mat. The foundation mat varies from 7 feet to 3'6" in depth and is directly supported by the soil (see Figure 3.1).³

DOCUMENT NO.

81A0040

NUCLEAR ENERGY SERVICES, INC.

nes

PAGE 7 0F 29

4. APPLICABLE CODES, STANDARDS AND SPECIFICATIONS

The following codes of practice and regulatory guides have been used in the analysis of the GENOA 3 Stack Analysis.

- Specification For the Design and Construction of Reinforced Concrete Chimneys (ACI-307-79), American Concrete Institute, Detroit, Michigan, 1979.
- Building Code Requirements for Reinforced Concrete (ACI 318-77), American Concrete Institute, Detroit, Michigan, 1977.
- USNRC Regulatory Guide 1.61, "Damping Values for Seismic Design of Nuclear Power Plants", October, 1973.
- USNRC Regulatory Guide 1.92, "Combination of Modes and Spatial Components in Seismic Response Analysis", Rev. 1, February, 1976.
- USNRC Regulatory Guide 1.60, "Design Response Spectra for Seismic Design of Nuclear Power Plants", Rev. 1, December, 1973.
- 6. Uniform Building Code, 1979 Edition.

DOCUMENT NO.

PAGE 8

81A0040

NUCLEAR ENERGY SERVICES, INC.

5. LOADS AND LOADING COMBINATIONS

The seismic lateral inertia loading on the coupled model of the stack and its foundations is in the form of the ground acceleration response spectra given in Reference 1. The free field ground response spectrum (Figure 5.1) for the Safe Shutdown Earthquake for 5 percent structural damping was modified to 7 percent and used in the seismic analysis. (See USNRC Reg. Guide 1.61).

In addition to the seismic inertia loading, the dead loads and their resulting moments have also been included in the analysis. The following load combination equation was used in evaluating the adequacy of the stacks to withstand a seismic event.

Where:

nes

- D = Dead loads and their resulting moments
- E = Loads and moments generated by the Safe Shutdown Earthquake
- U = Section strength required to resist design loads and based on ultimate strength design methods described in ACI 318-77 Code.

The design loads from this load case were assumed to be resisted by the ultimate section capacities of the stack and its mat foundation.

DOCUMENT NO. 81A0040

PAGE 10 OF 29

6. ANALYTICAL PROCEDURES

6.1 SEISMIC ANALYSIS

nes

6.1.1 Mathematical Model

In order to perform the seismic analysis, the stack is mathematically modeled as an assembly of elastic-structural elements interconnected at discrete nodal points. The three dimensional, multidegree of freedom model of the stack is attached to the ground by means of foundation springs, representing the deformations of the soil under the stack foundation. Lateral, as well as rocking springs, have been provided under the GENOA 3 stack mathematical model (Figure 6.1) to account for the shear and vertical deformation of the soil under the GENOA 3 stack foundation. To account for the variation in the soil properties and to evaluate the effect of changing the foundation springs were varied using information supplied by Dames and Moore. The frequencies found using this data is shown in Table 6.1. The effect of the variation can be seen in Figure 6.2.

The distributed mass of the stack is lumped at the system nodal points. Each mass represents the tributory weight of the stack walls above and below the nodal point. Masses are lumped so that the lumped mass, multidegree of freedom model represents the dynamic characteristics of the stack. In order to reduce the number of dynamic degrees of freedom, only translational degrees-of-freedom are considered at each mass point. (The masses associated with the rotational degrees-of-freedom are set to zero). The physical properties used in the model are given in Table 6.2.

6.1.2 Foundation Spring Stiffness

The stiffness of the lateral and rocking springs representing the shear and vertical deformation of the soil beneath the foundation mat are obtained using the equations shown in Figure 6.3. These equations are taken from Reference 4.

MATHEMATICAL MODEL OF GENOA 3 STACK

DOCUMENT NO. 81A0040

PAGE 12 OF 29

1125 NUCLEAR ENERGY SEF /ICES, INC.

1

TABLE 6.1

NATURAL FREQUENCIES OF VIBRATION - GENOA 3 STACK

		$\frac{Model \ l}{G = 1000 \ ksf}$ Softer	Model 2 G = 3000 ksf Stiffer
Mode No.	Modal Direction	Foundation Spring	Foundation Spring
1	X ₂	0.363 CPS	0.388 CPS
2	x	0.363	0.388
3	X ₂	1.349	1.487
4	x,	1.349	1.487
5	X ₂	2.976	3.235
6	x ₁	2.976	3.235
7	X ₃	3.497	4.710
8	X ₂	4.67	5.561
9	x	4.67	5.561
10	x ₂	6.124	8.138
11	x,	6.124	8.138

