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ABSTRACT

This report culm! nates work performed by Sandia National Laboratories
(SNL) for the U S. Nuclear Regulatory Commission (NRC) under FIN A1165
(Technical Assir.cance for performance Assessment) on uncertainties asso-
ciated with performance assessment of HLW repositories. The purpose of
this report i t. to sun 2narize the work in the topical area of uncertainty
conducted under FIN A1165. Many different types of uncertainty can
affect the perforrmance of an HLW repository. In a performance
assessment, these uncertainties should be identified and considered, and
to the extent practicable, should be quantified and reduced.
Conventionally, the different types of uncertainty are classified in
three major categories: uncertainty in the future state of the disposal
system; uncertainty in models needed to simulate the behavior of the
disposal system; and uncertainty in data, parameters, and coefficients
needed for the analysis of the system. All three major cate6ories of
uncertainty are covered in this report. The reader should not rely on
this report for an in depth treatise of these types of uncertainty. Only
a short overview is presented with numerous references to SNL reports

I where different uncertainty topics are discussed in detail; as such, this
report is not a stand alone report. The report can be used by (1)
managers to familiarize themselves with the issues regarding uncertainty
in HLW repository performance and (2) technical staff as a review of
SNL's work for NRC in this area,

l
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1.0 INTRODUCTION AND BACKGROUND

The Nuclear Regulatory Commission (NRC), under its broad grant of author-
ity under the Atomic Energy Act [1954), is respon.atble for regulating
both the peaceful uses of nuclear energy and the radiological health and
safety of the public. With respect to the disposal of high level nuclear
waste (llLW) and spent nuclear fuel, the NRC has promulgated technical
criteria under 10 CFR 60 [NRC, 1988). Additionally, the NRC is the
implementing agency for the Environmental Protection Agency's (EPA)
radioactive waste standards 40 CFR 191 [ EPA. 1985).1

The Department of Energy (DOE) is responsible for the design, construc-
tion, operation, and decommissioning of a geologic repository for dis-
posal of spent nuclear fuel and }{LW. This work includes characterizing
the site and demonstrating compliance with the appropriate regulations.
To show compliance, the DOE is required to develop and implement a com-
prehensive site assessment methodology to prepare a license application
to be evaluated by the NRC. To facilitate this evaluation, the NRC is
developing a licensing assessment methodology. This methodology is to be
applied by the NRC staff in evaluating a DOE license and is not intended
to guide the DOE efforts.

The NRC't. license assessment methodology will consist of plans and guide-
lines fer reviewing both qualitative and quantitative aspects (i.e., :

performance assessments) of the DOE license application. Sandia National i

Laboratories (SNL), which developed performance assessment methodologies I

for the NRC [Cranwell and others, 1987; Bonano and others, 1989a), has
been contracted by the NRC to help develop the post closure performance
assessment aspects of the license assessment methodology. This methodol-
ogy is based on a combination of tools and techniques that provide for an
assessment of the potential consequences of locating a llLW repository in
geologic media. An integral part of the methodology and its use is the
identification, treatment, and reduction of the uncertainties associated
with the performaat.e estimates.

This report represents a culinination of two maj or tasks in FIN A1165
dealing with uncertainties in performance assessments. These tasks have
resulted in several reports on the topical area of uncertainty including:
(1) the treatment of data and parameter uncertainty [Zimmerman and
others, 1990); (2) scenario development and screening [Cranwell a ,d

I others, 1990); (3) scenario probability estimation [Ilunter and Mann, 1989

1The United States Court of Appeals, 1st Circuit, 7/17/8/, vacated the
EPA itLW standard 40 CFR 191 and remanded the EPA individual protection
and ground water requirements for further consideration. While this
action by the court may result in numerical criteria that differ from
EPA's original values, the content and form of the requirements are not
expected to change. Therefore, the processes and parameters identified
in this report are expected to be relevant to any revised EPA standards.

.
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and Apostolakis and others);2 (4) the use of expert judgment (Bonano and
others, 1990); (5) model v.lidation [ Davis and Goodrich);8 (6)
uncertainty analysis of grou".d water flow models [Zimmerman and others);'
and (7) overall compliance with the EPA containment requirement (Bonano
and Wahi, 1990). In '.his report, the discussions on uncertainty
presented in the previor.e reports are integrated and summarized.

1.1 Definition of Uncertair y

In the context of high level waste repository performance assessments,
two types of uncertainty are discussed: data uncertainty and uncertainty
about the nature and behavior of the natural and engineered components of
the repository system. With respect to HLW performance assessments,
uncertainty in the nature and behavior of the system can be subdivided
into uncertainty in models of the system and uncertainty in the future
state of the system. Data uncertainty can be defined as the estimated
amount by which an observed, measured, or calculated value departs from
the true value. Uncertainties arising from instrument accuracy and pre.
cision are examples of this type of uncertainty. Generally, the effect
this type of uncertainty has on performance assessment results can be
quantified. Uncertainty in the nature and behavior of the repository
system arises from an incomplete knowled e of the natural and engineered6
components of the system and their current and future behavior. This
type of uncertainty is difficult to quantify. Examples of this type of
uncertainty include the uncertainty associated with conceptual models of
ground water flow and radionuclide transport and the uncertainty of
future changes to the repository system caused by events such as volca-
nism or faulting.

