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ABSTRACT

This report culminates work performed by Sandia Wational Laboratories
SNL) for the U §. Nuclear Regulatory Commission (NR under FIN All6S
(Technical Assincance for Performance Assessment) on uncertainties asso
clated with performance assessment of HLW repositories The purpose of
this report {4 to summarize the work in the topical area of uncertainty
conducted under FIN All65 Many different types of
affect the performance of an HLW repository In
assessment, these uncertainties should be identified and
to the extent practicadble, should be quantified and reduced
Conventionally, the different types of uncertainty are classified in
three major categories uncertainty in the future state of the disposal
system;, uncertainty in models needed to simulate the behavior of the
disposal system; and uncertainty in data, parameters, and coefficients
needed for the analysis of the system All three major categories of
uncertainty are covered in this report The reader should
this report for an in-depth treatise of these types of uncertainty Only
a short overview {s presented with numerous references to SNL reports
vhere different uncertainty topics are discussed in detail; as such, this
report is not a stand-alone report The report can be used by (1)
managers to familiarize themselves with the i{ssues regarding uncertainty

as a review of

uncertainty can
a performance
conglidered, and

not rely on

in HIW repository performance and (2?) technical staff
SNL's work for NRC in this area
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1.0 INTRODUCTION AND BACKGROUND

The Nuclear Regulatory Commission (NRC), under its broad grant of author-
ity under the Atomic Energy Act [1954), is responesible for regulating
both the peaceful uses of nuclear energy and the radiological health and
safety of the public. With respect to the disposal of high-level nuclear
waste (HIW) and spent nuclear fuel, the NRC has promulgated technical
criteria under 10 CFR 60 [NRC, 1988). Additionally, the NRC {s the
implementing agency for the Environmental Protection Agency's (EPA)
radioactive waste standards 40 CFR 191 [EPA, 1985).1

The Department of Energy (DOE) i{s responsible for the design, construc-
tion, operation, and decommissioning of a geologic repository for dis-
posal of spent nuclear fuel and HLW. This work includes characterizing
the site and demonstrating compliance with the appropriate regulations.
To show compliance, the DOE is required to develop and implement a com-
prehensive site-assessment methodology to prepare a license application
to be evaluated by the NRC. To facilitate this evaluation, the NRC {s
developing a licensing assessment methodology. This methodology {s to be
applied by the NRC staff in evaluating a DOE license and i{s not intended
to gulde the DOE efforts.

The NRC's license assessment methodology will consist of plans and guide-
lines fes reviewing both qualitstive and quantitative aspects (i.e.,
performance assessments) of the DOE license application. Sandia National
Laboratories (SNL), which developed performance assessment methodologies
for the NRC [Cranwell and others, 1987, Bonano and others, 198%a), has
been contracted by the NRC to help develop the post-closure performance
assessment aspects of the license assessment methodology. This methodol-
ogy is based on a combination of tools and techniques that provide for an
assessment of the potential consequences of locating a HLW repository in
peologic media. An integral part of the methodology and its use is the
fdentification, treatment, and reduction of the uncertainties associated
with the performaace estimates.

This report represents a culmination of two major tasks in FIN All65
dealing with uncertainties in performance assessments. These tasks have
resulted in several reports on the topical area of uncerteinty including:
(1) the treatment of data and parameter uncertainty [Zimmerman and
others, 1990]; (2) scenario development and screening [Cranwell a-d
others, 1990); (3) scenario probability estimation [Hunter and Mann, 1989

1The United States Court of Appeals, lst Clircuit, 7/17/8/, vacated the
EPA HLW standard 40 CFR 191 and remanded the EPA individual protection
and ground-water requirements for further consideration. While this
action by the court may result In numerical criteria that differ from
EPA's original values, the content and form of the requirements are not
expected to change. Therefore, the processes and parameters identified
in this report are expected to be relevant to any revised EPA standards.



and Apostolakis and others);? (4) the use of expert judgment [Bonano and
others, 1990); (5) model v~..dation [Davis and Coodrich);? (6)
uncertainty analysis of grov d-water flow models [Zimmerman and others);*
and (7) overall compliance with the EPA containment requirement [Bonano
and Wahi, 1990). In 'his report, the discussions on uncertainty
presented in the previors reports are integrated and summarized

1.1 PRefinition of Uncertair y

In the context of high-level waste repository performance assessments,
two types of uncertainty are discussed: data uncertainty and uncertainty
about the nature and behavior of the natural and engineered components of
the repository system With respect to HLW performance assessments,
uncertainty in the nature and behavior of the system can be subdivided
into uncertainty in modeis of the system and uncertainty in the future
state of the system. Data uncertainty can be defined as the estimated
amount by which an observed, measured, or calculated value departs from
the true value. Uncertainties arising from instrument accuracy and pre-
cision are examples of this type of uncertainty. GCenerally, the effect
this type of uncertainty has on performance assessment results can be
quantified Uncertainty in the nature and behavior of the repository
system arises from an Incomplete knowledge of the natural and engineered
components of the system and their current and future behavior, This
type of uncertainty is difficult to quantify. Examples of this type cf
uncertainty include the uncertainty associated with conceptual models of
ground-water flow and radionuclide transport and the uncertainty of

future changes to the repository system caused by events such as volca-
nism or faulting,

1.2 Need for Uncertainty Analyvses in Performance Assessment

The EPA has stated that performance assessment is to be used in assessing
compliance with their containment requirement in 40 CFR 191.13 [EPA,
1985]. The EPA states that a performance assessment is an analysis that
", ..estimates the cumulative releases of radionuclides, taking into

{Apostolakis, G. E., R. L. Bras, L. L. Price, J. Valdes, and K. K, Wahi,
Techniques mmnmnm_mmmummwmm
Affecting the Porformance of Ceologic Repositories: Volume 11 -
Suggested Approaches, NUREG/CR-3964, SANDB6-0196, Veol. 2, Sandia
National Laboratories, Albuquerque, NM, to be published.

