Central File

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555-0001

December 15, 1993

MEMORANDUM FOR: Bruce A. Boger, Director Division of Reactor Controls and Human Factors

FROM:

Jared S. Wermiel, Chief Instrumentation and Controls Branch Division of Reactor Controls and Human Factors

SUBJECT: MEETING WITH THE BOILING WATER REACTOR OWNERS GROUP RESPONSE TIME TESTING COMMITTEE

A meeting was held with members of the Boiling Water Reactor Owners Group (BWROG) Response Time Testing (RTT) Committee at 1:00 PM on December 6, 1993, to discuss the submission of Licensing Topical Report NEDO-32291, "System Analyses for the Elimination of Selected Response Time Testing Requirements," and the future staff review of that report. In the topical report, the BWROG proposes the elimination of RTT for selected components of safety-related instrumentation and control systems. The BWROG Response Time Testing Committee previously submitted a similar topical report on the elimination of selected RTT requirements, NEDC-32013P. The previous report was the subject of a staff Safety Evaluation Report (SER) dated August 19, 1993, and was not accepted as written.

This meeting was also attended by members of the Westinghouse Owners Group. Enclosure 1 is a list of attendees.

A presentation was made by the BWROG explaining the differences between NEDO-32291 and NEDC-32013P, and how the issues raised during the October 5, 1993 meeting with the staff were addressed. This presentation included a handout explaining where the various staff questions and comments on the previous topical report were addressed by the BWROG in the new topical report. This handout is Enclosure 2 to this memo.

A draft copy of the Licensing Topical Report NEDO-32291 was provided, and a brief explanation of the organization and contents of the draft was made. It was noted that the disclaimer on the topical report has been modified since the last submission. The BWROG said they performed an analysis which compared the Chapter 15 design basis accident analysis assumption for safety system actuation time to actual response times of instrumentation loop components. The BWROG showed that for design basis accidents analyzed on a realistic

Contact: Paul Loeser, HICB 504-2825

RD-10-1 (Bar)

NRC FILE CENTER COPY

X 0 8 M. 6 (noty) X D-8-2 (Historylianse)

170042

9312200316 931215 PDR TOPRP EMVGENE B PDR B.A. Boger

basis, the possible addition of 3-5 seconds in response time would have no safety significance. The 3-5 second time came from a survey of instrument technicians, in which 85% of the technicians stated that they would notice a 5 second delay in response time while calibrating the sensors. The BWROG also stated that they had improved the Failure Modes and Effects Analysis. The draft copy of the submittal is Enclosure 3 to this memo. The BWROG stated they expected to formally submit the topical report in mid January 1994.

The Westinghouse Owners Group (WOG) also made a presentation on their future submission of a similar topical report. Slides on this presentation are provided as Enclosure 4. The WOG indicated they would be submitting their topical report in January 1994.

The BWROG requested an expedited staff review of their topical report. It was agreed that a preliminary review of the draft submittal would be done, and discussed in a telephone call on December 9, 1993. The BWROG also stated they would appreciate a one month review cycle of the topical report once it is submitted in final format. The staff agreed to review the topical promptly and to treat it as a cost-beneficial licensing action.

Original signed by Jerry L. Mauck for: Jared S. Wermiel, Chief Instrumentation and Controls Branch Division of Reactor Controls and Human Factors

cc: Meeting Attendees (with enclosure 1 only)

Enclosures:

- 1. List of Attendees
- 2. Response to Eight Topics
- 3. Draft Licensing Topical Report NEDO-32291, "System Analyses for the Elimination of Selected Response Time Testing Requirements"
- 4. WOG Meeting Slides

DISTRIBUTION

Central File	Ρ.	Loeser	J.	Jones
PDR	J.	Mauck	Β.	Boger
HICB R/F	J.	Wermiel		

			#3 110
HICB	SG: AICB	BC ALLCB DRCH	DiDRCH MWY
PLoeser:1sh K	JMaurck	Juermien	PBBoger //
12/9/93	12/10/93	12/10/93	12//3/93

DOCUMENT NAME: RTT-126.MTS

Enclosure 1

ATTENDANCE LIST FOR MEETING WITH BWROG CONCERNING RESPONSE TIME TESTING December 6, 1993

Paul Loeser	(301) 504-2825	NRC/NRR/HICB OWFN MS 8H3 Washington, DC 20555
Donald Alexander	(313) 586-1818	Detroit Edison 6400 N. Dixie Hwy Newport, MI 48166
William Schmick	(609) 339-3264	Hope Creek Generation Station PO Box 238 Hancocks Bridge NJ 08038
Warren Lyon	(301) 504-3892	NRC/NRR/SRXB OWFN Washington, DC 20555
Bill Sullivan	(408) 925-6992	General Electric 175 Curtner Ave. San Jose, CA 95125
Jim Nolting	(217) 935-8881	Illinois Power Co. Clinton Power Station PO Box 678, Clinton, IL. 61727
Dale Spencer	(815) 942-2920	Commonwealth Edison 6500 N. Dresden Road Morris, IL 60450
Raiz Hakeem	(504) 381-4561	Gulf States Utilities PO Box 220-MA-2 St Francisville, LA 70775
Tom Green	(408) 925-1308	GE Nuclear Energy 175 Curtner Ave. (MC 482) San Jose, CA 95125

Jerry Mauck	(301) 504-3248	NRC/NRR/HICB OWFN MS 8H3 Washington, DC 20555
Cliff Doutt	(301) 504-2847	NRC/NRR/HICB OWFN MS 8H ³ Washington, DC 20555
Chris Morgan	(301) 374-5354	Westinghouse PO Box 355 Pittsburgh, PA 15230
Jared Wermiel	(301) 504-2821	NRC/NRR/HICB OWFN MS 8H3 Washington, DC 20555
Dick Miller	(412) 374-5953	Westinghouse PO Box 355 Pittsburgh, PA 15230
Al Clark	(216) 259-3737	Perry Nuclear Power Plant PO Box 97 Perry, OH 44081
Jim Heishman	(216) 259-3737	Perry Nuclear Power Plant PO Box 97 Perry, OH 44081
Jim Eaton	(202) 872-1280	NUMARC 1776 Eye St, N.W. Suite 200 Washington DC 20006
Lee Bush	(708) 746-1084	Commonwealth Edison 101 Shiloh Blvd. Zion, IL 60099
Clayton Price	(717) 542-3570	Pennsylvania Power & Light PO Box 467 Berwick, PA 18603
Mario Gareri	(301) 504-3743	NRC/NRR/HICB OWFN MS 8H3 Washington, DC 20555

- 2 -

George King	(912) 537-1395	Georgia Power/Plant Hatch PO Box 551 Bayley, GA
Michael Eidson	(205) 868-5978	Southern Nuclear Operating Co. PO Box 1295 Birmingham, AL 35201

- 3 -

Response to Eight Specific Topics Listed in NRC SER

1. Purpose and goals of RTT ?

From Section 2: "The purpose of these tests is to ensure that changes in response time beyond acceptable limits assumed in safety analyses are detected. It is not necessary to demonstrate that the response time design value is met."

Appendix J provides a discussion of the response times (selected for elimination) assumed in safety analyses for the limiting design basis events and an evaluation of their safety significance including the sensitivity of response time delays in the order of 3 to 5 seconds.

2. Information gained from RTT?

From Section 2: "The instrumentation response time tests provide measurement of specific sensor, trip unit and/or loop response time."

3. How is information used ?

From Section 2: "The information is compared to Technical Specification requirements to demonstrate that the specified performance is met. Operational history has shown that degradation of instrumentation response times beyond acceptable limits are being detected during the performance of calibrations and other surveillance tests. The performance of conventional response time tests has proven to be of little value in assuring that instrumentation will perform as required. The majority of allowable instrumentation response times are much longer than instrument circuits require for signal processing from sensor input to final output signal. Additionally, the instrument response time is insignificant compared to safety system actuation times."

4. If RTT is eliminated, what tests would replace and still provide above information?

Section 5 provides a description of selected response time tests to be eliminated.

Section 6 provides a discussion of the current instrumentation testing being performed, the frequency at which the activity is presently performed and the advantages over conventional response time testing. No new tests are required.

5. How would information from (4) be used ?

As stated in Section 5 item (4) above, tests would verify that circuit performance is well within allowable limits. If the response time should degrade to as much as 3 to 5 seconds, this degradation would with reasonable assurance be detected during periodic surveillance tests discussed in Section 6.

Response to Eight Specific Topics Listed in NRC SER (Cont.)

6. Frequency of replacement tests ?

The frequency of replacement tests is discussed in Section 6 and graphically shown in Figure 6.1.

7. Application of Maintenance Rule effect on maintenance and calibration methodology ?

As stated in Section 2, "The proposed elimination of selected RTTs is consistent with the current Maintenance Rule implementation. The Maintenance Rule is performance based and permits specific instrumentation monitoring or calibration methodology to be set by the licensee based on: 1) safety significance of the instrumentation; and 2) whether performance or condition of instrumentation is effectively controlled by appropriate preventive maintenance (PM). The report shows that response time changes beyond acceptable limits for selected safety system actuation functions, including the detection of maintenance preventable functional failures (MPFFs), can be detected during other periodic tests." These other periodic tests are described in Section 6.

8. Failure analysis expansion should include interaction between parts

The results from component failure modes analyses of selected instrumentation is discussed in Section 7 and Appendix K. The analyses are based on detailed engineering evaluations using expert knowledge in equipment manufacturing, component design, and industry experience. Evaluations included interactions between parts that could affect response times beyond acceptable limits. The review of industry experience (Appendix D) includes many examples of failure modes that involve interaction between moving and static parts.

EPRI failures modes analyses of response time of sensors (transmitters/switches) discussed in Section 7 and Appendix F provide documented bases for response time sensitive sensor components using industry accepted methodology. EPRI ongoing research in condition monitoring continues to evaluate failure modes and detectability.

GENERAL

Document number changed to NEDO-32291, DRF AOO-05806. Change in document number required since report classification changed from GE Proprietary (Class III) to GE Non-Proprietary (Class I). New date is January 1994.

Disclaimer of Responsibility/Proprietary Information Notice

Disclaimer of Responsibility rewritten to reflect latest version and Proprietary Information Notice was deleted.

ABSTRACT

Abstract condensed and statement added that this document (NEDO-32291) supersedes and replaces NEDC-32013P.

1.0 EXECUTIVE SUMMARY

This section was rewritten to reflect changes made in response to NRC comments.

2.0 INTRODUCTION

This section was rewritten to reflect changes made in response to NRC comments.

3.0 BENEFITS OF RESPONSE TIME TEST ELIMINATION 3.1 Safety Benefits 3.2 Cost Savings

This section was "Section 3.3 RTT Limination Benefits". Section was changed to highlight benefits and new section on cost savings was added.

4.0 APPROACH

This section was "Section 3.1 Approach" in the original report. The second paragraph of old

Section 3.1 was deleted. A new paragraph referencing the plant-specific license change request in Appendix I was added to the end of this section.

Sections "3.2 Response Time Testing Limitations", "3.2.1 Typical RTT Requirements", and "3.2.2 Typical Testing Method" of the original report were deleted.

- 5.0
- DESCRIPTION AND TESTING OF SELECTED RESPONSE TIME TESTS TO BE ELIMINATED
 - 5.1 Introduction
 - 5.2 Systems Requiring Response Time Testing
 - 5.3 Response Time Tests Selected for Elimination
 - 5.3.1 Reactor Protection System
 - 5.3.2 Isolation Actuation Instrumentation
 - 5.3.3 Emergency Core Cooling System (ECCS)

This section was "Section 4.0" in original report. A discussion of the new evaluation of a 3 to 5 second delay in the response times of actuation functions selected for elimination has been added to this section. Reference is made to the new Appendix J, "Evaluation of Delay in Trip Functions Selected for Response Time Elimination". Minor word changes have been made for clarification.

Section "4.4 Response Time Test Phases" of original report was moved to Appendix B, Section B.5.2.

Section "4.5 Response Time Testing Summary Description" of original report was deleted.

6.0 ROUTINE PERIODIC TESTS USED TO DETECT CHANGES IN INSTRUMENT RESPONSE

This is a new section added to highlight the periodic tests that detect changes in instrument response.

7.0 ANALYSES RESULTS

- 7.1 Lead Plant RTT Instrumentation Loop Component Identification
- 7.2 Categorization of Major Components
- 7.3 Component Failure Modes Analyses
- 7.4 Failure Experience Review
- 7.5 Application of Results to Other Plants
- 7.6 Future Maintenance and Design Modifications

This section was "Section 5.0" in the original report. The section has been shortened by summarizing the component failure modes analyses results (Section 7.3) and moving the details to a new Appendix K. Minor word changes have been made for clarification.

8.0 CONCLUSIONS

This section replaces "Section 6.0 Summary and Conclusions" in the original report. The general conclusions have been updated to reflect the changes to this revised report. Minor word changes has been made to the remaining conclusions given in the original report for clarification.

9.0 REFERENCES

The section number is changed from "Section 7.0" in the original report.

References 5, 6, and 14 have been added.

Supplement 1 to NRC Bulletin 90-01 has been added (Reference 7).

Remaining reference numbers have been changed to reflect references which have been added.

APPENDICES

- A. **PARTICIPATING UTILITIES/PLANTS** NMPC added.
- B. DESCRIPTIONS OF TECHNICAL SPECIFICATION SURVEILLANCE TESTING AND OTHER TECHNIQUES Section B.5 of original report was deleted and a new section was added which describes current response time tests.
- C. LEAD PLANT RTT INSTRUMENTATION LOOP COMPONENTS C.1 Fermi-2 C.2 River Bend No change.
- D. RTT FAILURE EXPERIENCE REVIEW FROM INDUSTRY DATA BASES Minor word changes to address NRC concerns that we only looked at some of the available data.
- E. RESPONSE TIME TEST FAILURE EXPERIENCE FROM PLANT SURVEY No Change.
- F. EPRI PRESSURE TRANSMITTER/SWITCHES RESPONSE TIME ANALYSIS Changes made to reflect revisions to EPRI analysis.
- G. PLANT-SPECIFIC RTT VERIFICATION REPORTS No change.
- H. PLANT-SPECIFIC TECHNICAL SPECIFICATION MARKUP TABLES No change.
- I. EXAMPLE LICENSE CHANGE REQUEST This Appendix was changed to reflect revisions made to original report.
- J. EVALUATION OF DELAY IN TRIP FUNCTIONS SELECTED FOR RESPONSE TIME TEST ELIMINATION This is a new Appendix to reflect the new safety margins analysis.

APPENDICES (Cont.)

K. RTT COMPONENT FAILURE MODES ANALYSE: This is a new Appendix that contains information that was in the body of the original report.

TABLES

Table

Title

Table 3-1 in original report was deleted.

- 4-1 Fermi-2 RTT Requirements Selected for Analyses Only change is table number (was Table 3-2).
- 4-2 River Bend RTT Requirements Selected for Analyses Only change is table number (was Table 3-3).
- 5-1 BWR Instrumentation Response Time Test Requirements Only change is table number (was Table 4-1).
- 7-1 Vendor Models for Component Groups Only change is table number (was Table 5-1).
- B-1 Response Tire Test Requirements in BWR Technical Specifications Isolation Actuation No change.
- B-2 RTT Testing Broken Down by Testing Phases Only change is table number (was Table 4-2).
- B-3 Fermi-2 RTT Measurement Data and Results Only change is table number (was Table 4-3)
- E-1 Summary of Response Time Failure Experience from Plant Survey No change.
- F-1 Application of the Types of Damping Filters by the Participating BWRs No Change.

Table (Cont.)

Title

- G-1 Brunswick Plant Specific Verification and Component Report No change.
- G-2 Clinton Plant Specific Verification and Component Report No change.
- G-3 Fermi-2 Plant Specific Verification and Component Report No change.
- G-4 Grand Gulf Plant Specific Verification and Component Report No change.
- G-5 WNP-2 Plant Specific Verification and Component Report No change.
- G-6 Hope Creek Plant Specific Verification and Component Report No change.
- G-7 Hatch Plant Specific Verification and Component Report No change.
- G-8 LaSalle Plant Specific Verification and Component F.eport No change.
- G-9 Limerick Plant Specific Verification and Component Report No change.
- G-10 Perry Plant Specific Verification and Component Report No change.
- G-11 River Bend Plant Specific Verification and Component Report No change.

Table (Cont.)

Title

- G-12 Susquehanna Plant Specific Verification and Component Report No change.
- H-1 RTT Technical Specification Markup Notes No change.

ILLUSTRATIONS

Figure

Title

- 4-1 Response Time Testing Elimination Analysis Flow Process Minor word change and figure number change (was Figure 3-1).
- 6-1 Frequency (Typical) of Instrumentation Surveillance Required by BWR Technical Specifications New figure.
- J-1 BWROG Survey of Instrument Technicians Time to Detect Instrument Sluggish Response New figure.

Enclosure 3

DRAFT DRAFT

BWROG-94001 January 14, 1994

U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation Washington, DC 20555

Attention: William T. Russell, Associate Director for Technical Review and Inspection

Subject: BWR OWNERS' GROUP LICENSING TOPICAL REPORT "SYSTEM ANALYSES FOR ELIMINATION OF SELECTED RESPONSE TIME TESTING REQUIREMENTS" (GENERAL ELECTRIC REPORT NEDO-32291)

The subject BWR Owners' Group (BWROG) Licensing Topical Report has been revised in response to NRC questions and to more clearly demonstrate that the elimination of selected response time tests is of no safety significance. While the BWROG has enhanced the approach to justify the elimination of specific response time testing, the FMEA results remain valid and these analyses of instrumentation failure modes confirm with reasonable assurance that failures which affect response times can be detected during other surveillance tests required by current Technical Specifications. Because this licensing change improves plant safety and reduces plant operation and maintenance costs, the proposed change qualifies as a Cost Beneficial Licensing Action (CBLA) and should be reviewed by the NRC on a priority basis. Based on a conservative reduction of 1500 manhours per outage and the potential reduction in outage length, cost savings are estimated to range from \$50,000 to \$100,000 per unit per year.

The report concludes that response times are maintained with the current practices and that response time testing is unnecessary based on plant operating history and experience. The other existing Technical Specification required surveillance tests (calibration tests, functional tests, and logic system functional tests) ensure instrumentation health. Results of this BWROG evaluation confirm that response time tests are of no safety significance, cause unnecessary personnel exposure, reduce availability of safety systems during shutdown, and are a significant burden to utility resource.

W.T. Russell, NRC BWROG-94001 January 14, 1994 Page 2

DRAFT

This letter has been endorsed by a substantial number of the members of the BWR Owners' Group; however, it should not be interpreted as a commitment of any individual member to a specific course of action. Each member must formally endorse the BWROG position in order for that position to become the member's position.

If you desire to discuss this report in more detail, please contact me at your convenience.

Very truly yours,

L. A. England, Chairman BWR Owners' Group

EXEC6T/LAE/TAG/n

cc: BWROG Primary Representatives BWROG Executive Oversight Committee BWROG Response Time Testing Committee RA Pinelli, BWROG Vice Chairman RC Jones, NRC PJ Loeser, NRC JL Mauch, NRC JS Wermiel, NRC AC Thadani, NRC AC Thadani, NRC A Marion, NUMARC RC Torok, EPRI LS Gifford, GE/RCK NRC Document Management Branch

DRAFT

NEDO-32291 DRF A00-05806 Class I January 1994

DRAFT

GE NUCLEAR ENERGY

BWR OWNERS' GROUP LICENSING TOPICAL REPORT

SYSTEM ANALYSES FOR THE ELIMINATION OF SELECTED RESPONSE TIME TESTING REQUIREMENTS

> T. A. Green M. I. Khan W. P. Sullivan

Approved:

S. J. Stark, Manager BWR Owners' Group Projects

Work Performed for the BWR Owners' Group Response Time Testing Committee

DRAFT

DISCLAIMER OF RESPONSIBILITY

Important Notice Regarding Contents of this Report

PLEASE READ CAREFULLY

The information contained in this document is furnished for the purpose of providing the members of the EWR OWNERS' GROUP with bases and methods for the system analyses for the elimination of the selected response time testing requirements. The only undertakings of General Electric Company respecting information in this document are contained in the contract between the Boiling Water Reactor Owners' Group and General Electric Company (i.e., the Standing Purchase Orders for the participating utilities in effect at the time this report is issued) and nothing contained in this document shall be construed as changing the contract. The use of this information by anyone other than that for which it is intended, is not authorized: and with respect to any <u>unauthorized use</u>, General Electric Company makes no representation or warranty, and assumes no liability as to the completeness, accuracy, or usefulness of the information contained in this document.

CONTENTS

	. AF	.7
ABSTR	ACT ORA.	vii
1.0	EXECUTIVE SUMMARY	1-1
2.0	INTRODUCTION	2-1
3.0	BENEFITS OF RESPONSE TIME TEST ELIMINATION	3-1
	3.1 Safety Benefits 3.2 Cost Savings	3-1 3-2
4.0	APPROACE	4-1
5.0	DESCRIPTION AND LISTING OF SELECTED RESPONSE TIME TESTS TO BE ELIMINATED	5-1
	 5.1 Introduction 5.2 Systems Requiring Response Time Testing 5.3 Response Time Tests Selected for Elimination 5.3.1 Reactor Protection System 5.3.2 Isolation Actuation Instrumentation 5.3.3 Emergency Core Cooling System (ECCS) 	5-1 5-1 5-1 5-2 5-3 5-4
6.0	ROUTINE PERIODIC TESTS USED TO DETECT CHANGES IN INSTRUMENT RESPONSE	6-1
7.0	ANALYSES RESULTS	7-1
	7.1 Lead Plant RTT Instrumentation Loop Component Identification	7-1
	7.2 Categorization of Major Components	7-1
	7.3 Component Failure Modes Analyses	7-2
	7.4 Failure Experience Review	7-4
	7.5 Application of Results to Other Plants	7-5
	7.6 Future Maintenance and Design Modifications	7~6
8.0	CONCLUSIONS	8-1
9.0	REFERENCES	9-1

APPENDICES

Α.	PARTICIPATING UTILITIES/PLANTS	A-1
Β.	DESCRIPTIONS OF TECHNICAL SPECIFICATION SURVEILLANCE TESTING AND OTHER TECHNIQUES	B-1
c.	LEAD PLANT RTT INSTRUMENTATION LOOP COMPONENTS C.1 Fermi-2 C.2 River Bend	C-1 C-1 C-30
D.	RTT FAILURE EXPERIENCE REVIEW FROM INDUSTRY DATA BASES	D-1
E.	RESPONSE TIME TEST FAILURE EXPERIENCE FROM PLANT SURVEY	E-1
F.	EPRI PRESSURE TRANSMITTER/SWITCHES RESPONSE TIME ANALYSIS	F-1
G.	PLANT-SPECIFIC RTT VERIFICATION REPORTS	G-1
Н.	PLANT-SPECIFIC TECHNICAL SPECIFICATION MARKUP TABLES	H-1
I.	EXAMPLE LICENSE CHANGE REQUEST	I-1
J.	EVALUATION OF DELAY IN TRIP FUNCTIONS SELECTED FOR RESPONSE TIME TEST ELIMINATION	J-1
к.	RTT COMPONENT FAILURE MODES ANALYSES	K-1

TABLES

Table	Title	Page
4-1	Fermi-2 RTT Requirements Selected for Analyses	4-3
4-2	River Bend RTT Requirements Selected for Analyses	4-5
5-1	BWR Instrumentation Response Time Test Requirements	5-6
7-1	Vendor Models for Component Groups	7-7
B-1	Response Time Test Requirements in BWR Technical Specifications	B-6
B-2	RTT Testing Broken Down by Testing Phases	B-7
B-3	Fermi-2 RTT Measurement Data and Results	B-8
E-1	Summary of Response Time Failure Experience from Plant Survey	E-5
F-1	Application of the Types of Damping Filters by the Participating BWRs	F-5
G-1	Brunswick Plant Specific Verification and Component Report	G-3
G-2	Clinton Plant Specific Verification and Component Report	G-4
G-3	Fermi-2 Plant Specific Verification and Component Report	G-6
G-4	Grand Gulf Plant Specific Verification and Component Report	G-8
G-5	WNP-2 Plant Specific Verification and Component Report	G-9
G-6	Hope Creek Plant Specific Verification and Component Report	G-10
G-7	Hatch Plant Specific Verification and Component Report	G-11
G-8	LaSalle Plant Specific Verification and Component Report	G-13
G-9	Limerick Plant Specific Verification and Component Report	G-14
G-10	Perry Plant Specific Verification and Component Report	G-15
G-11	River Bend Plant Specific Verification and Component Report	G-16
G-12	Susquehanna Plant Specific Verification and Component Report	G-17
H-1	RTT Technical Specification Markup Notes	H-2

in in

ILLUSTRATIONS

Figure	Title	Page
4-1	Response Time Testing Elimination Analysis Flow Process	3-13
6-1	Frequency (Typical) of Instrumentation Surveillance Required by BWR Technical Specifications	63
J-1	BWROG Survey of Instrument Technicians Time	J-11

ABSTRACT

This document supersedes and replaces NEDC-32013P, "System Analyses for Elimination of Selected Response Time Testing Requirements", dated March 1992. This document provides the technical justification for the elimination of selected response time tests in : (1) Reactor Protection System (RPS) instrumentation, (2) Isolation System Actuation instrumentation, and (3) Emergency Core Cooling System (ECCS) instrumentation. The document has been revised to address NRC comments and to provide more information on the safety significance of the proposed improvement.

DRAFT

1.0 EXECUTIVE SUMMARY

The BWR Owners' Group (BWROG) has proposed the elimination of the requirements for performance of response time tests (RTTs) of selected instrumentation in the Reactor Protection System (RPS), Emergency Core Cooling System (ECCS), and Isolation System. Because this licensing change improves plant safety and reduces plant operation and maintenance costs, the proposed change qualifies as a Cost Beneficial Licensing Action (CBLA) and should be reviewed by the NRC on a priority basis. Based on a conservative reduction of 1500 man-hours per outage and the potential reduction in outage length, cost savings are estimated to range from \$50,000 to \$100,000 per unit per year.

This generic Licensing Topical Report has been revised in response to NRC questions and to more clearly demonstrate that the elimination of selected response time tests is of no safety significance. While the BWROG has enhanced the approach to justify the elimination of specific response time testing, the FMEA results remain valid and these analyses of instrumentation failure modes confirm with reasonable assurance that failures which affect response times can be detected during other surveillance tests required by current Technical Specifications. Note that the EPRI report (Reference 1) which justifies the elimination of sensor response time testing has been updated to respond to questions from instrument vendors, GE, Westinghouse, and the NRC. The plantspecific data from the previous submittal are unchanged.

The report concludes that response times are maintained with the current practices and that response time testing is unnecessary based on plant operating history and experience. The other existing Technical Specification required surveillance tests (calibration tests, functional tests, and logic system functional tests) ensure instrumentation health. Results of this BWROG evaluation confirm that response time tests are of no safety significance, cause unnecessary personnel exposure, reduce availability of safety systems during shutdown, and are a significant burden to utility resource.

As a supplement to the above evaluations, participants will update test procedures (if required) to assure that the instrument technicians recognize response time delays in instrumentation. A BWROG survey has concluded that instrument response time delays of 3 to 5 seconds can be reasonably detected by instrument technicians. A safety evaluation has

confirmed that delays of individual specific trip functions of a few seconds have very low safety significance. This realistic bases evaluation showed that a good deal of margin exists in the licensing analysis. Within a trip function, redundancy exists in individual instrument channels (e.g., 1 out of 2 twice) and diversity exists in most safety trip functions (e.g., neutron flux, water level, drywell pressure). Also, for most of these instruments the response times are insignificant compared to the safety system actuation times.

DRAFT

DRAFT

2.0 INTRODUCTION

Current Standard Technical Specifications require certain BWR plants to periodically perform response time tests, as defined in ISA Standard 67.06, (Reference 4), for instrument channels in the RPS, Isolation Actuation System and ECCS. The purpose of these tests is to ensure that changes in response time beyond acceptable limits assumed in safety analyses are detected. It is not necessary to demonstrate that the response time design value is met. The instrumentation response time tests provide measurement of specific sensor, trip unit and/or loop response time. The information obtained from these tests is compared to Technical Specification requirements to demonstrate that the specified performance is met. Operational history has shown that degradation of instrumentation response times beyond acceptable limits are being detected during the performance of calibrations and other surveillance tests. The performance of conventional response time tests has proven to be of little value in assuring that instrumentation will perform as required or for determining the health of the instrument. The majority of allowable instrumentation response times are much longer than instrument circuits require for signal processing from sensor input to final output signal. Additionally, the instrument response time is insignificant compared to safety system actuation times. Therefore, the continued performance of instrument time testing may actually detract from safety by: 1) increasing the time when safety systems are unavailable to perform their safety function, 2) increasing the potential for inadvertent safety system actuations, 3) adding to refuel outage complexity thereby increasing the shutdown risk, 4) increasing the exposure of plant personnel to radiation, and 5) diverting resources from other tasks which are important to safety. Based on the above five attributes, it has been determined that the elimination of response time testing is a Cost Beneficial Licensing Action. A discussion of the safety benefits is provided in Section 3.0.

The proposed elimination of selected RTTs has also been identified as a line-item Technical Specification improvement in NRC Generic Letter 93-05 (Reference 5). This line-item improvement was part of a NRC study that included a comprehensive examination of surveillance requirements which is documented in NUREG-1366 (Reference 6).

The proposed elimination of selected RTTs is also consistent with the current Maintenance Rule implementation. The Maintenance Rule is

performance based and permits specific instrumentation monitoring or calibration methodology to be set by the licensee based on: 1) safety significance of the instrumentation; and 2) whether performance or condition of instrumentation is effectively controlled by appropriate preventive maintenance (PM). This report will show that response time changes beyond acceptable limits, including the detection of maintenance preventable functional failures (MPFFs), can be detected during other periodic tests.

The BWR Owners' Group formed a Response Time Testing Committee in late 1990. The principal objective of this BWROG program was to eliminate unnecessary Technical Specification response time testing requirements that could potentially degrade plant safety. This objective was accomplished by conducting failure mode analyses to show with reasonable assurance that there is no failure mode which affects response time or, when a response time failure mode exists, show it can be detected during surveillances or other testing before the response of the instrument degrades beyond acceptable limits. Section 4.0 provides a more detailed discussion of the analysis approach.

Most of the instrumentation response time testing targeted for elimination involves tests where the instrumentation loop response time is a small fraction of the total allowable system response time requirement. This typically occurs when the total allowable system response time is equal to or greater than ten seconds. In addition, selected pressure and differential pressure sensor response time testing can be eliminated on the basis of work done by EPRI (References 1 and 9) and supplemented by the BWR Owners' Group.

On this basis, the following response time tests were considered for elimination:

- (1) All ECCS actuation instrument loops (entire channel).
- (2) All Isolation System actuation instrument loops (entire channel) except for Main Steam Isolation Valves (MSIVs).
- (3) Sensors only, for selected RPS actuation.
- (4) Sensors only, for selected MSIV closure actuation.

Section 5 provides a complete listing of the selected response times considered in this study.

Two representative BWR plants were chosen for detailed analysis: Fermi-2 (BWR 4) and River Bend (BWR 6). The response time requirements for the other BWR plants participating in this study were verified against the analyses of the two lead plants. The overall approach used to justify the elimination of the selected response time surveillance requirements was based on the analysis of the failure modes of the components in the instrumentation loop. Failure modes that can affect instrumentation loop response time were further analyzed to determine what other surveillance or other techniques would reasonably ensure detection of response time failure beyond acceptable limits. Section 6 provides a discussion of the routine periodic tests that are used to detect changes in instrument response.

Section 7 describes the results from the analysis of the two lead plants and their application to the other BWR participating plants.

DRAFT

3.0 BENEFITS OF RESPONSE TIME TEST ELIMINATION

By the elimination of response time testing, safety benefit is gained while still maintaining the capability to detect degradation prior to the time when instrument performance degrades beyond acceptable limits. This section describes the improvement in plant safety which can be gained by the elimination of response time testing where calibrations and other surveillances can adequately detect response time degradation. In addition to the safety benefits, significant cost savings are realized due to reductions in manpower and outage days which makes the RTT elimination a Cost Beneficial Licensing Action.

3.1 SAFETY BENE. ITS

Elimination of response time tests will result in significant improvement in plant safety by:

- (1) Minimizing the Time When Safety Systems are Out of Service or Otherwise Incapable of Responding to a Degraded Plant <u>Condition</u>. Performance of response time testing requires the instruments being tested to be isolated and thus unable to provide an automatic actuation signal to the affected system. Therefore, the affected system is considered Inoperable in accordance with Standard Technical Specification Definitions of Operability. According to a BWR survey, the time required to conduct these RTTs ranges from one to three days per division. Elimination of unnecessary response time tests will improve plant safety by reducing the time safety systems are out of service for testing.
- (2) <u>Reducing the Potential for Inadvertent Essential Safety</u> <u>Function (ESF) Actuations</u>. A significant number of ESF actuations occur due to response time activities. A high potential for error in present during the installation and removal of temporary circuit alterations required to realign plant safety systems to a configuration which will allow response time testing. Therefore, elimination of unnecessary RTTs reduces the potential of plant transients caused by ESF actuations.

- (3) Reducing the Complexity of Refuel Outages and thus Reduce Shutdown Risk. This concern deals with the extension of ECCS inoperability windows and the complexity of having more than one safety system incapable of performing its safety function. In general, each ECCS divisional window is extended by one to three days to accommodate response time testing. This increases the total time that ECCS makeup capabilities to the reactor or fuel pools are not available. For a plant with three ECCS divisions, this time could add three to nine days to an outage. During refuel activities, the ECCS and major piping are realigned frequently to support a wide variety of maintenance tasks, leading to some increased probability of draindown events. Although Technical Specifications contain specific minimum requirements for makeup capabilities which must always be met, it is now widely accepted that outage activities affect the core damage frequency (shutdown risk). Elimination of unnecessary response time testing activities reduces the shutdown risk due to the unavailability of safety systems.
- (4) <u>Reducing Personnel Radiation Exposure (ALARA)</u>. Complex response time testing requires stationing personnel at the location of instrument sensors which are often in radiation areas. The BWROG survey results show an estimated dose reduction of 0.5 to 3.0 man-rem per outage.
- (5) <u>Allow Critical Personnel To Be Used For More Significant Tasks</u>. A survey performed by the BWROG showed that the elimination of response time testing on select systems will result in a savings of 1500 to 2600 manhours per outage. This estimate does not include additional manhours needed for support personnel such as health physics, engineering and outage planning personnel. These personnel can be utilized to perform other tasks which have a greater impact on plant safety.

Based on the above, the elimination of response time testing for the selected instrumentation listed in this submittal provides significant benefits in the availability and operation of safety systems as well as providing the opportunity to reduce dose and utilize plant resources more effectively. Therefore, it can be concluded that

and a series

DRAFT

response time testing should be eliminated as a Cost Beneficial Licensing Action.

3.2 COST SAVINGS

Based on the BWROG survey, the savings in manhours are 1500 to 2600 per outage. This represents at least \$50,000/year/plant savings in manpower alone. This is a very conservative estimate since additional cost savings will be realized in reduced personnel radiation exposure and the potential reduction in outage days which contribute to the loss of power generation. This estimated savings could be conservatively increased by a factor of two when these additional factors are considered (i.e., \$100,000/year/plant).

DRAFT

4.0 APPROACE

The fundamental approach developed in this study is consistent with Regulatory Guide 1.118, Revision 2 (Reference 2), which endorses IEEE 338-1977 (Reference 3), and is stated as follows:

> "Response time testing of all safety-related equipment, per se, is not required if, in lieu of response time testing, the response time of the safety equipment is verified by functional testing, calibration checks or other tests, or both. This is acceptable if it can be demonstrated that changes in response time beyond acceptable limits are accompanied by changes in performince characteristics which are detectable during routine periodic tests."

The analysis flow process is presented in Figure 4-1. Fermi-2 and River Bend were selected as lead plants in represent a typical BWR/4 and a BWR/6 plant, respectively. Technical Specification response time testing requirements ("RTT Trip Functions") for these lead plants are listed in Tables 4-1 and 4-2, respectively.

After the Technical Specification trip functions were identified for the lead plants, a detailed listing of specific loop components was compiled for each loop. Typically, there are 20 to 24 trip functions per plant. All components in the affected instrumentation loops which could potentially affect the loop response time were identified. These components include transmitters, relays, trip units, switches, indicator trip units (radiation), trip auxiliary units (radiation), log rad monitors (radiation); and Bailey/GMAC alarm units, summers, and square root extractors.

Detailed failure mode evaluations were then conducted for all instrumentation loop components in order to determine whether failures could affect response time. When it was determined that failure modes could affect instrument loop response times, the consequences of such failure were evaluated. An analysis was then made to determine whether other surveillance testing would identify these potential response time degradations. As part of the failure mode evaluations, component experts and vendors were contacted to assist with and verify the analysis.

A review of component failure experience was performed by conducting BWR-specific surveys, and by researching the Nuclear Plant Reliability Data System (NPRDS), NRC Bulletins, NRC Information Notices, and GE Service Information Letters (SILS). This review was used to determine if actual RTT failures could be reasonably detected by surveillance testing other than RTT.

The BWR Owners' Group RTT program also takes advantage of the work performed by EPRI (Reference 1) which evaluated failure modes and effects analyses (FMEAs) for most of the sensors employed in the applicable BWR instrumentation loops. The EPRI report covered both field data and macroscopic FMEAs. Approximately 4200 RTT data points from 39 utilities were analyzed. This document was reviewed and in a few cases supplemental evaluations were conducted to include the analyses of sensors not covered in the EPRI study.

Following completion of the lead plant baseline response time testing analyses, a plant-specific verification was performed for each of the other participating plants. Component and instrumentation loop differences were identified and dispositioned either by showing that the baseline analyses adequately covers the differences or by conducting additional failure mode and effects analyses. Response time tests of individual components within instrument loops were identified for elimination based on the above analyses. Individual plant Technical Specifications were marked-up to meflect the proposed elimination of response time tests.

Following NRC approval of this generic BWR Owners' Group Licensing Topical Report, each participating utility will prepare a plant-specific license change request using the guidance provided in Appendix I.

Table 4-1

FERMI-2 RTT REQUIREMENTS SELECTED FOR ANALYSES

Fermi-2 RTT Trip Functions	Tech. Spec. Table Number	Response Time (sec) (e)
Reactor Protection System Response Times:		
 Reactor Vessel Steam Dome Pressure - High Reactor Vessel Water Level - Low Level 3 	3.3.1-2 3.3.1-2	≤ 0.55 ≤ 1.05
1. Primary Containment Isolation:		
 a.1 Reactor Vessel Low Water Level - Level 3 a.2 Reactor Vessel Low Water Level - Level 2 a.3 Reactor Vessel Low Water Level - Level 1 b. Drywell Pressure - High 	3.3.2-3 3.3.2-3 3.3.2-3 3.3.2-3	$\leq 13.0(a)$ $\leq 13.0(a)(d)$ $\leq 1.0(c)$ $\leq 13.0(a)(d)$ $\leq 13.0(a)$
1. Main Steam Line:		
 c.1 Main Steam Line Radiation - High c.2 Main Steam Line Pressure - Low c.3 Main Steam Line Flow - High 	3.3.2-3 3.3.2-3 3.3.2-3	$\leq 13.0(a)(b)(d)$ $\leq 13.0(a)(d)$ $\leq 13.0(a)(d)$
2. Reactor Water Cleanup System Isolation:		
e. Reactor Vessel Water Level - Level 2	3.3.2-3	≤ 13.0(a)
3. Reactor Core Isolation Cooling System Isola	tion:	
a. RCIC Steam Line Flow - High b. RCIC Steam Supply Pressure - Low	3.3.2-3 3.3.2-3	$\leq 13.0(a) \leq 13.0(a)$
4. High Pressure Coolant Injection System Isol	ation:	
 a. HPCI Steam Flow - High b. HPCI Steam Supply Pressure - Low 	3.3.2-3 3.3.2-3	$\leq 13.0(a) \leq 13.0(a)$
6. Secondary Containment Isolation:		
 a. Reactor Vessel Low Water Level - Level 2 b. Drywell Pressure - High c. Fuel Pool Ventilation Exhaust Radiation - High 	3.3.2-3 3.3.2-3 3.3.2-3	$\leq 13.0(a)$ $\leq 13.0(a)$ $\leq 13.0(a)(b)$
Emergency Core Cooling System (ECCS):		
1. Core Spray System:		
a. Reactor Vessel Low Water Level - Level 1b. Drywell Pressure - High	3.3.3-3 3.3.3-3	≤ 30.0 ≤ 30.0

Table 4-1

FERMI-2 RTT REQUIREMENTS SELECTED FOR ANALYSES (Continued)

	Fermi-2 RTT Trip Functions	Tech. Spec. Table Number	Response Time (sec)
2.	Low Pressure Coolant Injection Mode of RHR	System:	
a. b.	Reactor Vessel Low Water Level - Level 1 Drywell Fressure - High	3.3.3-3 3.3.3-3	≤ 55.0 ≤ 55.0
3.	High Pressure Coolant Injection System:		
8.	Reactor Vessel Low Water Level - Level 2	3.3.3-3	≤ 30.0

NOTES .

- (a) Isolation System instrumentation response time shall be measured and recorded as part of the ISOLATION SYSTEM RESPONSE TIME. Isolation system instrumentation response time specified includes diesel generator starting and sequence loading delays.
- (b) Radiation detectors are exempt from response time testing. Response time shall be measured from detector output or the input of the first electronic component in the channel.
- (c) Isolation System instrumentation response time for MSIVs only. No diesel generator delays assumed for MSIVs.
- (d) Isolation System instrumentation response time for associated valves except MSIVs.
- (e) Isolation System instrumentation response time specified for the Trip Function actuation of sach valve group shall be added to isolation time shown in Tables 3.6.3-1 and 3.6.5.2-1 for valves in each valve group to obtain ISOLATION SYSTEM RESPONSE TIME for each valve (applies to Table 3.3.2-3 trip functions only).

4-4

Table 4-2

RIVER BEND RTT REQUIREMENTS SELECTED FOR ANALYSES

	River Bend RTT Trip Functions	Tech. Spec. Table Number	Response Time (sec) (d)
Read	tor Protection System Response Times:		
1. 2. 3.	Reactor Vessel Steam Dome Pressure - High Reactor Vessel Water Level - Low, Level 3 Reactor Vessel Water Level - High, Level 8	3.3.1-2 3.3.1-2 3.3.1-2	≤ 0.35 ≤ 1.05 ≤ 1.05
1	Primary Containment Isolation:		
a. b.	Reactor Vessel Water Level - Level 2 Drywell Pressure - High	3.3.2-3 3.3.2-3	$\leq 10.0(a) \leq 10.0(a)$
2	Main Steam Line Isolation:		
8.	Reactor Vessel Water Level - Level 1	3.3.2-3	$\leq 1.0(b)/ \leq 10.0(a)(c)$
b.	Main Steam Line Radiation - High	3.3.2-3	$\leq 1.0(b)/$
c.	Main Steam Line Pressure - Low	3.3.2-3	$\leq 1.0(b)/$ $\leq 10.0(a)(c)$
d.	Main Steam Line Flow - High	3.3.2-3	$\leq 0.5(b)/ \leq 10.0(a)(c)$
3.	Secondary Containment Isolation:		
a. b.	Reactor Vessel Water Level - Level 2 Drywell Pressure - High	3.3.2-3 3.3.2-3	$\leq 10.0(a) \leq 10.0(a)$
4	Reactor Water Cleanup System Isolation:		
а. е.	Delta Flow - High Reactor Vessel Water Level - Level 2	3.3.2-3 3.3.2-3	$\leq 10.0(a)(e) \\ \leq 10.0(a)$
5.	Reactor Core Isolation Cooling System Isola	tion:	
a. b.	RCIC Steam Line Flow - High RCIC Steam Supply Pressure - Low	3.3.2-3 3.3.2-3	$\leq 10.0(a)(f) \\ \leq 10.0(a)$
6	RHR System Isolation:		
c. d.	Reactor Vessel Water Level - Level 3 Reactor Vessel Water Level - Level 1	3.3.2-3 3.3.2-3	$\leq 10.0(a) \leq 10.0(a)$
DRAFT

Table 4-2

RIVER BEND RTT REQUIREMENTS SELECTED FOR ANALYSES (Continued)

	River Bend RTT Trip Functions	Tech. Spec. Table Number	Response Time (sec)
Emer	rgency Core Cooling System (ECCS):		
1.	Low Pressure Core Spray System (LPCS)	3.3.3-3	≤ 37.0
2.	Low Pressure Coolant Injection Mode of RHR System		
	a. Pumps A and B b. Pump C	3.3.3-3 3.3.3-3	≤ 37.0 ≤ 37.0
3.	High Pressure Core Spray System (HPCI)	3.3.3-3	≤ 27.0

NOTES:

- (a) Isolation System instrumentation response time specified includes the diesel generator starting and sequence loading delays.
- (b) Isolation System instrumentation response time for MSIVs only. No diesel generator delays assumed.
- (c) Isolation System instrumentation response time for associated valves except MSIVs.
- (d) Isolation System instrumentation response time specified for the Trip Function actuation of each valve group shall be added to isolation time shown in Tables 3.6.4-1 and 3.6.5.3-1 for valves in each valve group to obtain ISOLATION SYSTEM RESPONSE TIME for each valve (applies to Table 3.3.2-3 trip functions only).

⁽e) Time delay of 45-47 seconds.

⁽f) Time delay of 3-13 seconds.

Figure 4-1. Response Time Testing Elimination Analysis Flow Process (Sh.2)

DRAFT

5.0 DESCRIPTION AND LISTING OF SELECTED RESPONSE TIME TESTS TO BE ELIMINAVED

5.1 INTRODUCTION

This section provides overall background information concerning the current response time test (RTT) requirements. It provides insights into the basis for selecting certain RTT requirements for elimination and identifies the margins available in affected systems. Analyses have determined that a small increase in instrumentation response will not advertely affect system safety functions. A small increase in response time on the order of 3 to 5 seconds can be reasonably detected during periodic curveillance tests.

5.2 SYSTEMS REQUIRING RESPONSE TIME TESTING

The response time testing (RTT) Technical Specification tables for the participating plants are provided in Appendix B. The two BWR product lines (BWR 4s and BWR 6s) have been grouped separately. These tables reveal that the RTT Technical Specification requirements fall into three systems: (1) Reactor Protection System (RPS), (2) Isolation Actuation Instrumentation, and (3) Emergency Core Cooling system (ECCS).

5.3 RESPONSE TIME TESTS SELECTION FOR ELIMINATION

The RTT requirements for Isolation Actuation and ECCS instrumentation, are proposed to be eliminated for the entire instrumentation loops. These changes are consistent with the recommendations of Generic Letter 93-05 (Reference 5). For RPS and MSIV Actuation instrumentation, justification is provided for only the sensor in the loop based on the EPRI report for sensor RTT elimination (Reference 1). The response times for the Isolation Actuation and ECCS instrumentation are a small fraction of the total system response time toquirements (Isolation Actuation 10 to 13 sec., and ECCS 27 to 64 sec.). Instrumentation components that may experience response time degracation will continue to respond in the microsecond-to-millisecond range prior to complete failure. Therefore, such response time degradation would have no significant adverse effect and the instrumentation would continue to meet the overall system requirements. If the response time should degrade to as much as 3 to 5 seconds, this

5-1

degradation would with reasonable assurance be detected during periodic surveillance tests (functional tests, calibrations, and channel checks).

Conversely, in RPS and MSIV actuation instrumentation loops the overall Technical Specification response time requirements are much shorter (0.35 to 1.05 sec.). For the same component, the response time degradation before failure can be significant in relation to the overall system response time requirement. As a result, changes in instrumentation response time beyond acceptable limits given in Technical Specifications may not be readily detected for all components during other surveillance tests. Analyses of selected instrumentation sensors performed by EPRI (Reference 1) indicate that failure modes that affect sensor response times beyond acceptable limits can be detected during calibrations or other surveillance tests. The BWR Owners' Group decided to use these analyses as a basis for elimination of selected sensor RTTs but not to extend the analyses to the remaining instrumentation components (trip units, relays, etc.) for RPS and MSIV Actuation loops. Therefore, only the selected sensor RTTs are proposed for elimination in the RPS and MSIV Actuation instrumentation loops.

Table 5-1 shows the range of participating BWR instrumentation RTT requirements for (1) RPS, (2) Isolation Actuation Instrumentation, and (3) ECCS. The following is a discussion of the individual trip functions where RTTs are proposed to be eliminated. The discussion includes an assessment of the effect of a 3 to 5 second delay in instrumentation response time beyond the normally acceptable Technical Specification response time value (see Appendix J for detailed discussion). This assessment provides added assurance that there is sufficient time within existing safety margins for an I&C technician to reasonably detect a failure or degradation in the instrumentation response time. The 3 to 5 second delay was chosen based on a survey of I&C technicians from participating BWR plants.

5.3.1 Reactor Protection System

The three selected trip functions in the RPS area considered for elimination of response time testing are:

- · Reactor Vessel Steam Dome Pressure High
- · Reactor Vessel Water level Low, Level 3

DRAFT

• Reactor Vessel Water Level - High, Level 8

The typical instrumentation response time requirements for these RPS trip functions range from 0.35 to 1.05 seconds. These RPS circuits have more restrictive response time requirements than the Isolation Actuation System and ECCS. Therefore, for the RPS, only the sensors analyzed by EPRI were considered for response time testing elimination (Reference 1).

A 3 to 5 second delay in the sensors for the above RPS trip functions was determined to have no significant impact on plant safety. For the level 3 sensors, a slight delay in the scram actuation would not affect plant thermal limits or fuel integrity and the core cooling function. A delay in the Level 8 scram sensors would cause a slight increase in reactor water level but would not result in cold water intrusion into the main steam lines. A delay in the reactor high steam dome pressure sensors would not affect the integrity of the reactor vessel or core thermal limits. A detailed discussion of the effect of a delay in these RPS trip functions is provided in Appendix J.