1.2 Need for Uncertainty Analyses in Performance Assessment

The EPA has stated that performance assessment is to be used in assessing
compliance with their containment requirement in 40 CFR 191.13 [ EPA,

1985). The EPA states that a performance assessment is an analysis that
. . .e stimates the cumulative releases of radionuclides, taking ' into"

2Apostolakis, G. E., R. L. Bras, L. L. Price, J. Valdes, and K. K. Wahi,
Technioues for Determinine Probabilities of Events and Processes
Affecting the Performance of Geolonie Recositories! Volume II -

Surrested Acoroaches, NUREG/CR 3964, SAND 86 0196, Vol. 2, Sandia
National Laboratories, Albuquerque, NM, to be published.

8 Davis, P. A. and M. T. Goodrich, Technical Basis for Judrine the
Validity of Models for Performance Assessment of HLW Repositories,
NUREG/CR 5537, SAND 90 0575, Sandia National Laboratories, Albuquerque,
NM, to be published.

'Zimmerman, D. A., R. T. Hanson, and P. A. Davis, comoarison of Parameter
Estimation and Sensitivity Analysis Technioues for Ground Water Flow

Models and Their Imoact on Uncertainty in Model Performance Predictions,
NUREG/CR 5522, SAND 90 0128, Sandia National Laboratories, Albuquerque,
NM, to be published.
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account all associated uncertainties." Given the nature of the high.
level waste problem (i.e., assuring safety over very long time periods
and over large spatial domains), it is evident that the identification,
quantification, and reduction of uncertainty will also play a significant
role in assessing compliance with .ill of the other regulatory require.
ments.

The fcllowing sectix.s describe the three major types of uncertainties
associated with a performance assessment of a HLW repository: uncertain.
ty in the future state of the system, data and parameter uncertainty, and
model uncertainty. Each of these is discussed in terms of the source of
uncertainty, the treatment of uncertainty in performance assessments, and
the reduction of uncertainty.

3
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.0 UNCERTAINTY IN THE FUTURE STATE OF THE REPOSITORY SYSTEM

M.ile in reality the repusitory system (geologic and engineered) will be
subject to one temporal evolution of environmental conditions, uncertain-
ty arises from our inability to predict what that future state will be.
Therefore, the EPA [1985) requires that all significant processes and
events that could affect the ability of a HiM repository to isolate the
vaste effectively to be considered in a performance assessment analysis.
The NRC (1988), by reference to the EPA standard, requires the same con-
sideration except that the NRC uses the phrase. * anticipated processes
and events and unanticipated processes and events" in place of EPA's
phrase "significant processes and events." In either case, the intent
is to assure that the repository system, the combination of the geologic
barrier and the engineered system, continues to isolate the waste over
periods of time no long that environmental conditions could change sig.
nificantly from conditions today. Note also that the phrase " processes
and events" is somewhat misleading because events of concern for
repository performance are in reality the results of processes. For
example, the formation of a fault through the repository (an event) is
the result of tectonic processes. One possible exception to this is the
potential for humans intruding into the repository and releasing the
waste to the environment. In this case, one could say, for example, that
orilling through the repository is either an event or e process.

2.1 Anoroaches to Treatine Uncertainty in the Future State of the
Renositorv System

Currently, there are two main approaches being advocated for addressing
uncertainty in the future state of the repository system. These
approaches are distinguished by their focus. That is, one approach,
referred to as the environmental simulation approach (Thompson, 1988),
focuses mainly on processes while the other, referred to as the scenario
analysis approach (Cranwell and others, 1990), focuses mainly on events.
Both approaches begin by developing a (or utilizing an existing) list of
all processes and events believed .o be relevant to the repository system
behavior. They then screen these events (for the scenario approach) and
processes (for the environmental simulation approach) to eliminate
unimportant processes and events where unimportant is defined as
physically implausible at a specific site (e.g., excavation of the repos.
itory by meteorite impact), inconsequential (i.e. , no release of radio-
activity), and/or unlikely occurrence.

2.1.1 Environmental Simulation Approach

In the environmental simulation approach the most important processes are
coupled together in a computer code that can be exercised to simulate
time dependent occurrences of processes and related events included in
the model. Uncertainty in the time and duration of simulated environmen-
tal conditions is accounted for in the niodel by allowing uncertainty in
the data and parameters input to the model. Consequence modeling (simu-
lation of the release and movement of radionuclides) is then performed by
using the results of the environmental simulation as input for boundary
conditions and driving forces. The results of consequence modeling are

4
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probabilistic, each being a product of the probability that a given
environmental condition will occur at a given time and for a given
duration, the probability of the data and parameter set used in conse-
quence modeling, and the consequence results. The key to the validity of
the environmental simulation approach is the uncertainty in the environ-
mer.tal model formulation (i.e. , assumptions), which is not quantified in
this approach. A history of the development and application of this
approach may be traced in recent literature (INTERA, 1983; Thompson,
1988; Dames and Moore, 1988; llodgkinson and Sumerling, 1989).

2.1.2 Scenario Analysis Approach

The scenario analysis approach fellows the same basic steps up to the
point of simulating the temporal evolution of the system. At this point,

insteed of simulating the temporal evolution of the repository system,
the scenario approach combines events and processes to form scenarios.
The scenarios are then screened on the basis of the same three criterin
tha t. were used for events and processes. For consequence analysis
purposes, each scenario has been assumed to occur immediately af ter the
repository is constructed but the con'equene: results are weighted
according to the probability that the see- iccurs. The conditions of
the scenario are used to determine the w y conditions and driving
forces used for consequence analy' this scenario selection and
screening methodology, which is desci ., in Cranwell and others [1990),

has been used to develop scenarios f ssessing the performance of hypo-
thetical llLW repositories in bedded at, basalt, and tuff (Cranwell and
others, 1987; llunte r , 1983; and Guz, ; ski);5 the Waste Isolation pilot

plant [llunt e r , 1989); and has been modified in several national waste
r disposal pro 6 rams (e.g., Andersson and Eng., 1989; Stephens and Goodwin,

1989).