DOCUMENT NO. _____81A0040

PAGE ______ 0F____29

1125 NUCLEAR ENERGY SERVICES, INC.

.e. 1

TABLE 6.2

GENOA 3 STACK PROPERTIES

Node No.	Outside Diameter (in)	Concrete Wall Thickness (in)	Area Concrete (in ²)	Area Steel (in²)	Steel Ratio	Dead Weight (kips)
		7.0				
	211.0	7.0	11.07.10	11.60	0.00000	14.825
4	211.0	7.0	4486.19	11.80	0.00259	60.810
3	217.0	7.0	4618.14	12.00	0.00260	132.965
4	223.0	7.0	4650.09	12.40	0.00261	207.180
2	229.0	7.0	4882.03	12.60	0.00258	283.457
6	235.0	7.0	5013.98	12.60	0.00251	361.795
7	241.0	7.0	5145.93	12.80	0.00249	442.195
8	247.0	7.0	5277.88	13.20	0.00250	524.657
9	253.0	7.0	5409.87	13.40	0.00248	609.180
10	259.0	7.0	5541.77	13.80	0.00249	695.765
11	265.0	7.0	5673.72	14.00	0.00247	786.410
12	271.0	7.0	5805.67	14.40	0.00248	877.119
13	277.0	7.0	5937.61	14.80	0.00249	970.017
14	284.5	7.0	6102.54	19.60	0.00321	1065.367
15	292.0	7.0	6267.48	24.00	0.00383	1163.287
16	299.5	7.0	6432.41	29.14	0.00453	1263.787
17	307.0	7.0	6597.34	34.72	0.00526	1366.867
18	314.5	7.0	6762.28	44.00	0.00651	1474.517
19	322.0	7.5	7410.23	54.56	0.00736	1590.377
20	329.5	8.0	8080.13	64.80	0.00800	1716.417
21	337.0	8.0	8268.67	74.26	0.00898	1847.797
22	344.5	8.5	8972.39	85.32	0.00950	1990.057
23	352.0	9.25	9960.22	96.00	0.00964	2145.717
24	359.375	10.0	10975.93	104.00	0.00948	2315.397
25	368.375	10.5	11805.12	108.00	0.00920	2499.897
26	377.375	11.0	12661.00	112.00	0.00884	2697.767
27	386.375	11.5	13543.60	116.00	0.00856	2911.427
28	395.375	12.0	14452.90	118.00	0.00816	3144.187
29	404.375	14.0	17169.58	124.00	0.00720	3412.617
30	413.375	16.0	19992.47	130.00	0.00650	3738.947
31	422.375	21.0	26480.09	134.00	0.00506	4179.777
32	431.375	24.0	30715.35	134.00	0.00436	4698.777
33	440.375	24.0	31393.94	134.00	0.00427	5206.177
34	449.375	24.0	32072.52	133.00	0.00415	5707 277
35	458.375	24.0	32751.10	133.00	0.00406	11580 127

DOCUMENT NO.

PAGE _

81A0040

15_OF____29

NUCLEAR ENERGY SERVICES, INC.

25

4. .

Spring Constants for Rigid Circular Footing Resting on Elastic Half-Space

Motion	Spring Constant	Reference
Verticai	$k_n = \frac{4Gr_n}{1 - 1}$	Timoshenko and Goodier (1951)
Horizontal	$k_{\bullet} = \frac{32(1-v)Gr_{\bullet}}{2}$	Bycroft (1956)
Rocking	$k = \frac{8Gr_*^3}{8}$	Borowicka (1943)
Torsion	$k_0 = \frac{3(1-\nu)}{2^3 G r_*^3}$	Reissner and Sagoci (1944)

 $\left(Note: \ G \Rightarrow \frac{E}{2(1+v)}\right)$

Effect of depth of embedment on the spring constant for vertically loaded circular footings (from Kaldjian, 1969).

SOIL SPRING CONSTANTS

		DOCUMENT NO.	81A0040	
nes	NUCLEAR ENERGY SERVICES, INC.	PAGE	16OF	29

6.1.3 Eigenvalue Analysis

The eigenvalues (natural frequencies) and the eigenvectors (mode shapes) for each of the natural modes of vibration are calculated by solving the following frequency equation:

$$(K - \omega_{p}^{2} M) \{\phi_{p}\} = \{0\}$$
 (1)

Where:

 ω_n = Natural angular frequency for the nth mode

M = System mass matrix

 $\phi_n = Mode shape vector for the nth mode$

0 = Null vector

The eigenvalue/eigenvector extraction is performed using the Householder QR Modal Extraction Methods.

6.1.4 Dynamic (Seismic) Load Analysis

Considering only translational degrees of freedom and assuming viscous (velocity proportional) form of damping, the equation of motion in matrix form can be expressed as follows:

$$M(U_{t} + U_{gt}) + CU_{t} + KU_{t} = 0$$
 (2)

Where:

U_t = Relative acceleration time history vector

Ü_{gt} = Ground acceleration time history vector

		81A0040
DOCUMENT	NO.	-

C = Damping matrix

U₄ = Velocity time history vector

U, = Relative displacement time history vector

Rearranging equation (2):

25

T

$$MU_{t} + CU_{t} + KU_{t} = MU_{gt} = P_{eff}$$
(3)

To uncouple equation (3), assume:

 $U = \phi Y_t$

Where:

Y_t = Generalized coordinate displacement time history vector

Pre- and post- multiplying equation (3) by the transpose of ϕ and ϕ respectively and using orthogonality conditions, the following uncoupled equations of motion are obtained:

$$\ddot{Y}_{nt} + 2\omega_h\lambda_n \ddot{Y}_{nt} + \omega_h^2 \dot{Y}_{nt} = M_n^{*-1}R_n \ddot{U}_{gt}$$
(4)

Where:

- Y_{nt} = Generalized displacement coordinate time history for nth mode.
- λ_n = Damping ratio for the nth mode expressed as percent of critical damping.

many B	NUCLEAR	ENERGY	SERVICES.	INC.

81A0040

PAGE 18 0F 29

$$= \phi_n^T M \phi_n = \sum M_i \phi_{in}^2$$

The mode shape ϕ_n is normalized such that $M_n^* = 1$

$$= \phi_n^T MI = \sum M_i \phi_{in}$$

I = Column vector whose elements are generally unity

The solution for the differential equation (4) is given by the Duhamel Integral:

$$Y_{nt} = \frac{R_n}{M \star \omega_n} \int_{\tau}^{\tau} \bigcup_{gt} e^{-\lambda_n \omega_n (t-\tau)} \sin \omega_n (t-\tau) d\tau$$

Using the response spectrum method of analysis, the maximum values of the generalized response for each mode is given by:

$$\dot{Y}_{n \max} = \frac{R_{n}S_{an}}{M_{n}^{*}}$$
(5)

Where:

Y = Maximum generalized coordinate acceleration response for the nth mode.