5.3.2 Isolation Actuation Instrumentation

The Isolation Actuation System instrumentation response time requirements given in typical plant specifications are in the range of \leq 10 sec. to \leq 13 sec. (MSIV actuation instrumentation response time requirements are typically between \leq 0.5 to \leq 1.0 sec.). The actual instrumentation circuits typically operate in a fraction of a second.

The following Isolation Actuation instrumentation Technical Specification response time requirements were considered for elimination:

Main Steam Isolation Valve (MSIV) (losure

- Reactor Water Level 1 or 2
- MSL Radiation High
- MSL Low Pressure

Remaining Isolation Actuation

- Reactor Core Isolation Cooling (RCIC) System
- High Pressure Coolant Injection (HPCI) System

DRAFT

- · High Pressure Coolant Spray (HPCS) System
- Reactor Water Cleanup (RWCU) System
- Primary Containment
- Secondary Containment
- · Residual Heat Removal (RHR) Shutdown Cooling/Head Spray

Because the Isolation Actuation instrumentation logic functions are in parallel with the startup of the diesel generators, the response time requirements (≤ 10 sec. to ≤ 13 sec.) are not critical for the majority of the isolation circuits. This is consistent with the recommendations of Generic Letter 93-05 (Reference 5). The main steam isolation valves (0.5 sec. to 1.0 sec.) are an exception. Hence, elimination of response time testing for the MSIV actuation circuits covers only the sensors.

A 3 to 5 second delay in the sensors that initiate MSIV closure (Reactor Water Level 1 or 2, Main Steam Line (MSL) Radiacion High and MSL Low Pressure) will not significantly affect plant safety. The only purpose of the MSIV closure for low reactor water level events is to limit the potential increase in the offsite dose. No fuel damage would occur even if there is a slight delay (3 to 5 seconds) in the MSIV closure under these conditions.

The MSIV closure on high radiation level is required when fuel failure has occurred. An increase in reactivity due to a delay in high radiation sensors will not significantly affect offsite release.

MSIV closure on low MSL pressure is provided to protect the reactor system during normal power generation against transients that could cause uncontrolled depressurization. A 3 to 5 second delay in this setsor trip would not affect vessel integrity or plant safety since the reactor vessel is designed to accommodate even more rapid depressurizations than for this event.

A 3 to 5 second delay in the sensors that isolate the remaining systems listed above does not have any effect on the plant safety. This delay is a small fraction of the required 10 to 13 seconds actuation time assumed in the safety analysis.

A more detailed discussion of the isolation actuation instrumentation delays is provided in Appendix J.

DRAFT

5.3.3 Emergency Core Cooling System (ECCS)

Response time testing requirements for the following systems were considered for elimination:

- Low Pressure Core Spray (27 to 40 sec.)
- Low Pressure Coolant Injection (37 to 64 sec.)
- High Pressure Core Injection/Spray (27 to 35 sec.)

Unlike the isolation system; for ECCS the diesel generator, emergency cooling pumps, and the injection valves response times are in series with the instrumentation response time. For these loops, only the instrumentation will be eliminated from response time testing. The overall ECCS system response time requirement, which includes diesel generator, injection valves, pumps, and other components, still applies. Furthermore, the diesel generator and the injection valve Technical Specification response time requirements are not eliminated. The instrumentation response time requirements are a very small fraction of the total ECCS actuation times.

A 3 to 5 second delay in ECCS sensor actuation does not affect plant safety. This is supported by GE analyses performed for various design basis events. A more detailed discussion of the effect of a delay in ECCS instrumentation is provided in Appendix J.

Table 5-1

BWR INSTRUMENTATION RESPONSE TIME TEST REQUIREMENTS

Reactor Protection System

0.35 to 1.05 sec.

Isolation Actuation/Instrumentation

MSIV Closure - 0.5 to 1.0 sec. Remaining - 10 to 13 sec.

ECCS Actuation Instrumentation

LPCS - 27 to 43 sec. LPCI - 30 to 64 sec. HPCI/HPCS - 27 to 35 sec.

6.0 ROUTINE PERIODIC TESTS USED TO DETECT CHANGES IN INSTRUMENT RESPONSE

BWROG Analysis has determined that changes in instrument response are detectable prior to the response degradation beyond acceptable limits without the performance of conventional response time testing. Therefore, no additional testing or surveillances are required. This section discusses the current testing being performed, the frequency at which the activity is presently performed and the advantages over conventional response time testing.

Current testing which is presently required by Technical Specifications includes calibrations, functional testing, logic system functional testing and channel checks. A description of each test, including Standard Technical Specification definitions and the relative advantages of each method appears in Appendix B to this report. It can be concluded from analyses summarized in this report that response time degradation is detected by other surveillance techniques prior to the instrument response degrading beyond acceptable limits. Figure 6-1 shows a typical example of the relative frequency at which each activity is performed. From this figure it can be determined that performance of response time testing of individual instrument channels results in the longest time interval (36 months) between performance of surveillance activities. Response time degradation is more likely to be detected during calibrations, functional tests, or channel checks which are performed at the same or more frequent surveillance intervals (18 months, quarterly or monthly, and once/shift respectively) than RTTs. Therefore, the BWROG has concluded that the performance of response time testing is not necessary to detect degradation in instrumentation response.

In addition to testing currently being performed to satisfy Technical Specification requirements, other means are available to evaluate instrument performance. The following is a discussion of two supplementary methods:

(1) Assessment of as found calibration data. This method utilizes data obtained during instrument calibrations and compares a trend of as found calibration data to establish a trend of instrument drift. This technique has been used in the past to detect degradation of Rosemount transmitters due to a loss of

6-1

fill oil. Because this failure mode may not be detected during response time testing.

(2) Operator and technician awareness. Awareness of the potential for degradation is the first line of defense in monitoring the health of instruments or any equipment. Although this method is qualitative and does not provide any documented data, this type of monitoring is a significant contributor to maintaining instrument health. Operators monitor plant parameters routinely and are the first line of defense in determining if instrumentation does not perform as expected. Additionally, instrument technicians work with instruments during the performance of calibrations and functional testing and are immediately aware of any degradation. The BWROG has surveyed instrumentation departments at participating plants and selected PWR plants and has determined that a technician can typically qualitatively detect an instrument with a sluggish response prior to the time the response time reaches 3 to 5 seconds. To assure that a degradation in response of this magnitude will not affect the margin of safety of affected s'stems, a realistic bases safety evaluation was made assuming a 5 second delay in sensing a degraded condition. The details of this evaluation are included in Section 5.0 and Appendix J. Participating utilities will make provisions to assure operators and technicians are aware of the consequences of instrument response degradation. Applicable procedures may need to be revised by individual plants to assure that technicians monitor for response time degradation during the performance of calibrations and functional tests.

Industry activities are currently underway to extend the existing 18-month calibration interval to as long as 36 months. This proposed change does not affect the basis for RTT elimination which relies on calibration tests since the proposed longest calibration frequency extension is identical to the existing channel RTT frequency (36 months).

By the performance of the above methods, changes in instrument performance can be detected prior to the point where system response degrades beyond acceptable limits.

Figure 6-1

Frequency (Typical) of Instrumentation Surveillance

Required By BWR Technical Specifications

6-3

7.0 ANALYSES RESULTS

This section summarizes the results of the two lead plant-specific analyses and the application of these analyses to other BWR plants participating in this study. These results include plant-specific analyses of all applicable trip functions identified in their respective Technical Specifications.

7.1 LEAD PLANT RTT INSTRUMENTATION LOOP COMPONENT IDENTIFICATION

A comprehensive instrumentation loop component identification was performed for each of the selected trip functions in the Technical Specifications listed in Tables 4-1 and 4-2. The identification included a description of each component, its corresponding function and model/Master Parts List (MPL) or Plant Identification System (PIS) number. The plant drawing numbers and their latest revisions used in the analyses were compiled. Loop devices not covered by lead plant analyses were also addressed. Annunciators, seal-in circuits, recorder pens, alarms etc. that are not required for response time testing were excluded from this evaluation.

A comprehensive listing of loop components for both Fermi-2 and River Bend plants are contained in Appendices C.1 and C.2, respectively.

7.2 CATEGORIZATION OF MAJOR COMPONENTS

Upon completion of the compilation of instrumentation loop components, all the potential response time sensitive components were grouped by component type. Some components (e.g., radiation detectors, logic cards) are exempt from response time testing per Technical Specifications. The response time components were categorized into the following generic component groups:

- · Trip Units
- Relays
- Time Delay Relays
- Signal Conditioning Devices (Summer, Square Root Extractor, etc.)
- Radiation Devices (NUMAC, Auxiliary Trip Unit etc.)
- Transmitters/Switches

7-1

 Loop Devices (Capacitors for filtering, Alarm Units, power supplies, optical isolators)

A comprehensive listing of vendor models for these component groups is included in Table 7-1. From this extensive database, a generic response time failure mode analysis was performed for each vendor model of the above components.

7.3 COMPONENT FAILURE MODES ANALYSES

This section summarizes the results of the failure modes analyses for the generic components that could potentially affect the instrumentation loop response time. These analyses are based on detailed engineering evaluations including vendor contacts, operating experience, and design experience to investigate the potential failure modes of the specific loop instrumentation. Several instrument vendors were contacted during the component failure modes analyses, and these vendors concurred with respect to the acceptability of eliminating conventional response time testing. In addition, Rosemount has recently documented their endorsement for the elimination of selected response time testing as is being proposed by the BWR Owners' Group (Reference 14). A more detailed discussion of the analysis results is provided in Appendix K.

Trip Units

The following can be concluded from the failure mode analyses of the trip units:

- No failure modes were identified that could potentially increase the response time above the millisecond range.
- (2) No failure modes that delay the normal response time were identified without also affecting calibration or causing misoperation detected in functional tests.
- (3) Failure modes (resistance increase) which can extend the response time, can be detected by loss of DC performance and misoperation during functional tests.

Relays

Relay failure modes normally result in a functional failure of the relay or a gross degradation in relay performance. Either of these conditions is readily detectable through functional testing, inspection or observations of abnormalities during routine operation before the response time exceeds required operational limits (> 10 seconds).

Time Delay Relays

Time delay relays require calibration for response verification and to assure setpoint accuracy. The time delay relays are also tested as part of Logic System Functional Tests in most BWRs.

Signal Conditioning Devices

Any response time degradation beyond acceptable limits can readily be detected by other surveillance tests.

Radiation Devices

Trip Auxiliary Unit response time failures can be detected during functional tests similar to the relay devices discussed above. Component failures that affect response time in the NUMAC Log Rod Monitor would be in the microsecond range and therefore would not significantly affect the required response time. For the Log Radiation Monitor (238 x 660 Series), the potential failure modes which could change response time is difficult to justify without extensive testing. For this reason the elimination of response time testings for this device was not recommended.

Transmitter/Switches

Transmitters and switches can be eliminated from response time testing based on analyses performed by EPRI (Reference 1) and additional BWROG Analyses for sensors not included in the EPRI analysis.

(1) Transmitters/Switches Included in EPRI Analysis

Only two failure modes and two manufacturing/handling defects were identified in Reference 1 as affecting response time without concurrently affecting sensor output. These failure modes and

defects apply only to sensors utilizing a fill fluid to transfer the process pressure to the sensing element. Rosemount sensors are the only sensors of this type identified for plants participating in this BWROG study. The two failure modes affecting response time are the slow loss of fill fluid during pressurized operations and variable damping potentiometer misadjustments during maintenance. For sensors that are susceptible to the slow loss of fill-oil, Drift Analysis is the preferred method to detect the change in instrument performance. Other diagnostic techniques such as sluggish response and process noise analysis may be used to supplement Drift Analysis. When enough fluid (Reference 10-13) is lost to cause a significant response time degradation, the sluggish response of the leaking sensor will be detected during transmitter calibration.

For transmitters with variable damping, measures must be taken to ensure that the potentiometer is at the required setting at the time of installation and after major maintenance.

The two manufacturing and handling defects are low sensor fill fluid during manufacturing and crimped fill capillaries due to manufacturing or mishandling during installation/maintenance. Since November 1989, vendor testing has been implemented to ensure acceptable fill and capillaries. In addition, when low fill fluid or crimped capillaries affect response time, the degradation can be detected during pre-installation calibration.

(2) Transmitters/Switches Not Included in EPRI Analysis

Two switch models used in BWR plants were not part of the EPRI report. The analysis of the failure modes that could potentially affect the response time of these components indicate that response time testing is not required.

Loop Devices

The analysis of several other components used in the instrumentation loops of participating BWR plants indicate either response time is not affected or the degradation in response time beyond acceptable limits would be detected by other surveillance tests.

7.4 FAILURE EXPERIENCE REVIEW

A review of industry failure experience provides valuable insight to potential failure modes. The sources of this database search affecting instrumentation response times include:

- · EPRI
- GE SILs (Service Information Letters)
- NPRDS
- NRC Bulletins
- NRC Information Notices
- * Plant Surveys

A representative listing of the response time sensitive component failure experience, along with the Technical Specification surveillance testing that would have also identified the failure mode, is shown in Appendices D and E. Appendix D provides the results from a review of generic BWR experience. Appendix E provides the results of experience as reported in plant surveys.

FAILURE EXPERIENCE DATABASE SUMMARY:

- End-of-life component failures (approximately 15%, 9 of 70 events)
- Material property defects, which have been improved over the years by using better materials (approximately 20%, 16 of 70 events).
- Improper installations or not properly following procedures (approximately 15%, 10 of 70 events).
- Many manufacturers' defects, inadequate tolerances, and inappropriate design deficiencies have been addressed by new designs (approximately 35%, 25 of 70 events).
- Improper operation of the device, and other miscellaneous failures (approximately 15%, 10 of 70 events).

FAILURE EXPERIENCE REVIEW CONCLUSIONS:

Function is normally lost when response time is affected.

- Failures affecting response time could have been identified by other tests and/or techniques.
- There are relatively few response time unique failures.

7.5 APPLICATION OF RESULTS TO OTHER PLANTS

The two lead plants analyses, (Fermi-2 representing BWR4s and River Bend representing BWR6s), provide the technical framework for the verification of the other participating BWRs. The majority of the components were identified as part of the lead plant analyses.

Those components that were not covered by the lead plant analyses were analyzed separately. Most of these components are in the RPS, radiation isolation instrumentation area and Reactor Water Cleanup (RWCU) Systems. Some of the components, such as radiation detectors and solid-state logic cards that have a self-test feature, are already exempt from response time testing. Components and devices such as annunciators, seal-in devices, recorder pens, alarms and lights that have no bearing on response time were excluded from these analyses.

A summary of the individual plant-specific verifications for the participating BWRs is provided in Appendix G. As a first step, all RTT components were grouped and listed for each plant. Appendix G also identifies the type of component and whether it is a unique RPS or radiation component. This classification was necessary for reasons detailed in Section 5 (i.e., only the RPS sensor is exempt from response time testing even though other components within that channel may also qualify for exemption). Radiation channels also employ unique components, and the failure modes evaluation for the radiation channels with Log Rad Monitors (238X660 Series) revealed failures that do not allow elimination of response time testing. Similarly, time delay relays will require calibration to assure setpoint accuracy.

The lead plants analyses were supplemented by individual component failure mode analysis, failure experience reviews, and identification of other tests and/or techniques that can detect response time failure modes. The application of lead plant results, along with additional supporting analyses representing the unique components, justifies the

elimination of plant specific RTT requirements identified and documented in Appendix H.

7.6 FUTURE MAINTENANCE AND DESIGN MODIFICATIONS

Plants that implement the recommendations justified in this LTR may need to revise plant procedures and/or provide training to ensure that required testing is performed properly. Although RTT is not required for the majority of the components at the time of "like for like" replacement, acceptance testing is performed as required to ensure critical design requirements are maintained.

Table 7-1

VENDOR MODELS FOR COMPONENT GROUPS

- (a) Trip Units
 - Rosemount 510DU
 - Rosemount 710DU
 - GE Trip Unit Series G100-G700

(b) Relays

- · GE HFA
- GE HMA
- GE HGA
- Bourns

.

۰

- Agastat GP/EGP Family
- ASEA RXMH2
- GE SAT6004
 - GE Type CR105
 - GE Type CR205
- GE Type CR305
- GE Type CR120A
- Potter Brumfield MOR
- Potter Brumfield MDR
- Potter Brumfield KH4690

(c) Time Delay Relays (Require Calibration)

- Agastat TR/ETR
- GE Type CR2820
- Eagle Signal HP5
 - Agastat 7000/E7000

(d) Flow Devices (Bailey/GEMAC Modules)

- 752 Summer
- 750 Square Root Extractor

DRAFT

Table 7-1

VENDOR MODELS FOR COMPONENT GROUPS (Continued)

(e) Radiation Devices

- Radiation Detector
 - Sensor/Converter 194X927 (Exempt from RTT)
 - Gamma Ion Chamber 237X731 (Exempt from RTT)
- Trip Auxiliary Unit (238X697 Series)
- Indicator Trip Unit (129B2802 Series)
- NUMAC Log Rad Monitor (304A3700 Series)
- Log Radiation Monitor (238X660 Series) (Not Eliminated from RTT)

(f) BWR Pressure Sensors Included in the EPRI Analysis

- Barton 288 and 289 Differential Pressure Indicating Switches
- Barton 763 Gauge Electronic Pressure Transmitter
- Barton 764 Differential Pressure Electronic Transmitter
 Rosemount Differential Pressure Transmitter Models 1151,
- 1152Rosemount Differential Pressure Transmitter Models 1153,
- Rosemount Differential Pressure Transmitter Models 1155, 1154
- Rosemount Pressure Transmitter Models 1151, 1152
- Rosemount Pressure Transmitter Models 1153, 1154
- SOR Differential Pressure Switch
- SOR Pressure Switch

(g) Sensors Included in BWROG Analysis

- Barton 760
- Barksdale TC9622-3
- Barksdale BIT-M12SS-GE

(h) External Devices

.

- 560 Alarm Unit
- 745 Alarm Unit
 - Rosemount/GE Trip Unit Noise Suppression
 - Filter Capacitors
 - Cornell Dublier WBR 2000-50
 - Sprague 500D-35

Table 7-1

VENDOR MODELS FOR COMPONENT GROUPS (Continued)

(i) Miscellaneous Devices

- Power Supply
- Hi Current Isolator 133D9947
- Optical Isolator 204B6186AA
- · Optical Isolator 204B6188AA

DRAFT

8.0 CONCLUSIONS

The BWR Owners' Group has determined selected response time tests required by Technical Specifications can be eliminated as a Cost Beneficial Licensing Action based on improved plant safety and reduced plant operation and maintenance costs. This conclusion is consistent with the findings of NUREG-1366 and the recommendations of Generic Letter 93-05. The following is a summary of the general conclusions that support the BWROG proposed changes as a Cost Beneficial Licensing Action:

- Response time test elimination provides an improvement to plant safety and operation by:
 - Reducing the time safety systems are unavailable
 - Reducing safety system actuations
 - Reducing shutdown risk
 - Limiting radiation exposure to plant personnel
 - Eliminating the diversion of key personnel to conduct unnecessary testing
- (2) Plant operating history and experience clearly show that response times are maintained with the current practices.
- (3) Existing surveillance tests (calibration tests, functional tests, channel checks, and logic system function tests) ensure instrument health based on the following:
 - Analysis of instrumentation failure modes confirm with reasonable assurance that failures which affect response times can be detected during other surveillance tests required by current Technical Specifications.
 - Instrument response time delays on the order of 3 to 5 seconds can be reasonably detected by instrument technicians. Test procedures will be revised (if necessary) as part of RTT elimination to provide

additional assurance that the instrument technician recognizes response time delays in instrumentation.

(4) Individual instrument channel response time delays for specific trip functions and components (on the order of milliseconds) are a small fraction of response times assumed in safety analyses. Analyses of design basis events indicate that a 3 to 5 second delay in the frstest required response times in RPS and MSIV closure (0.35 to 1.05 seconds) would have no significant safety impact. This 3 to 5 second time delay would with reasonable assurance be detected by an instrument technician.

In addition, the following are specific conclusions resulting from the BWROG evaluations:

- (1) The response time components can be categorized into the following generic component groups: (1) trip units, (2) relays, (3) time delay relays, (4) RWCU unique flow devices; (5) radiation devices, (6) transmitters and switches, and (7) loop devices. For a majority of these components, failure modes do not affect response times. For components where response time was affected, any significant response time degradation beyond acceptable limits can be readily detected by surveillance tests, except as described below:
 - Log Rad Monitors (238X660 Series) have potential failure modes which could change response time. Elimination of response time tests for these components is difficult to justify without extensive testing and therefore cannot be eliminated based on analyses performed by the BWROG to date.
 - Time delay relays will require calibrations to assure setpoint accuracy.
 - For transmitters with variable damping, measures must be taken to ensure that the potentiometer is at the required setting at time of installation and after major maintenance.

- EPRI Report NP-7243 (Reference 1) identified cases where response time tests did not detect the slow loss of filloil. However, Drift Analysis and other techniques are available to detect the resulting change in instrument performance. This testing will be implemented per the guidelines of NRC Bulletin 90-01 and the associated supplement (Reference 7) to detect the change in instrument performance caused by slow oil loss.
- (2) Components such as radiation detectors are exempt from response time testing in the Technical Specifications. Similarly, logic cards with a self-test feature used in solid-state plants are exempt.
- (3) RTTs of instrumentation loops for the following trip functions in the Isolation Actuation System instrumentation and ECCS instrumentation can be eliminated based on other Technical Specification surveillance of the instrumentation loops and/or other techniques as required:
 - All ECCS actuation instrument loops
 - All Isolation System Actuation instrumentation loops except for Main Steam Isolation Valves (MSIVs) sensors
- (4) RTTs of sensors for the following trip functions in the RPS and MSIV isolation surveillance requirements can be eliminated based on other required Technical Specification surveillance tests:
 - Reactor Water Level 3 (RPS)
 - Reactor Water Level 8 (RPS)
 - Reactor High Steam Dome Pressure (RPS)
 - Reactor Water Level 1 (MSIV Closure)
 - Main Steam Line Radiation High (MSIV Closure)
 - Main Steam Line Pressure Low (MSIV Closure)
 - Main Steam Line Flow High (MSIV Closure)

9.0 REFERENCES

- EPRI Report, NP-7243, "Investigation of Response Time Testing Requirements," May 1991.
- 2. Regulatory Guide 1.118, Revision 2, 1978.
- IEEE 338-1977, "Criteria for Periodic Testing of Nuclear Power Generating Station Safety Systems."
- 4. ISA-S67-06, "Response Time Testing of Nuclear Safety-Related Instrument Channels in Nuclear Power Plants," 1986.
- NRC Generic Letter 93-05, "Line-Item Technical Specification Improvements to Reduce Surveillance Requirements for Testing During Power Operation," September 27, 1993.
- NUREG-1366, "Improvements to Technical Specifications Surveillance Requirements," December 1992.
- NRC Bulletin 90-01: "Loss of Fill-Oil in Transmitter Manufactured by Losemount," March 9, 1990 and Supplement 1 to NRC Bulletin 90-01, dated December 22, 1992.
- NUREG/CR-5762, J.F. Gleason, "Comprehensive Aging Assessment of Circuit Breakers and Relays for Nuclear Plant Aging Research (NPAR) Program, Phase II".
- EPRI NP-7121, Project 2409-6 "Technical Guidance for Detection of Oil-Loss Failure of Rosemount Pressure Transmitters," December 1990.
- 10. Rosemount Technical Bulletin No. 1, May 10, 1989.
- 11. Rosemount Technical Bulletin No. 2, July 20, 1989.
- 12. Rosemount Technical Bulletin No. 3, October 23, 1989.
- 13. Rosemount Technical Bulletin No. 4, December 22, 1989.
- Rosemount Letter, "BWR Owners' Group Elimination of Response Time Testing", dated November 10, 1993.

APPENDIX A PARTICIPATING UTILITIES/PLANTS

DRAFT

-

LIST OF UTILITIES/PLANTS PARTICIPATING IN THIS EVALUATION

UTILITY NAME	PLANT NAME	PRODUCT
Carolina Power & Light Company	Brunswick 162	4
Cleveland Electric Illuminating Co.	Perry	б
Commonwealth Edison Company	LaSalle 162	5
Detroit Edison Company	Fermi 2	4
Entergy Operations Inc.	Grand Gulf	6
Georgia Power Company	Hatch 2	4
Gulf States Utilities Company	River Bend	6
Illinois Power Company	Clinton	6
Niagara Mohawk Power Corporation	Nine Mile Point 2	5
Pennsylvania Power & Light Company	Susquehanna 142	4
Philadelphia Electric Company	Limerick 142	4
Public Service Electric and Gas	Hope Creek	4
Washington Public Power Supply System	WNP 2	5

APPENDIX B DESCRIPTIONS OF TECHNICAL SPECIFICATION SURVEILLANCE TESTING AND OTHER TECHNIQUES

APPENDIX B

DESCRIPTIONS OF TECHNICAL SPECIFICATION SURVEILLANCE TESTING AND OTHER TECHNIQUES

This Appendix provides descriptions of Technical Specification surveillance 'esting and includes the response time Technical Specification requirements selected for elimination for the participating BWRs. The BWR 4/5 plant Technical Specification requirement tables have been separated from the BWR 6 tables. The response time testing Technical Specification requirements have been categorized separately for RPS, Isolation Actuation instrumentation and ECCS.

B.1 Channel Calibration

B.1.1 Standard Technical Specification Definition

A CHANNEL CALIBRATION shall be the adjustment, as necessary, of the channel output such that it responds with necessary range and accuracy to known values of the parameter which the channel monitor. The CHANNEL CALIBRATION shall encompass the entire channel, including the sensor and alarm and/or trip functions and shall include the CHANNEL FUNCTIONAL TEST. The CHANNEL CALIBRATION may be performed by any series of sequential, overlapping or total channel steps such that the entire channel is calibrated.

B.1.2 Standard Channel Calibration Description

Channel calibrations are typically conducted once every eighteen months, although calibrations may be performed more or less frequently in some applications/olants. Channel calibrations contain more instruments/devices than those required for Technical Specification operability and normally will contain all instruments/devices in the loop. Engineering design calculations are the source of input values, as found (leave alone) and as left tolerances, required limit values and test equipment accuracy. Calibrations are performed by a technician removing the instrument from service and applying a known input. Output is compared to the input at several (typically 9) points over the

DRAFT

B.2 Channel Checks

B.2.1 Standard Technical Specification Definition

A CHANNEL CHECK shall be the qualitative assessment of channel behavior during operation by observation. The determination shall include, where possible, comparisons of channel indication and/or status with other indications and/or status derived from independent instrument channels measuring the same parameter.

B.2.2 Standard Channel Check Description

Channel checks are routinely conducted once per shift or daily. Channel checks are qualitative assessments of channel behavior during operation by observation and comparison of the channel indications and/or status from independent instrumentation channels measuring the same parameter. Redundant channel readings are compared to each other and to the acceptance criteria; hence, a channel check is a judgment as to whether an instrument properly reflects the conditions it is monitoring rather than a simple comparison of readings. The operator performing the channel check must determine if the instrument being checked is acceptable or unacceptable based on plant conditions, instrument behavior and/or past experience.

B.3 Channel Functional Test

B.3. Standard Technical Specification Definition

A CHANNEL FUNCTIONAL TEST shall include:

- <u>Analog Channels</u> the injection of simulated signal into the channel as close to the primary sensor as practicable to verify OPERABILITY including alarm and/or trip functions and channel failure trips.
- <u>Bistable Channels</u> the injection of a simulated signal into the channel sensor to verify OPERABILITY including alarm and/or trip functions.

The Channel Functional Test may be performed by any series of sequential, overlapping or total channel steps such that the entire channel is tested.

B.3.2 Standard Channel Functional Test Description

Channel functional tests are normally performed once every month or quarter. A signal above a trip setpoint will typically be applied and the proper output functions will be verified. Functional test input may be applied at the trip unit output in lieu of testing the sensor. These are qualitative tests which test instrument function but not necessarily setpoints. A functional test will test as much of the channel as possible without interfering unacceptably with the normal plant operations. This test requires testing from the sensor/transmitter to the point where a channel loses its identity. In order to verify proper contact operation (whenever possible), functional tests will take credit for installed plant equipment such as lights, alarms, etc. Where a direct indication of contact operation is not available, a voltage test is performed. For circuits which de-energize to actuate logic or contacts OPEN to trip, a visual verification of contact operation may be performed in lieu of a voltage check where the gap between contacts is readily observable.

B.4 Logic System Functional Test

B.4.1 Standard Technical Specification

A LOGIC SYSTEM FUNCTIONAL TEST as defired in existing Standard Technical Specifications is a test of all relays and contacts of a logic circuit, from a sensor to actuated device, to ensure that components are OPERABLE per design requirements.

A LOGIC SYSTEM FUNCTIONAL TEST as defined in the Improved Standard Technical Specifications is a test of all logic components (i.e., all relays and contacts, all trip units, solid-state logic elements, etc.) of a logic dircuit, from as close to the sensor as practicable up to, but not including the actuated device, to verify OPERABILITY. The LOGIC SYSTEM FUNCTIONAL TEST may be performed by any series of sequential, overlapping or total system steps such that the entire logic system is tested.

DRAFT

B.4.2 Logic System Functional Test Description

A logic system functional test is typically performed during the outage when the plant is in a cold shutdown condition. A logic system functional test will test the entire loop starting as close to the sensor as practicable all the way to the actuating device. Unlike the monthly/quarterly functional test which will test up to the point where a channel loses its identity, the logic system functional test includes the verification of the stroking of actuation devices.

The logic system functional test will ensure that all possible logic combination paths for a trip signal are tested. Test bypasses are also tests that ensure bypasses do not inhibit trip functions. Logic system functional tests make extensive use of overlap testing. Credit for testing may be taken from calibrations, functional, response time testing, or operational surveillance procedures if they have an appropriate testing frequency.

B.5 Response Time Test

1 1

B.5.1 Standard Yechnical Specification

The REACTOR PROTECTION SYTEM (ISOLATION SYSTEM, ECCS) RESPONSE TIME of each trip function shall be demonstrated to be within its limit at least once per 18 months. Each test shall include at least one channel per trip system such that all channels are tested at least once every N times 18 months, where N is the total number of redundant channels in a specific trip system.

B.5.2 Response Time Test Description

Response time tests are typically performed during the outage when the plant is in a cold shutdown condition. The response time may be measured by any series of sequential, overlapping or total steps such that the entire response time is measured. The response time test requirments in BWR Technical Specifications for the Isolation Actuation, RPS, and ECCS are provided in Table B-1 for the participating plants.

Extensive review of the participating plant procedures reveals that the majority of the plant response time testing is broken down into

three testing phases (Table B-2). The response time testing phases are defined as follows:

Phase I

The sensor response time test is the most complex, resource intensive and exposure dependent part of response time testing.

Phase II

In this phase, the trip unit (master trip unit and slave trip unit), along with the trip unit output relay, is response time tested.

Phase III

This phase tests the remainder of the relay logic up to the actuating device, but not including the actuating device.

Phase IV

Clinton, which is a solid-state plant, employs four testing phases. The testing phases are set up differently for Clinton such that Pha.e III is defined as the logic delay time constant and Phase IV as the relay logic to the actuating device.

In addition to the overall system or trip function response time Technical Specification requirements, most plants implement administrative limits for each corresponding test phase. The administrative limits are more conservative and are summed to show that the overall Technical Specification requirements are met.

The sensor response times range from as fast as 10 milliseconds to as slow as 530 milliseconds. The response requirement varies, depending on the type of sensor. Trip units, on the other hand, operate in the 2 millisecond range or instantaneous. The design response times for relays range from 15 to 85 milliseconds.

A sample of measured Fermi-2 response time testing results broken down by phase is provided in Table B-3. It can be concluded from these measurements that the instrumentation is a very small part of the overall requirement. The instrumentation tends to operate in the millisecond range as opposed to pumps, valves and the overall system requirement. Table B-1

RESPONSE TIME (SEC) TEST REQUIREMENTS IN BUR TECHNICAL SPECIFICATIONS

ISOLATION ACTUATION (BUR6 PLANTS)

				A	-
			1		-
		4	(Alapa	6	
	1	3	X		
0	100	5	Ψ¢		
5	1	9			
	w				

Intercontainment 513 510 Ma 510 Ma Level. 3 Level. 3 513 510 Ma Ma Level. 4 Evel. 5 Evel. 4 510 Ma Ma Ma Level. 5 Evel. 6 Evel. 6 Ma 510 Ma Ma Ma Level. 1 Evel. 1 Evel. 7 213 210 Ma 210 Ma Ma Main Even Mon. Mich 213 213 210 Ma 210 Ma Ma 210 Ma 210 Ma Ma Main Even Mon. Mich 213 213 210 210 Ma 210 Ma Ma Main Even Line Mon. Mich 213 213 210 210 210 Ma Ma Main Erem Line Mon. Mich 213 210 210 210 210 210 210 Ma Main Stean Line Mon. Mich 2110 2110 2110 2110 2110 2110 2110 2110 2110 2110 21110 21110 21110 21110	FUNCTION	BURG BID. PLI.	GRAND GULE	PEARY	BIVER BEND	CLINT CH
Intervent 210 Number 210 Number Number <td>IMARY CONTAINNENT</td> <td></td> <td></td> <td></td> <td></td> <td></td>	IMARY CONTAINNENT					
LEVEL 3 CIT	RH WATER LEVEL					
(EVEL 2, EXCEPT MAIVA 213 210 M 210 M M LEVEL 1, EXCEPT MAIVA 210 M 210 M M LEVEL 1, EXCEPT MAIVA 213 210 M M M GETS ENA. NOU. MIGH 213 213 M M M MAIN EXM PLEMAN MAD HIGH 213 213 M M M MAIN EXM PLEMAN MAD HIGH 213 213 M M M CONT. & DATION HIGH 213 213 M M M MAIN STEAM LINE 213 210 210 210 M M CONT. & DATION HIGH 21/10 </td <td>S TEAST</td> <td></td> <td></td> <td></td> <td></td> <td></td>	S TEAST					
Level 1, Except maive g10 M M M Derwell Pressure - wich g13 g10 M M M Geffs Erw. And with g13 g10 M g10 M M FLANT Exment Pressure - wich g13 g10 M M M M PLANT Exment Pressure And with g13 g10 g10 M M M Mis steam Like And. Mich g13 g10 g10 g10 M M M Mis steam Like And. Mich g11 g10 g10 g10 g10 g10 M M Mis steam Like And. Mich g10 g10 <td>LEVEL 2, EXCEPT MSIVA</td> <td><u>s</u>13</td> <td><u>5</u>10</td> <td>1</td> <td>£10</td> <td>W</td>	LEVEL 2, EXCEPT MSIVA	<u>s</u> 13	<u>5</u> 10	1	£10	W
offect presente - Rich c13 c10 KA c10 KA sette ERM. NOD. MIGH c13 c13 c14 c10 KA plant EKM PLENDR MIGH c13 c13 c14 c14 KA min sterm LINE MOD. MIGH c13 c10 c10 c10 KA KA min sterm LINE ADD MIGH c110 c10 c10 KA KA KA min sterm LINE ADD MIGH c110 c110 c110 KA KA KA min sterm LINE c00 c110	LEVEL 1, EXCEPT MSIVE		£10	RA		W
GTS ENN. RAD. NIGN PLANT EXN PLENEN RAD. NIGN 213 PLANT EXN PLENEN RAD. NIGN 213 MIN STEAN LINE RAD. NIGN 213 CONT. & DATAFLI VENT EXN. RAD NIGN 210 210 84 MIN STEAN LINE 21/10 21/10 21/10 21/10 21/10 MIN STEAN LINE 20.5/10 21/10 21/10 21/10 21/10 21/10 MIN STEAN LINE 20.5/10 20.5/10 20.5/10 21/10 21/10 21/10 21/10 MIN STEAN LINE 20.5/10 20.5/10 20.5/10 20.5/10 20.5/10 20.5/10 20.5/10 20.5/10 20.5/10 21/10 <t< td=""><td>DATARLL PRESSURE - NICH</td><td><u><</u>13</td><td><u>5</u>10</td><td>WW</td><td>£10</td><td>RA</td></t<>	DATARLL PRESSURE - NICH	<u><</u> 13	<u>5</u> 10	WW	£10	RA
Lumit exist form field 213 Plant exist form field 213 Mill stream Linke Ando. micht 213 Court. & behveell vest form. RND micht 210 210 210 84 Court. & behveell vest form. RND micht 21/10 21/10 21/10 21/10 21/10 Mill waterunt link 21/10 21/10 21/10 21/10 21/10 21/10 21/10 Moniation mich 21/10 21/10 21/10 21/10 21/10 21/10 21/10 Nessure Low 21/10 21/10 21/10 21/10 21/10 21/10 21/10 Level 1 21/10 21/10 21/10 21/10 21/10 21/10 21/10 Mill tevel 1 21/10 21/10 21/10 21/10 21/10 21/10 21/10 21/10 Mill tevel 1 21/10	SGTS EXM. RAD. HIGH					
MIN STEAM LINE MAD. MIGN 210 210 RA NA CONT. & DAYMELL VEWT EXW. MAD NIGN 210 210 RA NA CONT. & DAYMELL VEWT EXW. MAD NIGN 21/10 21/10 21/10 21/10 21/10 21/10 MIN STEAM LINE 21/10 21/10 21/10 21/10 21/10 21/10 21/10 21/10 PRESSURE LOW 20.5/10 20.5/10 20.5/10 20.5/10 20.5/10 20.5/10 21/10<	PLANT EXM PLEMIN RAD HIGH	<u>2</u> (3				
Cont. & Dervaell vent extr. RND RIGH	MAIN STEAM LINE RAD. MICH					RA
MAIR STEAM LINE Set 110 S1/10	COMT. & DATAGLI VENT EXH. RAD HIGH		<u>4</u> 30	<u>s</u> 10	뙯	10
RADIATION NIGN EADIATION NIGN EADIATION NIGN EADIATION NIGN EADIATION NIGN EADIATION NIGN EADIATION NIGN EADIAT PRESSURE LOW E1/10 E	MAEM STEAM LINE					
PRESSURE LOW	RADIATION MIGH	51/10	51/10	21/10	21/10	MA
гом июм 20.5/10 20.5/10 20.5/10 20.5/10 20.5 Level 1 21/10 21/10 21/10 21/10 21 Level 2 10 21/10 21/10 21/10 21 Nal Tummel Teme Nion 100 100 100 100 100 100 100 100 100 10	PRESSURE LOW	\$1/10	51/10	21/10	21/10	Ţ,
LEVEL 1	FLOW NIGH	40.3/10	≤0.5/10	20.5/10	20.3/10	30.5
LEVEL 2 NSL TURNEL TENP NICH	I TENET I	21/10	51/10	51/10	£1/10	51
NSL TURNEL TERP HIGH	IEVEL 2					
	NSL TURNEL TENP HIGH					1

NEDO-32291

B-6

RTT TESTING BROKEN DOWN BY TESTING PHASES

	Brunewick**	Ci Inton**	ø Formi-2	Grand Gulf	Hanford	Hatch*	Hape Creek	## LeSalle	Limerick	Perryess	River Bend	Susquehanne+
Phase 1	X	×	X	X	x	×	x	x	x	×	x	×
Phase 11	X	X	x	X	x	X	x	X	x	x	X	X
Phase III	X	R	X	X	x	MA	x	X	x	x	X	x
Phose IV	HA	x	RA	88A	KA	NA	NA	SEA	RA	HA	NA	NA

NOTES :

A

B-7

Phase I - Sensor

Phase II . Trip Unit and MTU output relay

Phase III . Relay logic to actuating device

+ ECCS RTT has two phases.

- ++ Clinton has Phase III defined as logic delay time constant and Phase IV has relay logic to actuating device.
- Some trip functions in HPCI, MSL Radiation Hi Fuel Pool Ventilation, RWCU are tested together.
- ** RPS testing is done in different combinations of Phases I and II. Phase III testing is rolled into these tests.
- *** Although Perry does not specify testing phases, Phases I and II are combined to provide a loop response. The results from this combined testing are incorporated within select system performance tests to complete the entire response time test.
- # Fermi-2 has one phase for the radiation monitors.
- ## Hope Creek and LaSalle perform Phase I testing, but Phases II and III are combined into a single phase of testing.
ç	۲	7
	1	
ţ	ï	1
ģ	đ	D
,		5
	1	ŝ

		RTT Pro	cedure				
RIT Loops	Bensor Rumber	Kumber	Revision	Phase 1 (msec)	Phase II (maec)	Phase III (seec)	Total (meec)
MEL PRESS. LOW	#21H076 A	44.020.031	23	27	61	82	170.0
		44.020.032	22	36	64.5	69	174.5
	U	44.020.033	22	11	53	8	164.0
	6	44.020.034	21	30	52	z	176.0
RPS STEAN DONE NI	821H078 A	44.010.009	51	150	53	61	222.0
	•	44.010.010	1.	150	39	19.5	228.5
	v	44.010.011	31	62.5	56.5	29.5	148.5
	•	44.010.012	51	23.4	54	28	105.4
E-12A21 548	821W080 A	44.010.021	21	629	67	(ysn) 19	573.0
HS4 LEVEL-3						(848) I.Ş	\$33.0
		44.010.022	21	600	62	(1458) 22	534.0
						26 (8PS)	488.0
	J	44.010.023	21	435	55	81.6 (HS4)	571.6
						32 (8PS)	\$22.0
	0	44.010.024	21	360	61	(95N) 62	500.0
						(\$48) \$5	459.0

		RTT Pro	cedure				
RTT Loops	Sensor Number	Nusber	Revision	Phase I (meec)	Phase 11 (msec)	Phase III (msec)	Total (msec)
PCI LEVEL-2	8211081 A	44.020.011	21	130	57	72.2 (RxL1)	259.2
RX WTR LEVEL-1	1982 1993				0.250 314	107.2 (RxL2)	294.2
		44.020.012	21	70	110	69 (RxL1)	249.0
			1		1.5	95 (RxL2)	275.0
	c	44.020.013	21	200	110	89 (RKL1)	399.0
						100 (RxL2)	410.0
	D	44.020.014	21	220	53	78.6 (RxL1)	351.6
			1.1.1.2.2.2.3		1000	85.6 (RxL2)	358.6
				化正常器			[2] 등 관계 (
						ENA CE MPCI	10.10.49.14
ECCS	8218094 E	44.030.307	29	400	20	98 68 80	578*
DRYWELL PRESS. HI		44.030.308	21	420	17	95 80 83	532
	۵	44.030.309	20	350	19	67 59 61	436
	н	44.030.310	21	530	16	67 67 67	613
DRYWELL PRESS. HI	C718050 A	44.020.015	22	152	49.5	113	314.5
		44.020.016	22	127	61	110.7	298.7
	c	44.020.017	22	85	55	155	295.0
	Ð	44.020.018	22	100	53	105	258
RCIC FLOW HI	E418057 A	44.020.261	21	32	20	2.9 sec	2.952 sec
	8	44.020.262	21	20	21	3.2 sec	3.241 sec

B-9

BA			1	
ar .		-	and	
~		B	5	
and the second s	4	Sec.		

1

FERMI-2 RIT MEASUREMENT DATA AND RESULTS (Continued)

Table B-3

2.415 sec 3.16 sec Total (meec) 154.0 152.0 109.0 126.0 160.0 162.0 218.0 156.0 154.0 151.0 115.0 139.0 117.0 125.0 223.0 152 Phase III (masec) 2.325 880 3.07 sec 2 2 113 R 113 2 2 2 110 22 5 67 R 125 8 2 Phase II (msec) 22 3 5 35 5 3 20 20 23 50 50 8 6 22 0 23 51 5 Phase (meec) 30 30 28 2 3 29 30 * 53 0 50 38 0 -2 8 22 23 Revision 5 5 5 5 12 5 2 2 23 53 -2 2 12 5 12 -50 RTT Procedure 44.020.043 44.020.045 44.020.046 44.020.045 44.029.046 44.020.044 44.020.217 44.020.256 44.020.257 44.020.043 44.020.044 44.020.215 44.020.216 44.020.218 44.020.259 44.020.260 44.020.255 44.020.258 Futurer N \$214087 A . 14 -4 0 \$218086 A 63 w 0 -E438058 A -20 0 ESTHOST A E518058 A Serveor Number ACIC PRESS. LOW MPCI PRESS. LOW RTT Loope MSL FLOW HI HET FLOW HI 1248

NEDO-32291

FERMI-2 RTT MEASUREMENT DATA AND RESULTS (Continued)

				RTT Proce	ture					1.1.1.1
RTT Loope	Sensor Number	Hu	nber	Revision	Phes (mea	e I Phase II (maec)	Phase III (msec)	Total (meec)		
MEL FLOW HI	82	A 880 A	44.02	0.043	21	24	1.1	95	113	232.0
		8	44.02	0.044	21	27		57	72	156.0
		с	44.02	0.045	21	28	1	63	76	167.0
		Ð	44.02	0.046	21	30		45	π	152.0
NSL FLOW NI	821	1N089 A	44.02	0.643	21	25		100	113	238.0
		8	44.02	0.044	21	27		65	72	164.0
		с	44.02	0.045	21	25		53	76	154.5
		D	44.02	0.046	21	24		56	77	157.0
									LPCI CS HPCI	
8008	821	N091 A	44.03	0.259	23	50		23	140 55 55	213
LPCS		8	44.03	0.260	23	70		19	120 60 20	209
		c	44.03	0.261	22	161		20	121 54 60	302
		D	44.03	0.262	22	135		19	119 68 19	273
T		1			Phase 11	T				
NPP	Rev	INS	No.	INS No.	RT (s	ec)				
44.020.019	22	DIINO	106A	D11K603A	0.61	5	Hain S	Steam Line Redia	ition	

	T	1	Pha	e II	
NPP	Rev	INS No.	INS No.	RT (sec)	
44.020.019	22	DIINOO6A	D11K603A	0.615	Main Steam Line Redistion
44.020.020	21	011N0068	D11K6038	0.64	
44.020.021	22	D11N006C	D11K603C	0.652	
44.020.028	22	D11N006D	01166030	0.67	
44.020.109	22	UTINOTOA	D118609A	0.0333	Fuel Pool Ventilation Exhaust Radiation
44.020.110	23	D11H0108	D11K6098	0.172	
44.020.111	23	D11N010C	D11K609C	0.14	
44.020.112	22	011N0100	D11K6090	0.123	

* Limiting Values Corresponding to LPCI and RHR.

B-11-B-12

NEDO-32291

APPENDIX C LEAD PLANT RTT INSTRUMENTATION LOOP COMPONENTS

APPENDIX C.1 FERMI-2 LEAD PLANT RTT INSTRUMENTATION LOOP COMPONENTS

APPENDIX C.1 LEAD PLANT RTT INSTRUMENTATION LOOP COMPONENTS

This Appendix details the Fermi-2 Lead Plant instrumentation loop components, their corresponding functions in the respective loops, and their model and MPL [Master Parts List/Plant Identification System (PIS)] numbers. The top heading for each instrumentation loop identifies the trip function, system description, table and item number, and the response time requirement. The drawings used in the analyses, and their revision and sheet numbers are listed at the bottom of each loop description. This comprehensive loop analysis was conducted for each of the trip functions for both lead plants.

C.1.1 Bases and Assumptions for the RTT Instrumentation Loop Component Identification (Fermi-2 and River Bend)

The following bases and assumptions were made in the RTT analyses:

- Drawing numbers reflect the most current revisions identified and verified by the plants.
- RTT instrumentation trip functions specified in the technical specifications have considerable overlap due to common instrumentation branches. Therefore, each RTT trip function separately identifies components reflecting only the most pertinent branch under consideration.
- One out of the four identical channels have been analyzed (typically, Channel A).
- Seal-in circuits, annunciators, computer points, alarms/lights, recorder pens etc. that have no sensitivity with respect to response time have been excluded from the loop analyses.
- All response time sensitive components starting from the sensor up to the actuating device (but not including the actuating device) have been identified. Actuating devices are excluded because they are not considered part of instrumentation response time tests. However, for some loops, actuating devices have been listed only for identification purposes indicating the loop termination point.

*

.

NEDO-32291

- In most cases, balance-of-plant (BOP) components such as exhaust fans, supply fans, etc. have not been considered. Components that perform primary functions and can potentially affect response times with respect to a given loop have been considered.
- A list of Fermi-2 response time testing procedures that were reviewed or referenced is provided in Table B-3 of Appendix B..
- For River Bend, confirmation of GE drawings against the plant drawings was conducted by the plant personnel and any modifications or differences were resolved.
 - It is assumed that the complementing channel is in such a state as to allow the analyzed channel to perform that action. For this reason one-out-of-two twice and two-out-of-two logic has not been noted in the loops.