The consequence analysis for each scenario is conducted via Monte Carlo
simulation to propagate the uncertaluty in data and parameters through
the suite of models and associated codes that simulate the processes
included in the scenario. This approach allows a direct mapping of the
uncertainty in the occurrence of the scenarios considered and the uncer-
tainty in the data and parameters to uncertainty in repository perfor-
mance. Using the probability of occurrence of the scenarios, the proba-
bility of each simulation in the Monte Carlo approach, and the associated
consequence, the results of the consequence analysis can be cast in a
variety of ways (e.g., probability distribution function, cumulative
distribution function, etc.) to represent uncertainty in the results.

The key steps in the scenario approach are (1) the estimation of the
probability of occurrence for each scenario, and (2) confidence that the
initial list of events and processes is comprehensive. The epa considers
it appropriate to use quantitative methods as well as expert judgment in
estimating scenario probabilities (EPA, 1985]. The information available

SCuzowski, R. V., potential Scenarios for Use in Performance Assessment
of Ili r.h- Level Waste Repositories in Unsaturated Tuff, SAND 86 7170,

NUREG/CR 4770, Sandia National Laboratories, Albuquerque, NM, to be
published.
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for quantitative estimates of scenatio probabilities in .his case is from _

historical records and models of the d evant processes. In fact, these

models could be the same ones used it. the environmental simulation -

approach.

Three reports prepared by SNL under this project have addressed the issue -1
of quantification of scenario probabilities [llunte r and Mann, 1989;

__

Apostolakis and others, see footnote 2; and Cranwell and others, 1990). g
Two of these reports, Hunter and Mann, and Apostolakis and others, also =

address the quantification of uncertainties in the scenario probability
estimate. Hunter and Mann adopted the premise that most natural events j'
and processes can be sorted into three groups; those for which probabili-
ties can be estimated with high confidence, fairly accurately, and with
only limited confidence. Cranwell and others [1990] generated probabil-

-

-

ity estimates for meteorite impacts, volcanic activity, inadvertent
intrusions, and faulting and did not specifically address uncertainties
in those estimates.

_

Using the framework of decision theory, Apostolakis and others (see foot- -

note 2) describe the basic formulation required for the quantification of =

uncertainties in the probability estimates. The approach makes use of X

Bayesian probability theory and combines historical data and model
results with expert judg'nent in a clear and visible manner. Quantifying
these uncertainties, in conjunction with using Bayesian techniques to
estimate the probability of scenarios, provides a way to quantify the -

uncertainty in the estimates of scenario probs.bility. Examples of this
approach are provided for tectonics and climatology by Apostolakis and
others (see footnote 2).

Finally, Apostolakis and others (see footnote 2) also discuss the unique
problem of estimating the probability of humans intruding into the repos- -

itory and releasing radioactive material to the environment. The problem
of human intrusion is unique in that a reliable estimate of the likeli-

"

hood of drilling into or excavating the wastes requires so many assump-
tions about the future human population, their technologies, and their
behavior as to make any estimate virtually meaningless. In Apostolakis
and others (see footnote 2), a discussion on the NRC and EPA guidelines
is provided along with a review of published approaches to estimating the
probability of human intrusion. In addition, a new approach is provided
that involves using historical data (drilling records) to estimate drill-
ing rates for various resources. These drilling rates are then combined
with the use of expert judgment to yield a probability of human intru-
sion. However, Apostolakis and others (see footnote 2) propose that.

-

even with this approach, human intrusion should be considered separately
from all other scenarios; that is, not combined into an overall risk
curve.

2.2 Comparison of the Environmental Simulation and Scenario Analysis
Anoroaches

There is a perception that the scenario approach does not allow a consid-
eration of issues such as: (1) correlation among events and processes,
(2) time dependent processes, and (3) time of occurrence of events and

6-
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processes. A sachematical development is presented in Cranwell and
others [1990) that provides some insights into how these issues can be
incorporated into a scenario approach for a probabilistic assessn.ent of a
repository system. Furthermore, this mathematical development supports
the assertton that the environmental simulation approach and the scenario
approach are really quite similar. A comparison between the two
approaches was provided to the NRC in the form of a letter report.S
This comparison revealed that most of the difficulties and drawbacks
attributed to the scenario approach exist in the environmental simulation
approach as well. Also, from a mathematical point of view, the two
approaches are shown to be just different ways of partitioning a risk
integral.

5 Monthly progress report for FIN A1165 from E. J. Bonano (SNL) to David
Tiktinsky (NRC) dated June 15, 1989.
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1

3. DATA, PARAMETER, AND COEFFICIENT UNCERTAINTY

in this report the terrn data refers to directly measurable quantities
whereas parameter refers to a quantity derived from data. For example,
data could tefer to measurements of water levels in wells and parameters
would be the mean and variance of the water levels. Model coefficients
such as hydraulic conductivity are also derived from data. Following the
above example, measured water levels resulting from a stress to the
ground water flow system are used to infer values of hydraulic conductiv-
ity. All three, data, parameters, and coefficients, may be used directly
in perfnrmance assessments. However, their sources of uncertainties are
different; therefore, the treatment of uncertainty for each differs.7

