

Commonwealth Edison One First National Plaza, Chicago, Illinois Address Reply to: Post Office Box 767 Chicago, Illinois 60690

December 1, 1978

Mr. Olan D. Parr, Chief Light Water Reactors - Branch 3 Division of Project Management U.S. Muclear Regulatory Commission Washington, DC 20555

> Subject: LaSalle County Station Units 1 and 2 Mark II Containment MRC Docket Nos. 50-373/374

Reference (a): R. S. Boyd letter to B. Lee, Jr. dated September 18, 1978

Dear Mr. Parr:

Commonwealth Edison has completed its evaluation of the "Mark II Generic Acceptance Criteria For Lead Plants" contained in Reference (a); as it relates to LaSalle County Station Units 1 and 2. The attached revision to the LaSalle County Station Design Assessment Report documents the position of this applicant relative to that criteria.

Commonwealth Edison agrees to adopt the NRC lead plant acceptance criteria with a limited number of exceptions. This agreement is, in several cases, based on favorable consideration by the Nuclear Regulatory Commission (NRC) of the application of SRSS methods. The primary areas to which exceptions have been taken involve:

- ( i) S/RV bubble frequency and phasing, and
- (ii) Submerged structures load determination.

It is expected, based on previous discussions with the NRC Staff, that resolution of these exceptions shall be accomplished before the end of 1978.

NRC Docket Nos. 50-373/374

Mr. Olan D. Parr: - 2 - December 1, 1978

Three (3) signed originals and thirty-seven (37) copies of this revision are submitted for your review.

Very truly yours,

Cordell Reed Assistant Vice-President

attachment

SUBSCRIBED and SWORN to before me this \_\_\_\_, day of \_\_\_\_\_, 1978.

Notary Public

Commonwealth Edison

One First National Plaza, Chicago, Illinois Address Reply to Post Office Box 767 Chicago, Illinois 60690

December 1, 1978

Mr. Olan D. Parr, Chief Light Water Reactors - Branch 3 Division of Project Management U.S. Nuclear Regulatory Commission Washington, DC 20555

> Subject: LaSalle County Station Units 1 and 2 Mark II Containment NRC Docket Nos. 50-373/374

Reference (a): R. S. Boyd letter to B. Lee, Jr. dated September 18, 1978

Dear Mr. Parr:

Commonwealth Edison has completed its evaluation of the "Mark II Generic Acceptance Criteria For Lead Plants" contained in Reference (a); as it relates to LaSalle County Station Units 1 and 2. The attached revision to the LaSalle County Station Design Assessment Report documents the position of this applicant relative to that criteria.

Commonwealth Edison agrees to adopt the NRC lead plant acceptance criteria with a limited number of exceptions. This agreement is, in several cases, based on favorable consideration by the Nuclear Regulatory Commission (NRC) of the application of SRSS methods. The primary areas to which exceptions have been taken involve:

(i) S/RV bubble frequency and phasing, and(ii) Submerged structures load determination.

It is expected, based on previous discussions with the NRC Staff, that resolution of these exceptions shall be accomplished before the end of 1978.

Mr. Olan D. Parr:

- 2 - December 1, 1978

Three (3) signed originals and thirty-seven (37) copies of this revision are submitted for your review.

Very truly yours,

. Del George

Cordell Reed Assistant Vice-President

attachment

SUBSCRIBED and SWORN to before me this 1, day of 1978.

Notary Public

LSCS-MARK II DAR Rev. 4 12/78

### LA SALLE COUNTY POWER STATION

### INSTRUCTIONS FOR UPDATING YOUR MARK II DAR

To update your copy of the LSCS-MARK II DAR, remove and destroy the following pages and insert pages and figures as indicated.

REMOVE

. .