S_{an} = Spectral acceleration value for the nth mode (from the applicable response spectrum curve)

DOCUMENT NO. 81A0040

PAGE 19 OF 29

NUCLEAR ENERGY SERVICES, INC.

From the maximum generalized coordinate response the maximum acceleration $(U_{n max})$ and maximum incrtia forces $(F_{n max})$ at each mass point are given by:

$$\ddot{U}_{n \max} = \ddot{Y}_{n \max} \phi_{in}$$

 $F_{n \max} = M_n \ddot{U}_{n \max}$

The inertia forces $(F_{n max})$ for each of the systems' natural modes are applied as external static forces, and system response (displacements, member internal forces and stresses) are calculated. Total system response is than obtained by combining the individual modal response values by the square root of the sum of the squares method; lower modes having large contribution to the response (all modes having natural frequency under 30 cycles per second) are considered and higher modes with negligible participation are neglected.

6.2 STRUCTURAL ANALYSIS

1125

The Genoa 3 Stack was analyzed using the ultimate strength design method presented by Cannon⁵. The graphical solutions derived by Cannon are shown in Figure 6.4. The basic assumptions used in this method are given in Appendix A of this report. Tests performed at University of Michigan verify that Cannon's method predicts failure well.^{7&8} The tests show that actual failure occurs at approximately 10 to 15% over the predicted. This is assumed to be due to the effect of strain hardening, which is not accounted for in the analysis method.

The octagonal mat foundation was evaluated using methods presented in Reference 6 and in accordance with ACI 318-77 Ultimate Strength Design Methods. The method used appears to be quite conservative. Appendix B contains the foundation analysis calculations.

DOCUMENT NO.

PAGE _

81A0040

20

______29

NUCLEAR ENERGY SERVICES, INC.

 $\sigma_{i,p}$

1125

CANNON'S SOLUTIONS

PAGE 21

81A0040

-OF 29

11225 NUCLEAR ENERGY SERVICES, INC.

7. ACCEPTANCE CRITERIA

The ultimate moment and shear load-carrying capacities of the stack cross-sections have been calculated using the acceptable ultimate stress values as given in the ACI 318-77 Design Code and References.

The specific acceptable stress values used in this analysis are given below:

Maximum concrete compressive stress	= 0.8 <u>5 f c</u>	(ACI 318-77)
Maximum concrete shear stress	$= 4 \phi \dot{f} c$	(ACI 318-77)
Maximum stress in reinforcing steel	= fy	(Reference 5)

Where:

ų,

f c = compressive strength of concrete at 28 days

= 4,000 psi for Genoa 3 Stack

3,000 psi for Genoa 3 stack foundation mat

φ = 0.75 for Genoa 3 stack (Reference 5)

fy = Yield stress value for reinforcing steel

= 40.0 ksi for Genoa 3 stack

60.0 ksi for Genoa 3 stack foundation mac

DOCUMENT NO.

81A0040

29

PAGE _____OF__

NUCLEAR ENERGY SERVICES, INC.

nes

8. RESULTS OF ANALYSIS AND CONCLUSIONS

The results of the seismic analysis of the Genoa 3 stack performed with Stardyne computer code are contained in Reference 9.

Appendix A contains the assumptions used in the analysis, and the detail structural evaluation of Genoa 3 stack. Appendix B contains the detail calculations for the structural evaluation of concrete mat foundation.

The natural frequencies of vibration of the Genoa 3 stack are given in Table 6.1. From Table 6.1 it can be seen that the stack is a low frequency system (fundamental frequency of 0.363 and 0.388 Hz) and the variation in the fundamental frequencies is small (0.363 Hz to 0.388 Hz) as compared to the variation in the foundation soil constants (G = 1000 ksf to 3000 ksf). The results of the seismic and structural analysis are summarized in Table 8.1 and 8.2 and shown in Figure 8.1. Table 8.1 summarizes the moments due to the SSE seismic event and compares them to the allowable -ultimate moment capacities of the stack. From Table 8.1 it can be seen that the moments due to SSE event at Nodes 15 through 4 (height: 300 ft. to 465 ft.) exceed the allowable moment capacities (ultimate moment capacities).

The maximum ratio of SSE seismic moment to the ultimate moment capacity is 1.6. This 60% overstress during the SSE event is considerably greater than the 10 to 15% variation between the test results 7&8, and the calculated ultimate moment capacity. Figure 6.2 shows the continuous variation of the seismic moment through the height of the stack and the insensitivity of the seismic moment response to the foundation soil properties.

Table 8.2 compares the ultimate shear capacity of the stack to the SSE shear values. It can be seen that the ultimate shear capacity of the stack is considerably greater than the SSE seismic shear.

			A100	
11010	1 1 8 4	In ALL	ALC 1	
	1111	E 1 4 1	INU.	a lana

81A0040

PAGE 23 OF 29

nes

The octagonal mat foundation has been evaluated for the foundation pressure distribution resulting from the seismic moment and dead weight loadings. Results of the analysis shows that the foundation will be slightly overstressed. However, the method of analysis are quite conservative. A detailed finite element model is now being developed for further evaluation of the mat foundation.

It can be concluded from the above that under an SSE seismic event, the 500-foot GENOA 3 stack will experience a failure 150 to 200 feet from its top. The surviving 300 to 350 feet of the stack will remain upright and attached to its foundation mat. Since the GENOA 3 stack is located approximately 400 feet from the LACBWR Reactor Containment Building and other safety related structures, the failed section of the stack should not impact on these structures.