‘Davis, P. A. and M. T. Goodrich, Technical Basis for Judging the

Validity of Models for Performence Assessment of HLW Repositories,

NUREG/CR-5537, SAND90-0575, Sandia National Laboratories, Albuquerque,

NM, to be published.

‘Zimmerman, D. A., R. T. Hanson, and P, A. Davis,
: Predictions,

Albuquerque,

Models and Their lmpact on Uncertainty in Model Performance
NUREG/CR-5522, SAND90-0128, Sandia National Laboratories,
NM, to be published.




account &ll assocliated uncertainties.” Given the nature of the high-
level waste problem (i .e., assuring safety over very long time periods
nd over large spatial domains), it is evident that the ldentification,

quantification, and reduction of uncertainty will also play a significant
roie in assessing compliance with
mnents

ull of the other regulatory require-

The f ileving secticné describe the three major types of

assoclated with a performance assessment of & HLW repository uncertain.
ty in the futvre state of the system, data and parameter uncertainty, and
model uncertainty Each of these is discussed in terms of the source of

uncertainty, the treatment of uncertainty in performance assessments, and
the reduction of uncertainty

uncertainties




0 UNCERTAINTY IN THE FUTURE STATE OF THE KEPOSITORY SYSTEM

W ile in reality the repusitory system (geologic and engineered) will be
subject to one temporal evolution of environmental conditions, uncertain-
ty arises from our inability to predict what that future state will be
Therefore, the EPA [1985] requires that all significant processes and
events that could affect the ability of a HLW repository to isolate the
vaste effectively to be considered in a performance assessment analysis
The NRC [1988), by reference to the EPA standard, requires the same con-
sideration except that the NRC uses the phrase, "anticipated processes
and events and unanticipated processes and events" in place of EPA's
phrase "significant processes and events. " In either case, the intent
is to assure that the repository system, the combination of the geologic
barrier and the engineered system, continues to isolate the waste over
periods of time so long that environmental conditions could change sig-
nificantly from conditions today Note also that the phrase "processes
and events" is somewhat misleading because events of concern for
repository performance are in reality the results of processes For
example, the formation of a fault through the repository (an event) is
the result of tectonic processes One possible exception to this is the
potential for humans intruding into the repository and releasing the
waste to the environment In this case, one could say, for example, that
arilling through the repository is either an event or » process

Approaches to Treating Uncertainty din the ruture State of the
Repository Systen

Currently, there are two main approaches being advocated for addressing
uncertainty in the future state of the repository system These
appreoaches are distinguished by their focus That is, one approach,
referred to as the environmental simulation approach [Thompson, 1988],
focuses mainly on processes while the other, referred to as the scenario
analysis approach [Cranwell and others, 1990), focuses mainly on events,
Both approaches begin by developing a (or utilizing an existing) list of
all processes and events believed .o be relevant to the repository system
behavior They then screen these events (for the scenario approach) and
processes (for the environmental simulation approach) to eliminate
unimportant processes and events where unimportant is defined as
physically {mplausible at & specific site (e.g., excavation of the repos-
{tory by meteorite impact), inconsequential (i.e., no release of radio-
activity), and/or unlikely occurrence

Environmental Simulation Approach

In the environmental simulation approach the most important processes are
coupled together in a computer code that can be exercised to simulate
time-dependent occurrences of processes and related eveuts included in
the model Uncertainty in the time and duration of simulated environmen-
tal conditions is accounted for in the model by allowing uncertainty in
the data and parameters input to the model Consequence modeling (simu-
lation of the release and movement of radionuclides) is then performed by
using the results of the envirommental simulation as input for boundary

conditions and driving forces The results of consequence modeling are




probabllistic each being a product of the probability that & given
environmental condition will occur at a given time and for a pgiven

duration, the probability of the data and parameter set used | conse -
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quence modeling, and the conseauence results The key to the
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the environmental simulation approach is the uncertainty in the environ
this approact {story of the development and applica
approach may be g in recent literature INTERA, 1983
1988; Dames and Moore, 1988; Hodgkinson and Sumerling, 1989

mertal model formulation (i.e., assumptions), which is not quantified in
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Scenario Analysis Approach

The scenario analysis approach f:llows the same basic s up to the
point of simulating the temporal evolution of the systen t this point,

instead of simulating the temporal evolution of the repositery system,
the scenario approach combines events and processes to form scenarios
The scenarios are then screened on the basis of the same three criterin
that were used for events and processes For consequence analysis
purposes, each scenario has been assumed to occur immediately after the
repository {s constructed but the con equet results are welghted
according to the probability that the sce cocurs The conditions of
the scenario are used to determine thv .y conditions

forces used for consequence analy s scenario seled
screening methodology, which is des « 1 ranwell and others

has been used to develop scenarios f ssessing the performance of hypo-
thetical HLW repositories in bedded t, basalt, and tuff ranwell and
others, 1987; Hunter, 1983, and Cuz. .sk the Waste Isolation Pllot
Plant [Hunter 1989); and has been modifie in several national waste
disposal programs [(e.g., Andersson and j 1989, Stephens ‘ oodwin
1989