3.1 Source of Uncertainty

Data uncertainty results from the limited accuracy and precision of
instruments as well as from human error. Misreading of instrument
display, improper installation of gauges, and misinbeling of data records
are exartples of human error. Uncertainty in parameters incorporates data
uncertainty and, in addition, can be caused by incomplete or biased data
sets. For example, it is difficult to obtain large numbers of geological
samples for analysis but large numbers are required to infer parameters
such as the mean and the variance of a given ineasurement. Also, labora-
tory data on geological materials are often obtained from samples that
have an inherent bias in that they tend to represent more competent rock.
This is due to sample fabrication problems that make it difficult, if not
impossible, to prepare intact samples from naturally weak or flawed
portions of the stratigraphy. The uncertainty associated with estimates
of model coefficients such as hydraulic conductivity arises from data and
parameter uncertainty plus the uncertainty associated with the models
used to infer the values of the coefficients. For example, using water-
level fluctuations to infer values of hydraulic conductivity requires a
model of the hydrologic system. Because this is a modeling uncertainty
it is covered in a later section of this report.
3.2 Treatment of Uncertainty

Model resules, whether they are for environmental simulation models, data
interpretation, or consequence analysis, must reflect the uncertainty
associated with data, parameters, and coefficients. All of the methods
for propagating data and coefficient uncertainty through models are based
on the initial step of defining a probability distribution function (pdf)
for each model input (data, parameter, or coefficient). Clearly, these
distributions should be derived, if at all possible from the available
data, parameters, or coefficients. However, siv;:. the paucity of infor-
mation from a typical repository site, these distribertons are often
based on heuristic arguments. Por example, hydraulic conductivities
have been shown to be log-normally distributed in some geologic environ-
ments. Therefore, this type of distribution is often used for hydraulic
conductivities at sites where insufficient information is available to

7When appropriate, the term " variable" is used throughout this report to
mean either data, parameter, and/or coefficient.

8
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test what type of distribution the site data follow. In the absence of
this type of surro6 ate information, liarr [1987) provides guidelines for
the assignment of pdf's based on the concept of maximum entropy. The
importance of these pdf's in uncertainty analysis needs to be emphasized,
as the results are highly dependent on the assumed form of the pdf's
(i.e., normal, lognormal, uniform, etc.) and their associated parameters
(i.e., mean, variance, skewness). Most of the effort, to date, has con-
centrated on developing techniques for propagating the uncertainty in the
input coefficients through the models and to the model predictions, with
little effort towards generating reliable distribution functions for
input coefficients.

Existing techniques for propagating data, parameter, and coefficient
uncertainty through performance assessment models have been reviewed by
Zimmerman and others (1990). Only a cursory discussion, based on their
,tork, is given here; details are found in the original reference.

Uncertainty analysis methods may be categorized as: Monte Carlo simula-
tion, replacement models (response surface techniques), differential
techniques (direct, adj oint , and Green's function approach), and geos-
tatistical techniques (stochastic modeling using Monte Carlo signulation
and spectral analysis). These techniques ascribe quantitative measures
of reliability to model predictions based on uncertainty in model input
(data, parameters, and coefficients).

Monte Carlo simulation is a sampling based approach to uncertainty
analysis in which model predictions obtained from simulations can be used
to construct unbiased estimates of the means and distribution futictions
of the dependent variable (s) (i.e., the model output). Sampling methods
that are used to obtain the samples for a Monte Carlo simulation vary in
their ability to capture the probability behavior of the input parame-
ters. Three commonly used sampling techniques are random sampling,
stratified sampling, and Latin flypercube sampling (1JIS) (McKay and
others, 1979). perhaps the most important feature of the Monte Carlo
techniques is that an uncertainty analysis is relatively easy to imple-
ment and few simplifying assumptions or constraints need be satisfied to
apply the method. The technique can be appiled to virtually any set of |
conditions that existing codes can simulato. No modification of the
original computer code is required other than assuring that the desired
parameters can be supplied as input and the desired output variables can
be recorded (saved) for subsequent analysis. The primary drawback is
that pre and post processor codes are usually required and the computa-
tional expenso of making numerous model evaluations can be costly, When
random sampling is used, a very large number of samples are required to
adequately cover the ranges of all the independent variables. IJIS , on
the other hand, can provide an adequate range coverage with relatively
small sample sizes, llowever, even with IJIS, the number of model runs
needed to obtain meaningful results using Monte Carlo simulation can be
as much as several hundred or even thousands depending on the number of
independent variables. This can make uncertainty analysis costly.

The response surface methodology involves three stages of analysis: (1)
development of an experimental design to se h et specific valu9s of model

9-
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input, (2) construction of a response surface from the model predictions d-

obtained through the use of the selected model inputs, and (3) the use of
the response surface model as a surrogate for the original model in :
uncertainty analyses. For uncertainty analysis, the replacement model is

_

typically used in a Mor te Carlo simulation to estimate the distribution
of the dependent variable it represents. Because the response surface is
inexpensive to evaluate, large numbers of simulations can be made to
obtain representative estimates of the distribution of the dependent

_

-

variable. llowever, tho estimated distribution function will be no better
than the response surf ace approximation to the original model. In most
cases, the constructio1 of the response surface is done with regression 1
techniques based on least squares procedures. Proper experimental design tu

is essential for building a suitable approximation to the original model.
Box and Draper [1987) detail the considerations used in selecting an
experimental design for response surface applications.