Fermi-2 (1 of 1) 3.3.1-2 RTT TRIP FUNCTION TABLE NO: 3.0 RTT TRIP FUNCTION ITEM NO: SYSTEM DESCRIPTION : Reactor Protection System Response Times TRIP FUNCTION DESCRIPTION : Rx Vessel Steam Dome Pressure High____ <= 0.55 T/S RTT REQUIREMENT (Sec) : DEVICE PIS & MODEL # FUNCTION DESCRIPTION OF COMPONENT B21-N078A Senses excessive Dome Pressure. Pressure Transmitter Rosemount 1153 B21-N678A Provides trip signal for RPS. Master Trip Unit Rosemount 510DU C71-K206A Opens on Reactor High Pressure. Testability Relay Agastat GP C71A-K5A GE HFA De-energizes on High Dome Pressure RPS scram Relay Trip Unit signal. C71A-K14A, E CR105 De-energizes the Scram Solenoids. Scram Contactors Reference Drawing Numbers :-61721-2155-16 Rev. F 61721-2155-04 Rev. K 61721-2155-08 Rev. J 61721-2155-15 Rev. H

61721-2155-06 Rev. M

RTT TRIP FUNCTION TABLE NO	3.3.1-2	Fermi-2(1 of 1)
RTT TRIP FUNCTION ITEM NO SYSTEM DESCRIPTION TRIP FUNCTION DESCRIPTION T/S RTT REQUIREMENT (Sec)	4.0 Reactor Protection System Response Rx Vessel Low Water Level - Level-3 	Times
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE PIS & MODEL #
Level Transmitter	Senses Water Level-3.	B21-NO80A Rosemount 1153
Master Trip Unit	Provides trip signal for RPS.	B21-N680A Rosemount 510DU
Testability Relay	Opens on Reactor Low Water Level-3.	C71-K207A Agastat GP
RPS scram Relay	De-energizes on Level-3 Trip Unit signal.	C71A-K6A GE HFA
Scram Contactors	De-energizes the Scram Solenoids.	C71A-K14A,E CR105

Reference Drawing Numbers :-

61721-2155-15 Rev. H 61721-2155-16 Rev. F 61721-2155-06 Rev. M 61721-2155-08 Rev. J 61721-2155-04 Rev. K

DRAFT

RTT TRIP FUNCTION TABLE N RTT TRIP FUNCTION ITEM N SYSTEM DESCRIPTION TRIP FUNCTION DESCRIPTION	3.3.2-3 10: 1.a.1 Primary Containment Isolation 1: Reactor Vessel Low water Level- Level	Fermi-2(1 of 1)
T/S RTT REQUIREMENT (Sec)	:<= 13.0	
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE PIS & MODEL #
Level-3 Transmitter	Senses level and provides analog signal to the MTU.	B21-NO80A Rosemount 1153
Master Trip Unit	Trips at preset level to de-eneregize output Relay.	B21-N680A Rosemount 510DU
MTU Output Relay	Opens on Reactor Water Level below Level-3.	C71-K207A Agastat GP
Interfacing Relay	Opens contacts on Low Water Level-3.	C71A-K6A GE HFA
Interfacing Relay	Opens contacts on Low Water Level-3	A71B-K6A GE HFA
Initiation Relay	Permissive to close valve E11-F015A.	A71B-K17 CR120A
Interfacing Relay & Initiating Relay	Closes valve Gll-F019, Gll-F003 Drywell Drain Outbd Isol valve and TIP Ball valve isolation.	A71B-K59 CR120A
Interfacing Relay	Actuates RHR Inbd Solenoid valve Logic.	A71B-K76 Agastat GP
Initiation Relay	Closes valves Ell-F009, Ell-F022 & RHR Shutdown Cooling & Head Spray Inbd Isolation valves.	A71B-K29 CR120A

61721-2155-16	Rev.	F	61721-2095-14	Rev.	L
61721-2155-15	Rev.	Н	61721-2095-33	Rev.	N
61721-2155-06	Rev.	M	61721-2201-15	Rev.	N
61721-2155-04	Rev.	K	61721-2205-17	Rev.	0

DRAFT NEDO-32291

RTT TRIP FUNCTION TABLE NO	3.3.2-3	Fermi-2(1 of 2)
RTT TRIP FUNCTION ITEM NO SYSTEM DESCRIPTION TRIF FUNCTION DESCRIPTION T/S RTT REQUIREMENT (Sec)	1.a.2 Primary Containment Isolation Rx Vessel Low Water Level - Level- 	2
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE <u>PIS & MODEL #</u>
Level-2 Transmitter	Senses level and provides analog signal to the Master Trip Unit.	B21-NO81A Rosemount 1153
Master Trip Unit	Trips at preset level to de-energize the MTU output Relay.	B21-N681A Rosemount 510DU
MTU Output Relay	Opens below water Level-2.	C71-K208A Agastat GP
Interfacing Relay	De-energizes to open contacts on Low water Level-2.	A71B-KLA HFA
Interfacing Relay	De-energizes on High Drywell Pressur or Reactor water Level-2.	e A71B-K37 CR120A
Initiation Relay	Actuates Recirc Pump Seal inboard Isolation valve F014A.	A71B-K101A Agastat GP
Initiation Relay	Actuates Recirc Pump Seal inboard Isolation valve F014B.	A71B-K101B Agastat GP
Initiation Relay	Actuates PCRMS valve T50-F450 and T50-F451.	A71A-K900 CR120A
Initiation Relay	Actuates valves T48-F455, T48-F457, and T48-F404.	A71B-K103A Agastat GP
Initiation Relay	Actuates valves T48-F601, T48-F602.	A71B-K103B Agastat GP
Initiation Relay	Actuates valves T46-F400.	A71B-K103C Agastat GP
Reference Drawing Nos:-	Actuates valves T46-F400.	A71B-K103C Agastat GP

61721-2155-22	Rev.	I	61721-2611-10	Rev.	P	61721-2155-06	Rev.	2
61721-2155-15	Rev.	н	61721-2671-15	Rev.	G	61721-2155-04	Rev.	k
61721-2095-14	Rev.	L	61721-2451-04	Rev.	N	61721-2451-04	Rev.	N
61721-2095-33	Rev.	N	61721-2658-07	Rev.	F	61721-2105-13	Rev.	ł
61721-2105-14	Rev.	J						

DRAFT

RTT TRIF FUNCTION TABLE	NO:3.3.2-3F	ermi-Z(2 OI 2)					
KIT TRIP FUNCTION TIEM	NU:	na na anna ann ann an ann ann ann ann a					
TO PINOTIAN APCONTOTIC	W . Dr. Uncent Low Water Level - Level-2						
T/S RTT REQUIREMENT (Sec	<= 13.0						
		DEVICE					
ESCRIPTION OF COMPONENT	FUNCTION	PIS & MODEL #					
nitiation Relay	Actuates B31-F019, Reactor water Sample valve.	A71B-K77 Agastat G2					
nitiation Relay	Opens Permissive for system T49-F601 & F465 Isolation valves Division-I.	T41M079 CR120A					
Interfacing Relay	Primary containment isolation.	T41M085 CR120A					
Ditintion Dolow	Astructor valves C51-E600	G51-M4054					
niciation Relay	and G51-F602	Agastat EGPD					
Initiation Relay	Actuates valves G51-F604	G51-M405B					
	and G51-F606	Agastat EGPD					
Reference Drawing Nos:-							
61721-2155-22 Rev. I	61711-2611-10 Rev. P 61721-2	155-06 Rev. M					
61721-2155-15 Rev. H	61721-2671-15 Rev. G 61721-2	155-04 Rev. K					
61721-2095-14 Rev. L	61 21-2451-04 Rev. N 61721-2	451-04 Rev. N					
61721-2095-33 Rev. N	61721-2658-07 Rev. F 61721-2	105-13 Rev. H					
61721-2105-14 Key J							

DRAFT

RTT TRIP FUNCTION TABLE NO	0:3.3	.2-3	Fe	rmi-2	(1 of 1)
RTT TRIP FUNCTION ITEM NO	: 0	1.8.3		and designed of the state of the state of the	and the state of
SYSTEM DESCRIPTION	: Primary Conta	inment Isolation		1	in provide a state of the state
TRIP FUNCTION DESCRIPTION	: Reactor Vesse	1 Low water Level	- Level-	*	And a subscription of the subscription of the subscription
T/S RTT REQUIREMENT (Sec)		<pre><m &="" .<="" 1.0%="" <m="" pre=""></m></pre>	1.3.0999		
					and the second
				D	EVICE
DESCRIPTION OF COMPONENT		FUNCTION		PIS	& MODEL #
			Charles and party in the second		
Level-1 Transmitter	Senses level an	d provides analog		B21-N081A	****
	signal to the M	TU & STU.		Rosemount	1153
Slave Trip Unit	Receives analog	signal from MTU	\$	B21-N684A	
	trips at preset	value to activat	e	Rosemount	510 & 710DU
	valve closure.				
STU Output Relay	Opens on Reacto	r Water Level bel	ow	C71-K260A	and the second
	Level-1 & close	s RWCU & Drain va	lves.	Agastat G	Р
Interfacing Deley	De energines to	activate the val	VA	A718-K7A	GE HEA
Incertacing Relay	closure.	accivace une var			
Initiation Relay	De-energizes to	close Main Steam	L: ne	A718-K56	CR120A
	Drain valves B2	1-F016.			
Initiation Relay	De-energizes to	close Main Steam		A71B-K52	GE HFA
	Line.				
Initiation Relay	De-energizes to	close Main Steam		A71B-K14	GE HFA
	Isolation valve	S .			
	Alternative and the second				NAME OF CONTRACTOR OF A DESCRIPTION OF CONTRACTOR OF CONTRAC
					No.
unde, "He HEF" - "F BEREINE EIN GEBENELEN GEBENELEN GEBENELEN GEBENELEN GEBENELEN GEBENELEN GEBENELEN GEBENELEN			AND DESCRIPTION OF THE OWNER.		
					and the contract of the second se
Reference Drawing Numbers: -					
(****** 0155 30	Dena X	1721-2005-15 Per	м		
61721-2155-15	Rev H	1721-2091-01 Rev.	S		
61721-2095-14	Rev. L.	1721-2095-17 Rev.	0		
61721-2095-33	Rev. N é	1721-2095-18 Rev.	N		
Remarks:					
* Isolation system	instrumentation	response times fo	r MSIVs	only.	
** Isolation system	instrumentation	response times fo	r assoc	Lated	
valves except MSI	Vs.				

DRAFT

RTT TRIP FUNCTION TABLE	NO:3.3.2-3	Fermi-2(1 of 2)
RTT TRIP FUNCTION ITEM	NO: 1.b	
SYSTEM DESCRIPTION	: Primary Containment Isolation	and so the first of the second
TRIP FUNCTION DESCRIPTI	ON : Drywell Pressure - High	and the state of the
T/S RTT REQUIREMENT (Se	c) :<= 13.0	an a
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE PIS & MODEL #
Pressure Transmitter	Senses Pressure and provides analog signal to the MTU.	C71-N050A Rosemount 1153
Master Trip Unit	Trips at preset level to de-energize output Relay.	C71-N650A Rosemount 510DU
MTU Output Relay	De-energizes when Drywell Pressure is above setpoint.	C71-K216A Agastat GP
Interfacing Relay	Opens on Drywell Hi-Pressure.	C71A-K4A GE HFA
Interfacing Relay	De-energizes upon receiving signal from Relay C71A-K4A.	A71B-K5A GE HFA
Initiation Relay	Actuates Reactor Water Sample valve B31-F019.	A71B-K77 Agastat GP
Initiation Relay	Actuates TIP Ball valves Permissive for A71B-K40 and A71B-K42.	A71B-K59 CR120A
Interfacing Relay & Initiating Relay	Actuates valve G11-F019, F003 Drywell Drain Outbd Isol valve.	A71B-K42 CR120A A71B-K40 CR120A
Interfacing Relay	De-energizes upon receiving signal from Relay A71B-K5A.	A71B-K37 GE HFA
Initiation Relay	Actuates Recirc Pump Seal inboard isolation valve F014A.	A71B-K101A Agastat GP
Initiation Relay	Actuates Recirc Pump Seal inboard isolation valve F014B.	A71B-K101B Agastat GP

61721-2155-22	Rev.	I	61721-2095-14	Rev.	L
61721-2155-15	Rev.	H	61721-2095-33	Rev.	N
61721-2155-06	Rev.	M	61721-2105-10	Rev.	J
61721-2155-04	Rev.	K	61721-2205-17	Rev.	0

DRAFT

RTT TRIP FUNCTION TABLE N	0:3.3.2-3	_Fermi-2(2 of 2)
RTT TRIP FUNCTION ITEM NO SYSTEM DESCRIPTION	0:1.b : Primary Containment Isolation	
TRIP FUNCTION DESCRIPTION	: Drywell Pressure - High	n de verse and des sets and an
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE PIS & MODEL #
Initiation Relay	Actuates PCRMS valve T50-F450 and T50-F451.	A71A-K900 CR120A
Initiation Relay	Actuates valves T48-F455, T48-F457 and T48-F404.	A71B-K103A Agastat GP
Initiation Relay	Actuates valves T48-F601 & T48-F602.	A71B-K103B Agastat GP
Initiation Relay	Actuates valve T46-F400.	A71B-K103C Agastat GP
Initiation Relay	Opens Permissive for system T49-F601 and T49-F465.	T41M079 CR120A
Initiation Relay	Actuates TWMS valves G51-F600, G51-F602, G51-F604 and G51-F606.	G51-M405A, B Agastat EGPD
		· · ·
		-
		-

61721-2155-22	Rev.	I	61721-2095-14 Rev. L	i.
61721-2155-15	Rev.	H	61721-2095-33 Rev. N	1
61721-2155-06	Rev.	M	61721-2105-10 Rev. J	f
61721-2155-04	Rev.	K	61721-2205-17 Rev. 0	k

DRAFT

RTT TRIP FUNCTION TABLE RTT TRIP FUNCTION ITEM SYSTEM DESCRIPTION TRIP FUNCTION DESCRIPTI T/S RTT REQUIREMENT (Se	NO: 3.3.2-3 NO: 1.c.1 : Primary Containment Isolation ON : Main Steam Line radiation - High c) : 	_Fermi-2(1 of 1)
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE <u>PIS & MODEL #</u>
Gamma Ion Chamber Steam Line Detector	Sens' Radiation level & activates Scram - MSIV closure sequence.	D11-N006A (237X731G001)
Logarithmic Radiation Monitor (NUMAC)	Activates trip circuits upon signal from Gamma Ion Chamber.	D11-K603A (304A3700G005)
Trip Auxiliary Unit	Output Relays and Contacts to activate MSIV Closure.	C51A-Z2A
Interfacing Relay	De-energizes to actuate the Main Steam Isolation Valve closure.	C71A-K7A GE HFA
Interfacing Relay	De-energizes to activate the Main Steam Isolation Valves.	A71B-K44A GE HFA
Initiation Relay	De~energizes to activate the Main Steam isolation Valves.	A71B-K7A GE HFA
Initiation Relay	Actuates B21-F016 Main Steam Line Drain valves.	A71B-K56 CR120A
Initiation Relay	Actuates MSIV valves.	A71B-K52 GE HFA
Initiation Relay	Actuates MSIV valves.	A71B-K14 GE HFA
Initiation Relay	Actuates Reactor Water Sample Isolation valve B31-F019.	A71B-K77 Agastat GP

61721-2185-03	Rev.	J	61721-2095-14	Rev.	L	61721-2095-18	Rev.	N
61721-2185-01	Rev.	M	61721-2105-10	Rev.	J			
61721-2155-06	Rev.	M	61721-2095-17	Rev.	0			
61721-2155-04	Rev.	K	61721-2095-33	Rev.	N			

DRAFT

RTT TRIP FUNCTION TABLE N RTT TRIP FUNCTION ITEM N	0:3.3.2-3 0:1.c.2	Fermi-2(1 of 1)
SYSTEM DESCRIPTION	: Primary Containment Isolation	
TRIP FUNCTION DESCRIPTION	: Main Steam Line Pressure - LOW	
T/S RTT REQUIREMENT (Sec)	:<= 13.0	
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE <u>PIS & MODEL #</u>
Pressure Transmitter	Senses pressure in MSL and provides analog signal to the MTU.	B21-N076A Rosemount 1151
Master Trip Unit	Trips at preset value to activate MSIV Closure.	B21-N676A Rosemount 510DU
MTU Output Relay	De-energizes when Steamline Pressure is below setpoint.	C71-K205A Agastat GP
Interfacing Relay	De-energizes to activate MSIV Drain valve logic and Annunciator.	A71B-K4A GE HFA
Interfacing Relay	De-energizes to activate MSIVs.	A71B-K7A GE HFA
Initiation Relay	Actuates B21-F016 Main Steam Line Drain valve.	A718-K56 CR120A
Initiation Relay	Closes Outboard MSIV's.	A71B-K52 GE HFA
Initiation Relay	Closes Outboard MSIV's.	A71B-K14 GE HFA

61721-2155-16	Rev.	F	61721-2095-17	Rev.	0
61721-2095-14	Rev.	L	61721-2095-11	Rev.	J
61721-2095-18	Rev.	N	61721-2155-15	Rev.	H
61721-2095-33	Rev.	N			

DRAFT

DEVICE <u>PIS & MODEL #</u> B21-N086A, N087A, N088A and N089A Rosemount 1151 B21-N686A, N687A, N688A and N689A Rosemount 510DU C71-K201, K202A, K203A and K204A. Agastat GP
DEVICE <u>PIS & MODEL #</u> B21-N086A, N087A, N088A and N089A Rosemount 1151 B21-N686A, N687A, N688A and N689A Rosemount 510DU C71-K201, K202A, K203A and K204A. Agastat GP
DEVICE <u>PIS & MODEL #</u> B21-N086A, N087A, N088A and N089A Rosemount 1151 B21-N686A, N687A, N688A and N689A Rosemount 510DU C71-K201, K202A, K203A and K204A. Agastat GP
DEVICE <u>PIS & MODEL *</u> B21-N086A, N087A, N088A and N089A Rosemount 1151 B21-N686A, N687A, N688A and N689A Rosemount 510DU C71-K201, K202A, K203A and K204A. Agastat GP
B21-N086A, N087A, N088A and N089A Rosemount 1151 B21-N686A, N687A, N688A and N689A Rosemount 510DU C71-K201, K202A, K203A and K204A. Agastat GP
B21-N686A, N687A, N688A and N689A Rosemount 510DU C71-K201, K202A, K203A and K204A. Agastat GP
C71-K201, K202A, K203A and K204A. Agastat GP
A71B-K3A GE HFA
A71B-K7A GE HFA
A718-K56 CR120A
A71B-K52 GE HFA
A71B-K14 GE HFA

Reference Drawing Numbers: -

 61721-2155-16 Rev. F
 61721-2095-17 Rev. 0

 61721-2095-14 Rev. L
 61721-2155-15 Rev. H

 61721-2095-33 Rev. N
 61721-2095-18 Rev. N

Remarks:

DRAFT

RTT TRIP FUNCTION TABLE RTT TRIP FUNCTION ITEM SYNTEM DESCRIPTION TRIP FUNCTION DESCRIPTION T/S RTT REQUIREMENT (Sec	NO:2.e NO:2.e : Reactor Water Cleanup isolation ON : Reactor Vessel Low water Level - Level c) :<= 13.0	el-2
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE <u>PIS & MODEL #</u>
Level-2 Transmitter	Senses level and provides analog signal to the MTU.	B21-NO81A Rosemount 1153
Master Trip Unit	Trips at preset level to de-eneregize output Relay.	B21-N681A Rosemount 510DU
MTU Output Relay	Opens on Reactor Water Level below Level-2.	C71A-K208A Agastat GP
Interfacing Relay	Opens contacts on Low Level-2 for RWCU Isolation valve.	A71B-KLA GE HFA
Initiation Relay	Actuates G33-F001 RWCU Isolation valve.	A71B-K26 CR120A
****	· · · · · · · · · · · · · · · · · · ·	

61721-2155-22	Rev.	I
61721-2155-15	Rev.	H
61721-2095-14	Rev.	L
61721-2265-03	Rev.	M

DRAFT

50-----

RTT TRIP FUNCTION TABLE RTT TRIP FUNCTION ITEM SYSTEM DESCRIPTION	NO:Fer NO:	m1-2(1 of ?;)
TRIP FUNCTION DESCRIPTIO T/S RTT REQUIREMENT (Sec	N : RCIC Steamline Flow - High	
DESTRIPTION OF COMPONENT	FUNCTION	DEVICE <u>PIS & MODEL #</u>
Differential Pressure Transmitter.	Sonses High Steam Flow (Delta-P) and provides analog signal to trip Uni-	nd E51-N057A t. Rosemount 1151
Master Trip Unit	Trips at preset Flow setpoint to de-energize the output Relay.	E51-N657A Rosemount 510DU
MTU Output Relay	Closes on High Steam Flow.	E51-K202A Agastat GP
Slave Trip Unit	Trips at preset High Steam Flow value.	E51-N660A, B Rosemount 510DU
Interfacing Relay	Closes on High Negative differentia Pressure.	al E51-K203A Agastat GP
Time Delay Relay	Time Delay pickup for RCIC Isolatio	on. E51A-K12 Agastat TR
Initiation Relay	Activates valve E51-F008.	E51A-K15 GE MFA

Reference Drawing Nos: -

6I721-2235-11 Rev. J 6I721-2235-02 Rev. O 6I721-2235-01 Rev. O

DRAFT

NED0-32291

RTT TRIP FUNCTION TABLE N	0:3.3.2-3Fermi-2	(1 of 1)
RTT TRIP FUNCTION ITEM NO); Jarc Surray Teoletion	anne an
SYSTEM DESCRIPTION	: RCIC System ISOLACION	
TEIP FUNCTION DESCRIPTION T/S RTT REQUIREMENT (Sec)	<pre>clc Steamline Pressure - xwm <= 13.0</pre>	
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE <u>PIS & MODEL #</u>
Pressure Transmitter	Senses Low Steamline Pressure.	E51-N058A Rosemount 1151
Master Trip Unit	Trips at preset Flow setpoint to de-energize the output Relsy.	E51-N658A Rosemount 510DU
MTU Output Relay	Closes when Steam Pressure is below set point for vaccuum breaker, steam line Outboard isolation valve.	E51-K204A Agastat GP
Interfacing Relay	Steamline Outboard Isolation valve Logic.	E51A-K58 GE HMA
Interfacing Relay	Steamline Outboard Isolation valve Logic.	E51A-K59 CR120A
Initiation Relay	Opens velve E51-F008	E51A-K15 GE HFA
Initiation Relay	Opens valve E51-F062	E51A-K63 GE HFA

Reference Drawing Nos :-

51721-2235-11	Rev.	J	61721-2235-01	Rev.	0	
51721-2235-10	Rev.	B	61721-2235-3	Rev.	R	
51721-2235-2	Rev.	0				

DRAFT

RTT TRIP FUNCTION ITEM SYSTEM DESCRIPTION TRIP FUNCTION DESCRIPTI	NO: High pressure Coolant Injection Syst HECT Steam Flow - High	0: 4.a : High pressure Coolant Injection System Isolation.			
T/S RTT REQUIREMENT (Se	c) :<= 13.0				
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE PIS & MODEL #			
Differential Pressure Transmitter.	Senses Hi differential press on Hi Stm flow & provides analog signal.	E41-N057A Rosemount 1153			
External Input Capacitor	Circuit Noise suppression filter rated at 2000 Micro-Farads.	E41-CIA CDE WBR 2000-50 MFD			
Master Trip Unit	Trips at preset High Steam Flow value.	E41-N657A Rosemount 510DU			
Slave Trup Unit	Trips at preset High steam Flow value.	E41-N660A Rosemount 510DU			
Interfacing Relay	Closes on High Steam Flow.	E41-K202A Agastat GP			
Interfacing Relay	Closes on High Negative differential Pressure.	E41-K203A Agastat GP			
Time Delay Relay	Opens after a specified time delay	E41A-K43 Agastat TR			
Initiation Relay	Close Stm supply line Inbd Isove E41-F002, Supp Pool Inbd valve E41-F04	E41A-K44 GE HFA 2.			
Initiating Relay	Inhibits opening of Steam supply line Inbd Iso valve, Suppression Pool Inboard Isolation valves E41-F002 & FO	E41A-K36 GE HMA			

Reference Drawing Nos :-

4.1

1721-2225-09	Rev.	B	61721-2221-04	Rev.	U
1721-2221-08	Rev.	R	61721-2225-04	Rev.	N
1721-2225-12	Rev.	K	61721-2221-09	Rev.	M

1994 - A. 197

DRAFT

ETT TRIF FUNCTION TEL ETT TRIF FUNCTION ITEM SYSTEM DESCRIPTION TRIF FUNCTION DESCRIPTI T/S RTT REQUIREMENT (Se	NO: NO: High pressure Coolant Injection Sys ON : HPCI Steam Supply Pressure - Low C) : Steam Supply Pressure - Low Steam Supply Pressure - Low	mi-2(1 of 1) tem Isolation
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE <u>PIS & MODEL #</u>
Pressure Transmitter	Sense: Low Pressure in the steam Line.	E41-N058A Rosemount 1153
Master Trip Unit	Trips at preset Low Steam Pressure value.	E41-N658A Rosemount 510DU
MTU Output Relay	Closes on Low Steam Line pressure.	E41-K201A Agastat GP
Interfacing Relay	Energizes for HPCI Auto Isolation vaccuum Breaker Isolation valve and Annunciator.	E41A-K48 GE HFA
Initiation Relay	Inhibits opening of the valves E21-F002 and E21-F042.	E41A-K36 GE HMA
Interfacing Relay	Permissive to energize E41A-K79	E11A-K10A GE HFA
Initiation Relay	Energizes to actuate valves E41-F002 and E41-F042.	E41A-K44 GE HFA
Initiation Relay	Energizes to activate valve E41-P075.	E41A-K79 GE HMA

Reference Drawing Nos:-

61721-2225-09	Rev.	В	61721-2221-04	Rev.	U
61721-2221-08	Rev.	R	61721-2221-09	Rev.	M
61721-2225-04	Rev.	N	61721-2225-12	Rev.	K

DRAFT

RTT TRIP FUNCTION ITEM SYSTEM DESCRIPTION TRIP FUNCTION DESCRIPTIO T/S RTT REQUIREMENT (Sec	0:			
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE <u>PIS & MODEL #</u>		
Level-2 Transmitter	Senses level and provides analog signal to the MTU.	B21-NO81A Rosemount 1153		
Master Trip Unit	Trips at preset level to de-eneregize output Relay.	B21-N681A Rosemount 510DU		
MTU Output Relay	Opens on Reactor Water Level below Level-2.	C71A-K208A Agastat GP		
Interfacing Relay	De-energizes upon receiving signal from the Master Trip Unit.	A71B-K1A GE HFA		
Interfacing Relay	De-energizes on Hi Drywell Pressure and Reactor water Level-2.	A71B-K37 CR120A		
Interfacing Relay	Reactor Building Secondary containment isolation.	T41-M085 CR120A		
Initiation Relay	Actuates Secondary containment inboard isolation valve T41-F009	T41-MILA CR120A		
Initiation Relay	Actuates Secondary containment inboard isolation valve T41-F011	T41-M11B CR120A		

51721-2155-22	Rev.	I	61721-2095-33	Rev.	N
51721-2155-15	Rev.	H	61721-2611-08	Rev.	N
51721-2095-14	Rev.	L	61721-2611-04	Rev.	0
57721-2611-10	Rev	P			

	NEDO-32291	AFT
RTT TRIP FINCTION TARLE N	0: 3.3.2-3 Ferm	1-2 (1 of 1)
RTT TRIP FUNC. ON ITEK N	0: 6.b	
SYSTEM DESCRIPTION	: Secondary Containment Isolation	
TRIP FUNCTION DESCRIPTION	: Drywell Pressure - High	
T/S RTT REQUIREMENT (Sec)	<	
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE PIS & MODEL #
Pressure Transmitter	Senses Pressure and provides analog signal to the Master Trip Unit.	C71-N050A Rosemount 1153
Master Trip Unit	Trips at preset Pressure to de-energize the MTU cutput Relay.	B21-N65CA Rosemount 510DU
MTU Output Relay	De-energizes when the Drywell	C71-K216A
	Pressure is above secpoint.	Agastat of
Interfacing Relay	De-energizes upon receiving signal from Relay C71A-K216A.	C71A-K4A GE HFA
Interfacing Relay	De-energizes upon receiving signal from Relay C71A-K4A.	A71B-K5A GE HFA
Interfacing Relay	De-energizes upon receiving signal from Relay A718-K5A.	A71B-K37 GE HFA
Initiation Relay	1. Trips Reactor Building Main Exhaust Fan System Division-I.	T41M085 CR120A
	 Trips Reactor Building Main Supply Fan System Division-I. 	
Initiation Relay	Actuates Secondary containment isolation valves T41-F009.	T41-MILA CR120A
Initiation Relay	Actuates Secondary containment isolation valves T41-F011.	T41-M11B CR120A
Reference Drawing Nos:-		
61721-2155-22 Rev. I	61721-2611-10 Rev. P 61721-21	55-06 Rev. M
61721-2155-15 Rev. H	61721-2671-15 Rev. G 61721-21	55-04 Rev. K
61721-2095-14 Rev. L	61721-2451-04 Rev. N 61721-24	51-04 Rev. N
61721-2095-33 Rev. N	61721-2658-07 Rev. F 61721-210	05-13 Rev. E
61721-2105-14 Rev. J		

DRAFT

):	ol Ventilation Exhaust Radiat <= 13.0	tion High
ESCRIPTION OF COMPONENT		FUNCTION	DEVICE PIS & MODEL #
ensor / Converter	Senses cha	ange in Radiation Level.	D11-N010A (194X927G11)
ndicator & Trip Unit	Activates from Senso	trip circuits upon signal or & Converter.	D11-K609A (129B2802G11)
rip Auxiliary Unit	Contains of for initia	output Relays and Contacts ation Loop.	C51A-Z2A (238X697G9)
nterfacing Relay	De-energiz trip relay	tes to actuate radiation 7.	T41-M086 CR120A
nterfacing Relay	Permissive A71B-K103A	for T41-M10A,B and A,B,C	T41-M084 CR120A
nitiation Relay	Actuates secondary containment valve T41-F009 and T41-F011.		T41-M10A,B CR120A

Reference Drawing Numbers	:-		
61721-2185-0 61721-2185-0 61721-2185-0 61721-2185-0	7 Rev. F 8 Rev. C 1 Rev. M	61721-2658-07 Rev. F 61721-2611-10 Rev. P 61721-2611-04 Rev. O	

DRAFT

RTT TRIP FUNCTION TABLE N	0:3.3.3-3F	ermi-2(1 of 1)		
RTT TRIP FUNCTION ITEM N SYSTEM DESCRIPTION TRIP FUNCTION DESCRIPTION T/S RTT REQUIREMENT (Sec)	1.a : Core Spray System Isolation : Reactor Vessel Low Water Level - Level-1			
ale was wedersour (nec)		na yana kananan kananan kananan kananan kanan		
DESCRIPTION OF COMPONENT	FUNCTION	D'.VICE PIS : MODEL #		
Level Transmitter	Senses Level-1 Water Level & provides analog signal to the MTU.	B21-N091A, C Rosemount 1153		
Master Trip Unit	Trips at preset value to energize the MTU output Relay.	B21-N691A, C Rosemount 510DU		
MTU Output Relay	Receives signal from MTU.	B21-K201A, C Agastat GP		
Interfacing Relay	Closes on Level-1 signal.	E21A-K7A GE HFA		
Interfacing Relay	Energizes on Drywell High Pressure & Rx Low Level Logic. Activates Core Spray valves E21-F015A & E21-F015B.	E21A-K10A GE HFA		
Interfacing Relay	Permissive for E21A-K13A, Reactor Low Pressure.	E21A-K9A, K19A, K20A GE HGA		
Interfacing Relay	Core Spray isolation valves E21-F005A, B and E21-F004A, B.	E21A-K13A GE HFA		
Time Delay Relay	Time Delay to start the Pump.	E21A-K16A CR2820TD		
Initiation Relay	Starts Core Spray Pump E21-C001A	E21-K12A GE HFA		
Iniziation Relay	Starts Diesel Generator.	E21-K4A, B GE HMA		
Initiation Relay	Starts Diesel Generator and trips Drywell Cooling equipment.	E21-K11A, B GE HFA		

Reference Drawing Nos: -

61721-2095-30 Rev. K 61721N-2572-18 Rev. R 61721-2215-02 Rev. U 61721-2651-16 Rev. G 61721-2095-29 Rev. M

.

DRAFT

RTT TRIP FUNCTION TABLE N	0:3.3.3-3	Fermi-2(1 of 1)
RTT TRIP FUNCTION ITEM N	0: <u>1.b</u>	
SYSTEM DESCRIPTION	: Core Spray System Isolation	
TRIP FUNCTION DESCRIPTION	: Drywell Pressure - High	
T/S RTT REQUIREMENT (Sec)	< <u>~</u> 30.0	
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE <u>PIS & Model #</u>
Pressure Transmitter	Senses High Differential pressure & provides analog signal to the MTU.	B21-N094E, G Rosemount 1153
Master Trip Unit	Trips at preset value to energize the MTU output Relay.	B21-N694E, G Rosemount 510DU
MTU Output Relay	Closes on High Drywell Pressure.	B21-K209E, G Agastat GP
Interfacing Relay	Energizes EECW Stop Valve, HPCI & Core Spray Logic.	E21A-K5A GE HFA
Interfacing Relay	Energizes on Drywell High Pressure & Rx Low Level Logic. Activates Core Spray valves E21-F015A & E21-F015B.	E21A-K10A GE HFA
Interfacing Relay	Permissive for E21-K13A Reactor Low Pressure.	E21-K9A, K19A, K2OA GE HGA
Interfacing Relay	Actuates Core Spray isolation Inbd & Outbd valves E21-F005A, B and E21-F004A, B.	E21A-K13A, B GE HFA
Time Delay Relay	Time Delay to start the Pump.	E21A-K16A CR2820TD
Initiation Relay	Starts Core Spray Pump E21-COOLA.	E21-K12A GE HFA
Initiation Relay	Starts Diesel Generator.	E21A-K4A, B GE HMA
Initiation Relay	Starts Diesel Generator and trips Drywell Cooling equipment.	E21A-K11A, B GE HFA
ngan menung menungan kanadi dipakan semanyar yang bara yang bara yang bara sebah sebah sebah sebah sebah sebah		

Reference Drawing Nos: -

61721-2095-30	Rev.	K	61721-2211-06	Rev.	K
61721-2095-29	Rev.	N	61721-2211-07	Rev.	ĸ
61721-2211-08	Rev.	I			

DRAFT

ETT TRIP FUNCTION TABLE NO	3.3.3-3	Fermi-2(1 of 2)
SYSTEM DESCRIPTION TRIP FUNCTION DESCRIPTION T/S RTT REQUIREMENT (Sec)	: Low Pressure Coolant Injection mode : Reactor Vessel Low Water Level - Lev : <= 55.0	of RHR
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE PIS & MODEL #
Level Transmitter	Senses Level-1 Water Level & provides analog signal to the MTU.	B21-N091A, B Rosemount 1153
Master Trip Unit	Trips at preset value to energize the MTU output Relay.	B21-N691A, B Rosemount 510DU
MTU Output Relay	Receives signal from MTU and closes on Level-1 signal.	B21-K201A, B Agastat GP
Interfacing Relay	Energizes on Reactor Low Level Logic.	E21A-K7A, B GE HFA
Interfacing Relay	Closes on Low Level-1.	E11A-K7A, B GE HFA
Interfacing Relay	Actuates RHR pumps.	Ella-K9A, B GE HFA
Interfacing Relay	Initiates RHR Pumps.	Ella-K78A, B, C, D. GE HFAs
Initiation Relay Initiation Relay	Actuates pumps Ell-COO2C, D. Actuates pumps Ell-COO2A, B.	E11A-K21A, B GE HFA E11A-K18A, B GE HFA
Interfacing Relay	Energizes on Hi Drywell Pressure or Level-2.	E11A-K77A GE HFA
Interfacing Relay	Energizes on pumps differential Pressure above setpoint.	E11A-K23A GE HGA E11A-K25A GE HGA
Interfacing Relay	Energizes when pump running delta-P is greater than setpoint.	E11A-K26A GE HGA
Interfacing Relay	Energizes on pump delta-P above set setpoint & Low Level or Hi Drywell Pre	Ella-K27A, B GE HFA essure.
Time delay Relay	Time delay on LPCI pipe break detection.	E11A-K34A, B CR2820
Reference Drawing Nos:- 61721-2095-29 1 61721-2095-30 9 61721-2215-02 1	Rev. N 61721-2205-03 Rev. O Kev. K 61721-2205-05 Rev. P Rev. U 61721-2205-02 Rev. R	

C-24

61721-2205-06 Rev. J

DRAFT

RTT TRIP FUNCTION ITEM SYSTEM DESCRIPTION TRIP FUNCTION DESCRIPTION T/S RTT REQUIREMENT (Sec	NO: 2.a : Low Pressure Coolant Injection mod ON : Reactor Vessel Low Water Level - L c) :	evel-1
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE PIS & MODEL #
Interfacing Relay	Energizes when Riser A delta-P is greater than Riser B delta-P.	E11A-K35A, B GE HGA E11A-K36A, B GE HGA
Interfacing Relay	Closes Loop B LPCI valve	E11A-K37A, B GE HFA
Interfacing Relay	Actuates Recirculation valve B31-F031A.	Ella-K38A, B GE HFA
Interfacing Pelay	Actuates LPCI valves.	Ella-K39A, B GE HFA
Interfacing Relay	Actuates Ell-FO15A, B.	Ella-K66A, B GE HFA
Defense Decide a		
Kererence Drawing Nos:-	Rest N (1721 0005 02 Dec 0	
61721-2095-29	Rev. K 61721-2205-05 Rev. D	

61721-2215-02 Rev. U 61721-2205-02 Rev. R.

61721-2205-06 Rev. J

NEDO-32291 DRAFT Fermi-2 (1 of 2) RTT TRIP FUNCTION TABLE NO: 3.3.3-3 2.6 RTT TRIP FUNCTION ITEM NO: : Low Pressure Coolant Injection mode of RHR SYSTEM DESCRIPTION TRIP FUNCTION DESCRIPTION : Drywell pressure - High_

T/S RTT REQUIREMENT (Sec) :

<= 55.0

DESCRIPTION OF COMPONENT

MTU Output Relay

Interfacing Relay

Interfacing Relay

Interfacing Relay

Interfacing Relay

Initiation Relay

Initiation Relay

Interfacing Relay

Interfacing Relay

Interfacing Relay

FUNCTION

DEVICE PIS & MODEL #

Pressure Transmitter	Senses Pressure and provides analog signal to the MTU.	B21-N094E, F Rosemount 1153
Master Trip Unit	Trip: at preset value to De-energize the MTU output Relay.	B21-N694E, F Rosemount 510DU

Receives signal from MTU and actuates on Hi Drywell Pressure.

Energizes on Hi Drywell Pressure.

Actustes on High Drywell Pressure and Low Water Level Logic.

Actuates RHR Pumps.

Actuates RHR Pump start Logic.

Actuates pumps Ell-COO2C, D. Actuates pumps E11-C002A, B.

Energizes on Hi Drywell Pressure or Level-2.

Energizes on pumps differential Pressure above setpoint.

Energizes when pump running delta-P is greater than setpoint.

E11A-K27A, B GE HFA Energizes on pump delta-P above set Interfacing Relay setpoint & Low Level or Hi Drywell Pressure.

Time delay Relay

Time delay on LPCI pipe break detection.

Reference Drawing Nos: -

61721-2095-29	Rev.	N	61721-2205-03	Rev.	0
61721-2095-30	Rev.	K	61721-2205-05	Rev.	P
61721-2215-02	Rev.	U	61721-2205-02	Rev.	R
61721-2205-06	Rev.	3			

GE HFAS

E11A-K78A, B, C, D.

B21-K209E, F

Ella-KSA, B GE HFA

E11A-K10A, B GE HFA

E11A-K9A, B GE HFA

Agastat GP

E11A-K21A, B GE HFA Ella-K18A, B GE HFA

ELLA-K77A GE HFA

E11A-K23A GE HGA E11A-K25A GE HGA

E11A-K26A GE HGA

E11A-K34A, B CR2820

· NEDO-32291

DRAFT

RTT TRIP FUNCTION TABLE N	0:3.3.3-3	Fermi-2
RTT TRIP FUNCTION ITEM N SYSTEM DESCRIPTION TRIP FUNCTION DESCRIPTION T/S RTT REQUIREMENT (Sec)	D:2.b_ : Low Pressure Coolant Injection mode : Drywell Pressure - High :<= 55.0_	of RHR
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE PIS & MODEL #
nterfacing Relay	Energizes when Riser A delta-P is greater than Riser B delta-P.	Ella-K35A, B GE HGA Ella-K36A, B GE HGA
nterfacing Relay	Closes Loop B LPCI valve.	Ella-K37A, B GE HFA
nterfacing Relay	Actuates Recirculation valve B31-F031A.	E11A-K38A, B GE HFA
nterfacing Relay	Actuates LPCI valves.	E11A-K39A, B GE HFA
nterfacing Relay	Actuates Ell-FO15A, B.	Ella-K66A, B GE HFA
Reference Drawing Nos:-		
61721-2095-29 F 61721-2095-30 F 61721-2215-02 F	Rev. N 6I721-2205-03 Rev. 0 tev. K 6I721-2205-05 Rev. P tev. U 6I721-2205-02 Rev. R	

DRAFT

RTT TRIP FUNCTION TABLE NO	0: 3.3.3-3	Fermi-2(1 of 2)
RTT TRIP FUNCTION ITEM NO	0: 3.a	† A Th
TRIP FUNCTION DESCRIPTION	Reactor Vessel Low Water Level - Le	vel-2
T/S RTT REQUIREMENT (Sec)	<	
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE PIS & MODEL #
Level Transmitter	Senses Water Level-2.	B21-N091A Rosemount 1153
Slave Trip Unit	Trips at preset value for Level-2 setpoint.	B21-N692A Rosemount 510DU
ITU Output Relay	Receive signal from the STU and trips at preset value.	B21-K202A Agastat GP
Interfacing Relay	Energizes upon signal from the Output Relay.	E11A-K79A GE HFA
Initiating Relay	Actuates Reactor Low Water Level Logic for the following valves: -	E41A-K2 GE HFA
	Steam Supply to Turbine Valve E41-F001.	
	Steam Supply line Outbd Valve E41-F003.	
	Pump suction from CST E41-F004.	
	Pump Discharge E41-F006.	
ан на н	Test Bypass to CST E41-F008.	
	Redundant shut Off to CST E41-F011.	
Initiation Relay	Lube Oil Cooling water E41-F059.	E41A-K3 GE HFA

61721-2095-29	Rev.	N	61721-2221-07	Rev.	Т	61721-2205-01	Rev.	G
61721-2095-30	Rev.	K	61721-2221-04	Rev.	υ			
61721-2221-05	Rev.	Т	61721-2221-06	Rev.	Q			
61721-2225-03	Rev.	P	61721-2205-02	Rev.	R			

DRAFT

SYSTEM DESCRIPTION TRIP FUNCTION DESCRIPTIO T/S RTT REQUIREMENT (Sec	NO: : High Pressure Coolant injection S N : Reactor Vessel Low Water Level -) :	System Level-2
ESCRIPTION OF COMPONENT	FUNCTION	DEVICE PIS & MODEL #
	Pump Discharge E41-F007.	
nitiation Relay	Starts vacuum Pump.	E41A-K7 GE HFA
Annual Contraction Contraction Contraction Contraction Contraction	Starts Auxiliary Oil Pump at preset value.	
Alexandra and a second s		
alderstemantet, www.antlessamilien.antlessativery, Wernerland.organisations		
annen in einen		
and a state of the		
anna annan airson an ann an ann an ann an ann an ann an		
ference Drawing Numbers:-		
61721-2095-29 Rev N	61721-2221-07 Rev. T 61721-	2205-01 Rev. G

DRAFT

APPENDIX C.2

RIVER BEND LEAD PLANT BIT INSTRUMENTATION LOOP COMPONENTS

This Appendix details the River Bend Lead Plant response time sensitive components, their corresponding functions in the respective loops, and their model and MPL (Master Parts List) numbers. The top heading of each instrumentation loop identifies the trip function, system description, table and item number and the response time requirement. The drawings used in the analyses, including their revision and sheet numbers and referenced plant procedures, are either listed at the bottom of each loop description or summarized in the tables at the front end of this appendix. The bases and assumptions for the River Bend RTT instrumentation loop component identification is listed in Section C.1.1, page C-1, of this appendix.
DRAFT

DRAWING REVISIONS USED IN REPORT

DRAWING	SHEET	REV
828E243AA	05	13
C. And And C. Marceleo and Annal	16	14
Comments and Software and Software and	17	08
828E445AA	02	28
er-endageningen in staatmisserikkense	03	27
Many distances in the second se	04	24
	08	27
and and the state of the second s	10	27
	11	27
	12	27
	13	27
	14	27
	15	29
	17	27
828E531AA	02	25
	02A	21
AND TRANSPORTED BY A LOSS OF A DAY OF A DAY OF A DAY	03	26
A Construction of the construction of the state of the state burning	05	22
	09	26
dependent of the state of the s	10	24
	18	22
828E534AA	03	18
	80	24
	09	25
	10	23
Apply and done to this set or or other the set of		

C-31

DRAWING REVISIONS USED IN REPORT DRAWING SHEET REV 828E534AA 13 27

828E534AA	13	27
	14	24
	15	27
NAMES AND ADDRESS AND ADDRESS A	16	24
The second state is a second state of the seco	17	24
828E535AA	02	12
energies and the second s	06	20
CONSISTENT OF A CONSISTENCE OF A CONSISTENCE OF A SUBJECT OF	07	19
	10	19
828E536AA	03	20
	04	15
	05	15
NEW PRODUCTION CONTRACTOR STATE	06	16
	07	20
828E539AA	02	27
	04	27
	08	28
-	13	27
851E602AA	OIA	13
International statements of the statement of the statemen	04	24
	05	19

DRAFT

RIVER BEND RTT PROCEDURE NUMBERS

STP-051-4801 STP-051-4802 STP-051-4803 STP-051-4804 STP-051-4805 TP-051-4806 3TP-051-4807 STP 051-4F08 STP-051-4809 STP-051-4810 STP-051-4811 STP-051-4812 STP-051-4813 STP-051-4814 STP-051-4815 STP-051-4816 STP-051-4851 STP-051-4852 STP-051-4853 STP-051-4854 STP-051-4855 STP-051-4856 STP-051-4857 STP-051-4858 STP-509-4801 STP-511-4801 STP-511-4802 STF-601-4801 STP-058-4802 STP-204-4802 STP-207-4801 STP-207-4802 STP-207-4803 STP-207-4804 STP-207-4805 STP-207-4806 STP-207-4807 STP-207-4808 STP-207-4809 STP-207-4810 STP-207-4811 STP-207-4812 STP-207-4813 STP-207-4814 STP-505-4801 STP-505-4802 STP-505-4803 STP-505-4804 STP-505-4805 STP-508-4801 STP-508-4802 STP-508-4803 STP-508-4804 STP-508-4805 STP-508-4806 STP-508-4807 STP-508-4808 STP-508-4809 STF-508-4810

RIVER BEND RTT LOOP CALIBRATION REPORT NUMBERS

1.ILRPS.013	1.ILMSS.012
1. ILRPS. 014	1.11MSS.015
1. ILRPS. 015	1.ILMSS.013
1. ILRPS. 016	1.11MSS.050
1. ILEPS. 009	1.11MSS.016
1. ILRPS . 010	1.11MSS.019
1. ILRPS. 011	1.11MSS.017
1. ILRPS . 012	1.11MSS.018
1.ILISM.009	1.ILMSS.020
1.ILISM.012	1.11MSS.023
1.ILISM.010	1.11MSS.021
1.1115M.011	1.11MSS.022
1.ILCSL.025	1.ILMSS.024
1. ILRHS . 089	1.11MSS.027
1.ILCSL.026	1.11MSS.025
1.ILRHS.090	1.ILMSS.026
1.ILCSL.027	1.ILMSS.028
1. ILRHS. 091	1.ILMSS.031
1.ILCSL.028	1.ILMSS.029
1. ILRHS . 092	1.ILMSS.030
1.ILCSH.036	1.ILLMS.061
1.ILCSH.034	1.ILLMS.057
1.ILCSH.032	1.ILLMS.059
1.ILCSH.033	1.ILLMS.062
1.ILCSH.038	1.ILLMS.058
1.ILCSH.037	1.ILLMS.060
1.ILCSH.039	1.111CF.020
1.ILCSH.040	1.ILICS.021

1.ILICS.038 1.ILICS.039 1.ILRPS.017 1.ILRPS.020 1.ILRPS.018

DRAFT

RTT TRIP FUNCTION TABLE RTT TRIP FUNCTION ITEM	NO:3.3.1-2Ri	ver Bend(1 of 1)				
TRIP FUNCTION DESCRIPTION T/S RTT REQUIREMENT (Sec	: Rx Vessel Steam Dome Pressure High					
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE MPL & MODEL #				
Transmitter	Sends RPV Pressure signal to the master trip unit.	B21-N078A Rosemount 1152				
Master Trip Unit	De-energizes Relay C71A-K5A on high RPV Pressure.	B21-N678A Rosemount 510DU/710DU				
MTU Output Relay	De-energizes on High Pressure signal from the MTU.	C71A-K5A Agastat GP				
Initiation Contactor	De-energizes Group 1 Pilot Scram valve Solenoid "A".	C71A-K14A GE CR205				
Interfacing Relay	De-energizes on High Pressure.	C71A-K69 Potter & Brumfield MDR				
Initiation Contactor	De-energizes Group 3 Pilot Scram valve Solenoid "A".	C71A-K14G GE CR105				
Interfacing Relay	De-energizes on High Pressure.	C71A-K70 Potter & Brumfield MDR				
Initiation Contactor	De-energizes Group 2 Pilot Scram valve Solenoid "A".	C71A-K14K GE CR205				
Interfacing Relay	De-energizes on High Pressure.	C71A-K71 Potter & Brumfield MDR				
Initiation Contactor	De-energizes Group 4 Pilot Scram valve Solenoid "A".	C71A-K14S GE CR105				

Reference Drawing Numbers: -

828E531AA, Sheets 2, 9, 10, 18.

RTT TRIP FUNCTION TABLE	NO:3.3.1-2Rd	iver Bend(1 of 1)
COUPEN RECEDIDATON TIES	Beauton Brotostion System Bernonco	Times
SISTEM DESCRIPTION	: REACTOR FIDTECTION System Response	a design of the second se
TRIP FUNCTION DESCRIPTION	N : Reactor Vessel water Level - Low, 1	MART-3
T/S ETT REQUIREMENT (Sec.) :<~ 1.05	and the first output in the state of the state
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE MPL & MODEL #
Transmitter	Sends RPV Low water Level. Level-3	B21-N080A
5 > 10 2 4 0 48 4. U 10 10 4.	signal to the master trip unit.	Rosemount 1152
Master Trip Unit	De-energizes Relay C71A-K6A on low	B21-N680A Rosemount 510DU/710DU
	weret inter a segura .	
MTU Output Relay	De-energizes on Low Water Level-3 signal from the MTU.	C71A-K6A Agastat GP
Initiation Contactor	De-energizes Group-1 Pilot Scram valve Solenoid "A".	C71A-K14A GE CR205
Interfacing Relay	De-energizes on Low Level Water.	C71A-K69 Potter & Brumfield MDR
Initiation Contactor	De-energizes Group-3 Pilot Scrame valve Solenoid "A".	C71A-K14G GE CR105
Interfacing Relay	De-energizes on Low Level Water.	C71A-K70 Potter & Brumfield MDR
Initiation Contactor	De-energizes Group-2 Pilot Scram valve Solenoid "A".	C71A-K14K GE CR205
Interfacing Relay	De-energizes on Low Level Water.	C71A-K71 Potter & Brumfield MDB
Initiation Contactor	De-energizes Group-4 Pilot Scram valve Solenoid "A".	C71A-K145 GE CR105

Reference Drawing Numbers : -

828E531AA, Sheets 2, 9, 10, 18.