The seismic and dead weight loadings and the soil bearing pressure distributions have been supplied to Dames & Moore for their evaluation. Dames & Moore will confirm the soil's capability to withstand these loads.

DOCUMENT NO. _____81A0040

PAGE 25 OF 29

NUCLEAR ENERGY SERVICES, INC.

1.

TABLE 8.1

SUMMARY OF SEISMIC/STRUCTURAL EVALUATION (MOMENT)

Node	Distance from Top (ft)	Ultimate Moment Capacity (K-in) x 10 ⁵	SSE	oment due to Event (K-in) x 10
2	5	0.061		0.0069
2	20	0.136		0.095
h	35	0.220	<	0.252 NG
5	50	0.307	<	0.447 NG
6	65	0.387	<	0.656 NG
7	80	0.485	<	0.862 NG
8	95	0.590	<	1.055 NG
0	110	0.703	<	1.234 NG
10	125	0.822	<	1.401 NG
11	140	0.9511	<	1.559 NG
12	155	1.0854	<	1.713 NG
12	170	1.2270	<	1.861 NG
14	185	1,5500	<	2.001 NG
15	200	1.9270	<	2.130 NG
16	215	2,4260		2.250
17	230	3,1520		3.368
18	245	3.7405		2.482
19	260	4,5020		2.602
20	275	5,1730		2.731
21	290	5.810		2.873
22	30.5	6.640		3.032
23	320	7.450		3.210
2/4	335	8.340		3.410
25	350	9.059		3.635
26	365	9.640		3.822
27	380	10,440		4.189
28	395	11.070		4.530
20	410	11,490		4.918
20	425	13.094		5.358
31	440	12.270		5.853
32	455	12.560		6.411
33	470	13,660		7.039
34	485	15.020		7.732
35	500	17.742		8.491

* Results from Computer Program S532 E82

DOCUMENT NO. _____81A0040

PAGE 26 _____ 0F___ 29

NUCLEAR ENERGY SERVICES, INC.

TABLE 8.2

SUMMARY OF SEISMIC/STRUCTURAL EVALUATION(SHEAR)

Node	Distance from Top (ft)	Ultimate Capacity (kips)	SSE Shear * (kips)
2	5	964 69	11.65
2	20	993.06	49.92
5	20	999 93	86.97
4	50	1049.81	108.05
6	65	1078.18	116.71
7	80	1106.55	118.95
8	95	1134.93	120.94
9	110	1163.31	125.99
10	125	1191.67	133.01
11	140	1220.05	138.94
12	155	1248.42	141.28
13	170	1276.79	140.39
14	185	1312.26	139.00
15	200	1347.73	140.39
16	215	1383.19	147.74
17	230	1418.66	158.99
18	245	1454.13	171.66
19	260	1593.46	183.38
20	275	1737.52	193.38
21	290	1778.05	202.54
22	305	1929.38	212.23
23	320	2141.79	224.90
24	335	2360.21	242.03
25	350	2538.51	263.30
26	365	2722.56	287.09
27	380	2912.35	311.24
28	395	3107.88	334.62
29	410	3692.06	357.29
30	425	4299.08	382.19
31	440	5694.14	414.03
32	455	6604.87	463.24
33	470	6750.79	508.74
34	485	6896.71	543.41
35	20	7042.63	583.08

* Results from Computer Program S532 E82

DOCUMENT NO. 81A0040

NUCLEAR ENERGY SERVICES, INC.

PAGE _____OF___29

9. REFERENCES

9.1 CITED REFERENCES

nes

- NRC Letter to Dairyland Power Cooperative, Docket No. 50-409 (August 4, 1980)
- Dames & Moore: Liquefaction Potential under Genoa-3 Stack Adjacent to LaCrosse Boiling Water Reactor, Genoa, Wisconsin (October, 1980)
- Genoa 3 Stack Drawings, The M.W. Kellogg Company, Genoa 3 Drawing Nos. 6152-1, 2, 3, 4, 5, 6, 13, and 16 ED.
- Richart, F.E., Hall, J.R., and Woods, R.D.: Vibrations of Soils and Foundations, Prentice-Hall, Inc., Englewood Cliffs, N.J. (1970)
- Cannon, R.W. and Boop, W.C.: Ultimate Strength Design Charts for Design of Reinforced Concrete Chimneys, Civil Engineering Design Research Report, p 14, Tennessee Valley Authority, Knoxville, TN (1971)
- Marshall, V.O.: Foundation Design for Stacks and Towers, Foundation Design Handbook, reprinted from Hydrocarbon Processing, Gulf Publishing Company, Houston, Texas (1968)
- Mokrin, Z.A.: Reinforced Concrete Members of Hollow Circular Section under Monotonic and Cyclic Bending, unpublished Doctoral dissertation, Department of Engineering, University of Michigan (1978)
- Rumman, W.S. and Ru-Tsung: Ultimate Strength Design of Reinforced Concrete Chimneys, A.C.I. Journal Proceedings, pp 179 - 183 (1977)
- Genoa 3 Stack, Stardyne Structural Analysis Project 5101, Task 051, NES Computer Output Binder No. S-53, Oct.-Nov., 1980.

400 400	COMP.	63 AM
		Com
	Concession of	and the second second

9.2 GENERAL REFERENCES

LACBWR Application for full term operating authorization, LAC-2788, (October, 9, 1974)

NUCLEAR ENERGY SERVICES, INC.