Uncertainty analysis using differential techniques is usually based on
developing a Taylor series approximation of the model considered. - - -

Typically, only first order approximations are used. The fundamental
step in a differential analysis is the generation of derivatives of the
dependent variables with respect to each independent parameter. This can -

be einple or very complicated, depend.tng on the model analyzed. Most of
the effort in a differential analysis is devoted to the calculation of
the derivatives required in the Taylor series expansion. As a result, -

tbo literature related to differential analysis tends to be dominated by
'

the development of efficient techniques for the calculation of these
derivatives. When the models are simple (i.e., when analytical solutions
are available), the partial derivatives can be obtained analytically.

-

Calculation of partial derivatives becomes more challenging as the
complexity of a model increases. Three common methods of calculating
derivatives in the Taylor series expansions are direct, adj oint , and -

Creen's function techniques. The direct and adjoint approaches can be
applied to models with algebraic systems or differential equations. The
Creen's function approach is applied only to models with differential
equations. Once the Taylor series approximation has been developed from
the partial derivatives, the variance of the model output (i.e., the
uncertainty) is estimated by summing over all variables the product of
the squares of the partial derivatives and the variance (Zimmerman and '

others, 1990; llelton).e The Taylor series approximation can also be used
as a surrogate model in Monte Carlo simulations to estimate model output
distribution functions including the expected value and variance of the
output [Iman and Helton, 1985). Because of the local nature of a Taylor
series expansion, differential analysis is typically used to study the
effects of perturbations about some fixed parameter value, commonly
called the model design point. -

The stochastic modeling approech to uncertainty analysis consists of
separating.the governing equations into an expression for the mean value .

and an expression for the perturbations about the mean or the variance.
-

sHelton, J. C. , Applicability of Uncertainty and Sensitivity Analysis
Techniques to Nonlinear Models, Letter Report to U.S. Nuclear Regulatory "

Commission, FIN A1266, September, 1990.
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These expression can then be solved either analytically or numerically to
yield a direct estimate of the mean and variance of the dependent
variable. Stochastic models have been developed for ground water flow
that predict hydraulic heads and, conseqaently, flow velocities that
result from the randomness of hydraulic conductivity or transmissivity in
an aquifer (e.g. , Bakr and others,1978; Celhar and others,1979; Gutjahr
and others, 1978; Bonano and others, 1989bl. Stochastic models for
contaminant transport in a one dimensional flow system have also been
developed (Gelhar and Gutjahr,1982; Cutjahr and others,1985; Bonano and
others, 1987). These stochastic models of ground water flow and trans.
port mentioned above are based on the assumption that the field of
interest (hydraulic conductivities or velocities) is a second order sta-
tionary random field or, in other words, that the mean and the variance
of the independent parameters are constant in space.

3.3 Reduction of Uncertainty

This section discusses techniques used to reduce uncertainty in data,
parameters, and coefficients. In reality, a reduction in the uncertainty
in the performance assessment results is the desired outcome. Therefore,
the inherent assumption in much of the following discussion is that a
reduction in uncertainty in data, parameters, and coefficients will
result in a reduction in uncertainty in the performance assessment
results.

As stated previously, data uncertainty arises out of lack of precision
and/or accuracy in measurements, either instrument related or human
induced. A means of reducing data uncertainty is to adhere to adequate
quality assurance procedures while collecting the data. Once the data
has been collected, as is the usual case in performance assessment, data
uncertainty can be quantified and propagated through the appropriate
model but cannot be reduced.

In general, there are only two means of reducing the uncertainty in
parameters and coefficients: (1) obtain additional data needed to infer
values of parameters and coefficients, and/or ( ,' ) obtain additional
information about the values. The following sections describe each of
these approaches.

3.3.1 Obtaining Additional Data

Obtaining additional data will reduce uncertainty in the performance
assessment results only if the data has a significant effect on the
results, performance assessment generally involves large numbers of
input parameters, llowever, sometimes only a few parameters are dominant
with respect to their importance in model results. In an analogous way,
only certain locations may be important for spatially dependent data.
Therefore, every ef fort should be made to identify the most important
parameters, and their locations if necessary, prior to allocating
resources for obtaining additional data. Determination of important

parameters and important locations is the role of sensitivity analysis.
The following sections describe sensitivity analysis techniques in
general and the special case of spatially dependent data.

11-
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In general, sensitivity analysis techniques can be classified as either
statistical or deterministic [ Doctor. 1989). Herein, only an overview of
each method is described. For a detailed description of each method see =

Zimmerman and others [1990). ]
The statistical approach to sensitiv't 41ysis is based on finding a
statistical relation between the snodel ' pt and the rudel output. If a -

Monte Carlo approach has been used for uncertainty analysis, then this
step can be accomplished by simply regressing the model input against the
model output. Stepwise regression has been proposed for simplifying this --

procedure [Iman and others, 1978] because only the important variables n
are kept in the stepwise analysis. Generally, the rocasure of parameter
importance (i.e., the sensitivity voefficient) is obtained by fortning a
regression of the standardized variables where the standardized variables
are obtained by subtracting each sampled variable froin its mean and
dividing it by its standard deviation. This procedure is also performed
on the dependent variabic. In this way, the magnitude and variance of
values do not interfere with identifying the most important variables.
Sometimes it is also useful to transform the sampled values of the -

variables into the ranks of each sarnple (i.e., replace the value of each _

variable with the rank of each value from smallest to largest). This
technique is useful when the regression model is nonlinear but mono. -

tonica11y increasing.