E

INSERT

Table of Contents

Pape v

Page v

Appendix B

Shert for Tab, Appendix C; page C.0-1; After page B.3-31, which and pages C.1-1 through C.1-11 is Figure Q20.75-1

# LSCS-MARK II DAR Rev. 4 12/78

14

(

12

-

## TABLE OF CONTENTS (Cont'd)

|                                                                                                                                                            | PAGE                                                        |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---|
| A.2 STRUCTURAL RESPONSE TO LOCA LOADS                                                                                                                      | A.2-1                                                       |   |
| <pre>A.2.1 Analytical Model<br/>A.2.2 Method of Analysis<br/>A.2.3 Response to Jet Impingement Loads<br/>A.2.4 Response to Cyclic Condensation Loads</pre> | A.2-1<br>A.2-1<br>A.2-2<br>A.2-3                            |   |
| A.3 DRYWELL FLOOR ANALYSIS DUE TO DOWNCOMER<br>WHIP                                                                                                        | A.3-1                                                       |   |
| A.3.1 Analytical Model<br>A.3.2 Response of Druwell Floor Due to                                                                                           | A.3-1                                                       |   |
| Downcomer Whip                                                                                                                                             | A.3-1                                                       |   |
| A.4 COMPUTER PROGRAMS                                                                                                                                      | A.4-1                                                       |   |
| A.4.1 DYNAX<br>A.4.2 FAST<br>A.4.3 KALSHEL<br>A.4.4 TEMCO<br>A.4.5 PIPSYS<br>A.4.6 RSG                                                                     | A.4-1<br>A.4-2<br>A.4-2<br>A.4-3<br>A.4-5<br>A.4-5<br>A.4-6 |   |
| B.O RESPONSE TO NRC QUESTIONS                                                                                                                              | B.0-1                                                       | 1 |
| B.1 QUESTIONS OF JUNE 23, 1976                                                                                                                             | B.1-1                                                       |   |
| B.2 QUESTIONS OF JANUARY 19, 1977                                                                                                                          | B.2-1                                                       | 2 |
| B.3 QUESTIONS OF JUNE 30, 1978                                                                                                                             | B.3-1                                                       | 3 |
| C.0 LA SALLE DESIGN BASIS VS. NRC LEAD PLANT<br>ACCEPTANCE CRITERIA                                                                                        | C.0-1                                                       | 4 |
|                                                                                                                                                            |                                                             |   |

### LSCS-MARK II DAR Rev. 4 12/78

TAB:

"APPENDIX C"

(Tab will be supplied later.)

### C.O LA SALLE DESIGN BASIS VS. NRC LEAD PLANT

#### ACCEPTANCE CRITERIA

This appendix provides in a tabular form an assessment of the current design basis for the La Salle County Station against the NRC "Mark II Generic Acceptance Criteria for Lead Plants" of September 18, 1978. This comparison and the information provided, reflects the Mark II Lead Plant positions discussed with the NRC staff on October 19, 1978. The positions assume that the Newmark/Kennedy Criteria for use of the SRSS method of load combination will be accepted. In areas where the La Salle position differs from the NRC Acceptance Criteria, support will be provided by Mark II Owners Group Tasks and by La Salle unique efforts as appropriate.