DRAFT

R

RTT TRIP FUNCTION TABLE	NO:3.3.1-2Riv	ver Bend(1 of 1)
RTT TRIP FUNCTION ITEM SYSTEM DESCRIPTION TRIP FUNCTION DESCRIPTION T/S RTT REQUIREMENT (See	NO: : Reactor Protection System Response 7 ON : Reactor Vessel Water Level - High, L c) : <	imes evel-8
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE MPL & MODEL #
Transmitter	Sends RPV high water level, level-8 signal to the master trip unit.	B21-NO80A Rosemount 1152
Master Trip Unit	Sends Water Level signal to the STU B21-N683A.	B21-N680A Rosemount 510DU/710DU
Slave Trip Unit	De-energizes Relay C71A-K44A on high water level-8 signal.	B21-N683A Rosemount 510DU/710DU
STU Output Relay	De-energizes on high water level-8 signal from the MTU.	C71A-K44A Agastat GP
Initiation Contactor	De-energizes Group-1 Pilot Scram valve Solenoid "A".	C71A-K14A GE CR205
Interfacing Relay	De-energizes on High Water Level.	C71A-K69 Potter & Brumfield MD
Initiation Contactor	De-energizes Group-3 Pilot Scram valve Solenoid "A".	C71A-K14G GE CR105
Interfacing Relay	De-energizes on High Water Level.	C71A-K70 Potter & Brumfield MD
Initiation Contactor	De-energizes Group-2 Pilot Scram valve Solenoid "A".	C71A-K14K GE CR205
Interfacing Relay	De-energizes on High Water Level.	C71A-K71 Potter & Brumfield MD
Initiation Contactor	De-energizes Group-4 Pilot Scram valve Solenoid "A".	C71A-K14S GE CR105

Reference Drawing Numbers: -

828E531AA, Sheets 2, 3, 9, 10, 18.

DRAFT

ETT TRIP FUNCTION TABLE N RTT TRIP FUNCTION ITEM N SYSTEM DESCRIPTION TRIP FUNCTION DESCRIPTION	3.3.2-3 River Bend (1 of 1) 1.e 1.e Primary Containment Isolation					
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE MPL & MODEL #				
Transmitter	Sends RFV level signal to MTU B21-N681A.	B21-NO81A Rosemount 1152				
Master Trip Unit	Transmits RPV level signal to STU B21-N682A.	B21-N681A Rosemount 510DU/710DU				
Slave Trip Unit	Deenergizes relay B21H-K148A on L-2 to initiate isolation.	B21-N682A Rosemount 510DU/710DU				
STU Output Relay	Deenergizes relays B21H-K27 *, K66A**, & K72A to actuate isolation.***	B21H-K148A Agastat GP				
Initiation Relay	Closes reactor water sample valve B33-F020.	B21H-K72A Agastat GP				

Reference Drawing Numbers: -

1. 41 / As. 1.

828E445AA, Sheets 2, 3, 12, 15, 17.
Contact goes to RWCU Level-2 Isolation Logic, Table 3.2.2-3/4a.
Contact goes to Secondary Containment Isolation Logic, Table 3.3.2-3/3a.
The signal from relay B21H-K148A goes through isolator B21H-AT38 before it reaches relays B21H-K27, K66A & K72A.

DRAFT

RTT TRIP FUNCTION TABLE NO	3.3.2-3	rer Bend(1 of 1)
RTT TRIP FUNCTION ITEM NO	Delegant Containment Teoletion	All a local court of the local sector of the
SYSTEM DESCRIPTION	: Primary Containment Isolation	
TRIP FUNCTION DESCRIPTION	: Drywell rressure - high	nar ann a' ann a' an a' ann
T/S RTT REQUIREMENT (Sec)		
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE MPL & MODEL #
Transmitter	Sends drywell pressure signal to MTU C71-N650A.	C71-N050A Rosemount 1154
Master Trip Unit	Deenergizes relays C71A-K45A & K4A * to initiate isolation.	C71-N650A Rosemount 510DU/710DU
MTU Output Relay	Deenergizes relay B21H-K23A to	C71A-K45A
and a way at many	initiate RHR isolation.***	Agastat GP
Initiation Relay and	Closes RHR sample line valves	B21H-K23A
Interfacing Relay	E12-F075A & B **; energizes relay B21H-K59A.	Agastat GP
Yaihian Dalam and	Closer PWP discharge value to	B21H-K59A
Initiation Kelay and Interfacing Relay	radwaste, E12-F040 **; deenergizes relay E12A-K135A.	Agastat GP
Initiation Relay	Closes shutdown cooling upper pool valve, E12-F037A	E12A-K135A Agastat GP
Reference Drawing Numbers:- 828E531AA, Sheets 2, 18 828E534AA, Sheets 3, 8, 828E445AA, Sheets 2, 11	13 , 12, 15	
 Contact goes to Se Valves E12-F075A 6 The signal from re it reaches relay B 	condary Containment Isolation Logic, T B and El2-F040 are Secondary Containm lay C71A-K45A goes through isolator 32 21H-K23A.	able 3.3.2-3/3b. ment Isolation valves. 21H-AT38 before

RTT TRIP FUNCTION TABLE	NO:3.3.2-3Ri	ver Bend(1 of 1)
RTT TRIP FUNCTION ITEM	NO:2.&	ng menters have an address sense to an average of any second diversity of the second second second second second
SYSTEM DESCRIPTION	: Main Steam Line Isolation	n an
TRIP FUNCTION DESCRIPTION	ON : Rx Vessel Low Water Level - Level-1	and a construct of the second seco
T/S RTT REQUIREMENT (See	c) :<= 10.0	and a second
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE MPL & MODEL #
Transmitter	Senses RPV level & sends signal to	B21-N081A
IL GILDERI CUCL	the MTU B21-N681A.	Rosemount 1152
	Participant Park Park Kin on Isl	821-N681A
Master Trip Unit	to initiate isolation.	Rosemount 510DU/710DU
Output Balance	Description relays B21H-K7A & K7K	B21H-KIA
Output Kelay	to actuate isolation logic.	Agastat GP
Interfacing Relay	Deepergizes relays B21H-K14A &	B21H-K7A
THEFT WE AND THE AND T	K56A** to close valves.	Agastat GP
Tritistion Palay	Closes outboard MSIVs B21-F028A-D.*	B21H-K14A
THILIBELON MELEY		Agastat GP
Initiation Relay and	Closes Drain valve B21-F019 and	B21H-K56A
Interfacing Relay	deenergizes relays B21H-K8 & K9.	Agastat GP
Initiation Relay	Closes outboard MSL drain valves	B21H-K8
	B21-F067A & B.	Agastat GP
Initiation Relay	Closes outboard MSL drain valves	B21H-K9
	B21-F067C & D.	Agastat GP
Interfacing Relay	Deenergizes relay B21H-K51B	B21H-K7K
anovamoung meany	to close valves.	Potter & Brumfield MD
Initiation Relay	Closes inboard MSIVs B21-F022A-D.*	B21H-K51B
		Agastat GP
And and the state of the second state of the second state and the second state of the		

Reference Drawing Numbers: -

828E445AA, Sheets 2, 3, 8, 10, 11, 13, 14, 17

- * MSIVs close on one-out-of-two-twice Logic.
- ** The signal from relay B21H-K7A goes through isolator B21H-AT38 before it reaches relay B21H-K56A.

DRAFT

SYSTEM DESCRIPTION	: Main Steam Line "A" Isolation	
TRIP FUNCTION DESCRIPTION	N : Main Steam Line Radiation - High	CONTRACTOR CONTRACTOR OF A DESCRIPTION OF A
T/S RTT REQUIREMENT (Sec.) :	DEVICE
DESCRIPTION OF COMPONENT	FUNCTION	MPL & MODEL #
Ion Chamber *	Sends MSL radiation signal to log radiation monitor D17-K610A.	D17-N003A GE, 237X731G1
Log Radiation Monitor	Deenergizes relay D17-K40 on High MSL rad to initiate isolation.	D17-K610A GE, 238X660G10
Output Relay	Deenergizes relay C71A-K7A to actuate isolation logic.	D17A-K40 GE Z2 Aux Trip Unit.
Interfacing Relay	Deenergizes relay B21H-K84A to close valves.	C71A-K7A Potter & Brumfield MDR
Initiation Relay	Deenergizes relays B21H-K72A***, K7A & K7K to close valves.	B21H-K84A Agastat GP
Initiation Relay	Closes reactor water sample valve B33-F020.	B21H-K72A Agastat GP
Interfacing Relay	Deenergizes relays B21H-K14A & K56A to close valves.	B21H-K7A Agastat GP
Initiation Relay	Closes outboard MSIVs B21-F028A-D.**	B21H-K14A Agastat GP
Initiation Relay and Interfacing Relay	Closes Drain valve B21-F019 and deenergizes relays B21H-K8 & K9.	B21H-K56A Agestat GP
Initiation Relay	Closes outboard MSL drain valves B21-F067A & B.	B21H-K8 Agastat GP
Initiation Relay	Closes outboard MSL drain valves B21-F067C & D.	B21H-K9 Agastat GP
Interfacing Relay	Deenergizes relay B21H-K51B to close valves.	B21H-K7K Potter & Brunfield MDH
Initiation Relay	B21H-K51B Agastat GP	
Reference Drawing Numbers:- 828E445AA, Sheets 2, ? 828E531AA, Sheets 1A, 828E243AA, Sheets 5, 1	, 8, 10, 11, 12, 13, 14 5 6, 17	

*** The signal from relay B21H-K84A goes through isolator B21H-AT38 before it reaches relay B21H-K72A.

RTT	TRIP	FUNCTION	TAPLE	NO:			3.:	3.2-3	_	River Bend (1 of 1)
RTT	TRIP	FUNCTION	ITEN	NO:	Contract Contract				2.	. C
SYST	TEM D	ESCRIPTION	N	:	Main	Steam	Line	Isolation		
TRI	FUN	CTION DES	CRIPTI	ON :	Main	Steam	Line	Pressure	-	Lov
T/S	RTT	REQUIREMEN	ST (Se	e) :					<td>- 10.0</td>	- 10.0
T/S	RTT	REQUIREMEN	NT (Se	c) :					<#	= 10.0

FUNCTION

DEVICE MPL & MODEL #

Sanges RPV pressure & sends signal to	821-N076A		
the MTU B21-N676A.	Rosemount 1152		
Deenergizes relay B21H-K4A on low	B21-N676A		
pressure to initiate isolation.	Rosemount 510DU		
Deenergizes relays B21H-K7A & K7K	B21H-K4A		
to actuate isolation logic.	Agastat GP		
Deenergizes relays B21H-K14A & K56A	B21H-K7A		
to close valves.	Agastat GP		
Closes outboard MSIVs B21-F028A-D.*	B21H-K14A Agastat GP		
Closes Drain valve B21-F019 and	B21H-K56A		
deenergizes relays B21H-K8 & K9.	Agastat GP		
Closes outboard MSL drain valves	B21H-K8		
B21-F067A & B.	Agastat GP		
Closes outboard MSL drain valves	B2111-K9		
B21-F067C & D.	Agastat GP		
Deenergizes relay B21H-K51B	B21H-K7K		
to close valves.	Potter & Brumfield MDR		
Closes inboard MSIVs B21-F022A-D.*	B21H-K51B Agastat GP		
	the MTU B21-N676A. Deenergizes relay B21H-K4A on low pressure to initiate isolation. Deenergizes relays B21H-K7A & K7K to actuate isolation logic. Deenergizes relays B21H-K14A & K56A to close valves. Closes outboard MSIVs B21-F028A-D.* Closes outboard MSIVs B21-F019 and deenergizes relays B21H-K8 & K9. Closes outboard MSL drain valves B21-F067A & B. Closes outboard MSL drain valves B21-F067C & D. Deenergizes relay B21H-K51B to close valves. Closes inboard MSIVs B21-F022A-D.*		

Reference Drawing Numbers :-

DESCRIPTION OF COMPONENT

828E445AA, Sheets 2, 3, 8, 19, 11, 13, 14, 17

* MSIVs Close on one-out-of two-twice Logic.

 RTT TRIP FUNCTION TABLE NO:
 3.3.2-3
 River Bend

 RTT TRIP FUNCTION ITEM NO:
 2.d

 SYSTEM DESCRIPTION
 Hain Steam Line Isolation

 TRIP FUNCTION DESCRIPTION :
 Main Steam Line Flow - High

 T/S RTT REQUIREMENT (Sec) :
 <</td>

DESCRIPTION OF COMPONENT

Trip Unit Output Relays

Transmitters

Master Trip Units

Interfacing Relay

Interfacing Relay

Initiation Relay

Initiation Relay and

Interfacing Relay

Initiation Relay

Initiation Relay

Interfacing Relay

Initiation Relay

FUNCTION

NEDO-32291

Senses MSL flow & sends signal to the MTUs E31-N686A thru N689A.

Deenergize relays B21H-K120A thru K123A to initiate isolation.

Deenergize relay B21H-K3A to actuate isolation logic.

Deenergizes relays B21H-K7A & K7K to close valves.

Deenergizes relays B21H-K14A & K56A to close valves.

Closes outboard MSIVs B21-F028A-D. *

Closes Drain valve B21-F019 and deenergizes relays B21H-K8 & K9.

Closes outboard MSL drain valves B21-F067A & B.

Closes outboard MSL drain valves B21-F067C & D.

Deenergizes relay B21H-K51B to close valves.

Closes inboard MSIVs B21-F022A-D.*

DEVICE MPL & MODEL #

(1 of 1)

E31-NO86A thru NO89A Rosemount 1152

E31-No86A thru N689A Rosecount 510DU/710DU

B21H-K120A thru K123A Agastat GP

B21H-K3A Agastat GP

B21H-K7A Agastat GP

B21H-K14A Agastat GP

B21H-K56A Agastat GP

B21H-K8 Agastat GP

B21H-K9 Agastat GP

B21H-K7K Potter & Brumfield MDR

B21H-K51B Agastat GP

Reference Drawing Numbers :-

8?8E445AA, Sheets 2, 3, 8, 10, 11, 13, 14, 17

* MSIVs Close on one-out-of-two-twice Logic.

RTT TRIP FUNCTION TABLE	NO:3.3.2-3Riv	ver Bend(1 of 1)
RTT TRIP FUNCTION ITEM I SYSTEM DESCTION TRIP FUNCTION T/S RTT LEQUIREDTINT (Sec	SO: Secondary Containment Isolation S : Ex Vessel Low Low Water Level - Leve () :	1 ~ 2
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE MPL & MODEL #
Transmitter	Sends RPV level signal to MTU B21-N681A.	B21-NOFIA Rosemount 1152
Master Trip Unit	Transmits RPV level signal to STU B21-N682A.	B21-N681A Rosemount 510DU/710DU
Slave Trip Unit	Deenergizes relay B21H-K148A on L-2 to initiate isolation.	B21-N682A Rosemount 510DU/710DU
Output Relay	Deenergizes relays 5214-K27*, K66A*** & K72A** to actuate isolation.	B21H-K148A Agastat GP
Initiation Relay & Interfacing Relay	Closes drywell vent and purge valves, starts SGTS, deenergizes relay B21H-K87A. Starts control room Div. I air system.	B21H-K66A Agastat GP
Initiation Relay	Closes Radwaste isolation valves, shuts down & isolates containment vent system.	B21H-K87A Agastat GP

Reference Drawing Numbers : -

828E445AA, Sheets 2, 3, 10, 17

* Contacts go to the RWCU Level-2 Isolation Logic, Table 3.3.2-3/4a.

** Contacts go to the Primary Containment Isolation Logic, Table 3.3.2-3/1a. *** The signal from relay B21H-K148A goes through isolator B21H-AT38 before

it reaches relay B21H-K66A.

DRAFT

RTT TRIP FUNCTION TABLE NO	:	ver Bend(1 of 1)	
RTT TRIP FUNCTION ITEM NO	: 3.b		
SYSTEM DESCRIPTION	: Secondary Containment Isolation	And and a second s	
TRIP FUNCTION DESCRIPTION	: Drywell Pressure - High		
T/S RTT REQUIREMENT (Sec)	<= 10.0	and a foreign taken of the set of	
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE MPL & MODEL #	
Transmitter	Sends drywell pressure signal to MTU	C71-N050A	
Sector in the sector	C71-N650A.	Rosemount 1154	
Master Trip Unit	Deenergizes relays C71A-K4A & K45A*	C71-N650A	
	to initiate isolation.	Rosemount 510DU/710DU	
MTU Output Relay	Deenergizes relay B21H-K66A to	C71A-K4A	
neo oscipat netaj	actuate isolation logic.**	Agastat GP	
Initiation Relay and	Closes DW vent and purge valves,	B21H-K66A	
Interfacing Relay	starts SGTS, deenergize: relay B21H-K87A.	Agastat GP	
Initiation Relay	Closes radwaste isolation valves,	B21H-K87A	
	shuts down & isolates containment ventilation system.	Agastat GP	
MTU Output Relay	De-energizes relay B21H-K23A to	C71A-K45A	
	initiate RHR isolation.***	Agastat GP	
Initiation Relay and	Closes RHR sample line valves	B21H-K23A	
Interfacing Relay	El2-F075A & B; de-energízes relay B21H-K59A	Agastat GP	
Initiation Relay	Closes RHR discharge valve to	B21H-K59A	
	Radwaste, E12-F040.	Agastat GP	

Reference Drawing Numbers :-

828E531AA, Sheets 2, 18 828E445AA, Sheets 2, 10, 11, 12, 15

- Contacts go to the Primary Containment Isolation Logic, Table 3.3.2-3/15.
 The signal from relay B21H-K4A goes through isolator B21H-AT38 before it reaches relay B21H-K66A.
- *** The signal from relay B21H-K45A goes through isolator B21H-AT38 before it reaches relay B21H-K23A.

RTT TRIP FUNCTILS TABLE	NO:3.3.2-3Riv	er Bend(1 of 2)
RTT TRIP FUNCTION AREA	NO: 4.8	
SYSTEM DESCRIPTION	: Reactor Water Cleanup Isolation	na ana amang mang mang mang mang mang ma
TRIP FUNCTION DESCRIPTIO	N : Delta Flow - High	
1/5 KII REQUIREMENT (Sec	·) :	
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE MPL & MODEL #
Transmitter	Sends signal of RWCU flow from RFV	E31-N076A Rosemount 1152
	LO ESI-ROULA VIA ESILA-SMOL.	ACCOUNTE AND
Square Root Extractor	Transmits signal to Summer E31-K604A.	E31-K602A Bailey 750
Transmitter	Sends signal of RWCU flow from Clean-	E31-N075A
	up F/D to E31-K605A via E31A-SRU1.	Rosemount 1152
Square Root Extractor	Transmits signal to Summer	E31-K605A
	E31-K604A.	Bailey 750
Transmitter	Sends signal of RWCU flow from Regen.	E31-N077A
	HX to E31-K603A via E31A-SRU1.	Rosemount 1152
Square Root Extractor	Transmits signal to Summer	E31-K603A
양 관망 등 것 같 것 같 것 같 것	E31-K604A.	Bailey 750
Summer	Transmits signal to Electronic	E31-K604A
	Switch E31-K609A.	Bailey 752
Electronic Switch	Energizes Timer E31-R615A on high	E31-N609A
	differential flow.	Bailey 745
Time Delay Relay	After time delay energizes downstream	E31-R615A
	Relay.	Eagle Signal HP5
Interfacing Relay	De-energize Relay in Isolation logic	E31A-K7A
	B21H-K172.	Agastat GP
Interfacing Relay	De-energize downstream Relay	B21H-K172
	B21H-K27.*	Potter & Brumfield MDR
Interfacing Relay	De-energizes relays B21H-K145, K154,	B21H-K27
	K159 and K160.	Agastat GP

Reference Drawing Numbers :-

851E602AA, Sheets 1A, 4, 5
828E445AA, Sheets 2, 3, 11, 12, 15
* The signal from relay B21H-K172 goes through isolator B21H-AT38 before
it reaches relay B21H-K27.

			-	-	~	~	-
3.7	27.7	S	- 4	2	-	-	э.
- NA	B (1)	R. J	- 3	1	4	2	
1.0	Se 24 3	ar 167	-	-	-	~	~

	NEDO-32291	DRAFT
RTT TRIP FUNCTION TABLE NO	3.3.2-3	River Bend (2 of 2)
RTT TRIP FUNCTION ITEM NO		
SYSTEM DESCRIPTION	: Reactor Water Cleanup 1sola	£100
T/S RTT REQUIREMENT (Sec)	:	10.0
DESCRIPTION OF COMPOFENT	FUNCTION	DEVICE MPL & MODEL #
Initiation Relay	C?.oses RWCU isolation valve G53-F034.	B21H-K145 Agastat GP
Initiation Relay	Closes RWCU isolation valve G33-F004.	B21H-K154 Agastat GP
Initiation Relay	Closes RWCU isolation valve G33-F054.	B21H-K159 Agastat GP
Initiation Relay	Closes RWCU isolation valve G33-F039.	B21H-K160 Agastat GP
A menungen of a second		

Reference Drawing numbers :-

851E602AA, Sheets 1A, 4, 5 828E445AA, Sheets 2, 3, 11, 12, 15

DRAFT

RTT TRIP FUNCTION TABLE N	0:3.3.2-3Riv	er: Send(1 of 1)
RTT TRIP FUNCTION ITEM N	0: <u>4</u> .e	comments - Managements
SYSTEM DESCRIPTION	: RWCU System Isolation	A CONTRACTOR OF A CONTRACTOR O
TRIP FUNCTION DESCRIPTION	: Rx Vessel Low Low Water Level - Leve	1-2
T/S RTT REQUIREMENT (Sec)	: <= 10.0	NAMES AND ADDRESS OF A DESCRIPTION OF A
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE MPL & MODEL #
Transmitter	Senses RPV level & sends signal to the MTU B21-N681A.	B21-NO81A Rosemount 1152
Master Trip Unit	Transmits RPV level signal to STU B21-N682A.	B21-N681A Rosemount 510DU/710DU
Slave Trip Unit	Deenergizes relay B21H-K148A on L-2 to initiate isolation.	B21-N682A Rosemount 510DU/710DU
STU Output Relay	Deenergizes relay B21K-K27 to actuate isolation.	B21H-K148A Agustat GP
Interfacing Relay	Deenergizes relays B21H-K145, K154, K159 & K160 to close valves.	B21H-K27 Agastat GP
Initiation Relay	Closes RWCU isolation valve G33-F034.	B21H-K145 Agastat GP
Initiation Relay	Closes RWCU isolation valve C33-F004.	B21H-K154 Agastat GP
Initiation Relay	Closes RWCU isolation valve G33-F054.	B21H-K159 Agastat GP
Initiation Relay	Closes RWCU isolation valve G33-F039.	B21H-KIGO Agastat GP

Reference Drawing Numbers :-

828E445AA, Sheets 2, 3, 15, 17

RTT TRIP FUNCTION CABLE N RTT TRIP FUNCTION ITEM N SYSTEM DESCRIPTION TRIP FUNCTION DESCRIPTION T/S RTT REQUIREMENT (Sec)	0:		
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE MPL & MODEL #	
Transmitter	Sends RCIC turbine supply delta pressure signal to MTU E31-N683A.	E31-NO83A Rosemount 1152	
Master Trip Unit	Transmits delta pressure signal to STU E31-N690A & energizes Relay E51A E51A-K64 on Plus High Delta Pressure or on Negative High Delta Pressure.	E31-N683A Rosemount 510DU/710DU	
Time Delay Relay	Energizes relays E51A-K15 & K24 after time delay to isolate RCIC.	E51A-K64 Agastat TR (TDPU)	
Initiation Relay	Closes steam supply line isolation valve E51-F064.	E51A-K15 Agastat GP	
Initiation Relay	Closes pump suction valve from suppression pool, E51-F031.	E51A-K24 Agastat GP	
	-		

Reference Drawing Numbers :-

828E539AA, Sheets 2, 4, 8, 13

DRAFT

		Ber -
RTT TRIP FUNCTION TABLE	NO:3.3.2-3Riv	er Bend(1 of 1)
RTT TRIP FUNCTION ITEM	NO:	
TEIP FUNCTION DESCRIPTION T/S RTT REQUIREMENT (Sec	N : RCIC Steam Supply Pressure - Low	
DESCEIPTION OF COMPONENT	FUNCTION	DEVICE MPL & MODEL #
Transmitter	Senses RCIC turbine supply pressure & sends signal to MTU E31-N685A.	E31-N085A Rosemount 1152
Master Trip Unit	Energizes relay E51A-K66 to initiate isolation.	E31-N685A Rosemount 510DU/710DU
Initiation Relay and Interfacing Relay	Closes vacuum breaker isolation valve E51-F077; energizes relays E51A-K15 & K24.	E51A-K66 Agastat TR
Initiation Relay	Closes steam supply line isolation valve E51-F064.	E51A-K15 Agastat GP
Initiation Relay	Closes pump suction valve from suppression pool, E51-F031.	E51A-K24 Agastat GP

Reference Drawing Numbers: -

828E539AA, Sheets 2, 4, 8, 13

ETT TRIP FUNCTION TABLE N	0:3.3.2-3Riv	er Bend(1 of 1)	
RTT TRIP FUNCTION ITEM N	0: <u>6.c</u>		
SYSTEM DESCRIPTION	: Residual Heat Removal System Isolation	on	
TRIP FUNCTION DESCRIPTION	: Reactor Vessel Low Water Level - Leve	e1-3	
T/S RTT REQUIREMENT (Sec)	: <= 10.0		
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE MPL & MODEL #	
The same of the same	Senses reactor water level and sends	B21-N080A	
Iransmitter	signal to MTU B21-N680A.	Rosemount 1152	
Master Trip Unit	De-energizes relays C71A-K6A and K46A on low water level-3.	B21-N680A Rosemount 510DU/710D	
Interfacing Relay	De-energizes relay B21H-K23A on low water level.*	C71A-K6A Agastat GP	
Interfacing Relay	De-energizes relay B21H-K129A on low water level.**	C71A-K46A Agastat GP	
Interfacing Relay and Initiation Relay	De-energizes Relay B21H-K59A & closes RHR sample line valves E12-F075A & B.	B21 K23A Agastat GP	
Interfacing Relay and Initiation Relay	Energizes Relay E12A-K135A & closes RHR discharge to RW Valve E12-F040.	B21H-K59A Agastat GP	
Initiation Relay	Closes RHR shutdown cooling upper pool valve E12-F037A.	E12A-K135A Agastat GP	
Interfacing Relay	De-energizes Relays B21H-K54 & K165; Energizes Relay E12A-K111A.	B21H-K129A Agastat GP	
Initiation Relay	Closes RHR reactor head spray valve E12-F023.	B21H-K54 Agastat GP	
Initiation Relay	Closes RHR suction cooling valve E12-F008.	B21H-K165 Agastat GP	
Initiation Relay	Closes RHR shutdown cooling injection valve E12-F053A.	E12A-K111A Agastat GP	
		- Hard to a the state of the st	

NEDO-32291

Reference Drawing numbers: -

828E445AA, Sheets 2, 11, 12, 15 828E534AA, Sheets 3, 8, 13 828E531AA, Sheets 2, 18

- The signal from relay C71A-K6A goes through isolator B21H-AT38 before it reaches relay B21H-K23A.
- ** The signal from relay C71A-K46A goes through isolator B21H-AT38 before it reaches relay B21H-K129A.

DRAFT

RTT TRIP FUNCTION TABLE M RTT TRIP FUNCTION ITEM M SYSTEM DESCRIPTION TRIP FUNCTION DESCRIPTION T/S RTT REQUIREMENT (Sec)	3.3.2-3 River Bend (1 of 1) 6.d L-sidual Heat Removal System Isolation Eeactor Vessel Low Water Level - Level-1 <= 10.0		
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE MPL & MODEL 4	
Transmitter	Sends RPV Level signal to the master trip unit B21-N691A.	B21-N091A Rosemount 1154	
Master Trip Unit	Energizes Relay E21A-K91 on Level-1 to initiate Isolation.	B21-N691A Rosemount 510DU/710DU	
Interfacing Relay	Energizes Relay E21A-K11 to close valves.	E21A-K91 Agastat GP	
Interfacing Relay	Energizes Relays El2A-K109A, K110A, and K125A.	E21A-K11 Agastat GP	
Initiation Relay	Closes RHR Test return valve E12-F024A.	E12A-K109A Agastat GP	
Initiation Relay	Isolates BOP functions for LOCA initiation.	E12A-K110A GE HFA	
Initiation Rolay	Closes RHR Heat Exchanger Flow to Suppression Pool valve E21-F011A.	E12A-K125A Agastat GP	

Reference Drawing numbers: -

828E535AA, Sheets 2, 6, 10. 828E534AA, Sheets 3, 8, 13.

DRAFT

-

	P	
RTT TRIP FUNCTION TABLE N	0:3.3.3-3Riv	er Bend(1 of 1)
RTT TRIP FUNCTION ITEM N	0: 1.0	
SYSTEM DESCRIPTION	: Low Pressure Core Spray System	
TRIP FUNCTION DESCRIPTION	: LPCS System Initiation	
T/S RTT REQUIREMENT (Sec)	<pre><= 37.0</pre>	alexander ander a second data and an and an annual parts of standard and an annual second second second second
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE MPL & MODEL #
Transmitter	Senses RPV level signal to MTU B21-N691A.	B21-N091A Rosemount 1154
Master Trip Unit	Energizes relays E21A-K91 and K3A to initiate system start.	B21-N691A Rosemount 510DU/710D
Trip Unit Output Relay	Energizes relays E21A-K10 & K11 on RFV level-1.	E21A-K91 Agastat GP
Transmitter	Senses drywell pressure signal to MTU B21-N694A.	B21-N094A Rosemount 1154
Master Trip Unit	Energizes relays E21A-K94 and K1A to initiate system start.	B21-N694A Rosemount 510DU/710D
Trip Unit Output Relay	Energizes relays E21A-K10 & K11 on high drywell pressure.	E21A-K94 Agastat GP
Tritication Poles and	Closer walve F21-F012. Frergizes	E21A-K10
Interfacing Relay	relays E21A-K151 & K14.	Agastat GP
Teterfosing Polan	Francizas relay F214-K12 after	E21A-K151
interfacing kelay	2 sec. time delay.	Agastat TR14D
Initiation Relay	Starts LPCS pump E21-C001.	E21A-K12 GE HMA
Initiation Relay	Opens LPCS injection shutoff valve E21-F005.	E21A-K14 Agastat GP

Reference Drawing Numbers :-

828E535AA, Sheets 2, 6, 7, 10

NEDO-32291

RTT TRIP FUNCTION TABLE N RTT TRIP FUNCTION ITEM N SYSTEM DESCRIPTION	0: 3.3.3-3 River Bend(1 of 3) 0: 2.s : Low Pressure Coolant Injection Mode of RHR System		
TRIF FUNCTION DESCRIPTION T/S RTT REQUIREMENT (Sec)	: LPCI Mode of RHR System Initiation, :<= 37.0	Pumps A & B	
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE MPL & MODEL #	
Transmitter	Senses RPV level signal to MTU B21-N691A.	B21-N091A Rosemount 1154	
Master Trip Unit	Energizes relays E21A-K91 and B21C-K3A* to initiate system start.	B21-N691A Rosemount 510DU/710DU	
Trip Unit Output Relay	Energizes relays E21A-K10** & K11 on RPV level-1.	E21A-K91 Agastat GP	
Transmitter	Senses drywell pressure signal to MTU B21-N694A.	B21-N094A Rosemount 1154	
Master Trip Unit	Energizes relays E21A-K94 and B21C-KlA* to initiate system start.	B21-N694A Rosemount 510DU/710DU	
Trip Unit Output Relay	Energizes relays E21A-K10** & K11 on high drywell pressure.	E21A-K94 Agastat GP	
Transmitter	Senses RFV level signal to MTU B21-N691B.	B21-N091B Rosemount 1154	
Master Trip Unit	Energizes relay E12A-K7 to initiate system start.	B21-N691B Rosemount 510DU/710DU	
Trip Unit Output Relay	Energizes relays E12A-K109B, K9B, and K126B on RPV level-1.	E12A-K7 Agastat GP	
Transmitter	Senses drywell pressure signal to MTU B21-N694B.	B21-N094B Rosemount 1154	
Master Trip Unit	Energizes relay El2A-K5 to initiate system start.	B21-N694B Rosemount 510DU/710DU	

Reference Drawing Numbers :-

828E535AA, Sheets 2, 6, 10 828E534AA, Sheets 3, 8, 9, 10, 13, 14, 15, 16, 17, 24 851E602AA, Sheets 1A, 4

Notes:

* B21C-K3A & K1A, when energized, lead to ADS valves open if LPCS/LPCI pumps operate.
 ** E21A-K10, when energized, leads to start of LPCS (see Table 3.3.3-3, Item 1.0).

DRAFT

River Bend (2 of 3) RTT TRIP FUNCTION TABLE NO: 3.3.3-3 2.8 RTT TRIP FUNCTION ITEM NO: : Low Pressure Coolant Injection Mode of RHR System SYSTEM DESCRIPTION TRIP FUNCTION DESCRIPTION : LPCI Mode of RHR System Initiation, Pumps A & B <= 37.0 T/S RTT REQUIREMENT (Sec) : ____ DEVICE MPL & MODEL # FUNCTION DESCRIPTION OF COMPONENT Energizes relays E12A-K109B, K9B, E12A-K5 Trip Unit Output Relay Agastat GP and K126B on high drywell pressure. E21A-K11 Energizes relays E12A-K125A, K126A, Interfacing Relay Agastat GP K9A, K94A, & K109A. E12A-K125A Closes RHR HX flow valve to suppres-Initiation Relay Agastat GP sion pool, E12-F011A. Opens RHR injection valve E12-F027A. E12A-K126A Initiation Relay and Agastat GP Interfacing Relay E12A-K9A Energizes relays E12A-K93A, K70A, Interfacing Relay Agastat GP K23A & K95A. E12A-K93A Deenergizes relay E12A-K95A after Interfacing Relay Agastat TR14D 10 min. time delay. E12A-K95A Opens valve E12-F048A for RHR HX Initiation Relay Agastat GP shell side bypass; allows closure after 10 min. E12A-K70A Starts RHR pump E12-C002A; energizes Initiation Relay and Agastat TR14D relay E12A-K18A after 7 sec. TD. Interfacing Relay E12A-K18A Starts RHR pump E12-COO2A. Initiation Relay GE HFA Opens RHR injection valve E12-F042A. E12A-K23A Initiation Relay Agastat GF Closes RHR steam line isolation E12A-K94A Initiation Relay and Agastat GP valve E12-F052A; deenergizes relay Interfacing Relay E12A-K96A. E12A-K96A Closes RHR valves E12-F051A & Initiation Relay Agastat GP E12-F065A. Reference Drawing Numbers : -

NEDO-32291

828E535AA, Sheets 2, 6, 10 828E534AA, Sheets 3, 8, 9, 10, 13, 14, 15, 16, 17, 24 851E602AA, Sheets 1A, 4

RTT TRIP FUNCTION TABLE NO	0:	
SYSTEM DESCRIPTION	1	Low Pressure Coolant Injection Mode of RHR System
TRIP FUNCTION DESCRIPTION	i.	LPCI Mode of RHR System Initiation, Pumps A & B
T/S RTT REQUIREMENT (Sec)	÷	<= 37.0

DESCRIPTION OF COMPONENT

FUNCTION

DEVICE MPL & MODEL #

......

		the second se
Initiation Relay	Closes RHR test return valve E12-F024B.	E12A-K109B Agastat GP
Interfacing Relay	Energizes relays E12A-K93B, K95B & K70B.	E12A-K9B Agastat GP
Timer Relay	Energizes relay E12A-K95B after 10 min. time delay.	E12A-K93B Agastat TR14D
Initiation Relay	Opens RHR HX shell bypass valve E12-F048B.	E12A-K95B Agastat GP
Timer Relay	Energizes relay E12A-K18B after 7 sec time delay. Starts RHR Pump E12-C002B.	E12A-K70B Agastat TR14D
Initiation Relay	Starts RHR pump E12-C002B.	E12A-K18B GE HFA
Interfacing Relay	Energizes relays El2A-K125B, K94B & K102.	E12A-K126B Agastar GP
Initiation Relay	Closes RHR HX valve E12-F011B, flow to suppression pool.	E12A-K125B Agastat GP
Initiation Relay and Interfacing Relay	Opens RHR "B" injection valve El2-F027B; energizes relay K23B; deenergizes relay El2A-K96B.	E12A-K94B Agastat GP
Initiation Relay	Closes Solenoid valve E12-F065B (condensate discharge to suppression pool or RCIC.)	E12A-K96B Agastat GP
Initiation Relay	Opens RHR injection valve E12-F042B.	E12A-K23B Agastat GP
		the standard state and state in the last state of the sta

Reference Drawing Numbers :-

828E535AA, Sheets 2, 6, 10 828E534AA, Sheets 3, 8, 9, 10, 13, 14, 15, 16, 17, 24 851E602AA, Sheets 1A, 4

RTT TRIP FUNCTION TABLE N	0: 3.3.3-3 Rive	er Bend(1 of 2)
RTT TRIP FUNCTION ITEM N SYSTEM DESCRIPTION TRIP FUNCTION DESCRIPTION T/S RTT REQUIREMENT (Sec)	0:2.b_ : Low Fressure Coolant Injection Mode of : LPCI Mode of RHR System Initiation, H :<= 37.0	of RHR System Pump C
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE MPL & MODEL #
Fransmitter	Senses RPV level signal to MTU B21-N691B.	B21-N091B Rosemount 1154
Master Trip Unit	Energizes relay E12A-K7 to initiate system start.	B21-N691B Rosemount 510DU/710DU
Trip Unit Output Relay	Energizes relays E12A-K109B*, K9B*, and K126B on RPV level-1.	E12A-K7 Agastat GP
Fransmitter	Senses drywell pressure signal to MTU B21-N694B.	B21-N094B Rosemount 1154
Master Trip Unit	Energizes relay E12A-K5 to initiate system start.	B21-N694B Rosemount 510DU/710DU
Trip Unit Output Relay	Energizes relays E12A-K109B, K9B, and K126B on high drywell pressure.	E12A-K5 Agastat GP
Interfacing Relay	Energizes relays E12A-K125B, K94B & K102.	E12A-K126B Agastat GP
Initiation Relay and Interfacing Relay	Closes RHR HX valve E12-F011B, flow to suppression pool; energizes relay E12A-K23C.	E12A-K125B Agastat GP

Initiation Relay

Initiation Relay and Interfacing Relay

Timer Relay

Opens RHR injection valve E12-F042C.

Opens RHR "B" injection valve E12-F027B; energizes relays E12A-K70C & K23B*; deenergizes relay E12A-K96B*.

Energizes relay E12A-K18C after 2 sec time delay. Starts RHR pump E12-C002C.

E12A-K23C Agastat GP

E12A-K94B Agastat GP

E12A-K70C Agastat TR14D

Reference Drawing Numbers :-

828E534AA, Sheets 3, 9, 10, 15, 16, 17, 24

Notes:

* E21A-K109B, K9B, K23B & K96B lead to start of RHR pump B (see Table 3.3.3-3, Item 2.a).

	NEDO-32291	DRAFT
ETT TRIP FUNCTION TABLE NO	3.3.3-3	River Bend (2 of 2)
RTT TRIP FUNCTION ITEM NO SYSTEM DESCRIPTION TRIP FUNCTION DESCRIPTION	2.b : Low Pressure Coolant Injection Ma : LPCI Mode of RHR System Initiation	ode of RHR System
T/S ETT REQUIREMENT (Sec)	FUNCTION	DEVICE MPL & MODEL #
Initiation Relay	Starts RHR pump E12-COO2C.	E12A-K18C GE HFA
Initiation Relay	Closes RHR "C" test return valve E12-F021.	E12A-K102 Agastat GP

Reference Drawing Numbers: -

828E534AA, Sheets 3, 9, 10, 15, 16, 17, 24

Notes:

* E21A-K109B, K9B, K23B & K96B lead to start of RHR pump B (see Table 3.3.3-3, Item 2.a).

DRAFT

RTT TRIP FUNCTION TABLE	NO:3.3.3-3Riv	ver Bend(1 of 1)		
RTT TRIP FUNCTION ITEM	NO: 4.0			
TRIP FUNCTION DESCRIPTION	N : HPCS System Initiation			
T/S RTT REQUIREMENT (See	<>> : <= 37.0			
DESCRIPTION OF COMPONENT	FUNCTION	DEVICE MPL & MODEL #		
Transmitter	Senses RPV level signal to MTU B21-N673C.	B21-N073C Rosemount 1154		
Master Trip Unit	Energizes relay E22A-K73 to initiate system start.	B21-N673C Rosemount 510DU/710DU		
Trip Unit Output Relay	Energizes relay E22A-K11 on RPV level 1.	E22A-K73 Agastat GP		
Interfacing Relay	E22A-K11 Agastat GP			
Transmitter	Senses drywell pressure signal to MTU MTU B21-N667C.	B21-N067C Rosemount 1154		
Master Trip Unit	Energizes relay E22A-K67 to initiate system start.	B21-N667C Rosemount 510DU/710DU		
Trip Unit Output Relay	Energizes relay E22A-K29 on DW pres- sure.	E22A-K67 Agastat GP		
Interfacing Relay	Emergizes relays E22A-K3, K9 & K109.	E22A-K29 Agastat GP		
Initiation Relay	Auto start of HPCS diesel generator.	E22A-K3 GE HFA		
Initiation Relay	Opens HPCS valves E22-F001 & F004.	E22A-K9 Agastat GP		
Initiation Relay	Closes HPCS test valves E22-F010, F011 & F023.	E22A-K109 Agastat GP		
nga menangkan tahun kanang na mana kanang kanan		al-mened material data supplies advantaged from the antimized service as a supply		

Reference Drawing Numbers :-

\$28E536AA, Sheets 3, 4, 5, 6, 7

APPENDIX D

RTT FAILURE EXPERIENCE REVIEW FROM INDUSTRY DATA BASES

DRAFT

APPENDIX D RTT FAILURE EXPERIENCE REVIEW FROM INDUSTRY DATA BASES

DRAFT

APPENDIX D

RTT FAILORE EXPERIENCE REVIEW FROM INDUSTRY DATA BASES

This Appendix summarizes the results of a comprehensive BWR Owners' Group investigation with respect to the generic failure of response time sensitive components reported as of May 1991. The sources used to obtain this information are GE SILs, NPRDS database, NRC Bulletins and NRC Information Notices. The available information has been included in this Appendix which summarizes the generic RTT component failures. First, the response time sensitive components are identified followed by a brief description of the incident or generic failure event. Next the table evaluates whether the function was or was not lost. This is followed by the impact on response time (RT) and other redundant surveillance tests that would detect the same generic failure.

The remaining columns classify other or additional redundant surveillance tests that can also pick up the same generic failure mode. Each column in the Generic RTT Components Failure Mode Experience is described below:

(A) Part Name

This column identifies the response time sensitive component, its manufacturer and model number. The failed part is also listed, followed by the source of information such as GE SILs, NRC Bulletins etc.

(B) Generic Failure Mode(s)

This column contains a brief description or synopsis of the incident followed by the identification of the failed part, the root cause, the failure symptom and the resolution. Final resolution involves design change, material change, component disqualification for a specified function and even discontinuation of the component by the manufacturer.

(C) Functional Failure

Inability or interruption of ability of system, structure or component to perform its designed function within acceptance criteria.

(D) Impact on Response Time (RT)

When the response or performance characteristics of a response time sensitive component degrades to a point where it significantly exceeds its design tolerances without functional failure, this component is considered to have an impact on response time.

D-1

(E) Detectable by Types of Surveillance Tests

These columns identify redundant technical specification surveillance tests that would detect the generic failure mode. Channel Functional, Logic Functional and Channel Check refer to the Technical Specification tests defined in Appendix B.

NOTE: Calibration is channel calibration as defined in the Technical Specifications and Appendix B, but does not include the Channel Functional test. For relay calibrations, refer to initial installation testing and/or a one-time-only generic document requirement.

(F) Visual Inspection

This method carefully examines by sight but without the use of instrumentation. This can include disassembly when necessary, checks for tightness, cleaning, binding and freedom of movement, etc.