The

¢
simulation to propagate the uncertainty in data and parameters through

onsequence analysis for each scenario is conducted via ! te Carlo

the suite of models and assoclated codes that simulate the j
included in the scenario This appr allows a direct mapping
uncertainty \ the occurrence of the s : o8 considered and the
taint ‘ t ¥ nd parameters t r in repository
MANC ¢ Using the probability of occ nce o scenarios, the
bility «  simulation in the Monte Carlo approach, and the ass
consequ ¢ e sults of the consequence analysis can be
variety s (e.g., probability distribution functior
distribution function, et sent

The key
p! obabilit

initial |




for quantitative estimates of scenario probabilities in
historical records and models of the .-levant processes In fact, these

models could be the same ones used i*. the environmental simulation
approach

his case is from

Three reports prepared by SNL under this project have addressed the iscue
of quantification of scenario probabilities [Hunter and Mann, 1989,
Apostolakis and others, see footnote 2; and Cranwell and others, 1990],
Tvo of these reports, Hunter and Mann, and Apostolakis and others, also
address the quantification of uncertainties in the scenarlio probability
estimate Hunter and Mann adopted the premise that most natural events
and processes can be sorted into three groups; those for which probabili-
ties can be estimated with high confidence, fairly accurately, and with
only limited confidence. Cranwell and others [1990) generated probabil-
ity estimates for meteorite impacts, volcanic activity, Iinadvertent

intrusions, and faulting and did not specifically address uncertainties
in those estimates,

Using the framework of decision theory, Apostolakis and others (see foot-
note 2) describe the basic formulation required for the quantification of
uncertainties iu the probabllity estimates. The approach makes use of
Bayesian probability theory and combines historical data and model
results with expert judgment in a clear and visible manner. Quantifying
these uncertainties, in conjunction with using Bayesian techniques co
estimate the probability of scenarios, provides a way to quantify the
uncertainty in the estimates of scenario probsbility., Examples of this

approach are provided for tectonics and climatology by Apostolakis and
others (see footnote 2).

Finally, Apostolakis and others (see footnote 2) also discuss the unique
problem of estimating the probability of humans intruding into the repos-
{tory and releasing radioactive material to the environment. The problem
of human intrusion is unique in that a reliable estimate of the likeli-
hood of drilling into or excavating the wastes requires so many assump-
tions about the future human population, their technologies, and their
behavior as to make any estimate virtually meaningless., In Apostolakis
and others (see footnote 2), & discussion on the NRC and EPA guidelines
is provided along with a review of published approaches to estimating the
probability of human intrusion. In addition, a new approach is provided
that involves using historical data (drilling records) to estimate drill-
ing rates for various resources. These drilling rates are then combined
with the use of expert judgment to yield a probability of human intru-
sion. However, Apostolakis and others (see footnote 2) propose that,
even with this approach, human intrusion should be considered separately

from all other scenarios; that {s, not combined into an overall risk
curve .

2.2 Comparison of the Environmental Simulation and Scenaric Analysis
Approaches

There is a perception that the scenario approach does not allow a consid-
eration of issues such as: (1) correlation among events and processes,
(2) time-dependent processes, and (3) time of occurrence of events and
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! 3. DATA, PARAMETER, AND COEFFICIENT UNCERTAINTY

In this report the term data refers to directly measurable quantities

‘ whereas parameter refers to a quantity derived from data For example,
' data could refer to measurements of water levels in wells and parameters
would be the mean and variance of the water levels Model coefficients

such as hydraulic conductivity are also derived from data Following the
above example, measured water levels resulting from a stress to the
ground-water flow system are used to infer values of hydraulic conductiv-
ity. All three, data, parameters, and coefficlents, may be used directly
In perf rmance assessments However, their sources of uncertainties are
different; therefore, the treatment of uncertainty for each differs.’

3.1 Source of Uncertainty

Data uncertainty results from the limited accuracy and precision of
i instruments as well as from human error Misreading of {instrument

display, improper installation of gauges, and mislabeling of data records
d are exarples of human error Uncertainty in parameters incorporates data
. uncertainty and, in addition, can be caused by incomplete or biased data
sets. For example, it is difficult to obtain large numbers of geological
samples for analysis but large numbers are required to infer parameters
such as the mean and the variance of a given measurement Also, labora-
tory data on geological materlals are often obtained from samples that
have an inherent bias in that they tend to represent more competent rock
This is due to sample fabrication problems that make it difficult, {f not
impossible, to prepare intact samples from naturally weak or flawed
portions of the stratigraphy. The uncertainty associated with estimates
of model coefficients such as hydraulic conductivity arises from data and
parameter uncertainty plus the uncertainty associated with the models
used to Infer the values of the coefficlents For example, using water-
i level fluctuations to infer values of hydraulic conductivity requires a
| model of the hydrologic system. Because this is a modeling uncertainty
' it is covered in a later section of this report.