| LOAD OR PHENOMENON                                       | MARK 11 OWNERS GROUP<br>LOAD SPECIFICATION                                                                                                                                                                                                                                                                                                                                                                                   | NRC REVIEW STATUS  | LA SALLE POSITION ON ACCEPTANCE CRITERIA                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOCA-Related Hydrodynamic Loads                          |                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                        |
| A. Submerged Boundary Loads<br>During Vent Clearing      | 33 psi over-pressure added to local<br>hydrostatic below vent exit (walls<br>and hasemat) - linear attenuation<br>to pool surface.                                                                                                                                                                                                                                                                                           | Acceptable         | Acceptable. However, it should be noted that 33 psi<br>is a very conservative estimation of jet loads which<br>should be applied only to the basemat in accordance with<br>CFFR (Rev. 2).                                                                                                                                                                                                                              |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | The Mark II program will provide a realistic assessment of wall loads during vent clearing based on 4T results.                                                                                                                                                                                                                                                                                                        |
| B. Pool Swell Loads<br>1. Pool Swell Analytical<br>Model |                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                        |
| a) Air Bubble Pressure                                   | Calculated by the Pool Swell Anal-<br>ytical Model (PSAM) used in cal-<br>culation of submerged boundary<br>loads.                                                                                                                                                                                                                                                                                                           | Acceptable         |                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <pre>b) Pool Swell Elevation</pre>                       | 1.) x submergence.                                                                                                                                                                                                                                                                                                                                                                                                           | NRC Criteria I.A.I | Acceptable                                                                                                                                                                                                                                                                                                                                                                                                             |
| c) Pool Swell Velocity                                   | Velocity history vs. pool eleva-<br>tion predicted by the PSAM used to<br>compute impact loading on small<br>structures and drag on gratings<br>between initial pool surface and<br>maximum pool elevation and steady-<br>state drag between vent exit and<br>maximum pool elevation. Anal-<br>ytical velocity variation used up<br>to maximum velocity. Maximum<br>velocity applies thereafter up<br>to maximum pool swell. | NRC Criteria 1.A.2 | Acceptable<br>The impact of a 10% increase in pool swell velocity will<br>be assessed. Although the assumptions used in the Pool<br>Swell Analytical Model are already very conservative<br>and eliminate the need for any additional factors, the<br>resulting calculated load increase should not require<br>design changes since there are only a minimum of components<br>in the pool swell region of the wetwell. |
| d) Pool Swell<br>Acceleration                            | Acceleration predicted by the PSAM.<br>Pool acceleration is utilized in<br>the calculation of acceleration drag<br>loads on submerged components<br>during pool swell.                                                                                                                                                                                                                                                       | Acceptable         |                                                                                                                                                                                                                                                                                                                                                                                                                        |
| e) Wetwell Air<br>Compression                            | Wetwell air compression is cal-<br>culated by the PSAM. Defines the<br>pressure loading on the wetwell<br>boundary above the pool surface<br>during pool swell.                                                                                                                                                                                                                                                              | Acceptable         |                                                                                                                                                                                                                                                                                                                                                                                                                        |

petter,

ñ.,

1 and

| LOAD OR PHENOMENON                  | LOAD SPECIFICATION                                                                                                                                                                                                                  | NRC REVIEW STATUS                                                                      | LA SALLE POSITION ON ACCEPTANCE CRITERIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| f) Drywell Pressure<br>History      | Plant unique. Utilized to PSAM<br>to calculate pool swell loads.                                                                                                                                                                    | Acceptable if based<br>on NEDM-10320. Other-<br>wise plant unique<br>reviews required. | Acceptable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Loads on Submarged<br>Boundaries    | Maximum bubble pressure predicted<br>by the PSAM added uniformly to<br>local hydrostatic below vent exit<br>(wells and basemat) linear attenua-<br>tion to pool surface. Applied to<br>walls up to maximum pool swell<br>elevation. | Acceptable                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Impac: Loads<br>a) Small Structures | <pre>1.5 x Pressure-Velocity correla-<br/>tion for pipes and I beams.<br/>Constant duration pulse.</pre>                                                                                                                            | NRC criteria 1.4.6                                                                     | Acceptable. Although the criteria is unnecessfully con-<br>servative investigations indicate that, due to the size<br>and frequency of structures in the La Salle pool swell<br>zone, the design loads used are conservative with respect<br>to the NRC Acceptance Criteria. It should be noted that<br>analytical work performed by Sargent & Lundy utilizing<br>the PSIF (Pressure Suppression Test Facility) data for<br>circumferential targets indicates that the DFFR spe-<br>cification is conservative for the size and frequency<br>of structures in the La Salle Pool Swell Zone. Tests<br>performed by EPRI (EPRI No. NP-798, May 1978) to deter-<br>mine flat pool impact on rigid and flexible cylinders<br>are also in good agreement with DFFR. The Maise report<br>employed excessively conservative assumptions to define<br>areas where DFFR is nonconservative. The NRC Acceptance<br>Criteria utilized an additional assumption (1-beam<br>impact duration is inversely proportional to velocity)<br>which is inconsistent with theory and experimental<br>evidence. Nevertheless, the NRC Criter a have been<br>used to assess structures in the pool swell zone<br>and these structures can withstand the conservative<br>criteria. |
| b) Large Structures                 | None ~ Plant unique load where applicable.                                                                                                                                                                                          | Plant unique review<br>where applicable                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| c) Grating                          | No impact load specified. P <sub>drag</sub><br>vs. open area correlation and<br>velocity vs. elevation history<br>from the PSAM.                                                                                                    | NRC Criteria I.A.3                                                                     | Acceptable. La Saile has no grating in pool swell area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