PART NAME	GENERIC FAILURE MODE(S) RELAYS	FUNCTIONAL FAILURE (YES/NO)	IMPACT	DETECTABLE CHANNEL FUNCTIONAL	BY TYPES OF S	LOGIC SYSTEM FUNCTION	CHANNEL CHECK	VISUAL INSPECTION	
Generic Relay. Relay Contact Surface. (IEN 88-98)	Silver-nickel or silver-cadmium alloys will tarnish or oxidize when used in low current applications because of the absence of con- tact surface sparking from the typical relay contact "making and breaking" func- tions. The sparking in the contact sur- faces tends to promote a self-cleaning mechanism that reduces the oxide buildup on the contacts.	Yes	No	Yes	No	Yes	No	Yes	
Westinghouse ARD. Relay solenoid armature. (IEN 88-88 Suppl)	Increased drag was found on the relay sole- noid armature. This was attributed to an increased resistance caused by dust on the relay contact. Increased drag was caused by granules from the coll potting compound (sand based material) lodging between the solenoids coll spool and the armature that moves inside the coll spool. Resulting in increased relay contact resistance and breakdown of coll potting compound due to aging.	No	Possible	Yes	No	Yes	No	Yes	NEDO-32291
GE NFA. Relay contact GAP and WIPE setting adjustment. (IEN 83-19 & Sil 44 + Suppl)	Improper adjustments of contact gap and wipe can effect the performance of the relay during seismic events. HFA relays are manufactured with contacts normally open, but can be changed to normally closed. If this setting is changed then the contact gap and wipe settings must be adjusted properly. (* Gap setting during installation)	Yes	None	No	Yes*	No	No	No	DRAFT

D-3

PART NAME	GENERIC FAILURE MODE(S) RELAYS	FUNCTIONAL FAILURE (YES/NO)	IMPACT	DETECTABLE CHANNEL FUNCTIONAL	BY TYPES OF S CALIBRATION	URVEILLANG LOGIC SYSTEM FUNCTION	CHANNEL CHECK	VISUAL INSPECTION	
Westinghouse BFD, NBFD. Armature over travel (IEB 79-25)	The new style BFD relays exhibited marginal or unsatisfactory contact making character- istics due to insufficient armature travel. The minimum acceptable overtravel estab- lished is 0.02 inch, which is defined as the distance the relay armature travels beyond the point at which normally open contacts make. Contact over travel of all eight pole & travel pole relays can be con- firmed by measurement. (* Contact overtravel measurement)	Yes	Possible	Yes	Yes*	Yes	No	No	
Cutler-Hammer Type M Relays with DC Coils. Coil burnout. (IEB 76-06)	Type-H Relays failed during testing. The cause of failurs was loss of arc gap in the coil cleaning contact, where the normal mode of operation is to have the coil energized. This contact prevents winding burnout by interrupting the inrush currant to the pickup coil. The loss of arc gap in the clearing contact was caused by an abnormal amount of heat induced shrinkage of molded magnet carriers.	Yes	None	Yes	No	Yes	No	No	
Westinghouse BFD. Coll Insulation and solder joints. (IEB 76-05)	During testing relays were discovered with excessive operating times and open circuit failures. These were caused by over heat- ing of the relay colls. This overheating may result in coll insulation breakdown or melting of the coll solder joints, either of which can lead to open circuit failure. This overheating can also result in the deformation of the nyion coll sleave in which the plunger travelers, affecting the	Yes	None	Yes	No	Yes	No	No	VIII

D-4

PART_NAME	GENERIC FAILURE MODE(S) RELAYS	FUNCTIONAL FAILURE (YES/NO)	IMPACT	DETECTABLE CHANNEL FUNCTIONAL	BY TYPES OF S CALIBRATION	URVEILLANC LOGIC SYSTEM FUNCTION	E TESTS CHANNEL CHECK	VISUAL IKSPECTION
	relay opening time. This coil has been replaced by a new coil insulation that is less susceptible to temperature degradation.							
GE Induction Disc Relays. (IAC, IAV, ICR or ISCV) Petroleum Jelly Lubricant. (IEC 60-01)	A higher than normal pick-up value was caused by petroleum jelly lubricant which under high temperature conditions can migrate to the backstop. Later, at room temperature the lubricant can act as an adhesive and cause pick-up values to be higher than setpoint values. Cleaning procedure is recommended.	No	None	Yes	Yes	Yes	No	No
Westinghouse BF(AC) BFD(DC). Pin misalignment. (IEC 76-02)	Relay malfunctions were caused by the pin that connects the plunger to the operating head rubbing against the contact block. This rubbing action resulted in friction that impeded the plunger movement when the relay coil was energized, there by prevent- ing contact movement. Relays would operate properly when the pin was centered in the plunger. As a result the relay contacts remained in the de-energized position even though the coil was energized. Relay replacement was recommended.	Yes	None	Yes	No	Yes	No	No
Westinghouse BFD. Struck Armature. (IEB 79-25)	While conducting periodic response time test two relays were found to be stuck in the energized position with the coll de-energized. Investigation revealed that the armature was sticking to the armature	Yes	None	Yes	No	Yes	No	Yes
PART NAME	GENERIC FAILURE MODE(S)	FUNCTIONAL FAILURE (YES/NO)	IMPACT	DETECTABLE CHANNEL EUNCTIONAL	BY TYPES OF S CALIBRATION	URVEILLANG LOGIC SYSTEM FUNCTION	CHANNEL CHECK	VISUAL INSPECTION
---	--	-----------------------------------	--------	-------------------------------------	------------------------------	---	------------------	----------------------
	stop post. This condition is created when heat generated by normally energized coils causes a softening and resultant flow of epoxy adhesive. The epoxy adhesive is used to attach the magnetic antistick disc to the top of the armature stop post. When sufficient adhesive flows to the top of the armature stop, the armature becomes bonded to the stop post, resulting in the relay sticking in the energized position.							
idams & Westlake Co. Mercury-Wetted matrix relays. (1EB 80-19)	Failures were "failed closed" type. The number of multiple failures detected sug- gest the presence of a common-mode failure mechanism. Due to the high random failure rate, and a possible common-mode failure mechanism, these relays have been replaced by dry-contact relays.	Yes	Yes	Ťu.	No	Yes	No	No
GE Type HFA Releys. Lexan Coll Spocl material. (IEB 84-02)	Failures involved relays that were continu- ously energized in AC circuits and failed to open when de-energized. The cause was the deterioration of the coll wire insula- tion as a result of the effects of aging. Failure mechanism begins with wire insula- tion failure resulting in shorted turns, causing increased coll temperature and eventual coll failure. Coll temperatures can reach a level which can vaporize the insulating materials and can melt the coll spool. These materials may then deposit on cooler surfaces of the relay and cause armature damage and/or fail to make a	Yes	None	Yes	No	Yes	No	No

NEDO-32291

2

SECTION
NEDO-32291 DRA
25

PART NAME	GENERIC FAILURE MODL(S) RELAYS	FUNCTIONAL FAILURE (YES/NO)	IMPACT	DETECTABLE CHANNEL FUNCTIONAL	CALIBRATION	URVEILLANC LOGIC SYSTEM FUNCTION	CHANNEL CHECK	VISUAL INSPECTION
GE Type STD. Radio Frequency Interference. IEB 76-03.	A malfunction res caused by radio frequency interference from an activated transceiver. In the re-designed card the STD dropout point was reduced to 32 milliseconds. This significantly reduced the relay radio fro- quency sensitivity. (* Detectable after the trip has occurred)	No	None	No	No	No	No	Yes*
GE STD Transformer differential Relays. Zener diodes. (IEB 76-03)	The zener diods or the associated droping resistors on the STD sense Amplifier card have failed shorted. The cause was the two zener diodes whose cases were physically touching, resulting in a short circuit. The sense amplifier card has been rede- signed using a new printed circuit card with components arranged to preclude any possibility of short circuits.	Yes	None	Yes	No	Yes	No	No
GE Relays HFA, HGA, HKA, HHA. Open Circuit Coll Failures. (IEB 84-02)	Gpen circuit coil failures of these relay windings, had been caused by corrosion. Halogens from a class of Nylon coil spools or bobbins plus humid conditions were attributed as the fundamental causes of the corrosion and resulting coil failures. Investigation revealed that heat stabiliz- ing element of the nylon coil spool con- tained halogen ions which could be released over time. When combined with moisture the halogen ions form hydrochloric acid and copper salts which can cause the eventual open circuit failure of the coils. Vendor	Yes	None	Yes	No	Yes	No	No

NEDO-32291

MARE

PART NAME	GENFRIC FAILURE MODE(S) RELAYS	FUNCTIONAL FAILURE (YES/NO)	IMPACT	DETECTABLE CHANNEL EUNCTIONAL	BY TYPES OF S	URVEILLANC LOGIC SYSTEM FUNCTION	E TESTS CHANNEL CHECK	VISUAL INSPECTION
	recommended replacing the coils or relays with new relays that have LEXAN spool material.							
SE HFA. Coil Spools. (IE Not 81-01 & Sil 44 + Suppl)	Defective relay coil spocis with aither black or clear Lexan, a polycarbonate mate- rial is susceptible to surface cracking when exposed to hydrocarbons. These sur- face cracks can ultimately deteriorate to a point where the relay actuation would be blocked by this debris, and thereby inhib- iting the safety function.	Yes	None	Yes	No	Yes	No	Yes
GE HFA (PVD 218 PVD 21D, HGA PVD 218, PVD 21D, HGA). Stop tab location on the armature. (IE Not. 88-14)	The HFA relays were not resetting. The problem was the mechanical binding in the relays that prevented the normally closed contacts from making contact during de- energization. The cause was the incorrect location of a stop tab that is welded to the armature.	Yes	None	Yes	No	Yes	No	No
GTE Sylvania AC Relays. Relay Coil. (IE Info Notice No. 84-20.)	Normally energized relay coil was burning and smoke was observed coming from the Relay room. Upon de-energization of the relay coil the smoke stopped. The cause was determined to be coil end-of-life ther- mal aging and accelerated thermal aging of related relay components.	Yes	None	Yes	No	Yes	No	Yes

PART NAME	GENERIC FAILURE MODE(S) RELAYS	FUNCTIONAL FAILURE (YES/NO)	IMPACT ON RT	DETECTABLE CHANNEL FUNCTIONAL	BY TYPES OF S	URVEILLAN LOGIC System Function	CHANNEL CHECK	VISUAL INSPECTION	
Westinghouse Type SA-1 differential relays. Internal Capacitor Failure. (IEN No. 83-63)	Random trip output caused by relays con- taining S.T. SEMICON silicon-controlled rectifiers in SA-1 type relays. The two potentially significant problems are insuf- ficient surge-withstand-capability (SWC) and internal tantalum capacitor failures due to corrosion that results in the leak- age of the electrolyte. Vendor recommends a surge protection module be added to this relay model.	Yes	None	Yes	No	Yes	No	No	DRAFT
AGASTAT E-7000 Pneumatic timing diaphragm (IEN 82-04)	The pneumatic timing diaphragm leaks out a fluid substance as a function of time and temperature. This fluid substance tends to affect the diaphragm seal on the relays operating at high temperatures for extended periods, resulting in shorter time delays than those set on the relay dial. (Note: Time delay relays require response verification through calibration) (* assuming significant deviation from desired setting)	No	Yes	Yes*	Yes	Yes*	No	No	NEDO-32291
Westinghouse NBFD Relay coil insulat- ing material (IEN No. 82-02)	At high ambient temperature conditions, relay coils could fail due to the inductive voltage spike generated by the de-energize- tion of the relay coil. These failures are confined to normally energized relays. Mylar inculating material resolves the coil burnout by high voltage spikes.	Yes	Nona	'les	No	Yes	No	No	

PART_NAME	GENERIC FAILURE HODE(S) RELAYS	FUNCTIONAL FAILURE (YES/NO)	IMPACT	DETECTABLE CHANNEL FUNCTIONAL	BY TYPES OF S	SURVEILLAN LOGIC SYSTEM FUNCTION	CHANNEL CHECK	VISUAL INSPECTION	20
GE HFA Coll Spool material (IEN No. 82-13)	Partial melting of the Nylon coil spool prevented the relay from moving to the de-energized position for several minutes after the coil was de-energized. On another occasion melted LEXAN material was found to be the cause. Melted insulation from the relay coil of an actuated relay had coated the relay contacts and thus pre- vented electrical contact. A piece of the spool flange had fallen into the gap between the open armature and pole face, preventing solid contact. With the con- tacts just touching must have created a fixed air gap in the magnetic circuit. The increase in the current caused by the air gap produced excessive temperature rise in the coil. This excessive temperature rise, through conduction and convection to the armature assembly and sheding ring eventu- ally caused remaining spool flange to soften, melt and move. As the piece of spool flange in the gap melted, the air gap closed permitting the normally open contacts to fully close. The closure of the gap caused a lower temperature and the melted LEXAN then hardened and created a bond between the armature and the pole face. Thus when the coil was de- energized the return spring force was not enough to break this bond. It was recommended that the LEXAN and Nylon coil spool be replaced with Century Series TEFZEL coil spools.	Yes	Yes	Yes	Ho	Yes	No	Tes	MEDO-32291

PART NAME	GENERIC FAILURE MODE(S) RELAYS	FUNCTIONAL FAILURE	INPACT	DETECTABLE CHANNEL EUNCTIONAL	BY TYPES OF S	URVEILLANC LOGIC SYSTEM FUNCTION	CHANNEL CHECK	VISUAL INSPECTION	
AGASTAT E-7000. Relay orientation. (IEN 85-49)	The time-relay measurements of horizontally bench calibrated but vertically installed relays were as much as 30% greater than that of the bench calibration. Bench cali- bration should be performed to the same orientarion as the mounted device. (Note: Time delay relays require response verification through calibration; (* assuming significant deviation from desired setting)	No	Yes	Yes*	Yes	Yes*	No	No	ORAFT
Westinghouse NBFD. Coll Filler epoxy. (IEN 82-54)	Coil sticking problems were attributed to coil filler epoxy which flows during ser- vice into the plunger cavity, inhibiting the relay from moving to a de-energized position after the power is removed. This results in sluggish relay operation. (* Failure results over time) (** Some RT degradation possible before complete functional failure)	Yes*	Yes**	Yes	Ro	Yes	Ro	Yes	NEDO-32291
AGASTAT CR0095. Relay Sockets. (IE N 82-48)	Relay failed to energize due to the socket contact being disengaged from the socket and not making contact with the mating relay contact	Yes	None	7es	No	Yes	No	No	

PART_NAME	GENERIC FAILURE MODE(S) RELAYS	FUNCTIONAL FAILURE (YES/NO)	IMPACT ON RT	DETECTABL CHANNEL EU/CTIONA	E BY TYPES OF	F SURVEILLAN LOGIC System DN FUNCTION	CHANNEL	VISUAL INSPECTION	
GE HFA. Movable Contact Finger. (IEN 68-69 Supp. 1)	Difficulty in making wipe and gap settings due to binding of a movable contact finger in the phenolic support assembly. The root cause of the binding was determined to be movable contacts that were manufactured wider than the allowable tolerance. These wider contact arms do not float freely in the slot provided in the phenolic support. Consequently the binding of a movable con- tact arm could interfere with the relay contact wipe.	Yes	Poss Ib le	Yes	Yes	Yes	No	No	DRAFT
ASEA BB ITE-SIL Time-over current relays Silicon controlled rectifiers (SCRs). (IE 88-58)	The ITE-SIL relays encounter spurious relay actuations caused by faulty silicon- controlled rectifiers (SCRs). These SCR allow current to flow in the absence of the proper gating signal. These leakage currents were of sufficient magnitude to energize the trip coll of the associated circuit breaker. (* After trip has occurred)	No	None	Yes*	No	ĭes*	No	No	NEDO-32291
AGASTAT (GP, FGP, EGP) Nylon movable con- tact arm. (IEN 84-20)	The nylon movable contact arm was coming in contact with the barrier strip on the melamine phenol plastic relay base. Conse- quently this mechanical interference pre- vented one of the four sets of contacts from changing state in the relay. It was determined by GE and Amerace testing that these failures were end-of-service-life resulting from service aging of energized relays in combination with the mechanical configuration and tolerances. Vendor has	Yes	None	Yes	No	Yes	No	No	

PART_NAME	GENERIC FAILURE MODE(S) RELAYS	FUNCTIONAL FAILURE (YES/NO)	IMPACT	DETECTABLE CHANNEL FUNCTIONAL	BY TYPES OF S CALIBRATION	URVEILLANC LOGIC SYSTEM FUNCTION	E TESTS CHANNEL CHECK	VISUAL INSPECIION	OP
	mechanical configuration and tolerance problems.								EF
AGASIAT (GP) Relay contact arm and stationary base. (IEN 84-20)	Hechanical interference between the moving relay contact arm and the stationary base of the relay case. This was determined to be caused by the casing shrinkage as the melamine phenol plastic base cures after assembly. This phenomenon is also called post-mold plastic shrinkage that results in the reduction in clearances. Amerace Cor- poration introduced a design change by cut- ting a notch in the barrier strip to pro- vide additional clearance. (* Stuck relay will be detected)	763	None	Tes	NO	163	RO	ΝC	NEDO-32291
GE CR120A. Contact Arm retainer. (SIL No. 229)	A small relay fire occurred in a relay panel due to overheating and subsequent ignition. The contect arm retainer that was made of CELCAN M90 acetal copolymer which is flammable. The contact arm retainer material has been changed to VALOX 310-SEO, which is self extinguishing and flame resistant.	Yes	None	Yes	No	Yes	No	Yes	
GE CR120A. Dirty Contacts. (Brunswick daily status report)	Dirty contacts were found on the transfer relay in feedwater level control contacts that were extremely resistive. Relay uses dry ellver plated contacts. Relay contact with gold contact? would be better choice according to the customer.	Yes	None	Yes	No	Yes	No	Xo	

PART_NAME	GENERIC FAILURE MODE(S)	FUNCTIONAL FAILURE (YES/NO)	IHPACT ON RT	DETECTABLE CHANNEL FUNCTIONAL	BY TYPES OF S CALIBRATION	URVEILLAR LOGIC SYSTEM FUNCTION	CHANNEL CHECK	VISUAL INSPECTION	
GE CR120A. deposit buildup on contact surface (Fermi Report)	The apparent cause of the de-energization of the relay was loss of continuity to the relay due to deposit built up on the sur- face of the contacts. These deposits caused a momentary loss of continuity in the relay. The deposits were analyzed to consist of silver sulfide, silicon oil or light grease and chlorides.	Yes	None	Yes	No	Yes	No	No	DRAFT
GE HFA. Shorted Coll windings. (Sil. No 44 Supp 1,2)	Relay coll windings had shorted resulting in an increased current which eventually caused the relay coll to fail while exceed- ing the maximum current rating of down- stream devices. Aging analysis revealed that the thermal aging of the nylon coll bobbins was the probable cause of failure. Embrittlement of the nylon bobbins was most severe at the location where the bobbin makes contact with the magnetic shading turn. Extreme embrittlement can lead to cracking of the nylon bobbin which allows the coll windings to move sufficiently to cause shorted turns. Nylon bobbin material was replaced by polycarbonate material.	Yes	None	Yes	No	Yes	No	No	NEDO-22291
GE HFA. Four No. 8 x 5/8 inch screws. (S11 No. 44 & Sup 1,2,3,4,5)	The four No. 8 x 5/8 inch screws which hold the aluminum adapter plate and magnetic core assembly to the back side of the relay case were not mechanically tight. Movement of the mechanical core can result in incor- rect contact operation. Furthermore, par- tial contact between the magnetic core faces and the armature may occur causing	Yes	None	Yes	No	Yes	No	No	

PART_NAME	GENERIC FAILURE MODE(S) RELAYS the relay coll to overheat due to an incom-	FUNCTIONAL FAILURE (YES/NO)	IMPACT	DETECTABLE CHANNEL EUNCTIONAL	BY TYPES OF S CALIBRATION	URVEILLANC LOGIC SYSTEM FUNCTION	E TESTS CHANNEL CHECK	VISUAL Inspection	0
HFA Relays. Armature stuck in energized position. (SIL No. 44)	plete or partial path for the magnetic flux. Investigations to determine the cause of the stuck armature concluded that improp- erly cured (but hardened) varnish was the culprit. A long period of relay energiza- tion caused the varnish to soften and then reharden, resulting in the adhesion of the pole pleces.	Tes	None	Yes	No	Yes	No	Yes	RAFT
HFA Relays. Defective Glass window. (SIL No. 44)	During inspections of relays, it was dis- covered that a defective glass window on one of the relay enclosures would not allow the armature to return to the fall-safe po- sition if de-energized. One of the metal dips used to hold the glass window in p'ace in the door frame was missing and substi- tuted for by a piece of masking type. Deterioration of the masking tape had par- mitted the glass window to seg from its normal position, jamming the relay armature in the energized mode.	Yes	None	Yes	No	Yes	No	Yes	NELV- 34434
HFA Relay Pickup voltage. (SIL Ro. 44)	The pickup voltages of some of the 125-olt DC HFA relaws were found to be cutated, the recommended voltage range. Investigations revealed that the pickup voltage varies with tamperature, which may have caused the out-of-range voltages. Also the relay pickup voltage below the lower limit of the	No	None	Yes	Ko	Yes	No	No	

PART NAME	GENERIC FAILURE MODE(S)	FUNCTIONAL FAILURE (YES/NO)	IMPACT ON RT	DETECTABLE CHANNEL FUNCTIONAL	BY TIPES OF S	URVE ILLANC LEGIC SYSTEM FUNCTION	CHANNEL CHECK	VISUAL INSPECTION	
	recommended range indicates low spring ten- sion which may allow normally closed con- tacts to chatter in a de-energized relay during a seismic event. These relays are qualified to prevent contact chatter during seismic events of up to 2.0 g ZPA (Zero period acceleration).								DRAI
Agastat Relay. Contact Resistance. NPRDS	A higher than normal resistance in the relay contact caused the relay to appear electrically open when it was mechanically closed. The mechanism for the failure is believed to be oxide build up which over time increases on the relay contact sur- faces because of the low voltage, low cur- rent application and infrequent use.	Yes	None	Yes	No	Yes	No	No	
Agastat GP. Slow response time. NPRDS	While performing response time testing on Reactor Protection System, low water level scram, the response time exceeded the tech- nical specification requirement of 50 mil- liseconds. The cause was determined to be the 40 millisecond drop-out time of the Agastat Master trip relay. The root cause for the excessive drop out time was deter- mined to be the relaxation of the contact opening spring. Relay was replaced. (Note: In RPS loops, only the sensor is exempt from response time testing.)	No	Yes	No	No	No	No	No	

0-322

PART_NAME	GENERIC FAILURE MODE(S) RELAYS	FUNCTIONAL FAILURE (YES/NG)	IMPACT ON RT	DETECTABLE CHANNEL FUNCTIONAL	BY TYPES OF S	LURVEILLANG LOGIC SYSTEM FUNCTION	CHANNEL CHECK	VISUAL INSPECTION	
Time delay Relay Setpoint drift NPRDS	While performing routine surveillance test- ing, the loss of normal auxiliary power interlock relay delay time was found to be out of specification. It was a minor devi- ation from Tech. Specs. Failure is attrib- uted to age/set point drift. The relay was adjusted to an acceptable response time and returned to service. (Note: Time delay relays require response verification through calibration.) (* Assuming sign'/icant deviation from desired setting)	No	Yes	Yes*	Yes	Yes*	No	No	DRAFT
Time delay Relay Relay binding jolted loose NPRDS	Relay actuated slow at 17.84 seconds when the required Technical acceptance criteria is less than or equal to 5 seconds. Relay was repaired and reinstalled with a RIT of 3.01 seconds. (Note: Time delay relays require response verification through calibration.) (* assuming significant deviation from desired setting)	Ro	Yes	Yes*	Yes	Yes*	No	No	NEDO-32291
Time delay Relay Setpoint drift NPRDS	Auto-depressurization initiation time delay relay failed its 92 day response time test by more than one second. Relay was recalibrated. (Note: Time delay relays require response verification through calibration.) (* assuming significant deviation from desired setting)	No	Yes	Yes*	Yes	Yes*	No	No	

PART NAME	GENERIC FAILURE MODE(S)	FUNCTIONAL FAILURE (YES/NO)	IMPACT ON RT	DETECIABLE CHANNEL EUNCTIONAL	BY TYPES OF S CALIBRATION	URVEILLAN LOGIC SYSTEM FUNCTION	CE TESTS CHANNEL CHECK	VISUAL INSPECTION	
GE HGA Relay Armature Binding. (SIL No. 77)	HGA armature binding was reported by oper- ating BWRs. The binding can occur only with surface mounted HGA relays using front connecting terminals, and then only when their unsymmetrical cover is installed both upside down and in a cocked or displaced orientation. This problem cannot occur with flush mounted HGA relays. Correct relay orientation and installation will resolve this problem.	Yes	None	Yes	No	Yes	No	Yes	DRAFT
Potter-Brumfield KH & KHP. Loose Sockets. (SIL No. 172)	P-B type KH & KHP sockets were found loose. While removing a loosely mounted socket the complete socket assembly was detached caus- ing the metal socket retainer ring to fall back on the socket terminels. This resulted in a short circuit.	Yes	None	Yes	No	Yes	No	No	NEIX0-32291
Relays. Coll Overheating Problem. (SIL No. 189)	Trip relays rated at 24 volts DC in some ARM indicator trip units have failed with burned open coils. Actual coil operating voltages can reach 34-volts DC. Operating trip relays in an over-voltage condition results in excessive heating of the relay coil that may cause it to fail.	Yes	None	Yes	No	Yes	No	No	
Relays GE MFA, HGA, HKA, HMA Electrolytic corro- sion of coils.	Open coll circuits in GE relays - HFA, HGA, HKA & HMA could occur in direct current (DC) applications due to electrolytic cor- rosion. The three significant contributing factors to this failure mechanism are: 1. High humidity environment exceeding 60%.	Yes	None	Yes	No	Yes	No	No	

PART NAME	GENERIC FAILURE MODE(S)	FUNCTIONAL FAILURE (YES/NO)	IMPACT	DETECTABLE CHANNEL FUNCTIONAL	BY TYPES OF S CALIBRATION	URVEILLAN LOGIC System Function	CE TESTS CHANNEL CHECK	VISUAL INSPECTION	
(SIL No. 153)	 Intermittent energizing as opposed to continuous relay operation. D.C. Operation as opposed to A.C. operation. The mechanism of electrolytic corrosion results when moisture combines with halogers given we by the heat stabilizing comround used in the nylon bobbin of the relay coil. These halogens then migrate through the insulation causing corrosion of the copper wire. The chemical reaction usually occurs in the part of the coil windings in proximity to the bobbin. Relays used in circuits with high duty cycle are not prome to this failure since the heat generated by the continuously - energized coil tends to evaporate any excess moisture. Mylon coil bobbins that are the cause of this problem were replaced by Lexan coil bobbins. 								ORAFT NEDO-32291
Relay Slow response time NPRDS	The 2 CSW Pump B 4160 breaker tripped late on instantaneous overcurrent after the loss of second air compressor, 2A & 2B chillers, turbine building exhaust radiation monitor and 2A-2 battery charger. There was no reason for delay. A response test was com- pleted numerous times and the response time of the relay decreased with each test. On the final test the coil failed to energize and change the contact positions. Replaced relay coil 2-E-84-2553.	Tes	Possible	7es	No	Yes	No	No	

PART NAME	AUXILIARY CONTACT GENERIC FAILURE MODE(S) RELAYS	FUNCTIONAL FAILURE (YES/NO)	IMPACT	DETECTABLE CHANNEL FUNCTIONAL	BY TYPES OF S CALIBRATION	URVEILLAN LOGIC SYSTEM FUNCTION	CHANNEL CHECK	VISUAL INSPECTION	
Relay Mechanical linkage NPRDS	During surveillance test on the E-average power range monitors. On generating a 1/2 scram on the B-channel received s full scram. Scram Contactor contacts 5 and 6 did not open when relay was energized. Investigations revealed a mechanical linkage had fallen off that opens contacts. Replaced clip and linkage.	Yes	None	Yes	No	Yes	No	Yes	DRAY
Relay CR305 (PRC 68-10)	Relay C71A-K14A failed and subsequent inspection revealed all scram contactors and actuator assemblies for contactor relay slightly loose. Tightened auxiliary con- tact assemblies.	Yes	None	Yes	No	Yes	No	No	NEDO-
REED Relays. Stuck relays. (SIL No. 184)	Stuck reed relays were discovered in the APRM averaging cards. One relay was stuck closed and the other was stuck open. An LPRM with a relay stuck open would not be averaged by the APRM circuit.	Yes	None	Yes	No	Yes	No	No	32291
CR2820 Time Delay Relays. Defective timer. (SIL No. 230 Rev. 2)	GE CR2820 time delay relays used in the core spray, residual heat removal (RHR) and automatic depressurization systems have a tendency to increase after long periods in a de-energized condition. The CR2820 timer has an accuracy specification of \pm 10% for repetitive use. However it may vary considerably more than 10% on the first pickup after more than a month in the de-energized state. Recommended to use Agastat Relays	No	Yes	Yes	Yes	Yes*	No	No	

PART NAME	GENERIC FAILURE MODE(S) RELAYS	FUNCTIONAL FAILURE (YES/NO)	IMPACT	DETECTABLE CHANNEL FUNCTIONAL	BY TYPES OF S	URVEILLANG LOGIC SYSTEM FUNCTION	CHANNEL CHECK	VISUAL INSPECTION	
	<pre>for such applications. The actual value of the time delay should be verified by testing. (Note: Time delay relays require response verification through calibration.) (* Assuming significant deviation from desired setting)</pre>								DRAFT
GE Relays. Contact Resistance. (SIL No. 332)	Relay contact resistance is found to be greater than specified when dust, dirt or contaminants are present. These relay con- tacts should be lightly dusted with a soft brush while vacuuming to remove dislodged particles. Following vacuuming, contacts should be cleaned only with a burnishing tool.	No	Possible degrada- tion	Yes	No	Yes	No	No	NEDO-3229:
Agastat Relay Type CR0095 Relay Bases. (SIL No. 384)	Agentiat relays are plugged into a base that has sixteen plug-in terminals. A potential problem identified is the relay base, which could lead to a high impedance or "open" connection between one or more of the six- texn relay terminals (male) and the corre- sponding terminal in the relay base (fomale). The problem is caused by inade- quate retention of the female terminal in the base which allows the terminal to be pushed out of the base when the relay is plugged-in.	Yes	None	Yes	No	Yes	No	No	1

PART NAME	GENERIC FAILURE MODE(S) 	FUNCTIONAL FAILURE (YES/NO)	IMPACT <u>CN RT</u>	DETECTABLE CHANNEL FUNCTIONAL	BY TYPES OF S	URVEILLAN LOGIC SYSTEM FUNCTION	CHANNEL	VISUAL INSPECTION]
Potter & Brumfleld MDR Relays (RICSIL No. 053)	Upon de-energizing, the relays failed to return to the appropriate position and their normally open contacts failed to open. A failure analysis concluded that corrosion occurred from chlorine released from rubber grommets and polyvinyl chloride sleeving. Gases release also occurred from varnish on the coll while continuously energized. Chlorine and outgasing accumu- lated in the area of the bottom end bell bearing and caused the motor shaft to bond to the bearing.	Yes	None	Yes	No	Yes	No	No	DRAFT
Westinghouse Types ARD, BFD & NBFD Epoxy Flow In Energized Relays NRC Info. Notice 91-45	There is a potential for these relays to malfunction due to the epoxy compound becoming semi-fluid when the coil is energized for extended periods. This malfunction may degrade safety by disabling or delaying a function. These relays failed to reset properly after de- energization because epoxy coil had softened and flowed into the area of the return spring causing sticking of the plunger assembly. Probable cause is attributed to a poor mixing in the manufacturing process.	Yes	Yes	Yes	No	Yes	No	No	NEDO-32291

PART NAME	GENERIC FAILURE MODE(5) TRIP UNITS	FUNCTIONAL FAILURE (YES/NO)	IHPACT ON RT	DETECTABLE CHANNEL FUNCTIONAL	BY TYPES OF S	LOGIC SYSTEM FUNCTION	CHANNEL CHANNEL CHECK	VISUAL INSPECTION	
Trip Unit Rosemount S10DU. Transistor degrada- tion (SIL No. 520)	 Rosemount 510DU master and slave trip unit malfunctions and erroneous trip signals have been experienced. The reported malfunction involves the trip unit sending an erroneous trip output signal without any change in the input signal on the trip units trip status indicator. This malfunction is caused by long term degradation of the trip units output Darlington transistor (2N5296.Q8). The trip output voltage gradually increases from zero volts to the 12-18 volts range, even though no trip condition exists. The root cause is formation of a conductive, hydroscopic residue in the transistor. As the residue grows with time, resistive leakage across the transistor eventually becomes large enough to activate trip signal output. Failure rate caused by resistive leakage across the transistor is 0.48 failure per million hours of operation, which is below the design failure rate. 1. In normally deenergized application (low output) of transistor leakage becomes large enough to create an enormous trip signal, it usually is detectable by the annunciator or downstream logic. 2. In normally energized applications (high output) the trip output signal can remain high and no trip occure even though an actual trip signal without and the trip signal without and the trip output signal can remain high and no trip occure even though an actual trip signal without and the trip output signal without and the trip signal can remain high and no trip occure and the trip output and the trip output signal and the trip output signal and the trip output signal can remain high and no trip occure and the trip output and the treates the trip output and the trip output and the trip output a	Yes	None	Yes	Yes	Yes (For ECCS) No (For RPS)	Yes (For ECCS) No (For RPS)	No	DRAFT NEDO-32291

PART NAME	GENERIC FAILURE MODE(S)	FUNCTIONAL FAILURE (YES/NO)	IMPACT ON RT	DETECTABLE CHANNEL FUNCTIONAL	BY TYPES OF S CALIBRATION	URVEILLAN LOGIC SYSTEM FUNCTION	CE TESTS CHANNEL CHECK	VISUAL INSPECTION	
Trip Unit Rosemount 5100U. Switch Failures. (IE Cir. 80-16)	The Rosemount 510DU trip units have a common mode failure of two switches namely S1 in the trip status output, LED logic circuit and S2 in the trip output logic circuit. These malfunctions result in open circuits in the output logic upon the reception of an actual trip signal. The switch (S2) failure could result in failure to automatically activate a safety function.	Yes	None	Yes	Yes	Yes	Yes	No	DRAFT
Trip Unit Rosemount 5100U and 710DU. R11 Potentiometer. (Sil No. 468)	Inadvertent trips and unstable trip point settings have been reported. This condi- tion was traced to the R11 Potertiometer failures. The R11 potentiometer is the trip point adjustment potentiometer located on the front of the 510 DU system. Failure is caused by an accumulation of contami- nants and/or oxidation on the wiper arm of R11 causing unstable intermittent changes in potentiometer settings. High humidity and temperature conditions can lead to this problem, since R11 potentiometer is unsealed and oxidation accumulation on the wiper arm under normal operating conditions can occur - the R11 potentiometer has been sealed for the 710DU system.	Pos- sible	None	Yes	Yes	Yes	Yes	No	NEDO-32291

PART_NAME	GENERIC FAILURE MODE(S) SWITCHES	FUNCTIONAL FAILURE (YES/NO)	IMPACT	DETECTABLE CHANNEL FUNCTIONAL	BY TYPES OF S	URVEILAN LOGIC SYSTEM FUNCTION	CHANNEL CHANNEL	VISUAL INSPECTION
Barksdale BIT-GH3255 Bourdon tube pres- sure switch noise. (SIL No. 429)	Hydraulic control unit (HCU) accumulator pressure switches have actuated below the Technical Specification limits during sur- veillance testing due to setpoint drift. SIL recommends Recalibration of Switches.	No	Yes	No	Yes	No	Yes	Yes
Barksdale TC9622-3 Pressure Switch. (SIL 456 - Rev. 1)	The nitrile rubber O-ring in the switch is incompatible with polyphosphate ester hydraulic oil. Ritrile rubber tends to soften and swell when exposed to polyphos- phate ester oil resulting in piston and switch malfunction.	Yes	Yes	Yes	Yes	Yes	No	No
Panalarm (Riley) Model 86-86A Temp-Matic switches 1) Contract chattering. 2) Spurious Trip.	(a) A spurious trip could occur with Riley Model 86 and 86A temperature switches if their voltage power supply drops as low as 108 volts when the setpoint is within 6°F of operating temperature. Model 86B elimi- nates this problem by relocating the grounding jumper points between power supply card and the main card. (* Detected after the trip)	(a) No	None	Yes*	No	Yes*	No	No
(SIL No. 443 Suppl.)	(b) The burnout protection feature may continue to chatter. This chattering caused the contacts to burn or weld together. Panalerm has eliminated the problem in Model 868 by modifying the burnout protection circuit.	(b) Yes	None	Yes	Yes	No	No	No

NRAFT

NEDA1-32291

PART_NAME	GENERIC FAILURE MODE(S)	FUNCTIONAL FAILURE 	IMPACT	DETECTABLE CHANNEL FUNCTIONAL	BY TYPES OF S	LURVEILLANG LOGIC SYSTEM FUNCTION	CE TESTS CHANNEL CHECK	VISUAL INSPECTION	
Static O-Ring Pressure Switches. 6TA-84-NX-JJTTX5. (IEB 87-16)	The pressure switch set points had drifted outside tech. spec. tolerances. Investiga- tions revealed that ammonia present in the steam lines had interacted with the Kapton diaphragm of the pressure switch, permeated it, and formed a bubble between the lamina- tions of the Kapton diaphragm (fluorinated silicone membrane). It is believed that the formation of this bubble between the diaphragm layers caused the set point of the switch to shift. In ammonia environ- ment following pressure switch are affected for model numbers beginning with 1. 4. 5. 6, 8, 9, 12 and 54. Replaced diaphragms made of stainless steel do not encounter this problem.	Yes	Rone	No	Yes	Yes	No	No	DRAFI
NAMCO EA180 Limit Switches Ele- vated Temperatures. (EI 79-28)	Yellow and brown "crystal-like" resin deposits on the internal components of NAHCO model EA180 stem mounted limit switch (SMLS) caused it to malfunction. The prob- lem was traced to a batch of top cover gas- kets of which some were over impregnated and insufficiently heat cured. This condi- tion can leave an uncured residue of "Loctite" in the gasket, which vaporizes at sustained temperatures above 175'F. Prob- lem has been resolved by a properly heat curing in the manufacturing process.	Yes	None	Yes	No	Yes	No	Yes	

PART NAME	GENERIC FAILURE MODE(S)	FUNCTIONAL FAILURE (YES/NC)	IMPACT ON RT	DETECTABLE CHANNEL FUNCTIONAL	BY TYPES OF S	URVEILLAN LOGIC SYSTEM FUNCTION	CHANNEL CHECK	VISUAL INSPECTION	
ITT Barton Nodel Numbers 288, 289A Differential Pres- sure Indicating Switch. (SIL Mo. 10)	Process fluid causes a problem when the DP switch constantly trips with the same read- ing and water buildup between the DP switch and the reference will cause different readings on the test reference. Another problem occurs when the DP switch isolation valve leaks. This allows the process fluid to enter the test lines after being cleared. If possible the test lines should be applied directly to the instrument. The most common problem with set point drift unique to these DP switches has been with the spring washers and to hold the switch plate against the back of the DP switch case. Vendor has devised a new switch plate locking device that prevents the set point drift. Vendor recommendations regarding adjustments can correct the set point drift.	No	None	Yes	Yes	Yes	Yes	No	DRAFT NEW-SALST

PART NAME	GENERIC FAILURE MODE(S)	FUNCTIONAL FAILURE 	IMPACT	DETECTABLE CHANNEL FUNCTIONAL	BY TYPES OF S	URVEILLANG LOGIC SYSTEM FUNCTION	CE_TESTS CHANNEL CHECK	VISUAL INSPECTION	
Rosemount Models 1151, 1152, 1153 and 1154. Transmitter Fail- ures. (Info H 89-42, Bulletin 90-01, RICSIL No. 33)	Five Rosemount model 1153 HD5PC differen- tial pressure transmitters were reported to have malfunctioned. Operators during power operation noted that the signals from the Rosemount 1153 transmitters were indicating reduced levels of process noise. Attempts to recalibrate the transmitters also failed. Destructive testing by Rosemount determined that the failures were caused by the loss of oil from the transmitters sealed sensing module. Silicon oil leaks out of the sensing module resulting in gradual deterioration and eventual detect- able failure of the transmitter. Some of the symptoms that have been observed during operation and before failure include slow drift in either direction of about 1/4 per- cent or more per month. lack of response over the transmitter's full range, increase in the transmitter's full range, increase in the transmitter's time response, devia- tion from the normal signal fluctuations, decrease in the detectable noise level, deviation of signals from one channel com- pared with redundant channels, "cne sided" signal noise and slow response to a tran- sient or inability to follow a transient. (* drift analysis and/or other techniques)	Possible	Yes	No	Yes*	No	Yes*	No	DRAFI

EDO-32291

PART NAME	GENERIC FAILURE MODE(S) NUMAC Analysis of failed NUMAC low voltage power	FUNCTIONAL FAILURE 	IMPACT	DETECTABLE CHANNEL FUNCTIONAL	BY TYPES OF S CALIBRATION	URVEILLANC LOGIC SYSTEM FUNCTION	CHANNEL CHECK	VISUAL INSPECTION	
Low Voltage Power Supply Reliability. (SIL No. 499)	problem and one potentially generic prob- lem, that can lead to early life failures of LVPs.								DRA
	(a) The generic problem results from a power supply manufacturing problem that causes early degradation of a capacitor in the LVPS followed by an abnormally high drift rate in the -15 VDC voltage in the NUMAC chassis.	No	None	No	Yes	No	No	No	
	(b) The potentially generic problem appears to be caused by high voltage tran- sients on the 120 VAC line supplying power to the NUMAC chassis. The suspected tran- sient results in a shorted input diode rec- tifier bridge in the LVPS. This causes an LVPS failure, but in some cases also causes the NUMAC line fuse to open, rendering the instrument unavailable and defeating the value of the redundant LVPS in the NUMAC units. Drifting -15 VDC voltage drift can be cor-	Yes	None	Yes	Yes	Yes	Yes	Yes	
	rected by the LVPS internal capacitor. Shorted bridge caused by transient can be corrected by replacing the NUMAC line fuse with a 5 amp slow blow fuse.								

32291

PART NAME	GENERIC FAILURE MODE(S)	FUNCTIONAL FAILURE (YES/NO)	IMPACT ON RT	DETECTABLE BY TYPES OF SURVEILLANCE TES LOGIC CHANNEL SYSTEM CHAN EUNCTIONAL CALIBRATION FUNCTION CHEP			CE TESTS CHANNEL CHECK	VISUAL INSPECTION	
Logarithmic Radia- tion Monitor, Insta- ble Voltage/ Inoper- ati e Trip Circuit. (SIL No. 245)	Instability was encountered in the Logarithmic Radiation Nonitor high volt- age/inoperative trip circuit. Jarring the instrument or its external cables caused spurious trips. The cause of the trip instability resulted from the Logarithmic Radiation Monitors (LRM) high voltage trip adjust potentiometer, R90, being set too close to the operating high voltage. The adjustment procedure used was to adjust R90 until the front panel HV/Inop. trip light just came on and then to back off R90 until the light just went out. This provided only a few volts margin between the untripped and tripped states, rendering the trip circuit subject to spurious operation from jarring the drawer or the cables to the gamma sensitive ION chamber. GE recommendations regarding changing the Calibration procedures for Logarithmic Radiation Monitor resolves the instability.	No	None	No	Υes	No	No	Yes	DRAFI NEDO-32291
Logarithmic Radia- tion Monitor. Heater Element. (SIL No. 296)	Lowest decade calibration of the solid state Log Radiation Monitor (LRM) has been difficult to obtain in some units with their thermostatically controlled heaters in operation. This is due to reduced leak- ages resistance of log element U8 at ele- vated temperatures. Calibration with sta- bilization of LRM resolves this problems.	No	None	No	Yes	No	No	No	

DRAFT

APPENDIX E RESPONSE TIME TEST FAILURE EXPERIENCE FROM FLANT SURVEY

DRAFT

APPENDIX E RESPONSE TIME TEST FAILURE EXPERIENCE FROM PLANT SURVEY

This Appendix summarizes for the participating BWRs, how response time test related failures were identified.

A summary of response time test failures from the participating plant survey is shown in Table E-1. As indicated in this table, the majority of the plants have not encountered response time test failures. There have also been numerous instances of failures detected by other tests which would probably have resulted in response time test failures if a response time test had been performed. The few cases of exceeding administrative limits and response time test failures reported by some plants are described below:

E.1 LASALLE PLANT

LaSalle plant incidents exceeding RTT limits are described in the following sections

E.1.1 Technical Specification

A search of LaSalle Plant Deviation Report system yielded two instances of failed response time tests.

- (1) APRM Hi neutron flux function in RPS trip logic was determined to exceed technical specification response time limit by 0.003 second during routine response time testing. It was determined that response time of 1C51-K1 relay was slightly longer than the response times of similar relays while response times of other relays in the trip channel were within expected limits. The K1 relay was replaced and test was successfully conjuted. It is doubtful that this degradation could have been detected by any other routine test. It is important to note here that the response time testing requirements for this trip function (APRM Hi neutron flux) has not been exempted. In addition, this study only exempts the sensor from response time testing for the three trip functions identified in Section 5.3.1 of the main report.
- (2) The reactor low water level-3 function in RPS/isolation trip logic was determined to exceed technical specification RPS response time limit during routine response time testing. Failure was apparently

caused by binding of SOR switch shaft due to corrosion. The switch was replaced and test was successfully completed. Since other instances of shaft corrosion have been detected during routine calibrations due to a significant setpoint drift and lack of repeatability, response time failures of this type could also be detected via calibration anomalies. In fact, a review of the calibration data for the two calibrations preceding the failed response time test showed that, in both cases, the as-found setpoint had drifted beyond the calibration limits but had not reached the administrative action or reject limits. Hence, calibration tests can successfully identify response time failures due to binding of SOR switch shaft by corrosion.

E.1.2 Administrative Limits

The Administrative Limit violations are grouped togethe: as follows:

- (1) <u>Perforated dp Sensor Diaphragms</u>: This type of failure is found frequently in SOR switches. Perforation of the diaphragm allows fluid to leak from the high to low pressure side of the switch. The detection method is a visible change in water bottle levels and/or failure to hold test pressure during functional tests or calibrations. Consequently, functional and calibration tests will readily identify this response time failure caused by the perforated dp sensor diaphragms.
- (2) <u>Corrosion-Induced Mechanical Binding</u>: This type of failure is also inherent to SOR switches. Due to corrosion on the switch shaft or shaft bearings, higher than normal pressure is required to move the shaft to the switch actuation point. Detection of this failure mode is covered in the response time test failure discussion above.
- (3) Loss of Cell Fill Oil: This failure mode has been observed in Rosemount transmitters. Leakage of oil out of the sensing cell causes drift and degraded transient response. A number of these failures have been detected due to visibly slow response during calibration. This failure mode is discussed in more detail in Appendix F.

DRAFT

E.2 PERRY PLANT

The following failure was reported:

(1) A RTT failure occurred in the main steam line high flow line break detection circuit. The response measured time was 0.6 seconds, as opposed to the allowable 0.5 seconds. The RTT surveillance test was done just prior to calibration. The calibration procedure confirmed loss of oil with its extended loss of oil check. Had the calibration been done first, it would have detected the loss of oil prior to RTT.

E.3 SUSQUEHANNA PL NT

Susquehanna has had one RTT failure exceeding the technical specifications. While performing the HPCI System sensor/trip relay, E41A-K430 (steam line high differential pressure) failed to actuate within the required time of 5.0 seconds. This sensor relay includes a 3-second time delay. The actual response time was 17.838 seconds. The relay was removed and the contacts were burnished and bench tested. The relay was replaced and RTT was performed satisfactorily with a time of 3.010 seconds.

The performance of the 18-month logic system functional test would likely have detected this failure. Had a calibration been performed on this time delay relay, the excessive time would have been identified during the calibration. Time delay relays require calibration to assure setpoint accuracy.

DRAFT

Table E-1

SUMMARY OF RESPONSE TIME TEST FAILURES FROM PLANT SURVEY

	Brunswick	Clinton	Fermi-2	Grand Gulf	WHEP 2	Hetch	Hope Creek	LeSalle	Limerick	Perry	River Bend	Susquehanna
isceeding RTI lequiremente												
Technical Specification Limits Component Involved	None	tiona	None	None	None	None	Rone	Тио	None	One	Hone	One
1) Trensmitter										(3)		
2) Switch		1.6						(1)				
3) Trip Unit			100		1.19				12415			
4) Relay Logic					1000			(2)	Sec. Sec.			(4)

E-4

Switch shaft was corroded. RPS switch was replaced. (Calibration not performed prior to RTT) (1)

(2) 1C51-K1 RPS relay response time was slightly longer. (This RPS trip function was not selected for RTT elimination)

(3) Transmitter loss of cell fill oil. (See detailed discussion in Appendix F)

(4) Time delay relay. (Calibration not performed plior to RTT)

NEDO-32291

DRAFT

APPENDIX F EPRI PRESSURE TRANSMITTER/SWITCHES RESPONSE TIME ANALISIS

APPENDIX F EFRI FRESSURE TRANSMITTER/SWITCHES RESPONSE TIME ANALYSIS

EPRI analyses (Reference F-1 and F-6) of pressure transmitters and switches were utilized by the BWROG in establishing the bases for eliminating response time testing of pressure transmitters and switches. The EPRI analyses scope included the majority of pressure sensor instrumentation currently installed or expected to be installed in U.S. plants. The pressure sensors which are applicable to the BWR plants participating in this BWROG study are the Barton, Rosemount. and SOR transmitters/switches.

The BWROG reviewed and provided comments on the draft EPRI analysis (Reference F-1) report prior to issuance. Most of the comments were related to inquiries as to whether specific failure modes that could potentially affect response times had been addressed in the analysis. EPRI assured the BWROG that these identified failure modes had been considered in the analysis and that the associated response time failure effects would be detected by means other than RTTs.

The EPRI report (Reference F-1) summarized the slow loss of fill-oil failure mode which has been experienced at plants using Rosemount transmitters. Rosemount has developed guidelines (Reference F-2) that address relationships between oil loss, zero and span drift, and response time degradation to assist in detecting slow oil loss. In addition, Rosemount has provided acceptance accuracy criteria for oil loss diagnostics. An EPRI analysis (Reference F-1) has concluded that current response time tests are ineffective in detecting response time failures due to slow oil loss but that other methods are available to detect the resulting change in instrument performance. EPRI has continued to develop and interpret FMEA analyses as part of its Enstrument Calibration Monitoring Program (ICMP; Reference F-6).

EPRI report analyses (References F-1 and F-6) have identified only two failure modes and two manufacturing/ handling defects with the potential toaffect response time without concurrently affecting sensor output. These failure modes and defects only apply to sensors utilizing a fill fluid to transfer the process pressure to the sensing element. Rosemount transmitters are the only sensors of this type identified for plants participating in this BWROG study. The two failure modes are the slow loss of fill fluid leak during pressurized operat. ons and variable damping potentiometer misadjustment during maintenance or calibration. The two manufacturing and handling defects are low sensor fill fluid from the manufacturing process and crimped capillaries from the manu acturing process, improper handling by the

manufacturer, or damage during field installation/maintenance. Sensitivity of fill oil viscosity due to temperature and radiation effects is addressed inherently in the design of the pressure transmitters (Reference F-6). Where credible, failure modes involving mechanical interaction of piece-parts have been considered (References F-1 and F-6).

The following is a discussion of the EPRI identified response timerelated failure modes and effects.

F.1 SLOW LOSS OF FILL FLUID

For transmitters designed to sense fill fluid pressure, a slow loss of fill fluid will result in a gradual degradation of the measurement process by reducing the ability of the working fluid to rapidly transmit pressure changes to the sensing diaphragm. With applied static line pressure, a pressure differential will exist between the sensing cell and cell holder, or across the sensing cell. This pressure differential will induce a slow migration of the fill fluid from the sensing cell through the leak path. The loss of fill fluid from the isolation diaphraga region reduces the volume between the affected isolation diaphragm and the sensing element. The decrease in volume is accommodated by movements of both the affected isolation diaphragm and the sensing element, the amount depending on the relative stiffness of the central sensing diaphragm. This movement of the sensing element and associated changes in the hydraulic resistance induces a static calibration drift in both the zero setting and span of the transmitter. During the latter stages of slow loss of fill fluid, response time will degrade cos to the reduction in clearances for fill fluid motion from behind the isolation diaphragm to the sensing element location. The only confirmed response time degradation due to loss of fill fluid has involved Rosemount transmitters.

Current response time tests are ineffective in detecting the initial stages of slow fluid loss. Industry has developed techniques for detecting transmitter degradation due to slow oil loss between calibrations using drift trending analysis. When enough (Reference F-2) fluid is lost to cause a significant response time degradation, the sluggish response of the leaking sensor can be detected during the scheduled transmitter calibration. The elimination of response time tests will thus not affect the ability to detect response time degradation or response time failures beyond design requirements.

DRAFT

F.2 VARIABLE DAMPING POTENTIOMETER MISADJUSTMENT

Damping devices have been utilized in fast acting trip circuits to minimize the potential for inadvertent actuations (Table F-1). The potential application of sensors in BWR plants include fast acting circuits in the RPS level trips (Level 3 or 8 trips) and high reactor dome pressure. The use of a variable damping potentiometer in the transmitter design provides a means of applying the same type transmitter to several circuits that require additional electronic filtering capability. Variable damping potentiometer misadjustment can affect the response time. Potentiometer misadjustment can only occur during initial installation or major maintenance. Degradation of the wiper contact resistance in a potentiometer used to control electronic damping is a failure mode that can occur anytime. However, degradation of the trimmer resistor/potentiometer for Rosemount differential and pressure transmitters causes the response time to be faster (Reference F-3).

Measures must be taken to ensure the potentiometer is at the required setting at time of installation and after major maintenance. This approach should eliminate the need for RTT to detect a variable damping failure mode.

F.3 MANUFACTURING AND HANDLING DEFECTS

Potential manufacturing problems are (1) low sensor fill fluid and (2) crimped capillaries.

Low fill fluid is a different failure mode than loss of fill fluid since the sensor characteristics remain the same over time. Low fill fluid does not automatically create a response time concern and only applies to a very narrow range of low fill conditions. If the quantity of fill fluid is such that its motion is not restricted by clearances under the isolation diaphrigm(s), there is no response time degradation. Conversely, if the fill is so low that the isolation diaphragm comes in contact with its internal supports, the transmitter should become extremely sluggish (many minutes) and fail calibration tests due to obvious lack of sensor response. The low fill condition between these extremes is a response time concern. Hydralic response verification should be performed prior to installation of a new sensor to determine an initial set.or-specific reponse time value. Since November 1989, Rosemount has been performing hydraulic RTT to assure acceptable fill.

Crimped capillaries due to manufacturing defects or mishandling can also affect response time if the motion of the fill fluid is significantly

restricted. Response time is the only sensor characteristic affected by this manufacturing and handling defect. Hydraulic response verification at installation and after maintenance of the transmitter ensures that the sensor is operating properly. No additional response time tests are required.

