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ABSTRACT

This study provides a criterion for the onset of quench for low flow reflood.
The criterion is a combination of two conditions:

Tclad . Tlimiting quench, and (T= Temperature)
a < 0.95 (¢ = Void Fraction)

This criterion was obtained by examining temperature data from tests simulating
PWR reflood, such as FLECHT, THTF, PBF, CCTF, and FEBA tesis, with void fraction
data from CCTF, FEBA, and FLECHT low flood tests. The data show that quenching
initiated at a = 0.95 and that the majority of quench occurred at void fractions
near 0.85. The results show that rods can be completely quenched by entrained
droplets even if the collapsed liquid level does not advance. A thorough dis-
cussion of the analysis which support this quench criterion is given in the
text of this report.
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1.0 BACKGROUND

Existing quench criteria specify a critical temperature, below which quenching
is supposed to occur. This temperature has been referred to as: rewet tempera-
ture, Leidenfrost temperature, minimum delta-T, etc. In this paper, the quench
temperature refers to the "knee" of the clad temperature history when the clad
temperature takes its precipitous drop.

Strictly speaking, rapid cooling of a rod means that heat dissipation is much
faster than heat generation. Since heat generation during reflood is low, the
increase of heat dissipation is more responsible for increased cooling.
Increased heat aissipation could arise from initiation of transition boiling
corresponding to a decrease of the temperature difference (TSurface - Tsat) or

caused by the arrival of more liquid, (i.e., decrease of quality or void), or
both.

wWhen there is sufficient liquid.,(%%) controls clad temperature. When there
is a scarcity of liquid, gg or gg is controlling. The former case is for

high flow bottom reflood, whereas the latter case is for low flow bottom
reflood; or for quench due to spray. A general approach to describing the
heat transfer surface is to construct a multidimensional surface of q (X, G,
P, al, . . .). A rapid drop of clad temperature would occur if heat dissipa-
tion increases rapidly along an operating path.

Most studies until recently addressed the problem of q(AT), with an attempt to
determine the lower limit of film boiling or the upper limit of temperature at
which liquid can still physically be in contact with solid.

Many models have been proposed. These models are based upon heat conduction
(e.g., Thompson's Model Ref. 1), upon the hydrodynamic instability limit

(e.g., Berenson's Model Ref. 2), upon the thermodynamic instability limitation
(e.g., Spiegler Model Ref. 3), or upon combinations (e.g., Henry Model Ref. 4).
The review of the various models can be found in Ref. 5. Figure 1 shows the
comparison of the various models with guench data from tests in simulated fuel
rod bundles. The data shown are the upper limit of quench temperatures

(Ref. 6-10, 14, 17).

[t should be noted that all these data are from thermocouple readings. No
corrections were made for the radial or axial! gradient of heat transfer near

the solid-liquid interface. For transient conduction of heat to the surface

and a rapid change of heat transfer coefficient, the radial gradient near the
solid-liquid interface ("skin") can be particularly significant. Upon instan-
taneous contact between the liquid and the solid, the skin temperature may

drop to the limiting liquid temperature momentarily while the solid interior
temperature may be much higher than the limiting liquid temperature. Henry
obtained the empirical Equation 1 to predict the liquid limiting temperature, TL:

i X /R0 Mg 0.6
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In Henry's equation, Tt is the Berensen's minimum -AT temperature based upon
hydrodynamic instability considerations. Tt is controlling in the low pressure

Vv
range where Vﬂ is large. For high pressures, T: shculd be set as a limitation
of the quuid]state based upon thermodynamic considerations with the classical

form being %% TC. The upper Timit of quench temperatures shown in Figure 1 are

higher than either the thermodynamic limit or the hydrodynamic limit. It is
even higher than Henry's limiting temperature, possibly because of the additional
temperature drop across the gap around the sheath of the thermocouple. Since
gap resistence is difficult to define when the rod is undergoing a temperature
change and since the dependence of the limiting quench temperature or flow
condition is unknown, one tentative solution is to set TLimit = 1000°F, pending
formulation of a complete quench model.

It is very interesting to note that no quench criteria except Iloje's Eq.,

have considered the effect of flow on quench. This oversight might be due to
the fact that earlier models were formulated for pool hoiling. To account for
the flow condition, Iloje's equation for guench (Equation 2 subject to modifi-
cation in Fig. 2) (Ref. 11) was selected by the Rewet Workshop (Reference 12).