George Winter et. al.: Design of Concrete Structures, McGraw-Hill Book Company, New York (1972)

Fintel, M. (ed): Handbook of Concrete Engineering, pp 477 - 490, Van Nostrand Reinhold Company, New York (1974)

Rumman, W.S.: Basic Structural Design of Concrete Chimneys, Journal of the Power Division, pp 309 - 317 (June, 1970)

Rumman, W.S. and Mauch, L.C.: Earthquake Forces Acting on Tall Concrete Chimneys, International Association for Bridge and Structural Engineering (September, 1968)

Rumman, W.S. and Ru-Tsung Sun: Ultimate Strength of Reinforced Concrete Chimneys, Journal of ACI Proceedings, pp 179 - 184 (April, 1977)

Rumman, W.S.: Vibrations of Steel-Lined Concrete Chimneys, Journal of the Structural Division, ASCE, pp 35 - 63 (October, 1963)

Rumman, W.S.: Earthquake Forces in Reinforced Concrete Chimneys, Journal of the Structural Division, ASCE, pp 55 - 70, (December, 1964)

Maugh, L.C. and Rumman, W.S.: Dynamic Design of Reinforced Concrete Chimneys, ACI Journal Proceedings, pp 558 - 567 (September, 1967)

DOCUMENT	NO.	81A0040

29

APPENDIX A STACK ANALYSIS

Assumptions:

- The assumptions used for ultimate strength design and compatibility of strains are the same as those given in ACI Building Code (318-77).
- 2. Maximum steel stress at ultimate capacity is assumed as "fy".
- The ultimate moment occurs when the strain in the concrete reaches 0.003 inch per inch.
- 4. A uniform compressive stress block is assumed with (a = 0.85 K_1).
- 5. Compressive reinforcement is not considered.
- 6. Reinforcement is uniform throughout the section.

BY RR	DATE 11-20-20 PROJ 5101 TASK 051
СНКО	DATE PAGE A-1 OF 15
LALBWR	

n an an Anna a An Anna an Anna	REF.
Δ	
A FPENDIX A	12.1
GENOR O STACK	
	1.1
	12.00

BY R.R. DATE 10-24-80 PROJ. 5/01 TASK 051 CHKD. 75 DATE 0/27/FD PAGE A-2 OF 15 LACBWR

GENDA 3 STACK	
USING REFERENCE " VIBRATIONS By F.E. RICH J.R. HALL R.D. WO PRENTICE -1	OF SOILS AND FOUNDATIONS ART, JR , JE MALL, INC ENGLEWOOD CLAPS, N.J.
VERTICAL SPRING CONSTANT FOR CIRCU	V=0.3
(1 - N') Moor $K_2 = \frac{4 \times 1000 \times 38.5}{(1 - 3)}$	G = 1000 KSF G = 3000 KSF Ro = EFFECTIVE RADIUS AREA OF OCTAGONS
Kz = 220000 Ker TZIN	$A = 0.828 d^{c}$ $A = 0.828(75)^{2} = 4657.57^{2}$ AREA OF CRUE = $\frac{11}{4}D^{2}$
TAKING THE DEPTH OF EMBEDHENT	$D = \int \frac{44}{17} = 77.0$ $R_0 = 38.5 FT$ INTO ACCOUNT:
$\frac{H}{R_0} = \frac{7}{38.5} = 0.182$ FROM GR	APH CURVE A KZ = 1.2 NOT LARGE ENOUGH SINCE THE FACTOR IS 3 FOR ARANGE OF SHEAR MODILUS VALUES. NEGLECT. KZ FL
	ATC 144

BY _____ DATE 10-29-30 PROJ. 5101 TASK 051 CHKD. 75 DATE 0/27/80 PAGE A-3 OF 15 LACBUR

GENDA 3 STACK	R
No The Stand Course For Circuner F	DOTINALS
HORIZONTAL PERING CONSTANT TOIL CHOOCHET	
V = 32(1-V)GRO N=0.3	1.1
-x 7-8V Ko=385FF	-
Kx = 32(1-0.3) 1000 #12 38.5FT G= 3000 KSF	-
7-8(0.3)	
5	
Kx = 1.375 × 10 Ar 12.00	
G=1000 K= 1.5623 ×104 4/2 G=1600 KSF K=2.	50×104 4/2
6=3000 K= 4.6870 ×104 M/2	
	1.
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	그는 사람을 많
	1 . State 1
	1.1.1.1.1.1.1.1
	1.1494.94
	1.
	Sec. 32.1

BY <u>R.2</u> DATE 10-24-90 PROJ. 5101 TASK 051 CHKD. <u>75</u> DATE 0/27/80 PAGE <u>A-4</u> OF <u>15</u> LACTSWR

REF. GENDA 3 STALK TORSIDNAL SPRING FOR EIRCULAR FOOTING Ka = 16 G 203 Ro = 38.5 Fr G= 1000 KSF > G= 16000 HO = 16 1000 /2 38.5 Fr KQ = 3.044 × 10 8 K-FT 1210 G=1600 KQ= 5.8445 ×109 K. G=1000 KSF K.9 = 3.6528×109 K-100 RAD G=3000KSF KQ = 1.0958×1010 K-10 ROCKING SPRING FOR CIRCULAR FOOTING . V=0.3 $K\psi = \frac{8GR^3}{3(1-\gamma)}$ Ro= 385 FT G=1000KSF G = 3000 KSF $K\psi = \frac{8 \times 1000 \times 385^3}{3(1-0.3)}$ Ky = 2.174 ×10 % K-ET 1210 G=1000 Ky = 2.6038×109 K-10 G=1600 KSF Ky = 4.1741×10 RAD 6=3000 Ky = 7.8263×109 K-0