The differential analysis technique discussed above under uncertainty
analysis was initially developed for sensitivity analysis applications '

[e.g., Cacuci, 1986; Cruz, 1973; Frank, 1978; Lewins and Becker, 1982;
Oblow, 1978; Toinovic,1963; and Tornovic and Vukobratovic,1972) . In fact,

_the main step in differential analysis is the calculation of the deriva-
tives relating a change in model output as a function of model input.
Normalizing these derivatives yields sensitivity coefficients. Differen-
tial analysis is based on developing a Taylor series approximation for
the inodel considered. Because of the local nature of a Taylor series
expansion, differential analysis is typically used to study the effects
of seall' perturbations about some fixed base case or design point -

value(0 , Technir;ues used to calculate derivatives include direct,
adj oint , Green's function, and coteputer based methods such as CRESS [ Pin
and others, 1986). The choice of a particular technique depends on
several factors such as the number of input parameters, the number of
output variables (or performance measures), the availability of "off the-
shelf" models or algorithms, and the relative cost of human and computer
resources of that technique as applied to the model of interest.

3.3.2 Obtaining Additional Information About the Pararneters and
Coefficients

Another technique to reduce uncertainty is to obtain or infer more infor- '

mation about the ejisting values. In general, there are three types of
additional information that can be used to reduce uncertainty in param-
eters and coefficients: (1) " soft data"; (2) correlation between
variables; and (3) autocorrelation.

_
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* Soft data" refers to indirect evidence of the value of a given variable.
Take, for example, the problem of estimating the porosity of a given
geologic unit. In the extreme case, no measurement of porosity may be
available. In this instance, we still have information that bounds the

value of porosity. That is, we know the value is between 0 and 1 by
definition. In another case we may know that, for a given type of media,
porosity ranges from 0.1 to 0.3 and, in other cases, we may know that the
porosity is always less than a certain value. All of these are examples
of the use of " soft data."

Another type of information about existing parameters and coefficients is
correlation, either correlation between different variables or autocorre-
lation. In performance assessment of ilLW repositories several variables
are expected to be correlated. For example, some investigators believe
that porosity and hydraulic conductivity are correlated, with large
values of porosity being correlated with large values of hydraulic con-
ductivity. If this correlation was enforced in uncertainty analysis,
then the variance in model output would be reduced because it vould not
reflect combinations of small porosity and large hydraulic conductivity
or vice versa. The technique for finding correlation among variables is
typically referred to as multivariate analysis. Examples of multivariate
methods are multiple regression, discriminant functions, and cluster

comprehensive discussion on multi-analysis. Davis [1986] provides a
variate analysis.

Autocorrelation refers to self similarities within a set of values of a
given variable. This correlation could be either in a temporal or a
spatial sense. For itLW performance assessment we are mainly interested
in spatial correlation of geologic or geohydrologic variables. This type
of autocorrelation analysis is generally ref erred to as geostatistics.
Geostatistics has its origins in the field of mining [Journel and
fluijbregts,1978) and consists of two basic steps: (1) obtaining a model
of the spatial variability for the variable of interent; and (2) estima-
tion of the value of this variable at locations other than the observa-
tion points. The estimation of the value of the variable includes both
the mean value and the variance about the mean. Several approaches are
available for obtaining a model of spatial variable (Journel and
llu tjbregts , 1978 and Davis, 1986). Most of these approaches require at
least local second order stationarity (i.e., constant mean and variance).
Once a model of spatial correlation has been obtained, the most often
used technique of estimating or interpolating values of a given variable
is kriging. Kriging was named after D. R. Krige, who first applied some
of the concepts underlying this technique to problems of ore content
assessment, llowever, the general formulation of the theory was provided
by Matheron [1969, 1970), and c. number of applications of the technique
have been performed at the Paris School of Mines (Delhomme, 1976:
Delfiner, 1976). As developed by Matheron (1970), the theory of kriging
considers the observation record as coming from the realization of some
random function and seeks to construct an unbiased linear estimator of
the function such that the estimation errors are minimized. The object,
then, is to construct an estimator that will exhibit satisfactory average
behavior when applied to other realizations of the random function.
Kriging has several advantages over alternative approaches such as least

13-
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squares, polynomial interpolation, and distance weighting of the data.
It restitutes the measured values as estimates at the observation points
and it provides a acasure of the estimation error. In theory, this esti.
nation error could be used to identify areas in which additional measure.
ments are needed and, thus, to reduce uncertainty. llowever, no direct
correlation may exist between the kriging error or uncertainty and the
uncertainty in the results of performance assessments. For example, a
map of kri ing errors of hydraulic conductivities may lead one to performS
hydraulic conductivity tests in regions that are not along the flow path
from the repository to the accessible environment. To utilize geostatis.
ties effectively in reducing uncertainty in performance assessment
results requires the development of formalized sensitivity analysis with
geostatistical techniques.

-14



4. MODEL UNCERTAINTY

Models, by definition, are simplifications of reality; therein lies their
inherent uncertainty. In HIM, both conceptual and mathematical models
are used. Simplifications in these models generally take the form of
assumptions about such things a r, the behavior of the system or the
accuracy of a mathematical approximation. Because these models are
commonly implemented in computer codes, the uncertainty associated with
codes is also addressed in this section.

4.1 Concentual Model Uncertainty

A conceptual model describes the assumed physical and/or chemical
processes taking place in the system, the variables and parameters chosen
to represent these processes including boundary conditions, and the
spatial and temporal scales of the assumed processes. The development of
a conceptual model generally involves simplifying the real system for two

(1) selecting a S ven portion of the entire system needed forireasons:
the analysis bein6 performed and/or (2) representing the systern with a
tractable mathematical model that, in turn, can be solved using available
analytical and/or numerical techniques. Simplifications are made about
the geometry, initial and boundary conditions, material properties, and
nature of processes. In addition, the "real" system is of ten poorly
characterized making the development of a conceptual model a formidabic
task. Both of these factors contribute to the uncertainty in conceptual
models.