1

12/78

| LOAD OR PHENOMENON                    | MARK II OWNERS GROUP<br>LOAD SPECIFICATION                                                                                                                                                               | NRC REVIEW STATUS  | LA SALLE POSITION ON ACCEPTANCE CRITERIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4. Wetwell Air Compression            |                                                                                                                                                                                                          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| a) Wall Loads                         | Direct application of the PSAM<br>calculated pressure due to wet-<br>well compression.                                                                                                                   | Acceptable         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| b) Diaphragm Upward<br>Loads          | 2.5 psid                                                                                                                                                                                                 | NRC Criteria I.A.4 | Acceptable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5. Asymmetric Load                    | None                                                                                                                                                                                                     | NRC Criteria I.A.5 | Open Item. Although this load is unnecessarily con-<br>servative, a simplified assessment has been completed<br>which shows that the current design can take this load.<br>This assessment utilized the vent clearing pressure load<br>(22 psig) applied over a 180° sector of the wetwell wall<br>between the basemat and the drywell floor. Superimposed<br>on this was the hydrostatic load (12 psig at basemat with<br>linear decrease to zero at the water surface) applied over<br>the entire wetwell wall between the basemat and pool surface.<br>This load has been found to be of little significance compared<br>to other design loads and does not affect the adequacy of the<br>design. |
| Steam Condensation and Chugging Loads |                                                                                                                                                                                                          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1. Downcomer Lateral<br>Loads         |                                                                                                                                                                                                          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| a) Single Vent Loads                  | 8.8 KIP static                                                                                                                                                                                           | NRC Criteria I.B.I | Acceptable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| b) Multiple Vent loads                | Prescribes variation of load<br>per downcomer vs. number of<br>downcomers.                                                                                                                               | NRC Criteria I.B.2 | Acceptable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2. Submerged Boundary<br>Loads        |                                                                                                                                                                                                          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| a) High Steam Flux<br>Loads           | Sinusoidal pressure fluctuation<br>added to local hydrostatic.<br>Amplitude uniform below vent<br>exit-linear attenuation to pool<br>surface. 4.4 psi peak-to-peak<br>amplitude. 2, 6, 7 Hz frequencies. | Acceptable         | e.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| OAD OR PHENOMENON              | LOAD SPECIFICATION                                                                                                                                                                                                                                                                                                       | NRC REVIEW STATUS                                    | LA SALLE POSITION ON ACCEPTANCE CRITERIA |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------|
| b) Medium Steam Flux<br>Loads  | Sinusoidal pressure fluctuation<br>added to local hydrostatic. Am-<br>plitude uniform below vent exit-<br>linear attenuation to pool surface.<br>7.5 psi peak-to-peak amplitude.<br>5, 6 Hz frequencies.                                                                                                                 | Acceptable                                           |                                          |
| c) Chugging Loads              | Representative pressure fluc-<br>tuation taken from the serve a<br>added to local hydrostatic.                                                                                                                                                                                                                           | Acceptable pending<br>resolution of FSI<br>concerns. |                                          |
| - uniform loading condition    | Maximum amplitude uniform below<br>ven exit-linear attenuation<br>to pool surface. 44.8 psi<br>maximum overpressure, -4.0 psi<br>maximum under pressure, 20-30 Hz<br>frequency.                                                                                                                                          |                                                      |                                          |
| - asymmetric loading condition | Maximum amplitude uniform below<br>vent exit-linear attenuation to<br>pool surface. 20 psi maximum<br>overpressure, -14 psi maximum<br>underpressure, 20-30 Hz fre-<br>quency, peripheral variation of<br>amplitude follows observed<br>statistical distribution with<br>maximum and minimum dia-<br>metrically opposed. |                                                      |                                          |