3

0

BY RR DATE 10/14/80 PROJ. 5/01 TASK 051 CHKD. TS DATE 10/11/80 PAGE A-5 OF 15 LACBWR

GENDA 3 STACK	VLTIMATE STRENGTH METHOD RE
ULTIMATE STRENGTH DES	IGN Fy= 40K5i \$=.75
PROCEDURE: 1. CALCULATE <u>VV</u> 2. READ <u>Mu</u> UTS FROM G 3 FIND $p(f_3/F_c)$	REFERENCE: CANNON, R.W AND BOOP, W.C: ULTIMATE STRENGTH DESIGN CHARTS FOR DESIGN OF REINFORCED CONCRETE CHIMNEYS, CIVIL ENGINEERING DESIGN RESEARCH REPORT, P 14, TENNESSEE VALLEY AUTHORITY, KNOKVILLE, KY (1971)
Ar NODE 5	
W= 283.4574	
r = 111,012	
F' = 4.0 KSC	
$\frac{14}{ntFc} = 0.09/2$	
$m = 0.00253 \left(\frac{40}{4}\right) = 0.0$	258 -
$\frac{M_{u-}}{WRCP} = 1.3$	
Mu= 1.3×Wrp	9=,75
Mu= 1.3 × 0.75 × 111.0 × 28	3.457 = 30677.1 IN-K 0.3×105 m-K

NES 105 (2/74)

BY R.R. DATE 10/15/80 PROJ. 5/0/ TASK 051 CHKD. TS DATE 10/21/80 PAGE A-6 OF 15 LACBUR

GENDA 3 STACK	ULTIMATE STRENGTH METHOD	RE
AT NODE 2	Fy=40 KSi \$=0.75	
W=60.81 M		
R = 102 m		
t = 7.0 m		
findresc		
$\frac{W}{ntfi} = 0.021$		
m = 0.026		
$M_{u} = 1,39$		
WRP		
Mu = 6047.6 K-1N -		
= 0.061 ×105 ×-10		
AT NODE 3		
W = 132.97 -		
n= 105.014		
t = 7,0		
FE= 4.0 KSC		
m= 0,026		
$\frac{M_u}{1/R_c^2} = 1.30$		
w		
Muz 13612.8 K-11		
= 0.136 × 105 K. W		

1.

Y_R.R	DATE 10/15/80	PROJ	5101	TASK C	251
HKD. TS	DATE 10/21/80	PAGE	A-7_	OF	5
LACBWR					

UTIMATE STR	ENGTH METHOR	REF
Fy. 40Kx	\$=0.75	
		1.12
		1.1
	Grimate Stre Fg. 40Kx	UTIMATE STRENGTH METHOD Fg. 40KX \$\$=0.75

- 3.

1

O

BY R.R. DATE 10/15/80 PROJ. 5101 TASK 051 CHKD. TS DATE 20/21/80 PAGE A-3 OF 15 LACBUR

GENOA 3 STACK	ULTIMATE STRENGTH METHOD	REF.
AT NODE 6	AT NODE 7 Fa-quesi \$= 0.75	0
W= 361.8 h	W=442.195 K	
2= 114.0 W	1= 117.0 M	
X-7.0 IN	t=7.01~	
fe=4.0ksc	Fe = 40 K60	
W = 0.113 -	W = 0.135 -	
m = 0.025	m = 0.025	
Mu = 1.25 WRX	$\frac{M_{\mu}}{W_{R}\phi} = 1.25$	
Mu = 38667.4 K-IN -	Mu = 0.485× 105 K-W	
Noce a	None 9	
W = 524.66 K	W = 609. 18 K	
12 = 120.0 in	2 = 123 IN	
t= 7.014	t= 7.0 m	
fi=4.0Ksi	FC=4.0ms.	
$\frac{W}{r_{c} + f_{c}^{2}} = 0.156 -$	W = 0.177 -	
m = 0.025	m= 0.025	
$\frac{M_u}{WRp} = 1.25$	$M_{u} = 1.25$ WR9	
Mu = 0.5902×105	Mu= 0.7025×105	

NUCLEAR ENERGY SERVICES INC. NES DIVISION

â

BY <u>RR</u> DATE 10/15/30 PROJ. 5101 TASK 051 CHKD. <u>TS</u> DATE 10/21/80 PAGE <u>A-9</u> OF 15 LACBWR

GENOR 3 STALL	ULTIMATE STRENGTH METHOD	REF
	+y- 40450 \$= 0, 8,	
AT NOOE 10	AT NODE 12	
W= 695.765	W= 877.12	
	1= 132.0 IN	
R= 126 -		
t.7 -	x = 7,0 m	1
Fé=4 KSi -	$fc = 4 \mu s$	
$\frac{\mathcal{W}}{\mathcal{R}\mathcal{F}_{c}^{2}}=0.154$	W = 0.237	
m= p (F=) = 0.025 -	m = 0.025	
$\frac{Mu}{1000} = 1.25$	Mu = 1.25 - WRØ	
Mu = 82187.2 IN-K	Mu = 1.0854 × 105 × 10	
NODEII	Node 13	
W= 786.41 h	W = 970.017 -	
n-12914	R= 135.N	
1-7.0.N	t=7.0 w	. 16 A
fiz 4. onsi -	F2= 4,0 KS	
$\frac{W}{ntfi} = 0.218$	$\frac{W}{n + Fc} = 0.257$	
m = 0.025	m = 0.025	
Mu = 1.25 - WRd	$\frac{M_u}{Wr\phi} = 1.25$	
M. = 0.95/1×105	Mu= 1.2277 x105 m. ~	

NUCLEAR ENERGY SERVICES INC.
NESS BYTISSION

$$V = \frac{2}{2}$$
 $OATE MARKED FROM SERVI (MARKED) OF 155
 $ACQUARE
OATE MARKED FROM SERVI (MARKED) OF 155
 $AT NOOE 1/5
 $V = 102.5 \text{ MV}$
 $V = 102.5 \text{ MV}$
 $V = 102.5 \text{ MV}$
 $V = 102.6 \text{ MV}$
 $M = 20.0263$
 $M = 20.764$
 $M = 20.0274$
 $M = 2.050$
 $M = 2.052$
 $M = 2.053$
 $M = 2.054$
 $M$$$$