Currently, there is no methodology that is designed to quantify the
uncertainty in conceptual models. Until now, conceptual toodels have
generally been developed based on a " single" interpretation of existing
data using expert judgment. A methodology is needed that would force the
analyst to examine all available information in a formalized manner thus
minimizing biases and arbitrary rejection of data. This methodology
could be based on the judgment of multiple experts well versed i r. the
construction of models for important processes such as ground water flow
and transport. The methodology could allow for the articulation of all
the as su,nptions invoked by these experts and for consistency checks on
these assumptions with available data. The methodology could also have
provisions for alternative conceptualizations consistent with the data.
Finally, bounding analyses and experimental investigations could be
included that are aimed at distinguishing between alternative conceptual
models and narrowing the options. Bayesian analysis could be used to
estimate the likelihood of the fitness of a given conceptual model
relative to others.

4,2 Mathematical Model Uncertainty

Once a conceptual model has been formulated, a mathematical representa-
tion of the model(s) describing the subsystems and attendant relevant
processes is required in order to predict the performance of the disposal
system. Mathematical models are required in many areas such as
waste / host rock interactions, ground water flow, radionuclicit. transport,
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human uptake, and dosimetry and health effects (Cranwell and itelton ,
1981a, 1981b).

Uncertainty in mathematical models arises from approximations to

grepresent the physicochemical processes with tractable matho'eatical
equations that allow arriving at a solution of the equations. Applica-
tion of the mathematical models requires a solution of algebraic, differ-
ential, and/or integral equations in the models. The solution of these
equations can be classified into three major categories: (1) analytical
solutions, (2) semianalytical solutions, and (3) numerical solutions.
Bear in mind that model equations are of ten too complicated to have an
analytical, or even a sem! analytic solution, and the only option in such
cases is to solve them by numerical techniques implemented in computer
codes. Uncertainty could be introduced in obtaining each of these types
of solutions. For example, analytical solutions typically involve
functions (e.g., trigonometric functions, Bessel functions, exponentials)
which are approximated with a finite number of terms of some infinite
series. Uncertainty could be introduced because of truncation of these
series or machine round off. Uncertainty can be introduced in numerical
solutions when the equations are discretized. For example, there are
differences between the diffnrential equations in a mathematical model
and their numerical representation in a computer code with finite differ-
ences. Furthermore, numerical solutions introduce additional uncertain-

ties as a result of the discretization of the domain of interest into
cells or finite elements. Semianalytical solutions can suff er from the
difficulties of both analytic and numerical solutions. Uncertainty in
mathematical models is rarely, if ever, quantified in performance assess-
ments. Instead, it is thought to be miminized to an acceptable level by
the uncertainty reduction techniques discussed in the following sections
of this report.

Sources of uncertainty associated with computer codes include coding
errors, computational limitations, and user errors. Like mathematical
model uncertainty, computer code uncertainty is rarely quantified in
performance assessment. Instead, quality assurance procedures are used
to min b.ize this type of uncertainty.

4.3 Reduction of Model Uncertainty

In practice, the reduction of model uncertainty occurs at the stage that
the conceptual and mathematical models have been implemented in a
computer code. All of the activities that reduce uncertainty are
included L. generally accepted computer code quality assurance require-
ments. The first such activity applies only to the computer code itself.
These include all of the quality assurance procedures that should be
followed prior to and throughout the development of the code, and also
include code maintenance and configuration management procedures once the
code has been developed. Examples of code maintenance and configuration
management procedures implemented for computer software include Lyon
[1981), Wilkinson and Runkle (1986), Silling (1983), and liarlan and
Wilkinson (1988).

16
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The next quality assurance activity to be discussed is designed to test
the accuracy of the mathematical model as implemented in the computer
code. This activity is called verification, which refers to the process
of obtaining assurance that a given computer code correctly implements
the solution of its parent mathemstical model. Verification involves the
comparison of the code solution to the analytical solution of the same
problern. Another form of code quality assurance sometimes mistakenly
thought of as verification is known as benchmarking. Benchmarking is
performed when analytical solutions to problems of interest do not exist.
It involves performing the same calculation (model simulation) using
different computer codes and comparing the prediction of those codes.

The inost important method of reducing inodel uncertainty is validation,
which is the pro:ess by which assurance is obtained that conceptual and
mathematical inodels, es embodied in a computer code, are an accurate
representation of the process or the system for which the models are
intended [NRG, 1984). Thus validation represents an overall test of
model uncertainty, including the conceptual model, the mathematical
model, and the computer code. In practice, validation exercises test the
data input as well as the models | Davis and Goodrich, see footnote 3).
Ideally, validation consists of a comparison between model predictions
and observations of the real systu over temporal and spatial scales that
are relevant to HIN reposftory performance. However, the nature of the
problem (spatial scalee of kilometers and teinporal scales of thousands of
years) preclude such tests. In fact, Davis and Goodrich (see footnote 3)
argue that one can never say for sure that a HiR performance assessment
model is " valid"; only that it is either " invalid" or "not valid."
Despite these difficulties, some confidence must be developed that the
models used to represent the real system, and the assumptions associated
with the development of such models, are adequate for their intended use
(i.e., to assess coinpliance with specific numerical criteria in the regu-
lations). Davis and Goodrich (see footnote 3) also propose a validation
strategy that includes " generic" validation experiments as well as site-
specific expe r innent s . Both types of experiments could, in general,
include laboratory tests, field tests, and natural analogs.