F.4 REFERENCES

- F-1. EPRI Report, NP-7243, "Investigation of Response Time Testing Requirements", May 1991.
- F-2. Rosemount Technical Bulletins 1-4.
- F-3. Rosemount Report D9100019, Failure Modes and Effects Analyses N0037 Damping Option Potentiometer.
- F-4. Loss of Fill-Oil in Transmitters Manufactured by Rosemount, NRC Bulletin No. 90-01, March 9, 1990.
- F-5. Loss of Fill-Oil in Transmitters Manufactured by Rosemount, NRC Bulletin No. 90-01, Supplement 1, Lecember 22, 1992
- F-6. EFRI Report, TR-103436, "Instrument Calibration Monitoring Program (ICMP)", Volume 1 - "ICMP: Basis for Methodology", Volume 2 - "ICMP: Failure Modes and Effects Analysis", In Publication
Table F-1

URAFI APPLICATION OF THE TYPES OF DAMPING FILTERS BY THE PARTICIPATING BWRS Type of Camping River by System Brunewick Clinton Fermi-2 WHE 2 Grand Gulf Hatch Hope Creek LeSalle Limerick Perry Bend Susqueharme RPS Fixed × X × X Variable × × × × X X Heither × × × X Isolation Fixed X X × X x x Veriable X X X X × X Neither X X+ ECCS. Fixed X X × X Variable X X × × × X Neither × × x X

* MSL Hi Flow and MSL Low Pressure have instrument line hydraulic dampeners (mesh) installed.

F-5/F-6

APPENDIX G PLANT-SPECIFIC RTT VERIFICATION REPORTS

APPENDIX G PLANT-SPECIFIC RTT VERIFICATION REPORTS

This Appendix provides the plant-specific verifications for the individual participating plants. The lead plants, namely Fermi-2 and River Bend, serve as the basis for this comparison and verification. Any response time components that are not covered by the lead plant analyses are treated and dispositioned separately in this Appendix. The PPS and radiation components typically fall into this category. For unique components that were not covered by the lead plants, supplemental analysis was performed.

The plant-specific verification also shows if a response time component requirement for RTT can be eliminated. The last column denotes additional comments associated with the exemption.

The participating plants other than the lead plants were the source for their respective component identification and verification.

Notes for Appendix G plant-specific verification tables:

- (1) These RTT components are primarily found in RPS loops.
- (2) These RTT components are primarily found in Radiation loops.
- (3) Covered by RTT failure mode analysis (RTTA) of the specified component (non-lead plant components).
- (4) Covered by comprehensive lead plant analyses (Fermi-2 and River Bend).
- (5) Components that do not have Technical Specification RTT requirements (such as solid-state RTT components with self-test features) are listed as Exempt.

- (6) May require other techniques such as drift analysis.
- (7) Time delay relays require response verification through calibration.

BRUNSWICK PLANT SPECIFIC VERIFICATION AND RTT COMPONENT REPORT

NAME OF RTT COMPONENT	TYPE OF <u>Component</u> <u>C</u>	UNIQUE RPS OMPONENT(1)	UNIQUE RADIATION COMPONENT(2)	COVERED BY LEAD PLANT(4) OR RTTA(3)	REQUIREMENT FOR RTT ELIMINATED(5)	REFERENCE SECTION
Rosemount 1151, 1153	Transmitte	r no	no	Lead Plant	yas(6)	5.3.6 Appendix F
Rosemount 510DU, 710DU	Trip Unit	no	no	Lead Plant	yes	5.3.1.1
GE Trip Unit	Trip Unit	no	no	RTTA	yes	5.3.1.2
GE HFA, HMA, HGA	Relay	no	no	Lead Plant	yes	5.3.2
GE CR120A	Relay	no	no	Lead Plant	yes	5.3.2

G-3

CLINTON PLANT SPECIFIC VERIFICATION AND RTT COMPONENT REPORT

NAME OF RTT COMPONENT	TYPE OF COMPONENT CO	UNIQUE RPS OMPONENT(1)	UNIQUE RADIATION COMPONENT(2)	COVERED BY LEAD PLANT(4) OR RTTA(3)	REQUIREMENT FOR RTT ELIMINATED(5)	REFERENCE SECTION
Rosemount 1152, 1153, 1154	Transmitte	r no	no	Lead Plant	yes(6)	5.3.6 Appendix F
GE 147D8505G004	Trip Unit	no	no	RTTA	yes	5.3.1.2
RPS-1 GE147D8463G1	Logic Card	no	no	no	Exempt	NA
RPS-2 GE147D8464G1	Logic Card	no	no	no	Exempt	NA
RPS-5 GR147D8467G1	Logic Card	yes	no	no	Exempt	NA
RPS-6 GE147D8829G1	Logic Card	yes	no	no	Exempt	NA
RPS-3 GE147D8124G1	Logic Card	yes	no	no	Exempt	NA
RPS-4 GE147D8122G1	Logic Card	yes	no	no	Exempt	NA
NS4-1 GE147D8470G1	Logic Card	no	no	no	Exempt	NA
NS4-2 GE147D8471G1	Logic Card	no	no	no	Exempt	NA
NS4-3 GE228B1814G3	Logic Card	no	no	no	Exempt	NA
RHR-4 GE147D8490G1	Logic Card	no	no	no	Exempt	NA
RHR-5 GE147D8491G1	Logic Card	no	no	no	Exempt	NA
RNR-6 GE147D8492G1	Logic Card	no	no	no	Exempt	NA
HPCS-1 GE147D8500G1	Logic Card	no	no	no	Exempt	NÁ
HFCS-2 GE147D8501G1	Logic Card	no	no	no	Exempt	NA

C

Table G-2 (Cont d.)

CLINTON PLANT SPECIFIC VERIFICATION AND RTT COMPONENT REPORT

NAME OF RIT COMPONENT	TYPE OF COMPONENT C	UNIQUE RPS OMPONENT(1)	UNIQUE RADIATION COMPONENT(2)	COVERED BY LEAD PLANT(4) OR RTTA(3)	REQUIREMENT FOR RTT ELIMINATED(5)	REFERENCE SECTION
Flow Card GE204B7209G3	Logic Card	no	no	no	Exempt	NA
LPCS-1 GE147D8484G1	Logic Card	no	no	no	Exempt	NA
LPCS-2 GE147D8485G1	Logic Card	no	no	no	Exempt	NA
Trip Reference GE204B7667	Logic Card	no	no	no	Exempt	NA
Quad & Th Trip GE204B7672	Logic Card	уев	no	no	Exempt	NA
Scram/Rod Blk GE204B7602G	1 Logic Card	yes	no	no	Exempt	NA
2/4 Logic GE147D8503G1	Logic Card	no	no	no	Exempt	NA
AC Load Driver (ALCD) GE147D8455G2	Logic Card	уез	no	no	Exempt	NA
DC Load Driver (DCLD) GE147D8455G2	Logic Card	yes	no	no	Exempt	NA
Hi Vitg Lvl Input Signal Conditioner GE147D8461	Logic Card	no	no	no	Exempt	NA
Hi Current Optical Isolator GE133D9947G4	HCOI	yes	RO	no	Exempt	NA
APRM Card	Flux Monito	or yes	no	no	Exempt	NA

G-5

NAME OF RTT COMPONENT	TYPE OF COMPONENT	UNIQUE RPS COMPONENT(1)	UNIQUE RADIATION COMPONENT(2)	COVERED BY LEAD PLANT(4) OR RTTA(3)	REQUIREMENT FOR	REFERENCE SECTION
Rosemount 1151, 1153	Transmitte	er no	no	Lead Plant	yes(6)	5.3.6 ppendix F
Rosemount 510DU, 710DU	Trip Unit	no	no	Lead Plant	уев	5.3.1.1
Agastat GP	Relay	no	no	Lead Plant	yes	5.3.2
GE HFA, HMA, HGA	Relay	no	no	Lead Plant	yes	5.3.2
GE CR120A	Relay	no	no	Lead Plant	yes	5.3.2
Agastat TR Timer	Relay	no	no	Lead Plant	yes(7)	5.3.3
GE CR2820 (time delay)	Relay	no	no	Lead Plant	yes(7)	5.3.3
GE CR105 - RPS Scram Cont	r Relay	yes	no	Lead Plant	no	4.3
NUMAC (D11-K603A-D) (GE304X5700G005)	RAD Devic	e no	yes	Les,' Plant	yes	5.3.5.2
Gamma Ion Chamber (GE237X731G001)	RAD Devic	e no	уев	Lead Plant	Exempt	NA
Sensor/Converter (GE194X927G011)	RAD Devic	e no	yes	Lead Plant	Exempt	NA
Indicator & Trip Unit (GL129B2802G011)	RAD Devic	e no	yes	Lead Plant	yes	5.3.1.3
Trip Anxiliary Unit	RAD Devic	e no	yes	Load Plant	yes	5.3.5.1

6 å

Table G-3 (Cont'd.)

NAME OF RTT COMPONENT	COMPONENT	COMPONENT(1)	COMPONENT(2)	N COVERED I PLANT(4) OF	BY LEAD R RTTA(3)	REQUIREMENT FOR RIT_ELIMINATED(5)	REFERENCE SECTION
Power Supply	RAD Devi	ce no	yes	Lead	Plant	yes	5.3.7.4
External HPCI Filter	Capacito	r no	80	Lead	Plant	VAR	5 3 7 1

Table G-4 ORANA GRAND GULF PLANT SPECIFIC VERIFICATION AND RTT COMPONENT REPORT

NAME OF RTT COMPONENT	TYPE OF C	UNIQUE RPS	UNIQUE RADIATION COMPONENT(2)	COVERED E PLANT(4) OF	RTTA(3)	REQUIREMENT FOR RTT ELIMINATED(5	REFERENCE) <u>SECTION</u>
Rosemount 1152, 1153	Transmitter	no	no	Lead	Plant	yes(6)	5.3.6
Rosemount 510DU	Trip Unit	no	no	Lead	Plant	yes	5.3.1.1
Potter & Brumfield MDR	Relay	no	no	Lead	Plant	yes	5.3.2
Agastat GP, EGPIC, EGPBC	Relay	no	no	Lead	Plant	yes	5.3.2
GE CR105 RPS Scram Contr	Relay	yes	no	Lead	Plant	no	4.3
Radiation Detector GE 194X927G011 GE 237X731G001	RAD Device	no	уез	Lead	Plant	Exempt	NA
Indicator & Trip Unit (GE129B2802G041)	RAD Device	no	yes	Lead	Plant	yes	5.3.1.3
NUHAC (GE304A3700G003)	RAD Device	no	yes	Lead	Plant	уев	5.3.5.2

G-8

DRAFT

WNP-2 PLANT SPECIFIC VERIFICATION AND RTT COMPONENT REPORT

	NAME OF RTT COMPONENT	TYPE OF COMPONENT	UNIQUE RPS COMPONENT(1)	UNIQUE RADIATION COMPONENT(2)	COVERED BY LEAD PLANT(4) OR RTTA(3)	REQUIREMENT FOR RTT ELIMINATED(5)	REFERENCE SECTION
	Rosemount 1153	Transmitte	er no	no	Lead Plant	yes(6)	5.3.6
	Barton 288A	Switch	no	no	RTTA	A yes	5.3.6.1
	SOR Series	Switch	no	no	RTTA	yes	5.3.6.1
	Barksdale Series	Switch	no	no	RTTA	yes	5.3.6.2.1
	Bailey 745 Lk Det Flow	Switch	no	no	RTTA	yes	5.3.7.2
G- 9	Agastat EGPI	Relay	no	no	Lead Plant	yes	5.3.2
~	GE HFA. HHA	Relay	no	no	Lead Plant	yes	5.3.2
	ASEA RXMH2	Relay	no	no	RTTA	yes	5.3.2
	Agestat ETR14 Timer	Relay	no	no	Lead Plant	yes(7)	5.3.3
	Eagle Signal 45s Tm Delay	y Relay	no	no	Lead Plant	yes(7)	5.3.3
	GE CR305 RPS Scram Contr	Relay	yes	no	Lead Plant	no	4.3
	Bailey 750 Sq Rt Exctr	Sq Rt Exc	tr no	no	Lead Plant	yes	5.3.4.2
	Bailay 752 Flow Summer	Flow Summe	er no	no	Lead Plant	уев	5.3.4.1

NAME OF RTT COMPONENT	TYPE OF UN COMPONENT COM	NIQUE RPS APONENT(1)	UNIQUE RADIATION COMPONENT(2)	COVERED B PLANT(4) OR	RTTA(3)	REQUIREMENT FOR RTT ELIMINATED(5	REFERENCE) SECTION
Rosemount 1153	Transmitter	no	no	Lead	Plant	yes(6)	5.3.6
Rosemount 510DU	Trip Unit	no	no	Lead	Plant	yes	5.3.1.1
Agastat GP	Relay	no	no	Lead	Plant	yes	5.3.2
GE HFA, HNA	Relay	no	no	Lead	Plant	yes	5.3.2
GE CR120A	Relay	no	no	Lead	Plant	yes	5.3.2
Potter & Brumfield	Relay	no	no	Lead	Plant	yes	5.3.2
Agastat TR Timer	Relay	no	no	Lead	Plant	yes(7)	5.3.3
Signal Nicroprocessor 1SPRY-4857A RM-80	Logic Card	yes	no	Lead	Plant	no .	NA
Optical Isolators GE20486186AAG004 GE20486188AAG002	Optical Isolator	no	no	Lead	Plant	yes	5.3.7.5
NUMAC GE304A3700G011	RAD Device	no	yes	Lead	Plant	yes	5.3.5.2

G-10

DRAFT

HATCH PLANT SPECIFIC VERIFICATION AND RTT COMPONENT REPORT

Table G-7

	NAME OF RTT COMPONENT	TYPE OF UN COMPONENT COM	IQUE RPS IPONENT(1)	UNIQUE RADIATION COMPONENT(2)	COVERED BY LEAD PLANT(4) OR RTTA(3)	REQUIREMENT FOR RTT ELIMINATED(5	REFERENCE SECTION
	Rosemount 1153, 1154	Transmitter	no	no	Lead Plant	yes(6)	5.3.6
	Barton 763, 764	Transmitter	no	no	RTTA	yes	5.3.6.1
	Barksdale B2T	Switch	no	no	RTTA	yes	5.3.6.2.1
	Barksdale TC9622-3	Switch	no	no	RTTA	yes	5.3.6.2.1
	Magnetrol R752B30C0	Switch	no	no	RTTA	Exempt	NA
G-11	ATTS G104, G112, G110 G114, G105, G101, G105 G505, G201, G401, G501	Trip Unit	no	no	RTTA	yes	5.3.1.2
	Potter & Brumfield MDR	Relay	no	no	Lead Plant	yes	5.3.2
	Potter & Brumfield KH4690	Relay	no	yes	RTTA	yes	5.3.2
	Agastat EGP	Relay	no	no	Lead Plant	yes	5.3.2
	GE HFA	Relay	no	no	Lead Plant	yes	5.3.2
	GE CR2820 (Time Delay)	Relay	no	no	Lead Plant	yes(7)	5.3.3
	GE CR305 RPS Scram Contr	Relay	yes	no	Lead Plant	no	4.3
	APRM 20518605	Flux Monitor	yes	no	Lead Plant	no	4.3

Table G-7 (Cont.)

HATCH PLANT SPECIFIC VERIFICATION AND RTT COMPONENT REPORT

NAME OF RTT COMPONENT	TYPE OF COMPONENT	UNIQUE RPS COMPONENT(1)	UNIQUE RADIATION COMPONENT(2)	COVERED BY LEAD <u>PLANT(4) OR RTTA(3)</u>	REQUIREMENT FOR RTT ELIMINATED(5)	SECTION
NUMAC (D11-K603) (GE304A3700G001)	RAD Devi	ce no	yes	Load Plant	yes	5.3.5.2
Indicator & Trip Unit (GE129B2802G041)	RAD Devi	ce no	yes	Lead Plant	yes	5.3.1.3
RWCU Alarm Unit GE560	Alerm Un	it no	no	RTTA	yes	5.3.7.3

LeSalle PLANT SPECIFIC VERIFICATION AND RTT COMPONENT REPORT

	NAME OF RTT COMPONENT	TYPE OF <u>Component</u> <u>C</u>	UNIQUE RPS OMPONENT(1)	UNIQUE RADIATION COMPONENT(2)	COVERED BY LEAD PLANT(4) OR RTTA(3)	REQUIREMENT FOR RTT ELIMINATED(5	REFERENCE SECTION
	Rosemount 1153, 1154	Transmitte	r no	no	Lead Plant	yes(6)	5.3.6
	Rosemount 710DU	Trip Unit	no	no	Lead Plant	yes	5.3.1.1
	SOR-9N6 TT Oil Press	Switch	no	no	RTTA	yes	5.3.6
	SOR-102-AS MSL Flow	Switch	no	no	RTTA	yes	5.3.6
	SOR-103-AS RCIC Flow	Switch	no	no	RTTA	yes	5.3.6
G	Bailey 745 RWCU D-Flow	Switch	no	no	RTTA	yes	5.3.7.2
-13	GE HFA, HNA	Relay	no	no	Lead Plant	yes	5.3.2
	Agastat GPI, EGPB, GPIR	Relay	no	no	Lead Plant	yes	5.3.2
	Agastat ETR Timer	Relay	no	no	Lead Plant	yes(7)	5.3.3
	GE CR105 RPS Scram Contr	Relay	yes	no	Lead Plant	no	4.3
	APRM	Flux Monit	or yes	no	Lead Plant	no	4.3
	NUMAC (D11-K603A-D) (GE304X3700)	RAD Device	no	yes	Lead Plant	yes	5.3.5.2
	Indicator & Trip Unit (GE129B2802G011)	RAD Device	no	yes	Lead Plant	yes	5.3.1.3

LIMERICK PLANT SPECIFIC VERIFICATION AND RTT COMPONENT REPORT

	NAME OF RTT COMPONENT C	TYPE OF UN OMPONENT CON	NIQUE RPS MPONENT(1)	UNIQUE RADIATION COMPONENT(2)	COVERED BY LEAD PLANT(4) OR RTTA(3)	REQUIREMENT FOR RTT ELIMINATED(5)	REFERENCE SECTION
	Rosemount 1151, 1153	Transmitter	no	no	Lesd Plant	yes(6)	5.3.6 Appendix F
	Rosemount 510DU	Trip Unit	no	no	Lead Plant	yes	5.3.1.*
	Barksdale TC9622-3	Switch	no	no	RTTA	yes	5.3.6.2.1
	Potter & Brumfield MDR	Relay	no	no	Lead Plant	yes	5.3.2
	Agastat EGP	Relay	no	no	Lead Plant	yes	5.3.2
0	GE HFA, HMA, HCA	Relay	no	no	Lead Plant	yes	5.3.2
-14	CE SAT6004	Relay	yes	no	RTTA	yes	5.3.2
	Agastat TDFU (Time Delay)	Relay	no	no	Lead Plant	yes(7)	5.3.3
	Eagle Signal HP5(Tm Delay)	Relay	no	no	Lead Plant	yes(7)	5.3.3
	GE CR105, CR305 RPS Scram Contactors	Relay	yes	no	Lead Plant	no	4.3
	APRN Card	Flux Monitor	r yes	no	RTTA	no	4.3
	Bailey Summer-752	Summer	no	no	Lead Plant	yes	5.3.4.1
	Bailey Square Root-750	SQR RT devie	ce no	no	Lead Plant	yes	5.3.4.2
	Bailey 745 Diff Flow	Timer	no	no	Lead Plant	yes	5.3.7.2
	NUMAC (D11-K603A-D)	RAD Device	no	yes	Lead Plant	yes	5.3.5.2

PERRY PLANT SPECIFIC VERIFICATION AND RTT COMPONENT REPORT

	NAME OF RTT COMPONENT	TYPE OF COMPONENT	UNIQUE RPS COMPONENT(1)	UNIQUE RADIATION COMPONENT(2)	COVERED BY LEAD PLANT(4) OR RTTA(3)	REQUIREMENT FOR RTT_ELIMINATED(5	REFERENCE) <u>SECTION</u>
	Rosemount 1153	Transmitte	er no	no	Lead Plant	yes(6)	5.3.6
	Rosemount 510DU, 710DU	Trip Unit	no	no	Lead Plant	yes	5.3.1.1
	Barksdale TC9622-3	Switch	no	no	RTTA	yes	5.3.6.2.1
	Potter & Brumfield MDR	Relay	no	no	Lead Plant	yes	5.3.2
	Agastat EGPB, EGPI	Relay	no	no	Lead Plant	yes	5.3.2
G	GE CR205 RPS Scram Contr	Relay	yes	no	Lead Plant	no	4.3
-15	APRN GEK-75605	Flux Monit	tor yes	no	Lead Plant	no	4.3
	Indicator & Trip Unit (GE129B2802G041)	RAD Device	a no	yes	Lead Plant	yes	5.3.1.3
	Log Rad Monitor (CR238X660C013)	RAD Device	no no	yes	RTTA	no	5.3.5.3

Table G-11 RIVER BEND PLANT SPECIFIC VERIFICATION AND RTT COMPONENT REPORT

NAME OF RTT COMPONENT	TYPE OF UN	IQUE RPS PONENT(1)	UNIQUE RADIATION COMPONENT(2)	N COVERED D PLANT(4) OF	BY LEAD R RTTA(3)	REQUIREMENT FOR RTT ELIMINATED(5)	REFERENCE SECTION
Rosemount 1152, 1153,	Transmitter	но	no	Lead	Plant	yes(6)	5.3.6
Rosemount 510DU, 710DU	Trip Unit	no	no	Lead	Plant	yes	5.3.1.1
Agestat GP	Relay	no	no	Lead	Plant	yes	5.3.2
GE HFA	Relay	no	no	Lead	Plant	yes	5.3.2
Potter & Brumfield MDR	Relay	no	no	Lead	Plant	yes	5.3.2
Agastat TR Timer	Relay	no	no	Lead	Plant	yes(7)	5.3.3
Agastat TDPU (Time Delay)	Relay	no	no	Lead	Plant	yes(7)	5.3.3
Eagle Signal HP5 (Tm Delay	y) lelay	no	no	Lead	Plant	yes(7)	5.3.3
GE CR105, CR205 - PPS Scram Contactors	Relay	yes	no	Lead	Plant	no	4.3
Bailey 750 Sq Rt Exctr	Sq Rt EXCTR	no	no	Lead	Plant	yes	5.3.4.2
Bailey 752 Summer	Summer	no	no	Lead	Plant	yes	5.3.4.1
Bailey 745 D-Flow	Timer	no	no	Lead	Plant	yes	5.3.7.2
NUMAC Log RAD Monitor (D17-N610A)	RAD Device	no	yes	Lead	Plant	yes	5.3.5.2
Gamma Ion Chamber (D17-N003A)	RAD Device	no	yes	Lead	Plant	Exempt	NA

G-16

SUSQUEHANA PLANT SPECIFIC VERIFICATION AND RTT COMPONENT REPORT

	NAME OF RTT COMPONENT	TYPE OF COMPONENT C	UNIQUE RPS COMPONENT(1)	UNIQUE RADIATION COMPONENT(2)	COVERED BY LEAD PLANT(4) OR RTTA(3)	REQUIREMENT FOR RTT ELIMINATED (5	REFERENCE
	Rosemount 1153	Transmitte	r no	no	Lead Plant	yes(6)	5.3.6 Appendix F
	Bailey 745	Trip Unit	no	no	RTTA	уез	5.3.1.1
	Barton 288A	Switch	no	no	RTTA	yes	5.3.6.1
	Barton 760	Transmitte	r no	no	RTTA	yes	5.3.6.2.2
	Barksdale TC9622-3	Switch	no	no	RTTA	yes	5.3.6.2.1
C-1	Barksdale BlT	Switch	no	no	RTTA	yes	5.3.6.2.1
-	SOR Series	Switch	no	no	RTTA	yes	5.3.6
	GE HFA, HNA, HGA	Relay	no	no	Lead Plant	yes	5.3.2
	Potter & Brumfield HDR	Relay	no	no	Lead Plant	yes	5.3.2
	Agastat EGPI, EGPDR	Relay	no	no	Lead Plant	yes	5.3.2
	Agestat TR Timer	Relay	no	no	Lead Plant	no	5.3.3
	Agastat 7000 (Time Delay)	Relay	no	no	Lead Plant	yes(7)	5.3.3
	GE CR205 RPS Scram Contr	Relay	yes	no	Lead Plant	no	4.3
	Bailey Summer-G33-K604	Summer	no	no	Lead Plant	yes	5.3.4.1

Table G-12 (Contd.)

SUSQUEHANA PLANT SPECIFIC VERIFICATION AND RTT COMPONENT REPORT

NAME OF RTT COMPONENT	type of <u>component</u>	UNIQUE RPS COMPONENT(1)	UNIQUE RADIATION COMPONENT(2)	COVERED BY LEAD PLANT(4) OR RTTA(3)	REQUIREMENT FOR RTT ELIMINATED(5)	SECTION
APRM Card	Flux Moni	tor yes	no	Lead Plant	no	4.3
Radiation Monitor R1SHH (GE238X660G007)	RAD Devic	e no	yes	RTTA	no	5.3.5.3
Indicator & Trip Unit (GE1298 92G011)	RAD Devic	e no	yes	Lead Plant	yes	5.3.5.2

G-18

APPENDIX H

PLANT-SPECIFIC TECHNICAL SPECIFICATION MARKUP TABLES

APPENDIX H

PLANT-SPECIFIC TECHNICAL SPECIFICATION MARKUP TABLES

The technical specifications for each of the plants participating in this BWR Owners' Group activity have been reviewed and marked up to indicate changes needed to implement the conclusions of this report. This appendix contains samples of the plant-specific technical specification markups deleting the response time testing (RTT) requirements justified by this report. Table H-1 of this appendix is an explanation of the symbols used in the markups. When plants submit proposed technical specification changes to the NRC (see Appendix I), the explanations in Table H-1 should be added as footnotes on the appropriate technical specification pages.

The technical specification markups contained in this appendix reflect one option available to licensees and may be modified by licensees as appropriate for their specific license change request. A licensee that in the future installs instruments that are addressed by this report, may apply the conclusions of this report to that equipment by making the appropriate technical specification changes. Another option available to licensees is to make the appropriate technical specification changes (i.e., eliminate response time testing requirements) prior to the equipment modification if a change in equipment is scheduled. In this case, the effective date (i.e., the date the equipment modification will be made) of the technical specification change should be specified in the technical specifications, or the technical specifications should state the: the response time testing requirements apply only to specified equipment and not to the equipment addressed by this report.

DRAFT

#

Table H-1

RTT TECHNICAL SPECIFICATION MARKUP NOTES

Sensor is eliminated from response time testing for the RPS circuits. Response time testing and conformance to the administrative limits for the remaining channel including trip unit and relay logic are required.

- ## Sensor is eliminated from response time testing for the MSIV actuation logic circuits. Response time testing and conformance to the administrative limits for the remaining channel including trip unit and relay logic are required.
- ### Response time testing is eliminated for the radiation loops based on the qualified Log Rad Monitors.
- 66 ECCS actuation instrumentation is eliminated from response time testing.
 - NOTE: Time delay relays in the RTT loops require response verification through calibration.

TABLE 3.3.1-2

REACTOR PROTECTION SYSTEM RESPONSE TIMES

FUNCTIONAL UNIT	RESPONSE TIME (Seconds)
 Intermediate Range Monitors a. Neutron Flux - High^(a) b. Inoperative 	NA NA
 Average Power Range Monitor^(a) Neutron Flux - High, 152 Flow-Biased Neutron Flux - High Neutron Flux - High, 1252 Inoperative Downscale LFRM 	< 0.09 NA < 0.09 NA NA NA
3. Reactor Vessel Steam Dome Pressure - High	≤ 0.55 #
4. Reactor Vessel Water Level - Low, Level 1	< 1.05 #
5. Main Steam Line Isolation Valve - Closure	< 0.06
6. Main Steam Line Radiation - Figh	MA
7. Drywell Pressure - High	NA
8. Scram Discharge Volume Water Level - High	MA
9. Turbine Stop Valve - Closure	< 0.06
10. Turbine Control Valve Fast Closure, Control Oil Pressure - Low	≤ 0.08
11. Reactor Mode Switch in Shutdown Position	MA
12. Manual Scram	MA

⁽a) ventron detectors are exempt from response time testing. Response time shall be measured from detector output or from the imput of the first electronic component in the channel.

TABLE 3.3.2-3

ISOLATION SYSTEM INSTRUMENTATION RESPONSE TIME

TRI	P FU	CTION	RESPONSE TIME (Seconds)(e)			
1.	PRIM	MARY CONTAINMENT IS LATION				
	а.	Reactor Vessel Water Level -	AL NA			
۰.		1. Low, Level 1	Et ald stat			
		2. Low, Level 2	Z1 0(d) 44 44			
		3. Low, Level 3	-1.0 · · · · · · · · ·			
	ь.	Dryvell Pressure - High	ET NA			
	с.	Main Steam Line				
		1. Radiation - High(b)	<1.0 ^(d)			
		2. Pressure - Low	ER NA			
		3. Flow - High	50.5(d) #-ar			
		4. Flow - High	O.Star Heter			
	d.	Main Steam Line Tunnel Temperature - High	≤13			
	۴.	Condenser Vacuum - Low	≤13			
	f.	Turbine Building Area Temperature - High	NA			
	g.	Main Stack Rediation - High ^(b)	< 1.0 ^(d)			
2.	SEC	ONDARY CONTAINMENT ISOLATION				
	۰.	Reactor Building Exhaust Radiation - High(b)	Lit NA 林林祥			
	b.	Drywell Pressure - High	27 NA			
	с.	Reactor Vessel Water Level - Low, Level 2	<1.0 ^(d) ##			
3.	REA	CTOR WATER CLEANUP SYSTEM ISOLATION	-			
	٤.	∆ Flow - Eigh	EN NA			
	b.	Area Temperature - High	≤13			
	с.	Area Ventilation Temperature & T - High	≤13			
	d.	SLCS Initiation	NA			
	е.	Reactor Vessel Water Level - Low, Level 2	<1.0 ^(d) ##			

TABLE 3.3.2-3 (Continued)

ISOLATION SYSTEM INSTRUMENTATION RESPONSE TIME

TRI	P FU	NCTION	RESPONSE TIME (Seconds) (e)
٩.	COR	E STANDBY COOLING SYSTEMS ISOLATION	
	a.	High Pressure Coolant Injection System Isolation	
		1. HPCI Steam Line Flow - High	ZUS(a)(c)NA
		2. HPCI Steam Line High Flow Time Delay Relay	NA
		3. HPCI Steam Supply Pressure - Low	23 NA
		4. HPCI Steam Line Funnel Temperature - High	EN NA
		5. Bus Power Monitor	NA
		6. HPCI Turbine Exhaust Diaphragm Pressure - Hig	h NA
		7. HPCI Steam Line Ambient Temperature - High	NA
		8. HPCI Steam Line Area	NA
		9. Emergency Area Cooler Temperature - High	NA
	b.	Reactor Core Isolation Cooling System Isolation	
		1. RCIC Steam Line Flow - High	2 18(a)(c) NA
		2. RCIC Steam Line High Flow - Time Delay Relay	MA
		3. RCIC Steam Supply Pressure - Low	NA
		4. RCIC Steam Line Tunnel Temp - High	NA
		5. Bus Power Monitor	NA
		6. RCIC Turbine Exhaust Disphram Pressure - High	NA
		7. BCIC Steam Line Ambient Temperature - High	NA
		8. RCIC Steam Line Area & Temp - High	NA
		9. Emergerry Area Cooler Temperature - High .	NA
		10. RCIC Equipment Room & Temp - High	MA

TABLE 3.3.3-3

EMERCENCY CORE COOLING SYSTEM RESPONSE TIMES

ECCS		RESPONSE	TIN	Æ	(Seco	nds)
1.	CORE SPRAY SYSTEM		<	27	be	6
2.	LPCI MODE of RHE SYSTEM		<	40	b	8
3.	HIGH PRESSURE COOLANT INJECTION SYSTEM		<	30	&	&
4.	AUTOMATIC DEPRESSURIZATION SYSTEM		W.	•		
5.	LOSS OF POWER		84			

TABLE 3. 3. 1-2

REACTOR PROTECTION SYSTEM RESPONSE TIMES

FUN	CTIONAL UNIT	RESPONSE TIME (Seconds)				
1.	Intermediate Range Monitors: a. Heutron Flux - High b. Inoperative	NA NA	AF			
2.	Average Power Range Honitor [*] : a. Neutron Flux - High, Setdown b. Flow Biased Simulated Thermal Power - High c. Neutron Flux - High d. Inoperative	NA < 0.09** < 0.09 RA	~			
0000000	Reactor Vessel Steam Dome Pressure - High Reactor Vessel Water Level - Low, Level 3 Reactor Vessel Water Level - High, Level 8 Main Steam Line Isolation Valve - Closure Main Steam Line Radiation - High Drywell Pressure - High Scram Discharge Volume Water Level - High	< 0.33 < 1.03 < 1.03 < 0.04 NA NA				
	a. Level Transmitter b. Float Switches	NA NA				
10. 11. 12. 13.	Turbine Stop Valve - Closure Turbine Control Valve Fast Closure, Valve Trip System Oil Pressure - Low Reactor Mode Switch Shutdown Position Manual Scram	< 0.04 < 0.05 NA NA				

*Neutron detectors are exempt from response time testing. Response time shall be measured from the detector output or from the input of the first electronic component in the channel.

**Not including a simulated thermal power time constant of 6 t 0.6 seconds.

X-Measured from start of turbine control valve fast closure.

NEDO-32291

B-7

3/4 3-7

CLINTON - UNIT 1

.

DRAFT

TABLE 3.3.2-3

CRVICS INSTRUMENTATION RESPONSE TIME

TRIP FUNCTION

2

3

RESPONSE TIME (Seconds)

2		
S	Reactor Vessel Water Level - Low Low, Level 2	NA
D.	Reactor Vessel Water Level - Low Low, Level 2	
	(ECCS Div. 1 and 11)	NA
c.	Reactor Vessel Water Level - Low Low, Level 2	
1.1	(ECCS DIV. III)	PEA NA
a.	Urywell Pressure - High	PLPS ALA
e.	Urywell Pressure - Migh (ELLS DIV. I and II)	NA
τ.	Urywell Pressure - High (LCLS UIV. 111)	nn
~	Lontainment Building Puel Transfer Pool	
	Ventilation Mienum Kadiation - High	PLA ALA
n.	Containment Building Exhaust Radiation - High	RA
1.	Containment Building Continuous Containment	MA
9	Purge (CCP) Exhaust Kadiation - High	PLA ALA
3.	Reactor Vessel Water Level-Low Low Low, Level 1	NA
K. 1	containment Pressure - High	15/5 04.6
1.	Main Steam Line Kadiation - righ	NA NA
m .	Fuel Building Exhaust Kadiation - High	1109
MAI	N STEAM LINE ISOLATION	
а.	Reactor Vessel Water Level - Low Low Low,	< 1.0* 4
h.	Main Steam Line Radiation - High	TIA
œ.,	samesti manufatter the same and as a same see a feat	MA
e.	Main Steam Line Pressure - Low	< 1.0* \$
c.	Main Steam Line Pressure ~ Low Main Steam Line Flow - High	< 1.0* ¥
c. d.	Main Steam Line Pressure - Low Main Steam Line Flow - High Condenser Vacuum - Low	< 1.0* ¥ < 0.5* #
c. d. e.	Main Steam Line Pressure - Low Main Steam Line Flow - High Condenser Vacuum - Low Main Steam Line Tunnel Temp High	< 1.0* ¥ < 0.5* ¢ NA NA
c. d. e. f.	Main Steam Line Pressure - Low Main Steam Line Flow - High Condenser Vacuum - Low Main Steam Line Tunnel Temp High Main Steam Line Tunnel & Temp High	
c. d. e. f. g.	Main Steam Line Pressure - Low Main Steam Line Flow - High Condenser Vacuum - Low Main Steam Line Tunnel Temp High Main Steam Line Tunnel & Temp High Main Steam Line Turbine Bldg. Temp High	<pre>< 1.0* ₩ < 0.5* ₩ NA NA NA NA NA</pre>
c. d. e. f. g. h. i.	Main Steam Line Pressure - Low Main Steam Line Flow - High Condenser Vacuum - Low Main Steam Line Tunnel Temp High Main Steam Line Tunnel Δ Temp High Main Steam Line Turbine Bldg. Temp High Manual Initiation	べ 1.0* 朝 く 0.5* 前 NA NA NA NA NA NA
c. d. e. f. g. h. i. REA	Main Steam Line Pressure - Low Main Steam Line Flow - High Condenser Vacuum - Low Main Steam Line Tunnel Temp High Main Steam Line Tunnel & Temp High Main Steam Line Turbine Bldg. Temp High Manual Initiation CTOR WATER CLEANUP SYSTEM ISOLATION	<pre></pre>
c. d. e. f. g. h. i. REA	Main Steam Line Pressure - Low Main Steam Line Flow - High Condenser Vacuum - Low Main Steam Line Tunnel Temp High Main Steam Line Tunnel & Temp High Main Steam Line Turbine Bldg. Temp High Manual Initiation CTOR WATER CLEANUP SYSTEM ISOLATION & Flow - High	NA < 1.0* ₩ < 0.5* ₩ NA NA NA NA NA NA
c. d. e. f. g. h. i. REA	Main Steam Line Pressure - Low Main Steam Line Flow - High Condenser Vacuum - Low Main Steam Line Tunnel Temp High Main Steam Line Tunnel & Temp High Main Steam Line Turbine Bldg. Temp High Manual Initiation CTOR WATER CLEANUP SYSTEM ISOLATION & Flow - High & Flow Timer	ка < 1.0* ¥ < 0.5* ф NA NA NA NA NA NA
c. d. e. f. g. h. i. REA a. b. c.	Main Steam Line Pressure - Low Main Steam Line Flow - High Condenser Vacuum - Low Main Steam Line Tunnel Temp High Main Steam Line Tunnel & Temp High Main Steam Line Turbine Bldg. Temp High Manual Initiation <u>CTOR WATER CLEANUP SYSTEM ISOLATION</u> & Flow - High & Flow Timer Equipment Area Temp High	KA ≤ 1.0* ¥ × 0.5* ★ NA NA NA NA NA NA NA NA NA NA
c. d. e. f. g. h. i. REA a. b. c. d.	Main Steam Line Pressure - Low Main Steam Line Flow - High Condenser Vacuum - Low Main Steam Line Tunnel Temp High Main Steam Line Tunnel & Temp High Main Steam Line Turbine Bldg. Temp High Manual Initiation <u>CTOR WATER CLEANUP SYSTEM ISOLATION</u> & Flow - High & Flow Timer Equipment Area Temp High Equipment Area & Temp High	NA < 1.0* ₩ < 0.5* ₩ NA NA NA NA NA NA NA NA NA NA
c. e. f. g. h. i. REA a. b. c. e.	Main Steam Line Pressure - Low Main Steam Line Flow - High Condenser Vacuum - Low Main Steam Line Tunnel Temp High Main Steam Line Tunnel Δ Temp High Main Steam Line Turbine Bldg. Temp High Manual Initiation <u>CTOR WATER CLEANUP SYSTEM ISOLATION</u> Δ Flow - High Δ Flow Timer Equipment Area Temp High Equipment Area Δ Temp High Reactor Vessel Water Level - Low Low. Level 2	КА < 1.0* ¥ < 0.5* ф NA NA NA NA NA NA NA NA NA NA
c. d. e. f. g. h. i. REA a. b. c. d. e. f.	Main Steam Line Pressure - Low Main Steam Line Flow - High Condenser Vacuum - Low Main Steam Line Tunnel Temp High Main Steam Line Tunnel Δ Temp High Main Steam Line Turbine Bldg. Temp High Manual Initiation <u>CTOR WATER CLEANUP SYSTEM ISOLATION</u> Δ Flow - High Δ Flow Timer Equipment Area Temp High Reactor Vessel Water Level - Low Low, Level 2 Main Steam Line Tunnel Ambient	ка < 1.0* < 0.5* NA NA NA NA NA NA NA NA NA NA

TABLE 3.3.2-3 (Continued)

CRVICS INSTRUMENTATION RESPONSE TIME

TRIP FUNCTION

RESPONSE TIME (Seconds)

	Main Chang Line Tunnel & Topp - Wigh	
g.	CICC Teitistion	NA NA
11.	Actual Teitistice	AJA ALA
1.	Manual Initiation	RA
REA	CTOR CORE ISOLATION COOLING SYSTEM ISOLATION	
a.	RCIC Steam Line Flow - High -	NA
b.	RCIC Steam Line Flow High - Timer	NA
c.	RCIC Steam Supply Pressure - Low	NA
d.	RCIC Turbine Exhaust Diaphrage Pressure - High	NA
e.	RCIC Equipment Room Ambient Temp High	NA
f.	RCIC Equipment Room & Temp High	NA
g.	Main Steam Line Tunnel Ambient Temp High	NA
h.	Main Steam Line Tunnel & Temp High	NA
1.	Main Steam Line Tunnel Temp. Timer	NA
J.	Drywell Pressure - High	NA
k.	'Manual Initiation	HA
1.	RHR/RCIC Steam Line Flow - High	NA
m.	RHR Heat Exchanger Rooms A, B Ambient	
	Temp High	NA
n.	RHR Heat Exchanger Rooms A, B & Temp	
	High	NA
RHR	SYSTEM ISOLATION	
a.	RHR Heat Exchanger Rooms A, B Ambient Temp.	
1	- High	NA
b.	RHR Heat Exchanger Rooms A, B & Temp.	
	- High	NA
C.	Reactor Vessel Water Level - Low, Level 3	NA
d.	Reactor Vessel Water Level - Low Low Low,	
	Level 1	NA
e.	Reactor Vessel (RHR Cut-in Permissive)	
	Pressure - High	NA
1.	Drywell Pressure - High	HA
g.	Manual Initiation	NA

*CRVICS instrumentation response time for MSIVs only. No diesel generator delays assumed.

TABLE 3.3.3-3

EMERGENCY CORE COOLING SYSTEM RESPONSE TIMES

ECCS	RESPONSE	TIME (Seconds)
1. LOW PRESSURE CORE SPRAY SYSTEM	5	37 & k ,
2. LOW PRESSURE COOLANT INJECTION MODE OF RHR SYSTEM a. Loops A, B and C	5	37 & &,
3. AUTOMATIC DEPRESSURIZATION SYSTEM		NA
4. HIGH PRESSURE CORE SPRAY SYSTEM	≤	27 & &,
5. LOSS OF POWER		NA

TABLE 3.3.1-2

REACTOR PROTECTION SYSTEM RESPONSE TIMES

		REACTOR PROTECTION SYSTEM RESPONSE	E TIMES On
EUN	TIONAL UNIT		RESPONSE TIME
1.	Intermediate Range Monitors: a. Neutron Flux - High b. Inoperative		NA
2.	Average Power Range Monitor*: a. Neutron Flux - High, Setdown b. Flow Blased Simulated Therma c. Fixed Neutron Flux - High d. Inoperative	1 Power - High	NA 6 ± 1** < 0.09 NA
3. 4. 5. 7.	Reactor Vessel Steam Dome Pressure Reactor Vessel Low Water Level - I Main Steam Line Isolation Valve - Main Steam Line Radiation - High Drywell Pressure - High	e - High Level 3 Closure	< 0.55 # < 1.05 # < 0.06 NA NA
8.	Scram Discharge Volume Water Level a. Float Switch b. Level Transmitter	1 - High	NA NA
9. 10. 11. 12. 13.	Turbine Stop Valve - Closure Turbine Control Valve Fast Closure Reactor Mode Switch Shutdown Posit Manual Scram Deleted	e Lion	< 0.06 < 0.08*** Na NA

*Neutron detectors are exempt from response time testing. Response time shall be measured from the detector output or from the input of the first electronic component in the channel.

**Including simulated thermal power time constant.

***Measured from deenergization of K-37 relay which inputs the turbine control valve closure signal to the RPS.

FERMI . UNIT

NO

H-11

3/4 3-6

DRAFT

TAR: 5 9 9-9

		anna anti-				
		1501ATION ACTUATION SYSTEM INSTRUMENTATIC	ON RESPONSE TIME			
TRI	FUN	CTION	SPONSE TIME (Saconds) = ->X			
1.	PRIMARY CONTAINMENT ISOLATION					
	8.	Reactor Vessel Low Water Level 2) Level 2 2) Level 2 3) Level 2	A A STATISTICAL AND			
	۵.	Dryng 11 Prossure - High	gyster NA			
	ε.	Main Steam Line				
		1) Rediation - High(b) 2) Pressure - Low 3) Flow - High	A DE ANA			
	6.	Main Steam Line Tunnel Temperature - Migh	NA			
		Condenser Pressure - High	BLA			
	1.	Turbine Bldg. Ares Temperature - Wigh	NA			
	0.	Deleted				
	ħ.	Menual Initiation	NA			
2.	READ	REACTOR WATER CLEANUP SYSTEM ISOLATION				
	8.	& Flow - High	NA			
	b.	Nest Exchanger/Pump/Nigh Energy Piping Area Temperature - Migh	NA			
	٤.	Heat Exchanger/Pump/Phase Separator Area Ventilation Temperature AT - Nigh	NA			
	€.	SLCS Initiation	M			
		Reactor Vessel Low Water Level - Lavel 2	K254 NA			
	1.	Beletad				
	8.	Nanual Infilation	MA			
3.	REACTOR CORE ISOLATION COOLING SYSTEM ISOLATION					
	8.	RCIC Steam Line Flow - Nigh	2 and wh			
		RCIC Steep Supply Pressure . Low	228VA NA			
	8.	RCIC Turbine Exhaust Diaphrage Pressure .	Nigh NA			
	đ .	RCIC Equipment Room Temperature - Migh	BA			
	8.	Menual Initiation	MA			

FERMI - UNIT 2

Amendment No. 21, 41

TABLE 3.3.2-3 (Continued)

ISOLATION ACTUATION SYSTEM INSTRUMENTATION RESPONSE TIME

TRIP FUNCTION

d.

Magual Intelacton

RESPONSE TIME (Seconds >> >> >>

4. MIGH PRESSURE COOLANT INJECTION SYSTEM ISOLATION

8. 8. 8. 8.	MPCI Steam Flow - Nigh MPCI Steam Supply Pressure - Low MPCI Turbine Exhaust Diaphrage Pressure - Migh MPCI Equipment Room Temperature - Nigh Manuel Initiation	BA BA BA
RHR	SYSTEM SMUTDOWN COOLING RODE ISOLATION	
8.	Reactor Vessel Low Water Level - Lovel 3	NA
5.	Reactor Vessel (Shutdown Coeling Cut-in	MA
ε.	Menuel Initiation	RIA
SEC	ONDARY CONTRINMENT ISOLATION	
	Basetan Wassal In. Water Inval a Inval 9	males NA
6.	Druwell Pressure . Nich	Maler NA
ε.	Fuel Pool Ventilation Exhaust Registion - Migh	NA MILLE

(a) The isolation system instrumentation response time shall be measured and recorded as a part of the ISOLATION SYSTEM RESPONSE TIME. Isolation System instrumentation response time specified includes diesel generator starting and sequence leading delays.

(b) Rediction detectors are exampt from response time testing. Response time shall be measured from detector output or the imput of the first electronic component in the channel.

*Isolation system instrumentation response time for REIVs only. No discel generator delays assumed for REIVs.

except MSIVE.

X Fissistion system instrumentation response time specified for the Trip Function actuating each valve group shall be added to isolation time shown in Table 3.5.3-1 and 3.5.3.2-1 for valves in each valve group to obtain ISOLATION SYSTEM RESPONSE TIME for each valve.

FERMI - UNIT 2

Amendment No. 41

deletto

EMERGENCY CORE COOLING SYSTEM RESPONSE TINTE

TRIF	FUNC	TION	(Secords)		
1.	COR	E SPRAY SYSTEM			
	a. b. c. d.	Reactor Vessel Low Water Level - Level 1 Drywell Pressure - High Reactor Steam Dome Pressure - Low Manual Initiation	< 30 & & < 30 & & NA* NA		
2.	LOW	LOW PRESSURE COOLANT INJECTION MODE OF RHR SYSTEM			
	a. b. c. d.	Reactor Vessel Low Water Level - Level 1 Drywell Pressure - High Reactor Steam Dome Pressure - Low Reactor Vessel Low Water Level - Level 2	< 55 & & < 55 & & NA* NA		
	f. g.	Reactor Steam Dome Pressure - Low Riser Differential Pressure - High Recirculation Pump Differential Pressure -	na Na Na		
	h.	High Manual Initiation	NA		
3.	HIGH	PRESSURE COOLANT INJECTION SYSTEM			
	a. b. c. d. f.	Reactor Vessel Low Water Level - Level 2 Drywell Pressure - High Condensate Storage Tank Level - Low Reactor Vessel Water Level - High, Level 8 Suppression Pool Water Level - High Manual Initiation	< 30 & & NA NA NA NA NA NA		
4.	AUTOMATIC DEPRESSURIZATION SYSTEM				
	a. c. e. f. h.	Reactor Vessel Low Water Level - Level 1 Drywell Pressure - High ADS Timer Core Spray Pump Discharge Pressure - High RHR LPCI Mode Pump Discharge Pressure - High Reactor Vessel Low Water Level - Level 3 Manual Initiation Drywell Pressure - High Bypass Timer Manual Inhibit	na Na Na Na Na Na Na		
5.	LOSS OF POWER				
	a. b.	4.16 kV Emergency Bus Undervoltage (Loss of Voltage) 4.16 kV Emergency Bus Undervoltage	NA		
		(Degraded Voltage)	NA		

3/4 3-29 Amendment No. 35, 45, 74

- MAASAF PRA

TABLE 3.3.1-2

REACTOR PROTECTION SYSPEM RESPONSE TIMES

	날 옷 잘 물 물 것 같아요. 정말 입다 물 것 같아요. 말 것 같아?		
FUN	TIONAL UNIT	RESPONSE TIME (Seconds)	00
1.	Intermediate Range Monitors:		10.
	a. Neutron Flux - High b. Inoperative	NA NA	~
2.	Average Power Range Monitor*:		
	a. Neutron Flux - High, Setdown	NA	
	b. Flow Blased Simulated Thermal Power - High	< 0.09 ^{AA}	
	c. Neutron Flux - High	₹ 0.09	
	d. Inoperative	NA	
a.	Reactor Vessel Steam Dome Pressure - High	< 0.35 #	e e
112	Reactor Vessel Water Level - Low, Level 3	₹ 1.05 ₩	9
52	Reactor Vessel Water Level - High, Level 8	₹ 1.05 🗮	32
6.	Main Steam Line Isolation Valve - Closure	₹ 0.06	29
1.	Main Steam Line Radiation - High	NA	
8.	Urywell Pressure - High	NA	
9. Scram Discharge Volume water Level - High		NA	
10.	Turbias Control Value East Clasure Value Tale Custon	≤ 0.10	
***	Oil Pressure - Low	(0.10 -> X	
12.	Reactor Mode Switch Shutdown Position	RA	
13.	Manual Scram	NA	

*Neutron detectors are exempt from response time testing. Response time shall be measured from the detector output or from the input of the first electronic component in the channel. **Not including simulated thermal power time constant. X Heasured from start of turbine contro: valve fast closure.