3.2 Ixeatment of Uncertainty

Model resulcs, whether they are for environmental simulation models, data

interpretation, or consequence analysis, must reflect the uncertainty

assoclated with data, parameters, and coefficients All of the methods

for propagating data and coefficient uncertainty through models are based

. on the initial step of defining a probability distribution function (pdf)
1 for each model input (data, parameter, or coefficient). Clearly, these

% distributions should be derived, i{f at all possible from the available
?i data, parameters, or coefficients. However, giv.n *he paucity of infor-
: mation from a typical vepository site, these distribu.*ions are oftsn
based on heuristic arguments. vor example, hydraulic co~ductivities

have been shown to be log normally distributed in some geologic environ-

ments. Therefore, this type of distribution is often used for hydraulic

; conductivities at sites where insufficient information is available to

; 'When appropriate, the term "variable" {s used throughout this report to
i mean either data, parameter, and/or coefficient.




test vhat type of Afstribution the site data follow In the absence of
this type of surrovgate information, Harr [1987] provides guidelines for
the assignment of pdf's based on the concept of maximum entropy The

importance of these pdf's in uncertainty analysis needs to be emphasized,
as the results are highly dependent on the assumed form of the pdf'-«
({.e., normal, lognormal, uniform, etc.) and their assoclated parameters
(1.e., mean, varience, skewness) Most of the effort, to date, has con-
centrated on developing techniques for propagating the uncertainty in the
input coefficlents through the models and to the model predictions, with

little effort towards pgenerating rellable distribution functions for
input coefficients,

Existing techniques for propagating data, parameter, and coefficient
uncertainty through performance assessment models have been reviewed by
Zimmerman and others [(1990). Only a cursory discussion, based on their
work, is glven here; detalls are found in the original reference

Uncertainty analysis methods may be categorized as: Monte Carlo simula-
tion, replacement models (response surface techniques), differential
techniques (direct, adjoint, and CGreen's function approach), and geos-
tatistical techniques (stochastic modeling using Monte Carlo simulation
and spectral analysis) These techniques ascribe quantitative
of reliability to model predictions based on uncertainty in
(data, parameters, and coefficlients)

measures
model input

Monte Carlo simulation is a sampling-based apprecach to uncertainty
analysis in which model predictions obtained from simulations can be used
to construct unblased estimates of the means and distribution functions
of the dependent variable(s) (i.e., the model output) Sampling methods
that are used to obtain the samples for a Monte Carle simulation vary in

their ability to capture the probability behavior of the input parame-

ters Three commonly used sampling techniques are ranuom sampling,
stratified sampling, and Latin Hypercube sampling (LHS) [McKay and
others, 1979) Perhaps the most {mportant feature of the Monte Carlo

techniques 1s that an uncertainty analysis is relatively easy to imple-
ment and few simplifying assumptions or constraints need be satisfied to
apply the method The technique can be applied to virtually any set of
conditions that existing codes can simulate. No modification of the
original computer code is required other than assuring that the
parameters can be supplied as input and the desired output variables can
be recorded (saved) for subsequent analysis. The primary drawback s
that pre- and post-processor codes are usually required and the computa-
tional expense of making numerous model evaluations can be costly When
random sampling is used, a very large number of samples are required to
adequately cover the ranges of all the independent variables LHS, on
the other hand, can provide an adequate range coverage with relatively
small sample sizes However, even with lHS, the number of model runs
needed to obtain meaningful results using Monte Carlo simulation can be
as much as several hundred or even thousands depending on the number of
independent variables This can make uncertainty analysis costly

desired

The response surface methodology involves three stages of analysis: (1)
development of an experimental design to s/ .vot specific valu~s of model
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input, (2) construction of a response surface from the model predictions
obtained through the use of the selected model inputs, and (3) the use of
the response surface model as a surrogate for the original model in
uncertainty analyses For uncertainty analysis, the replacement model is
typically used in a Morte Carlo simulation to estimate the distribution
of the Jdependent variabie it represents Because the response surface is
inexpensive to evaluate, large numbers of simulations can be made to
obtain representative estimates of the distribution of the dependent
variable. However, thi estimated distribution function will be no bette:
than the response surface approximation to the original model. In most
cases, the construction of the response surface is done with regressien
techniques based on leist-squares procedures Proper experimental design
is essential for bullding a suitable approximation to the original model.
Box and Draper [1987) detall the considerations used in selecting an
experimental design for response surface applications.

Uncertainty analysls using differential techniques is usually based on
developing a Taylour series approximation of the model considered

Typically, only first-order approximations are used The fundamental
step in a differential analysis is the generation of derivatives of the
depoendent variables with respect to each independent parameter This can
be #inple or very complicated, depending on the model analyzed. Most of
the effort In a differential anaiysis is devoted to the calculation of
the Jerivatives required in the Taylor series expansion, As a result,
thz literature related to differential analysis tends to be dominated by
the development of efficient techniques for the calculation of these
derivatives. When the models are simple (1.e., when analytical solutions
are available), the partial derivatives can be obtained analytically.
Calculation of partial derivatives becomes more challenging as the
complexity of a model increases. Three common methods of calculating
derivatives in the Taylor series expansions are direct, adjoint, and
Creen’'s function techniques., The direct and adjoint approaches can be
applied to models with algebraic systems or differential equations. The
Creen’'s function approach s applied only to models with differential
equations, Once the Taylor series approximation has been developed from
the partial derivatives, the variance of the model output (i.e., the
uncertainty) is estimated by summing over all variables the product of
the squares of the partial derivatives and the variance [Zimmerman and
others, 1990; Helton).® The Taylor series approximation can also be used
as a surrogate model in Monte Carlo simulations to estimate model output
distribution functions including the expected value and variance of the
output [Iman and Helton, 1985). Because of the local nature of a Taylor
series expansion, differential analysis is typically used to study the

effects of perturbations about some fixed parameter value, commonly
called the model design point.