When carefully designed and condected, laboratory experiments can be very
useful in testing the model validity. Neither laboratory experiments nor
the model being validated should not be expected to emulate the real
system in its entirety. Rather, they should be designed to study, in a
controlled manner, the critical processes or interactions (e.g. , isolated
c uplings between important phenomena) identified with sensitivity
analyses. The most crucial condition that must be met by laboratory
experiments is t'..eir dynamic similarity to the real system. That is, the
values of t b ., dimensionless groups (e.g., Reynold's Number) that
apparently ,,overn the real system must be retained in the design of
laborator,y experiments and associated parameters. Tt.i s is particularly
imporr.nt when simultaneous, time dependent processes take place. Accel-
erating one of the processes while ignoring the time scale of others may
lead to biased and, therefore, erroneous results.

Field experiments have advantages over laboratory experiments in that
they are performed on a larger scale, both teuporal and spatial, and are
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performed on virtually undisturbed material. These advantages are gained
at the expense of a loss of control on boundary conditions and an
increase in uncertainty because of the inability to measure all model
input and output at all locations.

Natural analogs are phenomena that have occurred in nature over thousands
of years and, sometimes, many kilometers. Migration of uranium from an
ore body is one such example. The use of natural analo6s in model vali-
dation activities is important because it tests the ability of the
performance assessment models to extrapolate in time and space. The main
drawbacks of using natural analogs are the uncertainties in establishing
the initial conditions and time history of the system. Natural analogs
may also play an important role in testing coupled models that represent
important couplings such as between ground water flow and heat transfer,
and between ground water flow and mass transport. For example, geo.
thermal reservoirs can be used to test the coupling between ground water
flow and heat transfer models.

-18-
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5. SUMMARY AND CONC 1,USIONS

Many different types of uncertainties are associated with the assessment
of the performance of a high level radioactive vaste repository. These
uncertainties must be identified and should be quantified and reduced
wherever possible. Three major categories of uncertainty are (1)
uncertainty in the future state of the disposal system; (2) uncertainty
in models that are used to analyze repository behavior; and (3)
uncertainty in date., parameters, and coefficients used in the analysis of
future states of the system and in models of system performance.

Uncertainty in the future state of the repository system is caused by a
lack of knowledge of the rates and types of processes that could affect
the integrity of the system (e.g. , volcanism, tectonics) over thousands
of years. This type of uncertainty is generally treated by postulating
all possible disruptive events and processes (i.e., scenarios), then
screening out those that are highly unlikely to occur at the site. The
remaining scenarios are then analyzed by assuming that a given scenario
occurs (e.g. , a volcanic eruption), analyzing the consequences of such an
event, and combining the consequence with an estimate of the likelihood
of the scenario occurring to arrive at an overall risk of the scenario.
Finally, the consequences from all of the scenarios are combined to form
a total estimate of the repository system performance. In this entire
analysis it is assumed that the likelihood (or conversely, the uncertain-
ty) of the occurrence of a scenario can be estimated from a combination
of historical data, models of the processes which cause the scenario to
occur, and expert judgment. An alternative approach is to scenario
analysis is to attempt to model the temporal evolution of the repository
system. This approach, referred to as the environmental simulation
approach, is then combined with consequence models to produce an overall
estimate of the repository performance.

Aodels that simulate the behavior of the repository system for any given
scenario can be thought of as a combination of conceptual and mathemati-
cal models implemented in computer codes. Models, by definition, are
simplifications of real systems; therein lies the uncertainty associated
with models. Assumptions made about the real system allow these simp 11-
._:ations to be made. Uncertainty associated with models is rarely
addressed directly in performance assessment modeling, llowever, this

type of uncertainty could be quantified by proposing and using multiple
equally plausible models throughout the entire performance assessment.
Conceptual model uncertainty can be reduced by validation, and verifica-
tion can be used to reduce mathematical uncertainty. Uncertainty in
computer codes is addressed by adhering to adequate quality assurance
programs throughout the life cycle of the computer code.

Data uncertainty arises mainly from instrument accuracy and precision and
from the potential for human error. Parameters, which are derived from
data, inherently have the same error as data plus errors of interpreta-
tion. Coefficients are values derived from data through the use of a
model of the system or subsystem. Uncertainty in data, parameters, and
coefficients can be caused by the limited amount (both in space and
time) of each available for a given repository system. performance
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assessment propagates quantifiable uncertainties in data, parameters, and
coefficients through the models that simulate the consequences of waste
disposal and results in a distribution of possible outcomes. Uncertain-
ties associated with data, parameters, and coefficients that are diffi-
cult to quantify (i.e., human error and interpretation error) are treated
through strict quality assurance requirements on data collection and
analysis. Uncertainty arising from sparse data and/or parameters is
generally treated by assumptions of spatial continuity or correlation.
Because this type of uncertainty is based on assumptions, it is a concep-
tual model uncertainty and should be treated as such. Reduction of data,

parameter, and coefficient uncertainty can be accomplished either by
gathering more data (i.e.. additional site characterization) or by
obtaining additional information about the existing data. This informa.
tion could be in the form of correlations between or among data or by the
inclusion of additional " soft" data that constrains the values that the
data can take.

Throughout the identification, treatment, and reduction of uncertainty
expert judgment will be employed. The only question to be addressed is
when and how this judgment will be obtained and documented. Certainly,
the une of expert judgment to obtain probabilities of the occurrence of
future events or to define rangen of parameter values to use in conse-
quence analysis should be formalized.
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