(TL X Tsat) 0.49

] Egq. 2

= 0.29 [1 - 0.295 X 92’45] [1+ (G x 10-%)

)

sat
Berenson

Iloeje's equation shows that quench temperature is a function of flow rate,
inlet subcooling, and pressure. The positive dependence of guench on pressure
is not surprising. However, the parametric dependency cof quench on flow

rate G has not been very clear (see Figure 3 for flat profile, Ref. 13). As
to subcooling effects, it is difficult to visualize that a quenching process,
which is a local phenomena, would depend upon inlet subcooling, which loses
its meaning as liquid progresses into the bundle.
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2.0 ANALYSIS AND DISCUSSION

To reexamine the problem of quenching, it is important to remember that for
quenching to occur, two conditions must be satisfied simultaneously; namely,
that the clad temperature must be low enough for liquid to make the momentary
contacts and that liquid must be present. Clad temperature can simply decrease
to any low temperature by precursory cooling before its precipitous drop upon
arrival of liquid (see Figure 4). Thus, correlations such as Iloje's equation,
which do not consider the effect of void, could predict quench temperatures in
error by several hundred degrees. The conservative approach of setting the
lower bound of the data as a criterion for guench temperature is not realistic
since the lower bound refers to the temperature when water arrives and can be
arbitrarily set to a lower level by holding back the water. The above argument
shows the absurdity of using quench temperature as the sole criterion without
consideration of the need of liquid for cooling. On the other hand, it is
important to understand that with the quench temperature criterion met, quench-
ing is possible even though the "solid" water reflood front has not reached

the quench elevation, i.e., 100% carryover. Entrained droplets which travel
from the reflood elevation up through the voided channel serve to decrease void
fraction and satisfy the void fraction criterion for quenching.

The presence of water can be represented by the water fraction, «i, which is
l-«, with « being the void fraction. The local void fraction can be determined
from local impedance probes at quench elevations, or to a lesser degree of
accuracy, from local dp measurements of collapsed static liquid level of each
cell.

The void fractions at the quench elevation obtained from interpolation of
dp-data of FLECHT tests are shown in Figure 5. As shown, for the data from
tests with a low flooding rate, 70 percent of the quenching takes place at
void fractions between 0.70 and 0.95 (.70<a<.95).

The quenching criteria of 0.70<u<0.95 is verified by FEBA data (Ref. 14), as
shown in Figure 6. As shown below, six data points were available for the
quench void, s measured from the time-fraction of dry conditions as measured

by local impedance probes. The void fraction at quenching is obtained from
the relationship: a = tdry/(tdry + twet)' averaged over 10 sec intervals,

where t is the time at the dry or wet condition.

Run No. 177 182
Elevation HF1 HFZ2 HF3 HF1  HF2  HF3
uq 0.92 0.93 0.96 0.88 0.75 0.93

For present PWR designs, quench is due to bottom reflood alone and the quench
front was observed to be coincident with the advance of the froth front (which
is much higher than the collapsed liquid level) as shown in FLECHT tests

(Ref. 15). Then, the quench void fraction is nothing more than the void
fraction at the froth front. In some reflood tests, however, the rod is
quenched from both top and bottom by cooling from spray or entrained liquid.
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In such a case the gquench front movement is different from the water front
movement. For example, in some large multibundle tests, the water level did
not advance beyond 1/3 of the core until after the core was completely quenched.
Consequently, there is a need to define a quench void as a quench criterion.

Fig. 7 shows the typical "bubble plots" of liquid level indicators in a
proprietary test. If one takes 10 sec intervals and equates the time fraction
of the "dry" condition to the void fraction, the bubble plots at various
elevations can be converted into "Iso-void" profiles as shown in Fig. 8 (in

the form of elevatien vs. time). Also shown in the same figure are the profiles
of quench fronts. Note that the liquid level (@ = 0.1) hardly advanced for
most of the reflood period, while the guench front is enveloped by profiles of
0.75 < a < 0.95.