The stochastic modeling approech to uncertainty analysis consists of
separating the governing equations into an expression for the mean value
and an expression for the perturbations about the mean or the variance.

®Helton, J. C., Applicability of Uncertainty and Sensitivity Analysis
Techniques to Nonlinear Models, letter Report to U.S. Nuclear Regulatory
Commission, FIN A1266, September, 1990,

.10-




These expression can then be solved either analytically or numerically to
vield a direct estimate of the mean and variance of the dependent
variable Stochastic models have been developed for ground-water flow
that predict hydraulic heads and, conseguently, flow velocities that
result from the randomness of hydraulic conductivity or transmissivity in
an aquifer [e.g., Bakr and others, 1978, CGelhar and others, 1979, Gutjahr
and others 1978: Bonano and others, 1989b) Stochastic models for
contaminant transport in a one-dimensional flow system have also been
developed [Gelhar and Gutiahr, 1982; Gutjahr and others, 198%; Bonano and
others, 1987) These stochastic models of ground-water flow and trans
port mentioned above are based on the assumption that the fleld of
interest (hydraulic conductivities or velocities) is a second-order sta
tionary randon field or, in other words, that the mean and the variance
of the independent parameters are constant in space

3.3 Reduction of Uncertaluty

This section discusses technigues used to reduce uncer.ainty in data,
parameters, and coefficlents In reality, a reduction in the uncertainty
in the performance assessment results is the desired outcome Therefore,
the inherent assumption in much of the following discussion 1s that a
reduction in uncertainty in data, parameters, and coefficients will

result in a reduction in uncertainty in the performance

aAssessment
results

As stated previously, data uncertainty arises out of lack of precision
and/or accuracy in measurements, either Iinstrument related or human
induced A means of reducing data uncertainty is to adhere to adequate
quality assurance procedures while collecting the data

Once the data
has been collected, as is the usual case

in performance assessment, data
uncertainty can be quantified and propagated through the appropriate
model but cannot be reduced

In general, there are only two means of reducing the uncertainty in
parameters and coefficlents: (1) obtain additional data needed to infer
values of parameters and coefficients, and/or (") obtain additional
information about the values The following sections describe each of
these approaches

Obtaining Additional Data

Obtaining additional data will reduce uncertainty in the performance
assessment results only {f the data has a significant effect
results Performance assessment generally involves large
{nput parameters However,

on the
numbers of
sometimes only a few parameters are dominant
with respect to their importance in model results In an analogous way,
only certain locations may be {important for spatially-dependent data
Therefore, every effort should he made to identify the most
parameters, and their locations 1f necessary, prior to
resources for obtaining additional data Determination of
parameters and {mportant locations is the role of sensitivity
The following sections describe sensitivity analysis
general and the special case of spatially dependent data

{mportant
allocating

important

analysis
techniques 1in




In general, sensitivity analysis techniques can be classified
statistical or deterministic [Doctor, 1989 Herein, only an overview of
each methed s described For a detalled description of
Zimmerman and others [1990

as elither

each method see

The statistical approach to sensitiv alysis is
statistical relation between the model ¢ut and the v.del output If &
Monte Carlo approach has been used for uncertainty analysis, then this
step can be accomplished by simply regressing the model input against the
model output Stepwise regression has been proposed for simplifying this
procedure [Iman and others, 1978] because only the important variables
are kept in the stepwise analysis Cenerally, the measure of parameter
importance (1.e., the sensitivity .oefficient) is obtained by forming a
regression of the standardized variables where the standardized variables
are obtained by subtracting each sampled variable from {ts mean and
dividing 1t by its standard deviation This procedure 1s also performed
on the dependent variable In this way, the magnitude and variance of
values do not interfere with {dentifying the most {important variables

Sometimes {t is also useful to transform the sampled values of the
variables Into the ranks of each sample (1. e replace the value of each
variable with the rank of each value from smallest to largest) This
technique 1is useful when the regression moedel i{s nonlinear but mono

tonically increasing

based on finding a

The differential analysis technique discussed above under uncertainty
analysis was Initially developed for sensitivity analysis applications
(e.g., Cacucl, 1986, Cruz, 1973; Frank, 1978; lewins and Becker, 1982:

Oblow, 1978; Tomovic, 1963; and Tomovic and Vukobratovic, 1972)
the main step in differential analysis i{s the calculation of the deriva-
tives relating a change in model output as a function of model input
Normalizing these derivatives ylelds sensitivity coefficlents Differen-

In fact,

tial analysis is based on developing & Taylor-series approximation for
the model considered Because of the local nature of a Taylor-series
expansion, differential analysis is typically used to study the effects
of svall perturbations about some fixed base-case or
value (s) Techniques used to calculate derivatives include direct,
adjoint, Green's function, and computer-based methods such as GRESS [Pin
and others, 1986) The cholce of a particular technique depends on
several factors such as the number of input parameters, the number of
output variables (or performance measures), the availability of "off-the-
shelf" models or algorithms, and the relative cost of human and computer
resources of that technique as applied to the model of interest

design-point

3.3.2 Obtaining Additional Information About the Parameters and
Coefficients

Another technique to reduce uncertainty is to obtain or infer more infor-
mation about the s '{sting values In general, there are three types of
additional information that can be used to reduce uncertainty in param-

eters and coefficients: (1) "soft data": (2) correlation between
variables; and (3) autocorrelation.