NUCLEAR ENERGY SERVICES INC. NES DIVISION

i

BY R.R.	DATE 10/17/80 PROJ 5/01	TASK 051
CHKD. TS	DATE 10/2/80 PAGE A-11	OF_15
LACBWR		

GENDA 3 STACK	ULTIMATE STRENGTH METHOD	REF.
At Nove 18	Fy=40KSC \$=0.75 NODE 20	
W= 1474.5 K	W= 1716.417"	
1= 153.7514	R = 160.75.4	10.
t = 7.0 in -	t = 8.0 m	
fic = 4,0KSL	f:=4,0K56	
m= 0.065	m=0,80	
$\frac{W}{rHfc} = 0.343$	W_ = 0.334 - n#Fi = 0.334 -	
Mu = 2.2 -	Mr = 2.5	
Mu = 3.7405×105 M-1M	Mu = 5. 173 × 105 *- 1N	
NODE 19	NODE 25	
W= 1590.377"	W= 2500 m	
R= 157,25 IN	R= 17894 w	
t=7.5 .	t= 10.5 m	
F'2= 4.0 KSL	Fi = 4.0 KS-	
m= 0.074	m= 0.092	
N/ = 0.337	W 0.333 -	
$\frac{M_u}{Wep} = 2.4$	$\frac{M_{b}}{We\phi} = 2.70$	
Mu = 4,502 × 105 mm	Mu = 9.059×105 K-10	

 $\bar{\tau}_{\mathcal{K}}$

0

1.1

BY TS	DATE 11/2/80	PROJ. 5101	TASKe51
CHKD. R.R	DATE 11/10/80	PAGE A-12	OF_15_
LACBWR			

GENOA 3 STACK ULTIMATE	E STRENGTH METHOD RE
fy= 40 ks, \$ = 0.75	
NODE ZI	NODE 22
W = 1847.80 -	W= 1990.06 * ~
r = 164.5 * V	r = 168.0"
t = 8.0 " V	2 = 8.5"2
W = 0.351	11 720
r t fe	rtfe' : 0. sto
m = 0.0898V	m = 0.095-
Mar 55-	M 765-
Wrd	wrg
m - 581 ×10	M = 6.64 x,05 me
The state of the s	an a
NODE 23	NODE 24
W= 2145.72	W = 2315.40 1
r . 171. 375 "1	F = 174.6875 V
2 = 9.25	t = 10.0" +
W 2338	W 77/
rt fé	rtf. = 0.3312
914	
11 = 0,0104	m = 20948 /
10 - 27 I	mm - 2.75
wrø	wrø
and the second sec	1 534 X10 V

BY TS DATE 11/10/80 PROJ. 5101 TASK 051 CHKD. RR DATE 11/10/80 PAGE A-13 OF 15 ZACIBWR

NODE 26	NODE 27
W= 2697.77 */	W = 2911.45 -
r: 183.1875 V	1: 187.4375
t = 11.0 v	t = 11.5 "
- W : 0.335 · rtf:	- W : 0.338- rtf:
m = 0.08841	m = 0.0856/
m_ = 2.6 -	Ma : 2.55 -
Ma = 9.64 x10 - x-	M = 10.44 x10 IN-A 2
NODE 28	NODE 29
W = 3144.19 K	W = 3412.62 4
C = 191.6875 V	r = 195.1875"
t = 12.0 ° 1	t = 14.0°/
$\frac{W}{r t f_{c}^{2}} = 0.342$	$\frac{w}{rtf_i} = 0.312$
m = 0.0816 4	m = 0.072
mu = 2.45 -	
	11 49

NUCLEAR ENERGY SERVICES INC. NES DIVISION

BY TS	DATE 1/1/50	PROJ. 5101	TASK 051
CHKD. R.R	DATE 11/10/80	PAGE A-14	OF
LACBWR			

GENOH 3 STACE OLTIM	ATE STRENGTH METHOD	
ty = 40 Ks1 Ø	: 0.75	
NODE 31	NODE 32	
W . 4179.75 V	W = 4698.75 -	
C = 200.6875	r = 203.6875 -	
t : 21.0" -	t = 24.0 -	1.5
W : 0.248 "	W : 0.240 - rtf:	
m = 0,0506	m = 0.0436	
Mr = 1.95 L		
M = 12.27 × 10 5 m - k v	Mu \$ 12.56 × 10 5	
NODE 33	NODE 34	
W= 5706.18*1	W= 5707.28 4	
F: 208.1875 "	r = 2/2.6875 /	
t : 24.0"	t = 29.0" -	
w = 0.260	W ref. = 0.250-	
m: 0.04271	m = 0.0415 /	
Mr. 1.68 -	M2 = 1.65 1	
5-11-4		

NES 105 (2/74)

I

NUCLEAR ENERGY SERVICES INC. NES DIVISION

á

C

R.R	DATE 10/17/80 PROJ.	5101	TASK 051
снко. <u><i>Т</i></u> <u></u>	DATE 10/21/80 PAGE	A-15	OF 15
LACBWR			

NODE 30 Fa-goksi	\$=0.75 NOOE 35	
W= 3738.9* -	W = 6601.367 K	
n= 198.7	N= 217.1875 N	1.1.1
t= 16.0 w	t= 24.01~	
FL=4.0 KSL	f2=4.0 KS1	
M = 0.065	m = 0.041	
$\frac{W}{ntfi} = 0.294$	W = 0.317	
Ma = 2.35 WRØ	Mu = 1.65 WRØ	
Mu = 13,094 ×105 MIN	Mu = 17,742×105	

á

BY_RR	DATE 11-18-35	PROJ	5/01	TASK 051
СНКО	DATE	PAGE	B-1	OF
LALBUR				

	REF
APPENDIX B	
T M.	
GENDA 3 STACK TOUNDATION MAT	
ANALYSIS	
	APPENDIX B GENCA 3 STACK FOUNDATION MAT ANALYSIS

BY R.R. DATE 0-27-80 PROJ. 5701 TASK 051 CHKD. 75 DATE 0/15/50 PAGE 3-2 07 9

NUCLEAR ENERGY SERVICES INC.