A further confirmation of the proposed void-fraction criterion is from the
FLECHT Data Analysis Report (Ref. 16), in which it was shown that the quench
front is very ciose to the froth front. The void fraction of the froth front
can be calculated to be in the range of 0.70 to 0.99 as shown in Figure 9 and
the Appendix. Figure 9 was based on Yeh's equation, using the parameter K in
that equation in the range of 0.01 to 0.001, which is the predominant range

for low-flooding rate data. The parameter B in the same equation is a function
of pressure and velocity. Figure 9a covers the range of B expected from

FLECHT low-flooding tests. Figure 9b shows that for the range of B covered,
the void fraction of the froth is 0.70 to 0.99 (Table 1, 2). However, since
the void fraction of the froth changed rapidly with elevation and « = 0.99
requires an accurate prediction of void fraction, the upper rewet void fraction
is set to be 0.95 as a more reliably predicted value. Thus,

0.70 < < 0.95 . Eq. 2

“quench

11
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Table 1 B as function of Vapor

Velocity and Pressure

Ppsi vgi, 20 40 60
ft/sec.

6 0.667 0.79 0.87
9 0.806 0.955 1.05
12 0.920 1.09 1.20
15 1.025 1.21 1.34
18 1.12 1.32 1.46

P
a = 0.925 ()
Py

B =0.925 (—)

Yoor = 3
Rbcr gt
From Yeh'

0.239 v

vg___ [1+k] 0.6
bcr
K=V = Jg®
v — —
g (1 u)Jg

0.239 Vgi ) 0.47
vbcr
v g Rbcr
4.39 12 J—:E:
992
s Equation in Ref. 16
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Table 2 Void fraction as function of B and K from Yeh's equation (Ref. 16)

S —

K=0.01
K=0.003

K=0.001

0.34
0.34
0.84

C.34

0.79
0.77
0.78

0.788

0.81
0.79

0.87

0.839
0.859
0.866

0.92
0.88

0.96

0.904
0.965
0.949

1.0
0.926
0.959

0.976

0.9606
0.985
0.995

1.2
0.976
0.992
0.9972

0.983
0.9946
0.9982

1.5

0.990
0.997
0.999




3.0 CONCLUSION

From THTF, FLECHT, PBF, FEBA, GE, CCTF data, the limiting quench temperature
is found to be 1000°F. From FLECHT, CCTF, and FEBA, the quenching void
criterion is found to be:

a < 0.95
The above two conditions for limiting quench temperature and quenching void
fraction must be satisfied simultaneously for quenching to occur. A procedure
for application of the above criteria is given in the Appendix.
The implications of a quench void criterion are twofold:

1.  Quench temperature alone is not sufficient to determine whether the rod
is going to be quenched.

2. Even for the case of 95-100% carryover, i.e., when the collapsed water
level does not advance or only advances very slowly, the entrained
droplets, with flow void less than 0.95, can quench the rods, provided
the rod temperature is below the 1imiting quench value (say 1000°F).

18
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APPENDIX
QUENCH VOID DETERMINATION




A.1 PROCEDURE FOR DETERMINING QUENCH VOID

1. Check to see if T < 1000°F. If iy 1000°F, no quench is allowed. If
Tw < 1000° F, profeed to determine“void.

2 To determine void:

a.

Note:
side.

For quench at the froth front, use a modified Yeh's equation for
void fraction:

a = B(1+ K08
Pq. 0239,%.a
B = 0.925 (=8) (A
P b
cr
K= j2/(1-a)j
je/( a)Jg
-2 . pd-53.2 o__
Yber =3 Rper  Rpe = (5737 9,
a=20.47
u =3j/
g~ Jg'“
Z
fquenchq _—n
j _ 0
H. p A
g fg’g
4
fquenchq 7 dt
. _ 0
JQ -1 Uflood Ac Py Hfg 1/ Po Az

The a-equation is implicit since (l-a) appears in K on the right-hand
It takes iteration to obtain w. When a is close to unity, care must

be exercised to avoid numerical oscillation since a« has multiple roots and
only one is correct. The one root with a>1 is not a correct solution. Some
of the o curves in terms of B & K are shown in Fig. 9.
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For quench by entrained liquid droplets:

(Ug * dy *3,) = U+ 3, + 3% -4 0
ax 2. "% "9 23 R g d
d

with j, & j same as before, except Z & refers to the bottom quench
elevation. JIf there is fallback fromqgsg, j] is a ccmbination of liquid
from bottom and top.

x og (pg - p.)
4 We* % [ b 9%y

wWe* is critical weber number, usually about 10-20, but it may vary with
grid space geometry.

Cd is drag coefficient, usually 0.45
o is surface tension, M and pg are densities.

Check to see if o is less than 0.95, If so, quench is initiated.
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