*Soft data" refers to indirect evidence of the value of a given variable

Take, for example, the problem of estimating the porosity of a giver
geologic unit In the extreme case, no measurement of porosity may be
avallable In this instance, we still have information that bounds the
value of porosity That {s, we know the value is between 0 and 1 by
definition In another case we may know that, for a glven type of medlia
porosity ranges from 0.1 to 0.3 and, in other cases, we may know that the
porosity 1s alwavs less than a certain value All of these are

examples
of the use of "so data.’

Another type of informat i« about existing parvameters and coefflcients is

L4
correlation, either orrelation between different variables or autocorre

lation In performance assessment of HIW repositories several variables
are expected to be correlated For example, some investigators bellieve
that porosity and hydraulic conductivity are correlated with larpe
values of porosity being correlated with large values of hydraulle con
ductivity If this correlation was enforced in uncertainty analysis,
then the variance in model output would be reduced be

ause it would not
reflect combinations of small porosity and

ity large hydraulic conductivity
or vice versa The technique for finding cerrelation among variables 1is

typlcally referred to as multivariate analysis Examples of multivariate

methods ave multiple regressior discriminant functions and cluste?
analysls Davis 1 98¢ provides a comprehensive discussion

variate analysis

multi

Autocorrelation refers to self-similarities within a set of values of a
glven variable This correlation could be efther in a temporal o1

“
spatial sense For HIW performance assessment we are mainly interested

{in spatial correiation of geologle or geohydrologic variables This type
of autocorrelation analysis is pgenerally referred to as geostatistics
Geostatistics has 1its origins In the fleld of mining (Journel and
Hulibregts, 1978) and consists of two basic steps obtaining a model
of the spatial variability for the variable of interest; and (2) estima
tion ot the value of this variable at locations other than the observa
tion points The estimation of the value of the variable includes both
the mean value and the variance about the mean Several

1

{

approaches are
available for obtaining a model of spatial variable [Journel and
Hulibregts, 1978 and Davis, 1986 Most of these approaches require at
least local second-order stationarity (1.e., constant mean and variance)
Once a model of spatial correlation has been obtained, the most often
used technique of estimating or interpolating values of a given variable
is kriging Kriging was named after D. R. Krige, who first applied some
of the concepts underlying this technique to problems of ore-content
Assessment However, the general formulation of the theory was provided
by Matheron [1969, 1970), and & number of applications of the technique
have been performed at the Paris School of Mines [Delhomme, 1976
Delfiner, 1976 As developed by Matheron (1970 the theory of kriging
considers the observation record as coming from the reallization of some
random function and seeks to construct an unbiased linear estimator of
the function such that the estimation errors are minimized The objiect,
then, {8 to construct an estimator that will exhibit satisfactory average
behavior when applied to other realizations of the random function

Kripging has several advantages over alternative approaches such as least
) i




squares, polynomial interpolation, and distance weighting of the data

It restitutes the measured values as estimates at the observation points
and it provides a measure of the estimation error In theory, this esti-
mation error could be used to identify areas in which additional measure

ments are needed and, thus, to reduce uncertainty However, no direct
correlation may exist between the kriging error or uncertainty and the
uncertainty in the results of performance assessments For example, a
map of kriging errors of hydraulic conductivities may lead one to perform
hydraulic conductivity tests in regions that are not along the flow path

from the repository to the accessible environment To utilize geostatis-

assessment
analysis with

ties effectively in reducing uncertainty in performance
results requires the development of formalized sensitivity
geostatistical techniques




MODEL UNCERTAINTY

Models, by definition, are simplifications of reality; therein lies their
inherent uncertainty In HLW, both concepiual and mathematical
Are used Simplifications in these models generally take the form of
assunptions about such things ar the behavior of the system or the
accuracy of a mathematical app.oximation Because these models are
commonly implemented in computer codes, the uncertainty associated with
codes is also addressed in this section

models

Conceptual Model Uncertalnty

A conceptual model describes the assumed physical and/or chemical
processes taking place in the system, the variables and parameters chosen
to represent these processes Including boundary conditions, and the
spatial and temporal scales of the assumed processes The development of
a conceptual model generally involves simplifying the real system for two
reasons (1) selecting a given portion of the entire system needed for
the analysis being performed and/or (2) representing the system with a
tractable mathematical model that, in turn, can be solved using available
analytical and/or numerical techniques Simplifications are made about
the geometry, initlal and boundary conditions, materlal properties, and
nature of processes In addition, the "real" system is often poorly
characterized making the development of a conceptual model a formidable

task Both of these factors contribute to the uncertainty in conceptual
models

Currently, there (s no methodology that is designed to quantify the
uncertainty in conceptual models Until now, conceptual models have
generally been developed based on a "single" interpretation of existing
data using expert judgment A methodology 1s needed that would force the
analyst to examine all available Information in a formalized manner thus
minimizing blases and arbitrary rejection of data This methodology
could be based on the judgment of multiple experts well-versed {r. tne
construction of models for important processes such as ground-water flow
and transport The methodology could allovw for the articulation of all
the assunptions invoked by these experts and for consistency checks on
these assumptions with available data The methodology could also have
provisions for alternative conceptualizations consistent with the data
Finally, bounding analyses and experimentsl investigations could be
included that are aimed at distinguishing between alternative conceptual
models and narrowing the options Bayesian analysis could be used to

estimate the likelihood of the fitness of a given conceptual model
relative to cthers