H-15

TABLE 3.3.2-3

ISOLATION SYSTEM INSTRUMENTATION RESPONSE TIME

RESPONSE TIME (Seconds)# TRIP FUNCTION PRIMARY CONTAINMENT ISOLATION EXON NA 1. Reactor Vessel Water Level - Low Low, Level 2 22000 a. Reactor Vessel Water Level - Low Low. b. Level 2 (ECCS - Division 3) 220 MA Reactor Vessel Water Level-Low Low C. Low, Level 1 (ECCS - Division 1 and Division 2) MUSUR NA Drywell Pressure - High d. ELO(A) NA Drywell Pressure-High (ECCS - Division 1 e. and Division 2) Stat NA Drywell Pressure-High (ECCS - Division 3) f. Containment and Drywell Ventilation Exhaust Radiation - High High g. NA ### Manual Initiation h. MAIN STEAM LINE ISOLATION 2. Reactor Vessel Water Level - Low Low Low, a. ## < 1.0*/ 5 20 (2) AL Level 1 ₹ 1.0*/5 18(* Main Steam Line Radiation - High(b) b. ₹ 1.0*/5-10(*) C. Main Steam Line Pressure - Low ₹ 0.5*/5-10(*)3 d. Main Steam Line Flow - High 18 M Condenser Vacuum - Low NA е. f. Main Steam Line Tunnel Temperature - High NA Main Steam Line Tunnel & Temp. - High g. NA Manual Initiation h. NA SECONDARY CONTAINMENT ISOLATION 3. 2004 205 a. Reactor Vessel Water Level - Low Low, Level 2 b. Drywell Pressure - High C. Fuel Handling Area Ventilation Exhaust < 3.0***/ 10 (2) NA ### Radiation - High High(b) Fuel Handling Area Pool Sweep Exhaust d. < 3.0***/# 18 (B) ALA ALA ALA Radiation - High High(b) Manual Initiation NA е. 4. REACTOR WATER CLEANUP SYSTEM ISOLATION a. A Flow - High NA b. A Flow Timer NA NA Equipment Area Temperature - High C. d. Equipment Area & Temp. - High NA EXOLAT NA Reactor Vessel Water Level - Low Low, Level 2 e. . ۴. Main Steam Line Tunnel Ambient Temperature - High NA NA Main Steam Line Tunnel & Temp. - High g. SLCS Initiation NA h. Manual Initiation NA i.

TABLE 3.3.2-3 (Continued)

ISOLATION SYSTEM INSTRUMENTATION RESPONSE TIME

FUNC	TION	PONSE TIME (Seconds)#
REAC	TOR CORE ISOLATION COOLING SYSTEM ISOLATION	A XX
	PCIC Steam Line Flow - High	L 29 (A) HHH NA
a.	RCIC Steam Supply Pressure - Low	E LO ALA
0.	RCIC Turbine Exhaust Diaphragm Pressure - H	ligh NA
4	RCIC Equipment Room Ambient Temperature - H	ligh NA
0.	RCIC Equipment Room & Temp High	NA
e.	Main Steam Line Tunnel Ambient Temp High	NA NA
	Main Steam Line Tunnel & Temp High	NA
9. h	Main Steam Line Tunnel Temperature Timer	NA
i	RHR Equipment Room Ambient Temperature - Hi	gh NA
i.	RHR Equipment Room & Temp High	NA
k.	RHR/RCIC Steam Line Flow - High	NA
1.	Manual Initiation	NA
m.	Drywell Pressure - High (ECCS Division 1 and Division 2)	120 MA
RHR	SYSTEM ISOLATION	
a.	RHR Equipment Room Ambient Temperature - Hi	gh NA
3.	RHR Equipment Room & Temp High	NA Cart
٤.	Reactor Vessel Water Level - Low, Level 3	230 NA
d.	Reactor Vessel (RMR Cut-in Permissive)	
	Pressure - High	NA
e.	Urywell Pressure - Nign	NA
1	Manual Initiation	NA
		dela
- PECI - 75 - 750	risoTation system instrumentation response tim orded as a part of the ISOLATION SYSTEM RESPON trumentation response time specified includes scator starting assumed in the accident analysis	del me shall be measured and ISE TIME. Isolation systhe the delay for diesel is.
. 8.ad	iation detectors are exempt from response time 11 be measured from detector output or the imp ponent in the channel.	e testing. Response tim but of the first electro
39.	wrator delays assumentation response time for	or MSIVs only. No diese

0

the size of a system instrumentation response time for air operated dampers. e siesel generator delays assumed.

Design system instrumentation response time specified for the Trip And then system instrummentation response time specified for the inter-And the system instrummentation response time specified for the inter-And the system actuating each valve group shall be added to isolation time shown isolation system and 3.6.6.2-1 for valves in each valve group to obtain and a system RESPONSE TIME for each valve. amplagingers time delay of 3 to 7 seconds.

Canal Series (Marine 1

¥

3/4 3-21 H-17

.....

NEDO-32291

TABLE 3.3.3-3

EMERGENCY CORE COOLING SYSTEM RESPONSE TIMES (SECONDS)

1.	LOW PRESSURE CORE SPRAY SYSTEM	NA .
2.	LOW PRESSURE COOLANT INJECTION MODE OF RHR SYSTEM PUMPS A, B AND C	NA
3.	AUTOMATIC DEPRESSURIZATION SYSTEM	NA
4.	HIGH PRESSURE CORE SPRAY SYSTEM	≤ 27 & &
5.	LISS OF POWER	NA

H-19

TABLE 3.3.2-3

ISOLATION SYSTEM INSTRUMENTATION RESPONSE TIME

TRIP FUNCTION

3.

RESPONSE TIME (Seconds) # 78

N. A.

N.A.

N.A.

N.A.

510*12 2 4 1 NA

L'ES NA

- PRIMARY CONTAINMENT ISOLATION 9
 - Reactor Vessel Water Lave! 8. Low, Level 3 1) 2) Low Low, Level 2
 - dryweil Pressure High b.
 - Meta Staam Line e. 1) Radiation - High(b) 2) Pressure - Low 3) Ficw - High
 - ## <1.0*/2 201 NA ## <1.0*/2 201 NA ## <0.5*/2 201 NA Main Steen Line Tunnei Temperature - High c. Main Steam Line Tunnel & Temperature - High 8.
 - Condenser Vacuum Low 1. Manual Initiation G.

SECONDARY CONTAINMENT ISOLATION 2.

- Reactor Building Vent Exheust Plenus 2. 1200 Radistion - High(b) 78(2) Orywell Pressure - High ha a Reactor Vessel Water Level - Low Low, Level 2 2. X.A. Manual Initiation e. mare. REACTOR WATER CLEANUP SYSTEM ISOLATION NA A Flow - High 2. Hest Exchanger Ares Temperature - Hich 2. Hest Exchanger Area Ventilation C .. X.A. a Temp. - High Pump Ares Temperature - High N.A. d. M. 3. Find Area Ventilation's Tamp. 114th C. N.A. SLCS Initiation 4. XXXX NA Reactor Vessel Water Lavel - Low Low, Level 2 4. RUCU/RCIC Line Routing Area Temperature a. N.A.
- Mich N.A. RACU Line Routing Area Temperature - Migh 1. N.A. Manual Initiation 1.

WASHINGTON NUCLEAR - UNIT 2

TABLE 3.3.2-3 (Continued)

ISOLATION SYSTEM INSTRUMENTATION RESPONSE TIME

TRIP FUNCTION

¥.

RESPONSE TIME (Seconds) + > > >

N.A.

N.A. N.A

N.A.

REACTOR CORE ISOLATION COOLING SYSTEM ISOLATION 1 ...

8.	RCIC Steam Line Flow - High RHR/RCIC Steam Line Flow - High	L'ELES	NA
c.	RCIC Steam Supply Pressure - Low	5-13(2)	NA
d.	RCIC Turbine Exhaust Diaphrage Pressure - Hich	H.A.	NA
	RCIC Equipment Room Temperature - High	N.A.	
f.	RCIC Equipment Room & Temperature - High	N.A.	
g.	AWCU/RCIC Steem Line Routing Area Temperature - High	N.A.	
h.	Drywell Pressure - Mich	N.A.	
i.	Manual Initiation	N.A.	
RHR	SYSTEM SHUTDOWN COOLING MODE ISOLATION		
a.	Reactor Vessel Water Level - Low, Level 3	States.	ALA
5.	Reactor Vessel (RHR Cut-in Permissive)	the second	IVM
	Pressure - High	N.A.	
C.	Equipment Area Temperature - High	H.A.	

Equipment Area Ventilation & Temp. - High Shutdown Cooling Raturn Flow Rate - High RHR Heat Exchanger Area Temperature - High Manual Infitation d. 8. f.

ç.,

TABLE 3.3.3-3

state i many which here i for a martine i had been a private out a set of a state of a set of	EMERGENCY	CORE (COCLING	SYSTEM	RESPONSE	TIME
--	-----------	--------	---------	--------	----------	------

Eint	2	RESPONSE TIME	(Seconds)
1	LOW PRESSURE CORE SPRAY SYSTEM	≤ 43	62
2.	LOW PRESSURE COOLANT INJECTION MODE OF RHR SYSTEM		
	a. Pumps A and B	<u>≤</u> 43	22
	b. Puzza C	≤ 43 [°]	8 k
3.	AUTOMATIC CEPRESSURIZATION SYSTEM	N.A.	
÷.	HIGH PRESSURE CORE SPRAY SYSTEM	\$ 27	22
5.	LOSS OF POWER	N.A.	

WASHINGTON MUCLEAR - UNIT 2 2/4 2-33

SIC	IONAL UNIT	RESPONSE TIME (Seconds)
	intermediate Range Monitora: a. Meutron Fiux - Nigh ^a b. Inoparative	**
	Average Power Range Monitor ^a a. Neutron fiux - Upscale, 15% b. Flow Referenced Signisted Thermal Fower - Upscale c. Fixed Neutron flux - Upscale, 116% d. Insperative e. Downscale f. LFAM	NA 5 0.09** 5 0.09 NA NA NA NA
	Reactor Vessel Steam Dome Pressure - High	\$ 0.55
	Resolor Vessel Mater Level - Low	\$ 1.05
	Main Steam Line isoistion Vaive - Closure	5 0.06
	Main Steam Line Radiation - High	HA
	Dryveil Praisura - High	NA
	Scram Discharge Voluma Mater Levei - High	HA
	Turbins Stop Vatva ~ Closurs	\$ 0.06
	Turbine Control Vaive Fast Closurn, Frip Oil Pressure - Low	x 0.00 t ->x
	Reactor Mode Switch in Shutdown Position	¥
	Mentes! Sortem	NA

senot including simulated thereal power time constant.

BRessured from start of turbine control valve cinsure.

(clarge to x) Amendment No. 14

NEDO-32291

H-23

TABLE 3.3.2-3

ISOLATION SYSTEM INSTRUMENTATION RESPONSE TIME RESPONSE TIME (Seconds) TRIP FUNCTION PRIMARY CONTAINMENT ISOLATION 1. a. Reactor Vessel Water Level SA NA 1. Low (Level 3) 8320 a 2. Low Low (Level 2) STR NA 3. Low Low Low (Level 1), except MSIVs KA NA b. Drywell Pressure - High . c. Main Steam Line \$1.0** 1. Radiation - High*** R Store NA 2. Pressure - Low \$1.0** 1 20 3. Flow - High \$1.0** Reactor Vessel Water Level - Low Low Low 4. the th (Level 1) d. Main Steam Line Tunnel BB NA Temperature - High NA e. Condenser Vacuum - low f. Turbine Building Area Temperature - High NA SECONDARY CONTAINMENT ISOLATION 2. a. Reactor Building Exhaust NA ### Radiation - High*** AR NA b. Drywell Pressure - High KYS NA c. Reactor Vessel Water Level - Low Low (Level 2)

d. Refueling Floor Exhaust Radiation - High***

doloto The isolation actuation instrumentation response time shall be measured and recorded as a part of the ISOLATION SYSTEM RESPONSE TIME. Response time specified is diesel generator start delay time. assumed in accident analysis **Isolation actuation instrumentation response time. ***Radiation detectors are exempt from response time testing. Response time shall be measured from detector output or the input of the first use electronic component in the channel. X ->#Times to be added to valve movement times shown in Tables 3.6.3-1, 3.6.5.2-1 and 3.9.5.2-1 to obtain ISOLATION SYSTEM RESPONSE TIME for each valve. XXX - ##with time delay of 45 seconds. Amendment No. 32, 39, 93 3/4 3-19 HATCH - UNIT 2

H-24

TABLE 3.3.2-3 (Continued)

TABLE 3.3.3-3

EMERGENCY CORE COOLING SYSTEM RESPONSE TIMES

ECC	<u>s</u>	RESPONSE TIME (Seconds)
1.	CORE SPRAY SYSTEM	s 34 & &
2.	LOW PRESSURE COOLANT INJECTION MODE OF RHR SYSTEM	s 64 & &
3.	HIGH PRESSURE COOLANT INJECTION SYSTEM	≤ 30 % %
4.	AUTOMATIC DEPRESSURIZATION SYSTEM	NA
5.	ARM LOW LOW SET SYSTEM	≤ 1

TABLE 3.3.1-2 **REACTOR PROTECTION SYSTEM RESPONSE TIMES**

FUNC	CTIONAL UNIT	RESPONSE TIME (Seconds)
1.	Intermediate Range Monitors:	
	a. Neutron Flux - High	NA
	b. Inoperative	NA
2.	Average Power Range Monitor*:	
	a. Wutron Flux - Upscale, Setdown	NA
	b. Flow Biased Simulated Thermal Power - Upscale	< 0.09**
	c. Sinct Neutron Flux - Upscale	< 0.09
	d. Inoperative	NA
3.	Reactor Vessel Steam Dome Pressure - High	< 0.55 🗰
4.	Reactor Vessel Water Level - Low, Level 3	< 1.05
5.	Main Steam Line Isolation Valve - Closure	< 0.06
6.	Main Steam Line Radiation - High, High	NA
7.	Drywell Pressure - High	NA
8.	Scram Discharge Volume Water Level - High	NA
-	a. Float Switch	NA
	b. Level Transmitter/Trip Unit	NA
9.	Turbine Stop Valve - Closure	< 0.06
10.	Turbine Control Valve Fast Closure,	
	Trip Oil Pressure - Low	< 0.08# -> ×
11.	Reactor Mode Switch Shutdown Position	NA
12.	Manual Scram	NA

*Neutron detectors are exempt from response time testing. Response time shall be measured from the detector output or from the input of the first electrons: component in the channel. **Not including simulated thermal power time constant, 6 ± 0.6 seconds. X-y #Measured from start of turbine control valve fast closure.

3/4 3-6

ndment

No.

39

140R

HOPE CREEK

H-27

TABLE 3. 3. 2- 3

		ISCLATION SYSTEM INSTRUMENTATION RES	PONSE -	THE	,
	a suprim	TION RES	PONSE "	THE (Seconds)	~
s m -	DRIMA	ARY CONTAINMENT ISOLATION			
	4.	Reactor Vessel Water Level 1) Low Low, Level 2 2) Low Low Low, Level 1		NA NA	
	э. с. d.	Drywell Pressure - Mign Reactor Building Exhaust Radiation - Mign Manual Initiation		NA NA	
2.	SECON	WARY CONTAINMENT ISOLATION			
	a. b. c.	Reactor Vessel Water Level-Low Low, Level 2 Drywell Pressure - High Refueling Floer Exhaust Radiation - High(b) Reactor Building Exhaust		NA ≤ 4.0 #### < 4.0 ####	
	e.	Radiation - Mign ^(b) Manual Initiation		NA	
3.	MAIN	STEAM LINE ISOLATION			
	8. 5. 6. 7. 5.	Reactor Vessel Water Lavel - Low Low Low, Lovel 1 Main Steam Line Radiation - Migh, Migh ^{(a)(1} Main Steam Line Pressure - Low Main Steam Line Flow-Migh Condenser Vacuum - Low Main Steam Line Tunnel Temperature - High Manual Initiation	5)	< 1.0°/2 18 (2) 37 A < 1.0°/2 18 (2) 77 A < 1.0°/2 18 (2) 77 A < 0.5°/2 18 (2) 77 A NA NA NA	1444
4.	REAC	TOR WATER CLEANUP SYSTEM ISOLATION			
	8. 6. 6. f. g.	RWCU & Flow - Migh RWCU & Flow - Migh RWCU Area Temperature - Migh RWCU Area Ventilation & Temperature - Migh SLCS Initiation Reactor Messel Water Level - Low Cher, Leve Menuel Initiation	12	na Na Na Na Na Na	
5.	REAC	TOR CORE ISOLATION COOLING SYSTEM ISOLATION			
	8. b. c.	RCIC Steem Line & Pressure (Flow) - High PCIC Steem Line & Pressure (Flow) - High, RCIC Steem Supply Pressure - Low PTIC Turbine Exhaust Disphrage Pressure -	Timer High	na Na Na	

HOPE CREEK

TABLE 3.3.2-3 (Continued)

ISOLATION SYSTEM INSTRUMENTATION RESPONSE TIME

TRI	FUNCTION	RESPONSE	TIME	(Seconds)#
READ	TOR CORE ISOLATION COOLING SYSTEM ISOLATION			
	e. RCIC Pump Room Temperature - High f. RCIC Pump Room Ventilation Ducts & Temper	rature	NA	
	- High C PCIC Pipe Pouting Area Terrandore Mich		NA	
	b. RCIC Torus Compartment Temperature - High	1	NA	
	i. Drywell Pressure - High	1	NA	
	i. Manual Initiation		MA	
6.	HIGH PRESSURE CODIANT IN JECTION SYSTEM TOUATT		nn	
	a. HPCI Steam Line A Pressure (Flow) - High	UN	NA	
	b. HPCI Steam Line & Pressure (Flow) - High	Timor	NA	
	c. HPCI Steam Supply Pressure - Low	, inmer	NA	
	d. HPCI Turbine Exhaust Diaphraom Pressure -	High	NA	
	e. HPCI Pump Room Temperature - High	mgn	NA	
	f. HPCI Pump Room Ventilation Ducts			
	△ Temperature - High		NA	
	g. HPCI Pipe Routing Area Temperature - High	1	NA	
	h. HPCI Torus Compartment Temperature - Hig	h	NA	
	2. Drywell Pressure - High		NA	
	J. Manual Initiation		NA	
7.	RHR SYSTEM SHUTDOWN COOLING MODE ISOLATION			
	a. Reactor Vessel Water Level - Low, Level 3		NA	
	Processes (Knk Lut-in Permissive)			
	C. Manual Initiation		NA	
	- renear interactor		NA	dilite
(a)	Isolation system instrumentation response time generator starting and sequence loading delays.	specifi	ed in	cludes diesel)e
(b)	Radiation detectors are exempt from response t shall be measured from detector output or the electronic component in the channel.	ime test input of	ing. the	Response time first
	*Isolation system instrumentation response time generator delays assumed for MSIVs.	for MSI	Vs or	ly. No diesel
(***	*Isolation system instrumentation response time except MSIVs.	for ass	ociat	ed valves
-> i	FIsolation system instrumentation response time Function actuating each valve group shall be an shown in Table 3.6.3-1 and 3.6.5.2-1 for valves obtain ISOLATION SYSTEM RESPONSE TIME for each	specifi dded to s in eac valve.	ed fo isola h val	or the Trip tion time ve group to

X

TABLE 3.3.3-3

DRAFT EMERGENCY CORE COOLING SYSTEM RESPONSE TIMES

ECC	5	RESPONSE TIM	E (Seconds)
1.	CORE SPRAY SYSTEM	<u><</u> 27	X &
2.	LOW PRESSURE COOLANT INJECTION MODE OF RHR SYSTEM	<u><</u> 40	8.2
3.	AUTOMATIC DEPRESSURIZATION SYSTEM	NA	
4.	HIGH PRESSURE COOLANT INJECTION SYSTEM	≤ 35	88
5.	LOSS OF POWER	NA	

			3
			-
			-
			*
			-
			2
			6
			2
*	u	\$	ñ
1		1	-
~	7	1	1
*	9	Ł	-
	å	1	5
1	1	L	-
-	ų	Ł	
2	á	Ŀ	2
	g	ŀ	ā
-		ł.	-
			2

TIMES
ESPONSE
SYSTEM R
ECTION :
OR PROT
REACTO

LA SAULE - UNIT 1

CTIONAL UNIT	RE SPONSE TIME (Seconds)
Intermediate Range Monitors: a. Nautron Flux - Nigh ^a b. Inoperative	W W
Average Fower Renge Monitor ⁴ a. Neutron Flux - Migh, Setdown b. Flow B ¹ 25ed Simulated Thermal Power-Upscale c. Fixad Meutron Flux - Migh d. Inoperative	ма. ка с 0.09 ка МА
Reactor Vessel Steam Yome Pressure - High Reactor Vessel Matry Level - Low, Lovel 3 Main Steam Ling isolation Valve - Closure Main Steam Line Radiation - Migh Primmary Containment Pressure - High Scram Discharge Volume Water Level - Migh	4 0.55
Turbine Stop Valve - Closur- Turbine Control Valve Fast Clesure, Trip Oil Pressure - L.M Reector Mode Switch Shutdown Position Menual Scree	≤ 0.06 → X AA NA
Control Rvd Drive a. Charging Water Neader Pressure - Low b. Delay Timer	MA MA

3/4 3-6

H-31

3203220

channel. **Not including simulated thermal power time constant. **Mot including simulated thermal power time constant.

×

NEDO-32291

NF.DO-32291

TABLE 3.3.2-3

ISOLATION SYSTEM INSTRUMENTATION RESPONSE TIME

TRIP FUNCTION

5.

RESPONSE TIME (Seconds)#

(a) WA

1.0*/< 28

< 1.0*/< 23 < 2.0*/< 25 < 0.5*/< 13

RA

MA

MA

11 11

盆地

AUTOMATIC INITIATION A.

DRAFT

- PRIMARY CONTAINMENT ISOLATION 1.
 - Reactor Vessel Water Level 8.
 - Low, Level 3 1)
 - Low Low, Level 2 2)
 - Low Low Low, Level 1 3)
 - Drywell Pressure High b.
 - Main Steam Line C.
 - 1) Radiation High(b)
 - Pressure Low 2)
 - 3) Flow High
 - Main Steam Line Tunnel Temperature High d.
 - Condenser Vacuum Low
 - 2. Main Steam Line Tunnel & Temperature - High 1.

SECONDARY CONTAINMENT ISOLATION 2.

- Reactor Building Vent Exhaust Plenum Radiation High a.,
- Drywell Pressure High b.
- Reactor Vessel Water Level Low, Level (5) Fuel Pool Vent Exhaust Radiation High (5) C.
- d.

REACTOR WATER CLEANUP SYSTEM ISOLATION 3.

- A Flow High a. Heat Exchanger Area Temperature - High b. Heat Exchanger Area Ventilation AT-High c. SLCS Initiation d. Reactor Vessel Water Level - Low Low, Level 2 .
- REACTOR CORE ISOLATION COOLING SYSTEM ISOLATION 4.

RCIC Steen Line Flow - High 2. RCIC Steme Supply Pressure - Low b. RCIC Turbine Exhaunt Diaphraga Pressure - High c. RCIC Equipment Room Temperature - High RCIC Steam Line Tunnel Temperature - High d. €. RCIC Steam Line Tunnel & Temperature - High 1. Drywell Pressure - High g. RCIC Equipment Room & Temperature - High h. RHR SYSTEM STEAM CONDENSING MODE ISOLATION

- RHR Equipment Area & Temperature High 8.
 - RHR Area Cooler Temperature High b.
 - KHR Heat Exchanger Steam Supply Flow High C.

< 22/pX N

NA

MA

MA

AK

NA

MA

MA

3.7	ETT.	30	-	2	2	2	0	1
14	Acres &	\sim		-	~	-	*	٠

TABLE 3.3.2-3 (Continued)

ISOLATION SYSTEM INSTRUMENTATION RESPONSE TIME

TRIP FUNCTION

RESPONS TINE (feconds) - # X

TUREY NA

N.A.

N.A.

N.A.

N.A.

N.A.

- RHR SYSTEM SHUTDOWN COOLING MODE ISOLATION K.,
 - Reactor Vessel Water Level Low, Level 3 . Reactor Vessel b. (RHR Cut-in Permissive) Pressure - High RMR Pump Suction Flow - High
 - c. d_ RHR Area Cooler Temperature High
 - **R**. RHR Equipment Aris AT High

MANUAL INITIATION 8.

- 1 Inboard Valves
- Outboard Valves
- 23. Inboard Valves
- 4 Outboard Valves
- 5. Inboard Valves
- 6. Outboard Valves
- 7. Outboard Valve

deloto

(a) The isolation system instrumentation response time shall be seasured and recorded as a part of the ISOLATION SYSTEM RESPONSE TIME. Isolation system instrumentation response time specified includes the delay for diesel generator starting assumed in the accident analysis.

- (b) Radiation detectors are exampt from response time testing. Response time shall be measured from detector output or the input of the first electronic component is the channel.
- Isolation system instrumentation response time for MSIVs only. No diesel generator delays assumed.

100 Isolation system instrumentation response time for associated valves 2 CACADE MSIVE. use

- Y P Isolation system instrumentation response time specified for the Trip Function actuating each valve group shall be added to isolation time shown in Table 3.6.3-1 and 3.6.5.2-1 for valves in each valve group to obtain ISOLATION SYSTEM RESPONSE TIME for each value.
- XX -> 40 Without 45-1 second time welay.
- W/ Without < 5 second time delay.

N.A. Not Applicable.

LA SALLE - UNIT 1

3/4 3-19

Apendment No.18

TABLE 3.3.3-3

TABLE 3. 3. 2-2

REACTOR PROTECTION SYSTEM RESPONSE TIMES

	•	OF E	1	X	~	:								-41	#								
~	SYSTEM RESPONSE TIMES	RESPONSE T	CONCORD -		M.A.	H.A.		N.A.		<0.09 20.09	¢0.09	M.A.	M.A.	< 6.55 #	< 1.05 Y	× 0.06	N.A.	R.A.	N.A. N.A.	50.0¢	4 0.08**	M.A.	H.A.
	REACTOR PROFECTION	CEEDWARD SAMET	LITUTAL UTIL	Entermediste Nerge Monitors:	a. Neutron flux - Migh	b. Enoperative	Average Fower Jange Monitor ^a :	a. Meutron Flux - Upscale, Setdomn	b. Muiren Flux - Upscale	1) Flow Blassd	2) High Flew Clamped	c. Inoperative	d. Bomnecate	Reactor Vessel Stame Bome Preseure - High	Reacter Vessel Water Level - Low, Level 3	Main Steam Line Isolation Valva - Closure	Main Steam Line Redistion - Migh	Bryneil Pressure - High	Scram Bischerye Volume Water Level - High a. Level Transmitter b. Float Switch	Turbine Stop Ysive - Ciesure	Turbine Control Valve fast Clesure, Trip 013 Pressure - Low	Reacter Mede Switch Shutdown Position	Manual Scram
			L URA	see			2							÷	*	ŝ	÷	7.			10.		12.
L	IMER	LICK	-	UNC		1						3/	4 3	-6						835	8 19	15	

Ameutron detectors are except from response time testing. Response time shall be measured from the detector output or from the input of the first electronic component in the channel.

NEDO-32291

TABLE 3.3.2-3

		-ISOLATION SYSTEM INSTRUMENTATION	RESPONSE	TIME use
TRI	FUNC	TION	RESPONSE	TIME (Seconds) = - X
1.	MAIN	STEAM LINE ISOLATION		
	A.	Reactor Vessel Water Level 1) Low, Low - Level 2 2) Low, Low, Low - Level 1		SLOP NA
	b.	Main Steam Line Radiation - Nigh(t)	##	\$ 2.0° 1 grad top NA
	c.	Nain Steam Line Pressure - Low	**	S 2. 0 12 2 NA
	d.	Main Staam Line Flow - High	券辞	5 0.5= 12 25 m NA
	6.	Condenser Vacuas - Low		R.A.
	۲.	Main Steas Line Tunnel Tesperature - High		K.A.
	g.	Turbine Enclosure - Main Steam Line Tunnel Temperature - High		H.A.
	h.	Manual Initiation		K.A.
	RHR S	YSTEM SHUTDOWN COOLING MODE ISOLATION		
	8	Reactor Vessel Water Level Low - Level 3		235 WA NA
	b.	Reactor Vessel (BHR Cut-In Permissive) Pressure - Wigh		R.A.
	с.	Manual Initiation		N.A.
	REACT	OR WATER CLEANUP SYSTEM ISOLATION		M Y.X
	8.	RMCS & Flow - High		125 NA
	b.	RMCS Area Temperature - High		R.A.
	٤.	RMCS Area Ventilation A Temperature - Migh		R.A.
	d.	SLCS Initiation		R.A.
	e.	Reactor Vessel Water Lavel - Low, Low - Lavel 2		ANA MA
	1.	Manual Initiation		K.A.

LAUG B BRES

TABLE 3.3.2-3 (Continued)

ISOLATION SYSTEM INSTRUMENTATION RESPONSE TIME

-	TP FU	NCTION	RESPONSE TIME (Seconds)#
4.	HIC	TATION	
	۵.	HPCI Steam Line A Pressure - High	EBA NA
	b.	HPCI Steam Supply Pressure - Low	#36th NA
	с.	HPCI Turbine Exhaust Diaphrage Pressure - High	K.A.
	d.	NPCI Equipment Room Temperature - High	N.A.
	e.	HPCI Equipment Room & Temperature - High	N.A.
	۴.	HPCI Pipe Routing Area Temperature - High	K.A.
	g.	Menuel Initiation	R.A.
ċ.	READ	CTOR CORE ISOLATION COOLING SYSTEM ISO	LATION
	8.	Reactor Steem Line & Pressure - High	ESEN NA
	b.	RCIC Steam Supply Pressure - Low	states NA
	c.	RCIC Turbine Exhaust Diaphrage Pressure - High	H. A.
	đ.	RCIC Equipment Room Temperature - High	N. A.
	8.	RCIC Equipment Roce & Tamperature - High	H.A.
	ť.	RCIC Pipe Routing Area Temperature - High	H.A.
	g.	Manual Initiation	K.A.

LIMERICK - UNIT 1

5.

	The second support the second station	DECONNEE TIME
¥	ISOLATION SYSTEM INSTRUMENTATION	RESPONSE TIME (Seconds)
FUN	CTION	anarous and a second se
PRIM	MARY CONTAINMENT ISOLATION	
a.	Reactor Vessel Water Level	Ind NA
	1) Low, Low - Level 2	Frid NA
	2) Low, Low, Low - Level 1	2 pt in
٥.	Drywell Pressure - High	Exen NA
c.	North Stack Effluent	N.A.
	Kadiation - nign	1
d.	Deleted	124 - The State State
e.	Reactor Enclosure Ventilation Exhaust Duct - Radiation - High	N.A.
1.	Outside Atmosphere To Reactor Enclosure	N.A.
g.	Deleted	1
h.	Drywell Pressure - High/ Reactor Pressure - Low	N.A.
i.	Primary Containment Instrument Gas to Drywell & Pressure-Low	N.A.
1.	Manual Initiation	N.A.
SECO	NDARY CONTAINMENT ISOLATION	
2.	Reactor Vessel Water Level Low, Low - Level 2	N.A.
ь.	Drywell Pressure - High	N.A.
c.	Refueling Area Ventilation Exhaust Duct Radiation - High	N.A.
d.	Reactor Enclosure Ventilation Exhaust Duct Radiation - High	N.A.
e.	Outside Atmosphere to Reactor Faclosure & Pressure - Low	N.A.

JUL 8 1987 Annarchmarst Mc. 6

LIMERICK - UNIT 1

TABLE 3.3.3-3

EMERGENCY CORE COOLING SYSTEM RESPONSE TIMES

ECC	2	RESPONSE	TIME	(Seconds)
1.	CORE SPRAY SYSTEM	4	27	22
2.	LOW PRESSURE COOLANT INJECTION MODE OF RHR SYSTEM	ž	40	**
3.	AUTOMATIC DEPRESSURIZATION SYSTEM	ĸ.	A.	
4.	HIGH PRESSURE COOLANT INJECTION SYSTEM	≤	30	82
5.	LOSS OF POWER	N.	A.	

LIMERICK - UNIT 1

TABLE 3.3.1-2

REACTOR PROTECTION SYSTEM RESPONSE TIMES

FUNC	TIONAL UNIT	RESPONSE TIME (Seconds)	2
1.	Intermediate Range Monitors: a. Neutron Flux - High b. Inoperative	NA NA	1
2.	Average Power Range Monitor [®] : a. Neutron Flux - High, Setdown b. Flow Biased Simulated Thermal Power - High c. Neutron Flux - High d. Inoperative	NA < 0.09** < 0.09 NA	
3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	Reactor Vessel Steam Dome Pressure - High Reactor Vessel Water Level - Low, Level 3 Reactor Vessel Water Level - High, Level 8 Moin Steam Line Isolation Valve - Closure Main Steam Line Radiation - High Drywell Pressure - High Scram Discharge Volume Water Level - High Turbine Stop Valve - Closure Turbine Control Valve Fast Closure, Valve Trip System Oil Pressure - Low Placto: Hode Switch Shutdown Position	< 0.35 # < 1.05 # < 1.05 # < 0.06 RA NA < 0.06 < 0.07#	VEDO-32291

*Noutron detectors are exempt from response time testing. Response time shall be measured from the detector output or from the input of the first electronic component in the channel.

**Not including simulated thermal power time constant, 6 ± 0.6 seconds.

#Heasured from start of turbine control valve fast closure.

H-40

PERI

x use

TABLE 3.3.2-3

ISOLATION SYSTEM INSTRUMENTATION RESPONSE TIME

TRIP	FUNCTION	E FIME (Seconds) >>>
1.	PRIMARY CONTAINMENT ISOLATION	
	 a. Reactor Vessel Water Level - Low, Level 2 b. Drywell Pressure - High 	NA NA
	c. Containment and Drywell Purge Exhaust Plenum Radiation - High	120(2) NA ###
	 d. Reactor Vessel Water Level - Low, Level 1 e. Manual Initiation 	NA NA
2.	MAIN STEAM LINE ISOLATION	
	a. Reactor Vessel Water Level - Low [bevel 1 #	# < 1.0°/200 34 NA
	b. Main Steam Line Radiation - night	ZI DA CLARKER AND
	d Main Steve Line Flow - Wigh	~ ~ 0.52/c18/8/3# 1/A
	e. Condenser Vacuum - Low	NA Z NA
	f. Main Steam Line Tunnel Temperature - High	NA
	g. Main Steam Line Tunnel & Temperature - High	MA
	h. Turbine Building Main Steam Line	
	Temperature - High	NA
	i. Manual Initiation	M
3.	SECONDARY CONTAINMENT ISOLATION	
	a. Reactor Vessel Water Level - Low, Level 2	NA
	b. Drywell Pressure - High	NA
	c. Manual Initiation	NA
4.	REACTOR WATER CLEANUP SYSTEM ISOLATION	
	a. A Flow - Nich	NA
	b. A Flow Timer	MA
	c. Equipment Area Temperature - High	NA
	d. Equipment Area & Temperature - High	MA
	e. Reactor Vessel Water Level - Low, Level 2	NA
	f. Main Steam Line Tunnel Ambient	
	Traperature - High	RA
	g. Main Steam Line Tunnel & Temperature - High	RA
	h. SLCS Initiation	MA
	1. Manual Initiation	nn.

TABLE 3.3.2-3 (Continued)

ISOLATION SYSTEM INSTRUMENTATION RESPONSE TIME

TRIP FUNCTION

RESPONSE TIME (Seconds)# -7X

delete

5. REACTOR CORE ISOLATION COOLING SYSTEM ISOLATION

a.	RCIC Steam Line Flow - High	N
b.	RCIC Steam Supply Pressure - Low	N
c.	RCIC Turbine Exhaust Diaphrage Pressure - High	N
d.	RCIC Equipment Room Ambient Temperature - Nigh	N
e.	RCIC Equipment Room & Temperature - High	N
f.	Main Steam Line Tunnel Ambient	
	Temperature - High	N
g.	Main Steam Line Tunnel & Temperature - High	N
h.	Main Steam Line Tunnel Temperature Timer	N
1.	RHR Equipment Room Ambient Temperature - High	N
j.	RHR Equipment Room & Temperature - High	N
k.	RCIC Steam Line Flow High Timer	N
1.	Drywell Pressure - High	N
R.	Manual Initiation	N

6. RHR SYSTEM ISOLATION

a.	RHR Equipment Area Ambient Temperature - High	NA
b.	RHR Equipment Area & Temperature - High	NA
c.	RHR/RCIC Steam Line Flow - High	NA
d.	Reactor Vessel Water Level - Low, Level 3	MA
e.	Reactor Vessel (RHR Cut-in Permissive)	
	Pressure - High	NA
1.	Drywell Pressure - High	MA
g.	Manual Initiation	MA

(a) Isolation system instrumentation response time specified includes the diesel generator starting and sequence loading delays.

(b) Radiation detectors are exempt from response time testing. Response time shall be measured from detector output or the input of the first electronic component in the channel.

*Isolation system instrumentation response time for MSIVs only. No diesel generator delays assumed.

Existin system instrumentation response time for associated valves

#Isolation system instrumentation response time specified for the Trip Function actuating each valve group shall be added to isolation time shown in Table 3.6.4-1 for valves in each valve group to obtain ISOLATION SYSTEM RESPONSE TIME for each valve.

ECCS

2

8.

NEDO-32291

TABLE 3.3.3-3

EMERGENCY CORE COOLING SYSTEM RESPONSE TIMES

RESPONSE TIME (Seconds)

- A. DIVISION 1 TRIP SYSTEM
 - 1. RHR-A (LPCI MODE) AND LPCS SYSTEM

G.,	Reactor Vessel Water Level - Low,	≤ 37	Q b
11	Level 1	1 27	0.0.
D.	Urywell Pressure - High	< 3/	ex ex
C.	LPCS Pump Discharge Flow - Low (bypass)	MA	
d.	Reactor Vessel Pressure ~ Low (LPCS Injection Velve Permissive)	NA	
e.	Reactor Vessel Pressure - Low (LPCI Injection Valve Permissive)	MA	
1.	LPCI Pump A Start Time Delay Relay	NA	
٥.	LPCI Pump A Discharge Flow - Low (Bypass)	NA	
h	Manual Initiation	KA	
AUT	TOMATIC DEPRESSURIZATION SYSTEM TRIP SYSTEM "A"		
AUT	Reactor Vessel Water Level - Low Level 1	MA	
<u>АU</u> а. b.	TOMATIC DEPRESSURIZATION SYSTEM TRIP SYSTEM "A" Reactor Vessel Water Level - Low, Level 1 Manual Inhibit	NA NA	
<u>А</u> U а. b. c.	Reactor Vessel Water Level - Low, Level 1 Manual Inhibit ADS Timer	NA NA NA	
а. b. c. d.	Reactor Vessel Water Level - Low, Level 1 Manual Inhibit ADS Timer Reactor Vessel Water Level - Low, Level 3 (Permissive)	na Na Na Na	
AUT a. b. c. d. e.	Reactor Vessel Water Level - Low, Level 1 Manual Inhibit ADS Timer Reactor Vessel Water Level - Low, Level 3 (Permissive) LPCS Pump Discharge Pressure - Wigh	na Na Na Na	
AUT a. b. c. d. e.	Reactor Vessel Water Level - Low, Level 1 Manual Inhibit ADS Timer Reactor Vessel Water Level - Low, Level 3 (Permissive) LPCS Pump Discharge Pressure - High (Permissive)	na Na Na Na	
AUT a. b. c. d. e. f.	Reactor Vessel Water Level - Low, Level 1 Manual Inhibit ADS Timer Reactor Vessel Water Level - Low, Level 3 (Permissive) LPCS Pump Discharge Pressure - High (Permissive) LPCI Pump A Discharge Pressure - High	na Na Na Na Na	
AUT a. b. c. d. e. f.	Reactor Vessel Water Level - Low, Level 1 Manual Inhibit ADS Timer Reactor Vessel Water Level - Low, Level 3 (Permissive) LPCS Pump Discharge Pressure - High (Permissive) LPCI Pump A Discharge Pressure - High (Permissive)	na Na Na Na	

1. RHR B AND C (LPCI MODE)

a.	Reactor Vessel Water Level - Low,	≤ 37	bb
6.	Level 1 Drowell Pressure - High	< 37	22
с.	Reactor Vessel Pressure - Low (LPCI	ña	~ ~
d.	LPCI Pump B Start Time Delay Relay	NA	
e.	LPCI Pump Discharge Flow - Low (Bypass)	MA	
1.	Manual Initiation	MA	

TABLE 3.3.3-3 (Continued)

EMERGENCY CORE COOLING SYSTEM RESPONSE TIMES

TRIP	FUNC	ION		RESPONSE TIME	(Seconds)
2.	AUT	MATIC DEPRESSURIZA	TION SYSTEM TRIP SYST	TEM "8"	
	a.	Reactor Vessel Wat	er Level - Low,	NA	
	b.	Manual Inhibit		NA	
	c.	ADS Timer		NA	
	d.	Reactor Vessel Wate	er Level - Low, e)	NA	
	e.	LPCI Pump B and C I Pressure - High (P	Discharge ermissive)	NA	
	1.	Manual Initiation		NA	
c.	DIVIS	ON 3 TRIP SYSTEM			
	1. 1	CS SYSTEM			
	8	Reactor Vessel W	ater Level - Low,	≤ 27	**
		Level &	- High	\$ 27	1.1
	č	Reactor Vessel W	ater Level - High,	NA	BK BK
	d	Condensate Stora	ge Tank Level - Low	AN	
		Suppression Pool	Water Level - High	NA	
	1	HPCS Pump Discha	rge Pressure - High	MA	
	9	HPCS System Flow	Rate - Low	NA	
	b	Manual Initiatio	n	MA	
D.	LOSS	FPOWER	. 24		
	1. 4	16 kv Emergency Bu oss of Voltage)	is Undervoltage	KA K	
	2. 4	16 kv Emergency Bu egraded Voltage)	is Undervoltage	MA	

SU The Loss of Voltage and Degraded Voltage functions are common to Division 1, Division 2, and Division 3.

10 - U	File	TIONAL UNIT	RESPONSE TIME (Seconds))r.	aA		
NIT 1		Intermediate Range Maniters: a. Meutram Flum - Nigh b. Imaperative	22		K.	7	
	eri -	Average Pawer Range Muniter ⁰ : a. Nautran Fiux - High, Sotémen b. Flaw Biezed Simulated Ebermal Pener - High c. Heutran Fiux - Nigh d. Imoperative	Mi 40.09446 60.09 Mi				
3/4 3-6	ก่ร่งข่างส่ง	Reacter Vessel Steam Deme Presoure - Nigh Reacter Vessel Mater Level - Lev. Level 3 Reacter Vessel Water Level - Lev. Level 8 Main Steam Line Esolation Valve - Clesure Nain Steam Line Radiation - Nigh Brywell Pressure - Nigh Scram Bischarge Velume Mater Level - High a. Level Transmitter b. Fleet Switches	●10,0,0 新期 期間 お888 井戸子	SDC	JUL 1 1.19	RECEIVE	NEDO-32291
Amer	10. 11. 13.	Turbine Step Valve - Closure Turbine Control Valve Fast Closure, Valve Trip System Oil Pressure - Low Reacter Node Switch Simitdowe Pesitien Maemai Screm	 ≤8.658 ≤8.638 →>X 58.638 58.638		90	ED	
dment No. 4	F-SE	witres detectors are exampl from response time testing. Respons rem the detector output or from the input of the first electroni of including simulated thermal power time constant specified in asured from start of turbice control vaive fast clasure.	time shall be measured component in the channel				

H-45

「日本の日

No. 42

ABLE 3.3.2-3

ISOLATION SYSTEM INSTRUMENTATION RESPONSE TIME

TRIP FUNCTION

RESPONSE TIME (Seconds) 7X

井林 < 1.0 =/ 1846)

1.0 */2

NA

NA

NA

NA

MA

NA

NA NA NA NA

RA NA NA NA NA NA NA

- 1. PRIMARY CONTAINMENT ISOLATION
 - Reactor Vessel Water Level .- Low Low Level 2 8.
 - b. Drywell Pressure High
 - c. Containment Purge Isolation Radiation High(b)

2. MAIN STEAM LINE ISOLATION

Reactor Vessel Water Leve! - Low Low Low 4. Level 1 . Main Steam Line Radiation - High(b) b. Main Steam Line Pressure Low C. d. Main Steam Line Flow - High Condenser Vacuum - Low 0. f. Main Steam Line Tunnel Temperature - High g. Main Steam Line Tunnel & Temperature - High h. Main Steam Line Area Temperature - High (Turbine Bldg)

3. SECONDARY CONTAINMENT ISOLATION

- Reactor Vessel Water Level Low Low Level 2 8.
- b. Drywell Pressure High
- c. Fuel Building Ventilation Exhaust Radiation High(b)
- d. Reactor Building Annulus Ventilation Exhaust Radiation - High(b)
- 4. REACTOR WATER CLEANUP SYSTEM ISOLATION
- a. A Flow High b. A Flow Timer c. Equipment Area Temperature . High d. Equipment Area & Temperature - High e. Reactor Vessel Water Level - Low Low Level 2 f. Main Steam Line Tunnel Ampient Tesperature - High Main Steam Line Tunnel & Temperature - High d. h. SLCS Initiation 5. REACTOR CORE ISOLATION COOLING SYSTEM ISOLATION

8. RCIC Steam Line Flow - High RCIC Steam Line Flow-High Timer RCIC Steam Supply Pressure - Low 0. c. d. RCIC Turbine Exhaust Disphrage Pressure - High e. RCIC Equipment Room Ambient Temperature - High f. RCIC Equipment Room & Temperature - High Main Steem Line Tunnel Amoient Temperature - High g. Main Staam Line Tunnel & Tesperature - High h.

DRAFT

TABLE 3.3.2-3 (Continued)

NEDO-32291

ISOLATION SYSTEM INSTRUMENTATION RESPONSE TIME

	TRI	PFU	NCTION	RESPONSE	TIME	(Seconds)# ->X
		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Main Steam Line Tunnel Temperature Timer RHR Equipment Room Ambient Temperature - Hi RHR Equipment Room & Temperature - High RHR/RCIC Steam Line Flow - High Drywell Pressure - High Manual Initiation	igh	na na na na	
	6.	RHR	SYSTEM ISOLATION			
		8. b. c. d. f.	RHR Equipment Area Ambient Temperature - Hi RMR Equipment Area & Temperature - High Reactor Vessel Water Level - Low Level 3 Reactor Vessel Water Level - Low Low Low Level 1 Reactor Vessel (RHR Cut-in Permissive) Pressure - High Drywell Pressure - High	igh	NA NA NA	kat NA
	7.	MAN	UAL INITIATION	1.0.0	NA	
\mathcal{C}	(1)	Ist	olation system instrumentation response time nerator starting and sequence loading delays	specified i	nclude	s the disse
		CO	Tation detectors are exempt from response t all be measured from detector output or the mponent in the channel.	ime testing. input of the	Resp	conse time electronic
		*Isi gei	plation system instrumentation response time nerator delays assumed.	for MSIVs e	nly.	No discel
(Leans	+	A#181 NS	olation system instrumentation response time IVs.	for associa	ted vo	Ilves except
x-	1	ØIS Fu in IS	elation system instrumentation response time notion actuating each valve group shall be a Tables 3.6.4-1 and 3.6.5.3-1 for valves in OLATION SYSTEM RESPONSE TIME for each valve.	a specified f udded to isel actual valve g	or the stion roup 1	Trip time shown to obtain
¥X -	7	697 1	me delay ef 45-47 seconds.			
xxx -	70	PETI	me delay of 3-13 seconds.			

3/4 3-25 H-47

TABLE 3.3.3-3

2

2

EMERGENCY CORE COOLING SYSTEM RESPONSE TIMES

ECC	15	RESPONSE TIME	(Seconds)
1	LOW PRESSURE CORE SPRAY SYSTEM	≤ 37 €	bb
2.	LOW PRESSURE COOLANT INJECTION MODE' -OF RHR SYSTEM / a. Pumps A and B b. Pump C	 ≤ 37 ≤ 37 ≤ 37 	22
3.	AUTOMATIC DEPRESSURIZATION SYSTEM	NA	
4.	HIGH PRESSURE CORE SPRAY SYSTEM	<u>≤</u> 27	22
5.	LOSS OF POWER	NA	

T BOWAL LEWET		RESPONSE TINE (Seconds)
Interardiate Range Monitors:		
a. Mewtren flam - Nigh b. Inoperative		22
Average Power Ronge Monitor ^a :		
a. Meutran Flum - Upscala, Seldawa b. Flow Biased Stmulated Thermel P. c. Fixed Noutree Flux - Upscala d. Imoperative	mer - Specale	MA < 8.09** < 8.09 RA
Reacter Vessel Stamm Beame Pressure - Reacter Vessel Water Level - Lev. Le Nain Steam Line Iseletiem Velve - Ci Nain Steam Line Radiatiem - Nigh Brywell Pressare - Nigh Scram Bischarge Veltame Water Level -	Mile E tan e tan e tan e tan e tan e tan	A
a. Level Bransmitter b. Float Switch		11
Turbine Stop Valve - Cleaure		£ 8.06
Trip Dii Pressure - Low		X 4- 890.6 5
Reactor Nocie Switch Shutdown Posifie Namuai Serem		

easured from actuations of fast-acting salenoid.