1

0

NES 105 (2/74)

1 1 2

ĩ

0

-

NES 105 (2/74)

BY R.R DATE 10.27.80 PROJ. 5/01 TASK 051 CHKD. 75 DATE 0/ 25/50 PAGE B-4 OF 9 LACBWR

GENOR 3 STACK FOUNDATION MAT ANALYSIS REF. SIL STRESS DUE TO EARTHQUAKE = B.BO3×105 K-W 15-42862.5Fr3 = 1.71 KSF MAXIMUM TOE SOIL STRESS = 2.49+1.71 = 4.20KSF MINIMUM TOE SOIL STRESS = 2.49-1.71 = 0.78KSF OUTSIDE DIAMETER OF STACK = 38-23' = 38.20Fr -AREA = 1146 FT2 EQUIVALENT SQUARE = JII46 = 33.85 FT 1/2 SIDE = 16.925 FT CHECK SHEAR DUE TO BENDING AT CRITICAL SECTION AT A DISTANCE & FROM EQUIVALENT SQUARE d=6.75 FT SOIL STRESS & & FROM SQUARE 61.175 = × 75 347 X=2.79 STEESS AT THAT POINT = 2.79+0.78 = 3.57 KSF -

2, 22, 23,

0

BY R.R DATE 10-27-80 PROJ. 5/01 TASK 051 CHKD. TS DATE 10/25/80 PAGE B-6 OF 9 LACBUR

NES 105 (2/74)

NUCLEAR ENERGY SERVICES INC.	CHKD. TS DATE 10/25/50 PAGE _B-8 OF
GENOA 3 STACK FOUNDA	TION MAT ANALYSIS
For BENDING	
SINCE THE WEIGHT OF	THE SOIL AND FOUNDATION MAT
Do NOT AOD TO THE BEAN	ONS THAT WEIGHT WILL BE
DEDUCTED.	
A= 4657.	SFT2
V= 7× 465	7.5
WEIGHT = 7x	4657.5×6.150 = 4890.375
Stress = 1.05	C.S.F.
Maximum Toe S Ninimum Toe S	TRESS = 420 -1.05 = 3.15 KSF TRESS = 0.73 - 1.05 = -0.27 KSF
AREA STRESS	F d M
2×7.011 × 20.575 = 288.50 2.21	637.59 23.55 6357.76
2 × 8,522 × 20.575×2 = 175,34 2.21	387,50 300,50 331523
7.011 ×2 ×20.575 = 288,50 Z	135.60 7320.515 1351.71
2[8.522×20.575] =116.89 0.94	109.88 3 20.5% 1507.18
	15241.48
MOMENT PER For W	$DTH = \frac{14487.59 \times 12}{2 \times 7.0/1} = 12398.7 \text{ MIN}$
CHECK VLTIMATE CAPACIT	\$= 0.9 ·
Assume $a = 4.v$	fy=6005. d=675x12
$As = \frac{Mu}{\phi f_{\varphi}(d-2i)}$	$= \frac{13043.6}{0.9 \times 60(6.75 \times 12 - 2)}$
As = 3.06 IN2	
a = Asfy =	306×60 = 6.01N
0.85 F2 B 0.8	AREA STEEL SUDDLIED
HS = 3.101 / FT 7 2.88	# 11 BARS 0 6.5 INCHES
	45= 15- × 1.56 - 6.55 M/F-

NES 105 (2/74)

BY _____ DATE 11-18-90 PROJ. 5701 TASK 05/ CHKD. 75 ____ DATE 11/24/80 PAGE B-9 OF 9 LACBWR

GENOA 3 STACK FOUNDATION MAT	R
DISCUSSION OF RESULT	
THE AREA OF STEEL SUPPLIED IN THE FOUNDATION	
MAT IS SLIGHTLY LESS THAN THAT REQUIRED BY THE	
ABOVE ANALYSIS (2.88 W/ VS 3.10 W/F). THIS	
ANALYSIS, HOWEVER, IS CONSERVATIVE FOR THE	
FOLLOWING REASONS:	
1. THE CRITICAL SECTION USED IN THIS	
ANALYSIS NEGLECTS OTHER PORTIONS OF THE	
MAT WHICH MUST FAIL IN ORDER FOR TOTAL	
FAILURE TO OLLUR.	
2. No ALLOWANCE FOR STRESS REDISTRIBUTION	
OUTSIDE THE ABOVE CRITICAL SECTION IS RECOGONIZED	
3. THE OCTAGONAL SHAPE FOUNDATION IS	
DIFFICULT TO MODEL BY SAMPLISTIC METHODS,	
THIS + RESULTS IN CONSERVATIVE ASSUMPTIONS	
BEING MADE TO EASE CALCULATIONS	
A FINITE ELEMENT ANALYSIS WILL BE PERFORMED	
ON THE FOUNDATION MAT TO MORE ALLURATELY	
REPRESENT THE OCTAGONAL FOUNDATION MAR. THE	
RESULTS OF THIS ANALYSIS WILL SHOW THAT THE	
FOUNDATION WILL NOT FAIL DURING THE SSE	
FUELT	