Mathematical Model Uncertainty

Once a conceptual model has been formulated, a mathematical representa-
tion of the model(s) describing the subsystems and attendant relevant
processes Is required in order to predict the performance of the disposal
system Mathematical models are required in many areas such as
wvaste/host-rock interactions, ground-water flow, radionuclice transport,




human uptake, and dosimetry and health effects ranvell and

Helton,
1981a, 1981b

Uncertainty in mathematical models arises from approximations to
table mathematical
equations that allow arriving at a solution of the equations Applica-

tion of the mathematical models requires a solution of algebraic, differ
The solution of these

ential, and/or integral equations in the models Tt

equations can be classified into three major categories (1)
solutions (2) semianalytical solutions, and (3 numerical
Bear in mind that model equations are often too

represent the physicochemical processes with trac

analytical
solutions
complicated to have an
analytical, or even a semianalytic solution, and the only option

cases is to solve them by numerical techniques implemented iIn
codes Uncertainty could be introduced in obtaining

in such
computer
each of these types
of solutions For example, analytical solutions typically involve
functions (e.g., trigonometric functions, Bessel functions, exponentials)
which are approximated with a finite number of terms of
series Uncertainty could be introduced because of
series or machine round-off Uncertainty

some infinite
truncation of these

can be introduced in numerical
solutions when the equations are discretized For example, there are

differences between the diffrrential equations in a mathematical model
and thelr numerical representation in a computer code with finite differ-
ences Furthermore, numerical solutions introduce additional uncertain-
ties as a result of the discretization of the domain of interest into
cells or finite elements Semianalytical solutions can suffer from the
difficulties of both snalytic and numerical solutions

Uncertainty in
mathematical models {s rarely, {f ever,

quantified in performance assess
ments Instead, it is thought to be miminized to an acceptable level by

the uncertainty reduction techniqueg discussed in the following sections
of this report

Sources of uncertainty associated with computer codes include coding
errors, computational limitations, and user errors Like mathematical
model uncertainty, computer code uncertainty is rarely quantified in

performance assessment Instead, quality assurance procedures are used
to min'~ize this type of uncertainty

4.3 Reduction of Model Uncertainty

In practice, the reduction of model uncertainty occurs at the stage that
the conceptual and mathematical models have been implemented in a
computer code All of the activities that reduce uncertainty are
included ... generally accepted computer code quality assurance require-
ments The first such activity applies only to the computer code itself.
These include all of the quality assurance procedures that should be
followed prior to and throughout the development of the code, and also
include code maintenance and configuration management procedures once the
code has been developed Examples of code maintenance and configuration
management procedures {mplemented for computer software include Lyon

(1981), Wilkinson and Runkle [1986), Silling [1983), and Harlan and
Wilkinson [1988)




The next quality assurance activity to be discussed is designed to test
the accuracy of the mathematical model as ilmplemented in the computer
code This activity is called verification, which refers to the process
of obtaining assurance that a given computer code correctly implements
the solution of {ts parent mathematical model Verification involves the
comparison of the code solution to the analytical solution of the same
problem Another form of code quality assurance some:imes mistakenly
thought of as verification is known as benchmarking Benchmarking is
performed when analytical solutions to problems of interest do not exist
It involves performing the same calculation (model simulation) using
different computer codes and comparing the prediction of those codes

The most {mportant method of reducing model uncertainty
}

which is the pro.ess by which assurance is obtained that
mathematical models, as embodied in a

is valldation,
conceptual and
computer code, are an accurate
representation of the process or the system for which the models are
intended [NRC, 1984 Thus validation represents an overall test of
mode)l uncertainty, Including the conceptual model, the mathematical
model , and the computer code In rractice, vallidation exercises test the
data input as will as the models |[Davis and Goodrich, see footnote 3)
ldeally, validation consists of a comparison between model predictions
and observations of the real syst-am over temporal and spatial scales that
are relevant to HIW repository performance However, the nature of the
problem (spatial scaler of kilometers and temporal scales of thousands of
years) preclude such tests In fact, Davis and Goodrich (see footnote 3)
argue that one can never say for sure that a HIW performance assessment
model 1is "valid";, only that it {s either "invalid" or "not wvalid."
Despite these difficulties, some confidence must be developed that the
models used to represent the real system, and the assumptions assocliated
with the development of such models, are adequate for their intended use
(1.e., to assess compliance with specific numerical criteria in the regu-
lations) Davis and Goodrich (see footnote 3) also propose a validation
strategy that includes "generic" validation experiments as well as site-
specific experiments Both types of experiments could, in pgeneral,
include laboratory tests, fleld tests, and natural analogs