Amendment No.41

XC

H-49

3/4 3-6

SUSQUENAMINA - UNIT 1

TABLE 3.3.2-3

ISOLATION SYSTEM INSTRUMENTATION RESPONSE THE

RESPONSE TIME (Seconds) = - X TRIP FUNCTION PRIMARY CONTAINMENT ISOLATION 1. Reactor Vessel Water Lavel A., Low, Lovel 3 1) Low Low, Level 2 Low Low Low, Level 1 2) 3) NA Drywell Pressure - High D. NO A HAR Manual Initfation E. SETS Exhaust Radiation - High(b) d_ Elan at Main Steam Line Radiation - High (b) NA 非非科 8. Refuel Floer High Exhaust Duct Radiation - High(b) SECONDARY CONTAINMENT ISOLATION 2. 2. 8. Figure ALA NANNE C., d. Refuel Floor Well Exhaust Duct Radiation -High(b) £. Magual Initiation 1. 3. MAIN STEAM LINE ISOLATION The and MA Reactor Vessel Weter Level- Low Low, Low, Level 1 Mein Steem Line Rediction - High 8. 5. 21.0=/2187 Main Steen Line Pressure - Low c. 20. 5= /3/4 Main Steen Line Flow-High 1 Condenser Vacuum - Low The. 1. Reactor Building Main Steam Line Tunnel Temperature - Migh MA Reactor Building Main Steam Line Tunnel 5. MA A Temperature - Hide 164 R. Menuel Initiatice Turbine Building Hein Steam Line Tunnel 1. MA Tempersture - High REACTOR WATER CLEANLY SYSTEM ISOLATION 4. RA NA NA NA NA NA NA NA NA NA RACU & Flow - High 8. MACH Area Temperature - High 8. See. Edit Area Ventilation Temperature at . Nigh SLCS Initiation e. Reactor Vessel Neter Level - Low Low, Lovel 2 e. BCU Flow - High 1. Manual Laitiation Bo REACTOR CORE ISOLATION COOLING SYSTEM ISOLATION 5. RCIC Stame Line & Pressure - High 8. RCIC Steam Supply Pressure - Low RCIC Tursine Exhaust Diaphrage Pressure - Wigh 8. 6. RCIC Equipment Room Temperature . High d.

SUSQUEDIANNA - UNIT 1

3/4 3-21

Anondment Ne. 38

DRAFT NEDO-32291 TABLE 3.3.2-3 (Continued) ISOLATION SYSTEM INSTRUMENTATION RESPONSE TIME TRIP FUNCTION RESPONSE TIME (Seconds RCIC Equipment Room & Temperature - High RCIC Pipe Routing Area Temperature - High RCIC Pipe Routing Area & Temperature - High RCIC Emergency Area Cooler Temperature - High MA 2. NA 4. MA g. 16.6 n. 1. Manual Initiation NA Drymell Pressure - High 1. HIGH PRESSURE COOLANT INJECTION SYSTEM ISOLATION 6. HPCI Steam Flow - High 8. MPCI Steam Supply Pressure - Low MPCI Turbine Exhaust Diaphrage Pressure - Migh 3. e. HPCI Equipment Room Temperature . High RA. d. HPCI Equipment Room & Temperature - High HPCI Emergency Area Cooler Temperature - High HPCI Pipe Routing Area Temperature - High MA a., MA 1. NA g. HPCI Pipe Routing Area & Temperature - High MA R., Manual Initiation 1. Orywell Pressure - High 1. heigh THE SYSTEM SHUTDOWN COOLING/HEAD SPRAY NODE ISOLATION 7. Reactor Vessel Water Level - Low, Level 3 Reactor Vessel (RMR Cut-in Permissive) b. Pressure . High NE RMR Equipment Area A Temperature - High RMR Equipment Area Temperaturo - High e. MA MA KA a. BAR Flow - High Q. Menual Initiation 1. Drowell Pressure - High 8. tilete The iscision system instrumentation response time shall be measured and recorded as a part of the ISOLATION SYSTEM RESPONSE TIME. Isolation system instrumentation response time specified includes the delay for diesel generator starting assumed in the accident analysis. (b) Radiation detectors are exampt from response time testing. Response time shall be measured from detector sutput or the input of the first electronic campenent is the channel. "Isolation system instrumentation response time for MSIVs only. No diesel generator delays assumed for MSTV Valves. "Isolation system instrumentation response time for associated valves)? encost MSIVs. Change + #Iselation system instrumentation response time specified for the Trip Function actuating each valve group shall be added to isolation time shown in Table 3.6.3-1 and 3.6.3.2-1 for valves in each valve group to OBTAIN ISOLATION SYSTEM RESPONSE TIME for each value. XY -> powith time delay of 45 seconds. POWIth time delay of 3 seconds. poppyith time delay of 3 seconds. Amendment No. 36 SUSCUEHAMMA - UNIT 1 3/4 3-22

TABLE 3. 3. 3-3

797		PECP	ONSE TIME (Seconds)
1.	CORE SPRAY SYSTEM	White of F	UNDE TINE (DECUNCE)
	 a. Reactor Vessel Water Level-Low Low Low, Level 1 b. Drywell Pressure-High c. Reactor Vessel Steam Dome Pressure-Low d. Manual Initation 	<27 227 227 NA	***
2.	LOW PRESSURE COOLANT INJECTION MULE OF RHR STSTER		
	 a. Reactor Vessel Water Level-Low Low Low. Level 1 b. Drywell Pressure-High c. Reactor Vessel Steam Dome Pressure-Low 1) System Initiation 2) Recirculation Discharge Valve Closure d. Manual Initiation 	(40) (40) (40) (40) (40)	202000
3.	HIGH PRESSURE COOLANT INJECTION SYSTEM		
4.	a. Reactor Vessel Water Level - Low Low, Level 2 b. Drywell Pressure - High c. Condensate Storage Tank Level-Low d. Reactor Vessel Water Level-High, Level & e. Suppression Pool Water Level-High f. Manual Initiation AUTOMATIC DEPRESSURIZATION SYSTEM	C30 RA NA NA	£2
	a. Reactor Vessel Water Level-Low Low Low.		
	Level 1 b. Drywell Pressure-High c. ACS Timer d. Core Spray Pump Discharge Pressure-High	na Na Na Na	
	f. Reactor Vessel Water Level-Low, Level 3	MA	
	g. ADS Drywell Pressure Bypass Timer h. Manuel Inhibit i. Manuel Initiation	nga Nga Nga	
5.	LOSS OF POWER		
	a. 4.15 kV ESS Bus Undervoltage (Loss of Voltage <203)	NA	
	b. 4.16 kV ESS Bus Undervoltage (Degraded	MA	
	c. 4.16 xV ESS Bus Undervoltage (Degraded Voltage <84%)	MA	

SUSQUENANNA - UNIT 1

3/4 3-33

Amendment No. 44

APPENDIX I

EXAMPLE LICENSE CHANGE REQUEST

DRAFT

Appendix I

Example License Change Request

This appendix provides the sample format and contents of a request for Technical Specification changes associated with the elimination of response time testing for selected instrument loops. Included in this appendix is a sample cover letter with three enclosures. Enclosure 1 is a discussion of the basis for the proposed changes, and Enclosure 2 is an evaluation of the proposed changes per 10CFR50.92 which demonstrates there are no significant hazards considerations. Enclosure 3 contains Technical Specification changes and page change instructions. Plant-specific information is indicated by brackets ([]).

Plant-specific information should be incorporated as required. This includes mark-ups of revised Technical Specifications, typed Technical Specification pages incorporating the changes, and instructions for including the changed pages into Technical Specifications (see Enclosure 3). Enclosures 1, 2, and 3 should be submitted to the NRC on the utility's letterhead.

SAMPLE COVER LETTER

J. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555

[Plant Name] NRC Docket No. [] Operating License []

SUBJECT: REQUEST TO REVISE TECHNICAL SPECIFICATIONS: RESPONSE TIME TESTING

Reference: NEDO-32291, "System Analyses for the Elimination of Selected Response Time Testing Requirements", January 1994.

In accordance with the provisions of 10CFR50.90, [Utility Name] hereby proposes changes to the [Plant Name] Technical Specifications, Appendix A to Operating License [].

The proposed changes involve elimination from Technical Specifications of selected response time testing requirements. Specifically, the response time testing requirements to be eliminated include sensors and specified loop instrument(like) or the 1) Reactor Protection System, 2) Isolation System, and 3) Emergence (pp. Cooling System.

In support composed changes to the Technical Specifications, enclosed are:

- Basis for Change Request
- 10CFR50.92 Evaluation
- Technical Specification Changes and Page Change Instructions

The proposed Technical Specification changes are supported by an analysis formed by the BWR Owners' Group (see reference), demonstrating that other is odic tests required by Technical Specifications, such as channel calibratical, channel checks, channel functional tests, and logic system functional tests ensure that instrument response times are within acceptble limits. The applicability of the reference analysis to [Plant Name] has been verified.

Because this licensing change improves plant safety and reduces plant operation and maint nance costs, the proposed change qualifies as a Cost Beneficial Licensing Action (CBLA) and should be reviewed by the NRC on a priority basis. Based on a conservative reduction of 1500 man-hours per outage and the potential reduction in outage length, cost savings are estimated to range from \$50,000 to \$100,000 per unit per year.

SAMPLE COVER LETTER (continued)

The results of the 10CFR50.92 evaluation demonstrate that there are no significant hazards considerations.

[[Name] states that he is [Vice President] of [Utility Name] and is authorized to execute this oath on behalf of [Utility Name], and that to the best of his knowledge and belief, the facts set forth in this letter are true.

Very truly yours,

[Name] [Title]

Sworn to and subscribed before me this [] day of [Month, Year].

[Signature of Notary Public]]

Enclosures

cc: []

ENCLOSURE 1

[PLANT NAME] NRC DOCKET [] OPERATING LICENSE []

REQUEST TO REVISE TECHNICAL SPECIFICATIONS: RESPONSE TIME TESTING

BASIS FOR CHANGE REQUEST

Background:

This proposed change is to eliminate from Technical Specifications selected response time testing requirements. Specifically, the response time testing requirements to be eliminated include sensors and specified loop instrumentation for the 1) Reactor Protection System, 2) Isolation System, and 3' Emergency Core Cooling System. An analysis has been performed demonstrating that other periodic tests required by Technical Specifications, such as channel calibrations, channel checks, channel functional tests, and logic system functional tests provide adequate assurance that instrument response times are within acceptance limits. The BWROG evaluation confirms that response time tests are of no safety significance and cause unnecessary personnel exposure, reduce availability of safety systems during shutdown and are a significant burden to utility resource.

Basis:

Regulate_y Guide 1.118 (Revision 2) states:

"Response time testing of all safety related equipment, per se, is not required if, in lieu of response time testing, the response time of the safety equipment is verified by functional testing, calibration checks or other tests, or both. This is acceptable if it can be demonstated that changes in response time beyond acceptable limits are accompanied by changes in performance characteristics which are detectable during routine tests."

An analysi, has been performed by the BWR Owners' Group (BWROG) which provides the basis for eliminating selected response time testing requirements (see Reference 1). The analysis was performed for two representative BWRs, and its applicability to [plant name] has been verified.

The analysis includes the identification of potential failure modes of components in the affected instrumentation loops which could potentially impact the "strument loop response time. In addition, plant operating experiences were reviewed to identify response time failures and how they were detected. The failure words identified were then evaluated to determine if the effect on response time would be detected by other testing requirements contained in Technical Specifications.

The results of the analysis demonstrate that other Technical Specification testing requirements (channel calibration, channel check, channel functional test, and logic system functional test) ensure that instrument response times are within acceptable limits.

These other tests are normally sufficient to identify failure modes or degradations in instrument response time and assure operation of the analyzed instrument loops within acceptance limits. Furthermore, there are no known failure modes that can be detected by response time testing that cannot also be detected by other Technical Specification tests.

Participating utilities will update test procedures (if required) to assure that the instrument technicians recognize response time delays in instrumentation. A BWROG survey has concluded that instrument response time delays of 3 to 5 seconds can be reasonably detected by instrument technicians. A safety evaluation has confirmed that delays of individual specific trip functions of a few seconds have very low safety significance. This realistic bases evaluation showed that a good deal of margin exists in the licensing analysis. Within a trip function, redundancy exists in individual instrument channels (e.g., 1 out of 2 twice) and diversity exists in most safety trip functions (e.g., neutron flux, water level, dryweil pressure). Also, for most of these instruments the response times are insignificant compared to the safety system actuation times.

The Reference 1 evaluations demonstrate that response time testing can be eliminated for the following:

- 1) All Emergency Core Cooling System instrument loops;
- All Isolation System actuation instrument loops except for main steam line isolation valves (MSIVs);
- 3) Sensors for selected Reactor Protection System actuation; and
- 4) Sensors for MSTV closure actuation.

Significant Hazards consideration:

The significant hazards consideration assessment is presented in Enclosure 2 and concludes that the proposed amendment does not involve a significant hazards consideration.

Reference:

- NEDO-32291, "System Analyses for the Elimination of Selected Response Time Testing Requirements", January 1994.
- EPRI Report, NP-7243, "Invastigation of Response Time Testing Requirements", May 1991.

ENCLOSURE 2

[PLANT NAME] NRC DOCKET [OPERATING LICENSE [1

DRAFT R-QUEST TO REVISE TECHNICAL SPECIFICATIONS: RESPONSE TIME TESTING

10CFR50.92 EVALUATION

Basis for Significant Hazards Determination:

The proposed Technical Specification changes described in Enclosure 1 do not involve a significant hazards consideration for the following reasons:

1. The changes do not involve a significant increase in the probability or consequences of an accident previously evaluated.

The purpose of the proposed Technical Specification change is to eliminate response time testing requirements for selected instrumentation in the Reactor Protection System, Isolation System, and Emergency Core Cooling System. However, because of the continued application of other existing Technical Specification requirements such as channel calibrations, channel checks, channel functional tests, and logic system functional tests, the response time of these systems will be maintained within the acceptance limits assumed in plant safety analyses and required for successful mitigation of an initiating event. The proposed Technical Specification changes do not affect the capability of the associated systems to perform their intended function within their required response time.

The BWR Owners' Group has completed an evaluation (Reference _) which demonstrates that response time testing is redundant to the other Technical Specification requirements listed in the preceding paragraph. These other tests are sufficient to identify failure modes or degradations in instrument response time and ensure operation of the associated systems within acceptance limits. There are no known failure modes that can be detected by response time testing that cannot also be detected by the other Technical Specification tests.

2. The changes io not create the possibility of a new or different kind of accident from any accident previously evaluated.

As discussed above, the proposed Technical Specification changes do not affect the capability of the associated systems to perform their intended function within the acceptance limits assumed in plant safety analyses and required for successful mitigation of an initiating event.

3. The changes do not involve a significant reduction in the margin of safety.

The current Technical Specification response times are based on the maximum allowable values assumed in the plant safety analyses. These analyses conservatively establish the margin of safety. As described above, the proposed Technical Specification changes do not affect the capability of the associated systems to perform their intended function within the allowed response time used as the basis for the plant safety analyses. Plant and system response to an initiating event will remain in compliance within the assumptions of the safety analyses, and therefore the margin of safety is not affected.

Although not explicitly evaluated, the proposed Technical Specification changes will provide an improvement to plant safety and operation by:

- a) Reducing the time safety systems are unavailable
- b) Reducing safety system actuations
- c) Reducing shutdown risk
- d) Limiting radiation: exposure to plant personnel
- Eliminating the diversion of key personnel to conduct unnecessary testing

Reference:

 NEDC-32291, "System Analyses for the Elimination of Selected Response Time Testing Requirements", January 1994.

ENCLOSURE 3

[PLANT NAME] NRC DOCKET [] OPERATING LICENSE []

REQUEST TO REVISE TECHNICAL SPECIFICATIONS: RESPONSE TIME TESTING

TECHNICAL SPECIFICATION CHANGES AND PAGE CHANGE INSTRUCTIONS

Attached are mark-ups of the existing Technical Specifications, indicating the proposed changes, and a typed version of the Technical Specifications incorporating the proposed changes. Provided below are instructions for incorporating these pages into the Technical Specifications.

Remove Page	Insert Page
[3/4 3-6]	[3/4 3-6]
[3/4 3-24]	[3/4 3-24]
· ·	
etc.	etc.

[Attach Technical Specification mark-ups and retyped pages.]

APPENDIX J EVALUATION OF DELAY IN TRIP FUNCTIONS SELECTED FOR RESPONSE TIME TEST ELIMINATION

DRAFT

APPENDIX J

EVALUATION OF DELAY IN TRIP FUNCTIONS SELECTED FOR RESPONSE TIME TEST ELIMINATION

This Appendix provides an assessment of a delayed (sluggish) instrumentation response on the order of 3 to 5 seconds for the trip functions selected for RTT elimination. This realistic bases evaluation shows that a good deal of margin exists in the licensing analysis. Within a trip function, redundancy exists in individual instrument channels (e.g., 1 out of 2 twice) and diversity exists in most safety trip functions (e.g., neutron flux, water level, drywell pressure). The resulting analyses demonstrate that a 3 to 5 second instrumentation delay in the trip function will not have any significant impact on plant safety. This assessment provides added assurance that there is sufficient time within existing safety margins for an I&C technician to reasonably detect a failure or degradation in instrumentation response time.

The 3 to 5 second delay was chosen based on a survey of I&C technicians from participating BWR and selected PWR plants. A summary of the results from this survey is provided in Figure J-1.

DRAFT 1)

SYSTEM: REACTOR PROTECTION SYSTEM TRIP FUNCTION: REACTOR WATER LEVEL 3

PURPOSE OF TRIP:

A low level trip indicates that the water level in the reactor vessel has dropped, and a continued decrease in level would cause steam to bypass the seal skirts of the separators or dryers. Generally, this is indicative of a problem with the level control system or reactor feedwater system. Under these circumstances, reactor scram is initiated at this low level by a Reactor Protection System (RPS) trip to substantially reduce steam production. If the Residual Heat Removal (RHR) system is operating in the shutdown cooling mode, the isolation valves on the RHR system suction piping are also closed to prevent further loss of vessel water inventory via that path. This low level trip also serves as a permissive signal for initiation of the Automatic Depressurization System (ADS) to avoid inadvertent activation of the low pressure Emergency Core Cooling Systems (ECCS) on a spurious high drywell pressure signal. This low level signal only provides confirmation that the reactor vessel water level is low; ADS is not actually activated until the Reactor Water Level 1 signal is received and other logic also indicates the need for depressurization.

EFFECT OF TRIP DELAY:

A 3-5 second delay in the Level 3 scram would not have any significant impact on plant safety. The design basis event for the Level 3 scram is the Loss of Feedwater Event (LOFW). The Level 3 scram may occur during other events but it would be a backup function after other scram signals have occurred. For example, in the postulated LOCA, the primary scram signal is the high drywell pressure signal. The LOFW is a non-limiting event for the determination of the core thermal limits. Therefore, a slight delay in the scram actuation would not affect plant thermal limits or fuel integrity. The core cooling function for the LOFW will still be provided by High Pressure Coolant Injection/High Pressure Core Spray (HPCI/HPCS) and Reactor Core Isolation Cooling (RCIC) systems which will initiate on Level 2 which is much lower than Level 3. The small delay in scram would neither affect the capability of these systems to initiate nor to provide core cooling function.

2) SYSTEM: REACTOR PROJUCTION SYSTEM TRIP FUNCTION: REACTOR WATER LEVEL 8

PURPOSE OF TRIP:

A high level trip signal indicates that the water level in the reactor vessel has increased. Protective actions are initiated to prevent further vessel overfill. The trip signal is selected low enough to protect the turbine against gross carryover of moisture and to provide adequate core thermal margins during abnormal events. This signal initiates the closure of main turbine stop valves and trips the reactor feedwater pumps. For BWR/6 plants, a reactor scram is initiated by a RPS trip. For BWR/2 to 5 plants, the reactor scram is initiated by the turbine stop valves fast closure on high water level. The purpose of this RPS trip is to minimize the effect on core thermal margins from the resulting turbine trip caused by the high water level signal.

EFFECT OF TRIP DELAY:

The design basis event for the Level 8 scram is the Feedwater Controller Failure (FWCF). A 3 to 5 second delay in the Level 8 scram would have no significant impact on plant safety. Plant specific transient analysis can be performed to confirm that the core thermal limits would still be valid for the delayed trip on Level 8 scram. The reactor water level is estimated to increase by less than 2 inches. (40000 gpm {feedwater pump capacity} * 0.1 {10% flow increase} /60 min/sec* 5 sec/200 gal/inch (volume of reactor vessel) < 2.). This increase in reactor water level would not result in cold water intrusion in the main steam lines (MSLs) as the Level 8 is still several feet below the MSL elevation.

SYSTEM: REACTOR PROTECTION SYSTEM TRIP FUNCTION: REACTOR HIGH STEAM DOME PRESSURE

PURPOSE OF TRIP:

The reactor vessel pressure must be maintained within the limits prescribed by the ASME Boiler & Pressure Vessel Code, Section III. If pressure increases to a preset value, a trip signal to the Reactor Protection System (RPS) will initiate reactor scram in order to shutdown nuclear heat generation. Reactor scram is initiated by high pressure if other signals have failed to scram the reactor to limit the effect of increased pressure on reactor power and provide assurance that reactor vessel integrity will be maintained within emergency limits.

This scram also serves to shutdown the plant for non-design basis events that may involve slightly higher steam flow than the turbine and/or bypass valves can handle. If no other trip occurs first, the high pressure scram will shutdown the unit before initiation of relief valve flow to the suppression pool. An example of this sequence is a Turbine/Generator (T/G) trip at a power level above the bypass capacity, but below the power interlock which activates the T/G trip scram (typically at 5% above the bypass capacity). If the bypass response is normal, the flux scram may be avoided, but the pressure will gradually increase to the pressure scram setpoint.

EFFECT OF TRIP DELAY:

The reactor high steam dome pressure is primarily a backup scram signal. The primary scram signals for various pressurization events are the position switches (or other appropriate logic at some plants) for the turbine stop valves or Main Steam Isolation Valves (MSIVs), the pressure switches for the turbine control valves, or in some cases, the high neutron flux scram signal. Under the current Anticipated Transient Without Scram (ATWS) rules, plants can meet the ASME Emergency Limits without taking credit for the high pressure scram. For the non-design basis events, the reactor pressure response is also much slower due to the lower power level. Consequently, the delay would not affect the integrity of the reactor vessel. The slight delay in the pressure scram also does not affect the core thermal limits for the non-design basis events.

The only exception for the use of the high pressure scram signal is for plants with the APRM-RBM Technical Specifications (ARTS) implementation. The Minimum Critical Fower Ratio (MCPR) (P) and powerdependent Maximum Average Planar Linear Heat Generation Rate (MAPLHGR) (P) were determined by taking credit for the high pressure scram for events which occur at reactor power below the bypass of the turbine trip or generator trip scrams (typically between 30% to 45% of rated power). Plant specific evaluations can be performed for these plants to determine the impact on these power-dependent limits. However, given the large operating margin normally available at these low power ranges, a 3-5 second delay in this scram signal would not affect fuel integrity. DRAFT SYSTEM: ISOLATION ACTUATION (MSIV CLOSURE) TRIP FUNCTION: REACTOR WATER LEVEL 1 OR 2

PURPOSE OF TRIP:

Abnormally low reactor water level is used to generate initiation signals for several functions, one of which is closure of the MSIVs. The signal is at either Level 1 or 2, depending on the plant configuration. Fuel cladding integrity must be assured by the initiation of the ECCS systems. To limit the possibility of off-site release, the MSIVs will be closed at the low water level signals.

EFFECT OF TRIP DELAY:

Closure of the MSIVs at low reactor water level would occur during events which involves loss of reactor inventory, such as LOFW or LOCA events. However, immediate valve closure is not required for core or plant safety. The reactor would have been scrammed at either Level 2 or 1. The MSIV closure does not affect core cooling. The only purpose of the MSIV closure at low reactor water level during this type of event is to limit the potential increase in the off-site dose. However, at these reactor water levels, there is no fuel damage and the radioactivity is limited to the inventory in the steam lines. No fuel damage would occur even if there is a slight delay (3 to 5 seconds) in the MSIV closure under these conditions. Therefore, the 3 to 5 second delay in the MSIV closure on low reactor water level does not affect plant safety.

SYSTEM: ISOLATION ACTUATION (MSIV CLOSURE) TRIP FUNCTION: MSL RADIATION HIGH

PURPOSE OF TRIP:

MSIV Closure on MSL radiation high signal is provided to prevent the large release of radioactivity to the environment. The protection is provided primarily for events which may result in fuel failures, such as the control rod drop accident (CRDA) or loss of coolant accidents.

EFFECT OF TRIP DELAY:

MSIV closure on high radiation level is required when fuel failure has occurred. For CRDA, fuel failure is limited due to the restriction placed on the rod worth. The increase in radioactivity will not occur in the first several minutes of the event and will be contained inside the steam lines. For LOCA events, the MSJVs would have been closed on other signals prior to the high radiation signal. Therefore, a 3 to 5 second delay in the MSIV closure on MSL high radiation signal does not affect plant safety.

DRAFT

6) SYSTEM: ISOLATION ACTUATION (MSIV CLOSURE) TRIP FUNCTION: MAIN STEAM LINE LOW PRESSURE

PURPOSE OF TRIP:

MSIV closure on low steam line pressure is provided to protect the reactor system during normal power generation (RUN Mode) against transients that could cause uncontrolled depressurization. Protection is provided primarily for a pressure regulator malfunction which results in turbine control and/or bypass valves opening. The MSL low pressure trip setpoint is specified to limit the duration and severity of the depressurization so that vessel thermal stresses (resulting from vessel cooldown rate) remain below the appropriate safety limit and inventory loss is limited to prevent uncovering the core. The setpoint is chosen to be low enough that unnecessary isolations are avoided.

EFFECT OF TRIP DELAY:

The MSL low pressure trip signal is used primarily to protect the reactor system in case of a pressure regulator malfunction event. This event is not a limiting event for the core thermal limits. The primary concern is the reactor inventory loss and the thermal cyclic effect on the reactor vessel. During this event, the rapid depressurization causes an increase in water level which results in the high water level trip. This in turn initiates a turbine trip and reactor scram. After reactor scram, reactor water level can be maintained by HPCI/HPCS or Reactor Core Isolation Cooling (RCIC) systems which are initiated at Level 2. The trip setpoint for many BWRs is approximately 850 psig. Analysis demonstrates that the setpoint can be lowered to 750 psig without affecting vessel integrity. The reactor vessel is designed to accommodate more rapid depressurization than this event. Therefore, a 3 to 5 second delay would not affect vessel integrity or plant safety.

7) SYSTEM: ISOLATION ACTUATION (MSIV CLOSURE) TRIP FUNCTION: MAIN STEAM LINE FLOW HIGH

PURPOSE OF TRIP:

MSIV closure on high steam line flow is provided to protect the reactor system against transients or accidents that could cause unexpected increase in steam flow. Protection is provided primarily for a break in the steam line outside the primary containment. Flow restrictors are provided to limit the maximum steam flow to 140% of rated steam flow. The MSL high flow trip setpoint is specified to limit the duration and severity of the high steam flow condition so that any off-site release will remain below the appropriate limit and inventory loss is limited to prevent uncovering the core. The setpoint is chosen to be high enough that unnecessary isolations are avoided.

EFFECT OF TRIP DELAY:

The MSL high flow is designed primarily to protect against a MSL break outside containment. The high steam flow from the postulated double ended break would result in releasing a large amount of steam and water outside the primary containment. However, fuel failure would not result from this event as the break would be isolated long before the reactor water level has any significant drop. The analysis of this event for older plants assumes a 10 second valve closure time, although the Technicial Specification requirements for the MSIVs are 3 to 5 seconds. Even with the conservative valve closure time, the off-site release for this event is only a small fraction of the allowable 10CFR100 limits. A 3 to 5 seconds delay in the MSIV closure on high steam flow would still meet the requirements of 10CFR100. Therefore, the 3 to 5 second trip delay for this function does not affect plant safety.

DRAFT

8) SYSTEM: ISOLATION ACTUATION

TRIP FUNCTION:

- RCIC System
- HPCI System (BWR3/4)
- HPCS System (BWR 5/6)
- RWCU System
- RHR Shutdown Cooling/Head Spray
- Primary Containment
- Secondary Containment

PURPOSE OF TRIP:

Depending on this system, this instrumentation is either for high flow or high area temperature. The instrumentation is provided on various systems to protect the reactor system against accidents that could cause unexpected loss of reactor coolant caused primarily break or a leak in the process lines outside the primary contained For the primary and secondary containment, the protection is to provent release of radioactivity materials to the surrounding environment.

EFFEC1 OF TRIP DELAY

The Isolation Actuation Instrumentation is provided to limit the release of reactor inventory following a break in the system process lines. Each system listed above is connected to the nuclear boiler and penetrates the primary containment. These lines are equipped with an ac and do powered isolation valve. The design basis evaluation for the reactor inventory release for these lines are based on the assumption that the do valve has failed and that the plant has lost off-site power. In this case, the ac powered isolation valve cannot close until the onsite emergency diesel generator provides the power for the valve. The delay for the emergency diesel generator is typically between 10 to 13 seconds which is longer than the 3 to 5 second delay for the instrumentation. The emergency diesel generator is initiated upon loss of off-site power and is independent of the isolation actuation instrumentation. Therefore, this 3 to 5 second delay on isolation actuation does not have any effect on the plant safety.

J-9

9) SYSTEM: DERGENCY CORE COOLING SYSTEM ACTUATION

.

TRIP FUNCTION:

- HFCI/HPCS
- LPCS
- LPCI .

PURPOSE OF TRIP:

The ECC system is provided to assure adequate core cooling following loss of normal reactor cooling capability. The HPCI/HPCS provides core cooling at high reactor pressure conditions. In case of a LOCA or when the reactor pressure is sufficiently low, the low pressure ECC systems (LPCI or LPCS) initiate to provide core cooling. In the event of a small leak in the primary coolant system where HPCS cannot provide adequate core cooling, the ADS would initiate to depressurize the reactor vessel to allow the low pressure ECC system to provide the necessary core cooling. The typical response time for the ECCS is as shown below:

> o HPCI/HPCS (27 to 35 seconds) o LPCS (27 to 40 seconds) o LPCI (37 to 64 seconds)

EFFECT OF TRIP DELAY:

The ECC systems are required to mitigate LOCAs. The application of the GE SAFER/GETSR code for BWRs has demonstrated that there are significant safety margin for LOCA events. The realistic peak cladding temperature for the design basis LOCA is 1000°F which is significantly below the 2200°F Peak Cladding Temperture (PCT) limit. The delay in the HPCI/HPCS response time does not have any significant impact on the design basis LOCA because the system is not used as the primary cooling source due to the rapid reactor depressurization. For isolation and small breaks, a 3 to 5 second delay in system response has minimal impact since the release of the reactor inventory from the break is significantly reduced. For the design basis LOCA, analysis (Ref. 1) has demonstrated that a 11 second increase in the response time for the core spray system would increase the PCT by approximately 84°F. A 15 second increase in the LPCI response time would increase the PCT by 131°F. The combined effect of a 10 second delay for LPCS and 9 second for LPCI is an increase in the PCT by 137°F, still considerably below the PCT limits. Therefore, a 3 to 5 second delay in the ECCS system response time does not affect plant safety.

Ref. 1: "Basis for Relaxing ECCS Performance Requirements for BWR/4s", EPRI, NSAC-131, September 1988.

BWROG SURVEY OF INSTRUMENT TECHNICIANS - TIME TO DETECT INSTRUMENT SLUGGISH RESPONSE

1-11

DRAFT

APPENDIK K RTT COMPONENT FAILURE MODES ANALYSES

APPENDIX K RTT COMPOENT FAILURE MODE ANALYSES

This Appendix summarizes the results of the failure modes analyses for the generic components that could potentially affect the instrumentation loop response time. These analyses are based on detailed engineering evaluations including vendor contacts, operating experience, and design experience to investigate the potential failure modes of the specific loop instrumentation.

K.1 TRIP UNIT

K.1.1 Rosemount Trip Unit

The 510DU/710DU trip/calibration system is a seismically-qualified, multichannel signal conditioning unit with a built-in calibration capability. It is designed to provide accurate, easily-calibrated trip output signals for process variables (pressure, temperature, level etc.) which are received from 4 to 20 mA transmitters. The trip output signals drive external relays or loads of up to one amp. The master trip unit produces a trip output signal when transmitter input current passes through a preset trip point. A gross failure signal is generated when the transmitter current is outside preset high or low limits. One analog output is used to drive up to seven slave trip units, thereby establishing as many as eight trip points for a single transmitter input.

Master trip units have a trip point adjustment potentiometer on the front panel, as well as an analog meter displaying transmitter input current, two light-emitting diodes (LEDs) indicating trip and gross failure outputs, a gross failure reset button and a test jack to monitor the transmitter input.

Each slave trip unit is driven by a master trip unit with analog output, and adds one additional trip point and gross failure circuit to the transmitter loop. The slave trip unit receives a buffered 1-5 Vdc signal proportional to transmitter current and, like the master trip unit, produces a trip output signal when the transmitter current passes through a preset trip point, and a gross failure signal when transmitter current is outside preset high or low limits.

Resemount Models 510DU/710DU are very fast devices with respect to response time. The nominal response time for this master trip unit is of the order of 2 milliseconds. The master trip unit is designed such that it either

trips or does not trip. When the circuitry associated with the master trip unit fails, it does not provide the normal observable trip function indication. Furthermore, there were no failure modes identified that lead to a degraded condition that significantly affects the response time of the trip function.

The only component within the master trip unit that can potentially lead to response time degradation is a capacitor that a used for noise suppression. Two failure modes are associated with this capacitor: (1) shorted out or leakage and (2) open. If the contactor shorts out to the maximum value of 100%, the master trip unit response time will become faster by approximately 100 microseconds, and this will result in erratic operation. However, from a practical standpoint, the impact on the master trip unit response time is negligible. Similarly, if the capacitor is open, the master trip unit response time will increase by a negligible amount while causing erratic operation. The typical failure frequency of these failures is very small (approximately 1.0 x E-7 per hour).

Therefore, no failure modes were identified within the master trip unit that could potentially increase its response time above the millisecond range.

K.1.2 GE Master Trip Unit (184C5988 Series)

The GE master trip unit, which is similar to Rosemount, provides the signal processing necessary to monitor analog inputs and provide contact closure/open as trip outputs. Trip points, hysteresis, and gross failure limits are adjustable. There are no failure modes within the master trip unit circuitry which would delay the normal response time without also affecting calibration or causing misoperation. If calibration checks are normal, the trip unit response time will be within specifications.

K.1.3 Indicator and Trip Unit (129B2802 Series)

The indicator and trip unit is an electronic amplifier and trip circuit module consisting of discrete transistors, resistors, capacitors, diodes, etc. The dominant failure mode affecting response time is the degradation of resistors and electrolytic capacitors in the input and feedback circuits. However, the time constants are in the range of 10 to 27 milliseconds. These are insignificant compared to overall system response time requirements.

The predominate failure mode which could affect response time is an

K-2

DRAFT increase of resistance in the feedback circuit. If the resistance increases, the circuit response may become significantly slower before it fails to

operate. An engineering evaluation of the feedback circuits shows that the indicator and trip unit could potentially sustain operation with a response time increase of an estimated 200 to 300 milliseconds. Failure modes (resistance increase) which can extend the time further, can be detectable by loss of DC performance and misoperation during other surveillance tests.

The predominate failure mode of the capacitor is a reduction of capacitance and lower resistance. This failure mode will make the indicator trip unit respond faster to input signals. Considering that the worst case failure mode results in a 200 to 300 milliseconds degradation in response time, the component response time will still remain in the millisecond range, and, therefore, response time testing is not required.

K.2 Relays

٠

Relay failure modes normally result in a failure of the relay to operate or a gross degradation in relay performance. Either of these conditions is readily detectable through functional testing, inspection, or observations of abnormalities during routine operation. In addition, due to the relative frequency of performance of functional versus response time tests, it is likely that such failures would be detected via functional tests much sooner than response time tests. The failure experience review evaluation (Appendix D) confirms these conclusions and shows that the majority of failures are due to aging and wearout (Reference 8.0 in main report). Furthermore, many of these failure modes have been eliminated through design enhancements and substitution of superior materials. See Appendix D for a more detailed discussion of typical failure modes encountered by relays.

K.3 Time Delay Relays

An engineering evaluation and the failure experience review (Appendix D) has confirmed that time delay relays affect response time and are subject to setpoint drift. These failure modes include pickup or dropout delays well in excess of the time delay setting. In addition, failure modes involving operator misadjustment and misoperation (e.g., early or inadvertent actuations) frequently occur. For these reasons, time delay relays require calibration for response verification and to assure setpoint accuracy.

K.4 Flow Devices (Bailey/GEMAC Modules)

The following modules were analyzed for delay failure modes by review of their schematic diagrams. These units operate essentially instantaneously, and "instant" operation can be easily confirmed during normal calibration surveillances.

E.4.1 752 St motor

The input and feedback resistors and capacitors on the output amplifier are the only identified response time dependent components. If these resistors and capacitors change value, the delay time will be affected, but so will the calibration. If the unit calibrates properly, it can be concluded that the resistors are functioning properly. Failure of feedback capacitors will change calibration and speed up the circuitry, not slow it down. Therefore, it can be concluded that response time degradation can readily be detected by other surveillance tests.

K.4.2 750 Square Root Extractor

Changes in the resistors in the output amplifier T network and feedback resistors may cause response delays, but they would also cause calibration accuracy changes. If the unit calibrates properly, the response time will remain within requirements. Therefore, any response time degradation beyond acceptable limits can be detected by the other technical specification surveillance tests.

K.5 Radiation Devices

K.5.1 Trip Auxiliary Unit (238X697 Series)

The trip auxiliary unit consists of relays which either will operate or fail to operate. There is no identified failure mode which would alter the relay nominal pickup or dropout delays. If a relay fails to operate, it will be detected by logic system functional tests as a functional failure.

K.5.2 GE NUMAC Log Rad Monitor (304A3700 Series)

The NUMAC Log Rad Monitor is a microprocessor-based instrument running with an internal clock using a piezo-electric crystal. Crystal failure would

result in an increase in frequency. This causes either a faster response or total shutdown with trip initiation.

The failure modes listed in the MIL Spec for the crystals used in NUMAC seal indicate that a frequency shift of 0.01% may occur, when the package bermetic seal is broken, which is rare. The frequency shift of 0.01% translates into one microsecond response time difference. The mean time between failure (MTBF) is on the order of 200 years. Thus, it is concluded that the potential for instrument slowdown due to crystal failure is in the micro-scond range and does not significantly affect response time.

R.5.3 Log Radiation Monitor (238X660 Series)

The 238X660 series Logarithmic Radiation Monitor is a complex analog circuit design utilizing discrete components including electrometer tybes. It is used to monitor main steam line radiation over a six-decade range to provide a scram trip, if patiation exceeds a trip point. This analog instrument has a number of potential component failure modes. Some will affect response time and others will disable the instrument. For example, the feedback capacitor in the logarithmic diode circuit can change value and adversely affect response time. The malfunction can be discovered during routine surveillance such as calibration procedures. Analysis of potential failure modes which could change response time is difficult to justify without extensive testing. Therefore, the elimination of response time testing for the Log Rad Monitor cannot be justified.

K.6 Transmitters/Switches

Transmitters and switches can be eliminated from response time testing based on analyses performed by EPRI (Reference 1) and additional BWROG analyses for sensors not included in the EPRI analysis. The RPS water level, reactor pressure sensors, and sensors that support selected ECCS and isolation actuation functions are included in these supplemental analyses. The specific sensors are listed in Table 7-1 in main report.

The following is a discussion of the EPRI results and additional BWROG analyses of sensors not included in the EF 7 study.

.

NEDO-32291

R.6.1 Transmitters/Switches Included in EPRI Analyses

The EPRI analysis scope included the majority of pressure sensor instrumentation currently installed or expected to be installed in U.S. plants. The pressure sensors which are applicable to the BWR plants participating in this BWROG study are the Barton, Rosemount, and SOR transmitters/switches. Sensor failure modes associated with all Barton transmitters, models 763 and 764, switches model 288/289, and SOR switches were not found to affect sensor response time without significantly affecting calibration. The BWROG reviewed and provided comments on the draft EPRI analysis report prior to issuance. All comments were addressed in the final report.

Only two failure modes and two manufacturing/handling defects were identified in Reference 1 as affecting response time without concurrently affecting sensor output. These failure modes and defects apply only to sensors utilizing a fill fluid to transfer the process pressure to the sensing element. Rosemount supplies the only sensors of this type identified for plants participating in this BWROG study. The two failure modes are the slow loss of fill fluid during pressurized operations and variable damping potentiometer misadjustment during maintenance. The two manufacturing and handling defects are low sensor fill fluid from the manufacturing process and crimped capillaries from the manufacturing process, improper handling by the manufacturer, or damage during field instal ation/maintenance.

A discussion of these failure modes and effects are included in Appendix F. The effect of these failure modes and effects on RTT elimination can be summarized as follows:

(1) <u>Slow loss of fill fluid</u> - A slow loss of fill fluid causes a gradual degradation of the measurement process by reducing the ability of the working fluid to rapidly transmit pressure changes to the sensing diaphragm. Current response time tests are ineffective in detecting the initial stages of slow fluid loss. For sensors that are susceptible to the slow loss of fill-oil, Drift Analysis is the preferred method to detect the change in instrument performance. Other diagnostic techniques such as sluggish response and process noise analysis may be used to supplement Drift Analysis. When enough fluid (Reference 10-13) is lost to cause a significant response time degradation, the sluggish response of the leaking sensor will be detected during transmitter calibration.

(2) Variable damping potentiometer misadjustment - Damping devices have been utilized in fast acting trip circuits to minimize the potential for inadvertent actuations. The use of a variable damping potentiometer in the transmitter design provides a means of applying the same type of transmitter to several circuits that require additional electronic filtering capability. Variable damping potentiometer misadjustment can affect the response time in circuits having capacitors and resistors that control electronic response time. Measures must be taken to ensure that the potentiometer is at the required setting at time of installation and after major maintenance.

Therefore, no additional response time tests are required. A more detailed discussion on damping filters is also found in Appendix F.

(3) <u>Manufacturing and handling defects</u> - Low sensor fill fluid during manufacturing and crimped fill capillaries due to manufacturing or mishandling during installation/maintenance were identified in Reference 1 as affecting transmitter response time. Response time is the only sensor characteristic affected by these manufacturing and handling defects. Since November 1989, vendor testing has been implemented to ensure acceptable fill and capillaries. In addition, when low fill fluid or crimped capillaries affect response time, the degradation can be identified by pre-installation calibration.

K.6.2 Transmitters/Switches Not Included in EPRI Analysis

The following two switch models are not part of the EPRI report (Reference 1 of main report) but were supplemented by BWROG.

R.6.2.1 Barksdale Pressure Switches

The only potential failure mode for model TC9622-3 (piston with O-ring) occurs if the switch is misapplied in process or range. The O-ring seal can swell due to pressure above its rating, and this swelling causes the plunger pin to react sluggishly. This will increase the instrument response time. Since safety-related switches are carefully specified and verified, this failure mode is considered extremely unlikely. The only electrical failure mode occurs in the microswitch. This will not produce a delay, but will cause failure to operate, which can be readily detected during surveillance testing.

The Barksdale BIT and B2T series are Bourdon tube instruments and do not have components that can cause response time related failures. Therefore, response time testing is not required.

R.6.2.2 Barton 760 Transmitters

Barton 760 is a differential pressure transmitter which contains a mechanical bellows and electronic circuit similar to Model 764. As concluded in Reference 1 of main report, response time testing is not required for the Barton 764 Model. This conclusion also applies to Model 760.

K.7 Loop Devices

K.7.1 Rosemount/GE Trip Unit Noise Suppression Filter Capacitor

The WBR 2000-50 capacitor, used as a process noise filter in an analog transmitter loop, is manufactured by Cornell Dubilier-Sangamo Components. It is a 2000 ufd aluminum electrolytic capacitor with a 50V rating. Failure modes of the capacitor are (1) open, (2) short, (3) increased leakage, and (4) change in capacitance. When installed in parallel with the trip unit input, short circuit and increased leakage current failures can affect analog loop accuracy. Loop calibration procedures (end to end) performed on a periodic basis can demonstrate loop operability within the required performance requirements as long as the capacitor is in the circuit during the procedure. Open circuit failures are in the conservative direction and are not a concern with respect to response time. Capacitance change failures can include (a) decreased capacitance, which is in the conservative direction with respect to response time, and (b) an increase of capacitance. The vendor states that capacitance may increase by 10% with time. These parts are already specified with a -10%/+75% tolerance. The time delay added by the capacitor should have sufficient margin to the maximum allowable to account for this possible increase. With surveillance tests demonstrating loop operability, there are no failures with the capacitor which will adversely affect system response time.

R.7.2 745 Alarm Unit

These alarm units are used only in trip functions such as reactor water cleanup isolation. A review of the schematic diagram revealed that only the input 4.99K resistor and 10 microfarad capacitor contribute to a delay time on the order of 50 milliseconds. If the input resistor failed to a higher

resistance, the delay would increase linearly until the unit failed to operate. The limits are unknown without testing. A ten-fold increase in resistance would increase the delay to approximately 0.5 seconds. Noting the apparent and almost instantaneous operation of a normal unit during calibration checks may be an alternate means to ascertaining that no failure mode affecting response time has occurred. Therefore, it can be concluded that insignificant response time degradation in the millisecond range is possible and any greater degradation can readily be detected by other surveillance tests.

K.7.3 560 Alarm Unit

A review of the schematic showed no potential response time related failure modes except for the power supply filter capacitors. If the filter capacitors fail, the circuit would experience excess AC ripple and may operate erratically. Measurement of the DC voltage verifies normal operation. Failure of other capacitors would lead to misoperation, not response time delays. Therefore, it can be concluded that response time is not affected.

K.7.4 Power Supply

The 24V power supplies furnish operating voltages to the indicator and trip unit and the sensor converter. It is possible for the power supply to incur failures which would change the output voltage. There is no direct correlation between power supply voltage and response time of the indicator and trip unit and the sensor converter. Failures that result in changes of the output voltage would affect the overall operability and calibration accuracy but will not affect response time.

K.7.5 Optical Isolators

Field Cont	act Input	204B6186AAG2
High Level	Output	20486186AAG4

These isolator pairs operate with a propagation delay not to exceed 20 milliseconds. By review of the circuit and components, it is concluded that there are no response time related failure modes which would extend this time without causing a failure to operate. Therefore, response time testing is not required on these units.

Enclosure 4

Westinghouse Owners Group

Elimination of Selected Response Time Surveillance Test Requirements

Program Approach

December 6, 1993

REVISE SENSOR REPORT TO INCLUDE:

- DATA BASED ON PLANNED REVISION OF EPRI REPORT NP-7243.
- o ADD DISCUSSION ON VISCOSITY EFFECTS
- o ADDRESS NRC QUESTIONS/CONCERNS ON:
 - COST BENEFITS
 - OPERATOR TRAINING
 - SAFETY SIGNIFICANCE

SAFETY SIGNIFICANCE

- o MARGIN EXISTS, PARTICULARLY WITH SENSORS. ALLOWANCE IS:
 - 400 ms FOR DP SENSORS
 - 200 ms FOR PRESSURE SENSORS
- FOR ADDED CONFIDENCE, PERFORMED RMS EVALUATION FOR INCREASE BY A FACTOR OF 5 ON THE SENSOR, SIGNAL CONDITIONING, AND LOGIC

PROCESS PRESSURE MEASUREMENTS

DOES NOT EXCEED TECH SPEC LIMITS (EVEN W/O RMS)

- CONTAINMENT PRESSURE MEASUREMENT

MATCHES TECH SPEC LIMIT USING RMS METHOD

FLOW AND LEVEL MEASUREMENTS

RMS VALUES EXCEEDED TECH SPEC LIMIT - MAXIMUM WAS 2.4 SEC.

SAFETY SIGNIFICANCE (continued)

- o LOCA ANALYSES UTILIZE:
 - PRESSURIZER PRESSURE REACTOR TRIP
 - LOW PRESSURIZER PRESSURE SI
 - CONTAINMENT PRESSURE
- SGTR ANALYSES ASSUMES NO DELAY FOR REACTOR TRIP AND SI. THIS PROVIDES MORE CONSERVATIVE RESULTS.
- o PARTIAL LOSS OF RC FLOW
 - LOW RC FLOW TRIP INCREASED FROM 1.0 TO 2.4 SEC.
 - MARGIN EXISTS WITH RESPECT TO THE BOUNDING COMPLETE LOSS OF FLOW ANALYSIS
 TIME INCREASE DOES NOT RESULT IN CORE DAMAGE
- LOCKED ROTOR EVENT (LOW RC FLOW TRIP)
 - BETTER-ESTIMATE ASSUMPTION WOULD YIELD SIMILAR DNB RESULTS
 - LESS THAN 2% INCREASE IN PEAK PRESSURE
SAFETY SIGNIFICANCE (continued)

- MAXIMUM CLAD TEMPERATURE AND ZR-H₂O REACTION CRITERIA NOT EXCEEDED
- o FEEDWATER MALFUNCTION
 - HIGH STEAM GENERATOR WATER LEVEL MUCH MARGIN EXISTS - NO FUEL FAILURE
- o STEAM BREAK ANALYSIS
 - HIGH STEAM LINE DELTA-P NO SIGNIFICANT IMPACT - NO FUEL FAILURE
- LOSS OF NORMAL FEEDWATER/STATION BLACKOUT, FEEDLINE BREAK, LOSS OF LOAD TURBINE TRIP, AND MASS/ENERGY RELEASE OUTSIDE CONTAINMENT.
 - LO-LO STEAM GENERATOR WATER LEVEL TRIP -NEGLIGIBLE EFFECTS ON THESE TRANSIENTS