When carefully designed and conducted, laboratory experiments can be very
useful in testing the model validity Neither laboratory experiments nor
the model being validated should not be expected to emulate the real
system in its entirety Rather, they should be designed to study, in a
controlled manner, the critical processes or interactions (e.g., isolated
c.uplings between {mportant phenomena) identified with sensitivity
analyses The most crucial condition that must be met by laboratory
experiments i{s t' eir dynamic similarity to the real system. That i{s, the
, Reynold’'s Number) that
apparentiy _overn the real system must be retained in the design of
laborator, experiments and associated parameters This is particularly
import-.nt when simultaneous, time-dependent processes take place Accel -
erating one of the processes while ignoring the time scale of
lead to blased and, therefore, erroneous

values of th. dimensionless pgroups (e.g

others may
results

Field experiments have advantages over laboratory

experiments in that
they are performed on a larger scale, both teuporal

and spatial, and are




performed on virtually undisturbed material These aavantages are gained
at the expense of a loss of control on boundary conditions and an

increase in uncertainty because of the inability to measure all model
input and output at all locations

Natural analogs are phenomena that have

occurred in nature over thousands
of years and, sometimes, many kllometers Migration of

uranium from an
ore body i{s one such example The use of natural analogs in model vali-

dation activities is important because it tests the ability of the
performance assessment models to extrapolate in time and space The main
drawbacks of using natural analogs are the uncertainties in establishing
the inftial conditions and time history of the system

Natural analogs
may also play an important role

in testing coupled models that represent
{mportant couplings such as between ground-water flow and heat transfer,
and between ground-water flow and mass transport For example, pgeo-
thermal reservoirs can be used to test the coupling between ground-water
flow and heat transfer models




SUMMARY AND CONCLUSIONS

Many different types of uncertainties are assoclated with the assessment
of the performance of a high-level radioactive waste repository These
uncertainties must be identified and should be quantified and reduced
wherever possible Three major categories of uncertainty are (1)
uncertainty in the future state of the disposal system; (2) uncertainty
in models that are used to analyze repository behavior, and (3)
uncertainty in date, parameters, and coefficlents used in the analysis of
future states of the system and in models of system performance

Uncertainty in the future state of the repository system is caused by a
lack of knowledge of the rates and types of processes that could affect
the integrity of the system (e.g., volvanism, tectonics) over thousands
of years This type of uncertainty is generally treated by postulating
all possible disruptive events and processes (1.e., scenarios), then
screening out those that are highly unlikely to occur at the site The

remaining scenarios are then analyzed by assuming that a pgiven

scenario
occurs (e.g

, & volcanic eruption), analyzing the consequences of such an
event, and combining the consequence with an estimate of the likelihood
of the scenario occurring to arrive at an overall risk of the scenario
Finally, the consequences from all of the scenarios are combined to form
a total estimate of the repository system performance. In this entire
analysis it Is assumed that the likelihood (or conversely, the uncertain-
ty) of the occurrence of a scenario can be estimated from a combination
of historical data, models of the processes which cause the scenario to
occur, and expert judgment An alternative approach is to scenario
analysis {s to attempt to model the temporal evolution of the
system This approach, referred to as the environmental simulation
approach, is then combined with consequence models to produce an overall
estimate of the repository performance

repository

Aodels that simulate the behavior of the repository system for any given
scenario can be thought of as a combination of conceptual and mathemati-
cal models {mplemented in computer codes Models,
simplifications of real systems; therein lies the uncertainty associated
with models Assumptions made about the real system allow these simpli-
..2ations to be made Uncertainty associated with models i{s rarely
addressed directly in performance assessment modeling However, this
type of uncertainty could be quantified by proposing and using multiple
equally-plausible models throughout the entire performance assessment,
Conceptual model uncertainty can be reduced by validation, and verifica-
tion can be used to reduce mathematical urncertainty Uncertainty in
computer codes is addressed by adhering to adequate quality assurance
programs throughout the life-cycle of the computer code

by definition, are

Data uncertainty arises mainly from instrument accuracy and precision and
from the potential for human error Parameters,
datz, inherently have the same error as data plus errors of
tion Coefficients are values derived from data through the
model of the system or subsystem Uncertainty in data,
coefficients can be caused by the limited amount (both {r
time) of each available for a given repository

which are derived from
interpreta-
vse of a
parameters, and
space and
system Performance




assessment propagates quantifiable uncertainties in data, parameters, and
coefficients through the models that simulate the consequences of waste
disposal and results in a distribution of possible outcomes Uncertain-
ties associated with data, parameters, and coefficlents that are diffi-
cult to quantify (i.e., human error and interpretation error) are treated
through strict quality assurance requirements on data collection and
analysis Uncertainty arising from sparse data and/or parameters s
generally treated by assumptions of spatial continuity or correlation
Because this type of uncertainty Is based on assumptions, it is a concep-
tual model uncertainty and should be treated as such Reduction of data,
parameter, and coefficient uncertainty can be accomplished either by
gathering more data (i.e., additional slite characterization) or by
obtaining additional information about the existing data This informa-
tion could be in the form of correlations between or among data or by the

inclusion of additional "soft" data that constrains the values that the
data can take,

Throughout the {denti{fication, treatment, and reduction of uncertainty
expert judgment will be employed The only question to be addressed is
when and how this judgment will be obtalned and documented

Certainly,
the use of expert judgment to obtain probabilities of the

occurrence of
conse -

future events or to define ranges of parameter values to use in
quence analvels should be formalized
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