MARK II OWNERS GROUP

1

|    | LOAD OR PHENOMENON                                             | MARK II OWNERS GROUP                                                                                                                                                                                                                                 | NRC REVIEW STATUS          | LA SALLE POSITION ON ACCEPTANCE CRITERIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SR | -Related Hydrodynamic Loads                                    |                                                                                                                                                                                                                                                      |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Α. | Pool Temperature Limits<br>for KWU and GE four arm<br>quencher | None specified                                                                                                                                                                                                                                       | NRC Criteria II.1 and II.3 | Acceptable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | Quencher Air Clearing<br>Loads                                 | Mark II plants utilizing the KWU<br>quencher use an interim load spe-<br>cification consisting of the rams<br>head calculational procedure.<br>Mark II plants utilizing the four<br>arm quencher use quencher load<br>methodology described in DFFR. | NRC Criteria II.2          | Open Item. The first four SRV discharge cases listed in the NRC Acceptance Criteria are being assessed. In addition, a simultaneous valve actuation case is considered. This case predicts variations of bubble frequency and phase shifts due to variations of line air volumes. The fifth load case defined in the Acceptance Criteria, all valve simultaneous discharge with all bubble oscillating in-phase, is unrealistic for two reasons. First, there is no mechanism or set of conditions which would cause all valves to actuate simultaneously. Secondly, even if the valves were actuated simultaneously. Secondly, even if the valves were actuated simultaneously. Secondly, even if the valves were actuated simultaneously. In length variations would prevent them from oscillating in phase. Additional conservations is not needed in the SRV discharge case selection since the entire phenomena is conservatively modeled using rams head discharge device loads even though a quencher device is installed in the plant and the existing cases bound the anticipated discharge conditions considered. Because of the wide range of discharge conditions considered in a frequency range used exceeds the 4-11 Hz, range specified. In-plant tests will be run to demonstrate the adequacy and conservatism of the design loads. |
| в. | Quencher Tie-Down Loads                                        |                                                                                                                                                                                                                                                      |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    | 1. Quencher Arm Loads                                          |                                                                                                                                                                                                                                                      |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    | (a) Four Arm Quencber                                          | Vertical and lateral arm loads<br>developed on the basis of bounding<br>assumptions for air/water dis-<br>charge from the quencher and con-<br>servative combinations of maximum/<br>minimum bubble pressure acting on<br>the quencher.              | Acceptable                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

pthing.

16.1

1

1

| LA SALLE POSITION ON ACCEPTANCE CRITERIA   | Acceptable. These loads will be calculated using the methodology and assumptions described in DFFR for four arm quenchers, as recommended in the Acceptance Criteria. |                            |                                                                                                                                                                                                                                                                                                                                                                        | Acceptable. These loads will be calculated using the methodology and assumptions described in DFFR for four arm quenchers, as recommended in the Accepta ce Criteria. |                                       |                       | Open item. Tests show the present LOCA jet load methodology<br>to be very conservative in predictions of jet penetration<br>length. Using the DFFR model no strictures are impacted by<br>the jet and no loads are predicted. A more detailed model<br>(ring vortex model) is under development and will provide<br>verification of the absence of significant water jet<br>loads. |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NRC REVIEW STATUS                          | Review Continuing                                                                                                                                                     |                            | Accept able                                                                                                                                                                                                                                                                                                                                                            | Review Continuing.                                                                                                                                                    |                                       |                       | NRC Criteria III.A.I                                                                                                                                                                                                                                                                                                                                                               |
| MARK II CMNERS GROUP<br>LOAD SPECIFICATION | KMU "T" quencher not included in<br>Mark II 0.6. Program. T quencher<br>arm loads not specified at this<br>time.                                                      |                            | Includes vertical and lateral<br>arm load transmitted to the base-<br>mat via the tie downs. See<br>II.C.1.a above plus vertical<br>transient wave and thrust loads.<br>Thrust load calculated using a<br>standard momentum balance. Ver-<br>tical and lateral moments for<br>air or water clearing are cal-<br>culated based on conservative<br>clearing assumptions. | KMU "T" quencher not included<br>in Mark II 0.6. program. T<br>quencher tie-down loads not<br>specified at this time.                                                 |                                       |                       | Methodology based on a quasi-one-<br>dimensional model.                                                                                                                                                                                                                                                                                                                            |
| LOAD OR PHENOMENON                         | (b) KWU T Quencher                                                                                                                                                    | 2. Quencher Tie-Down Loads | (a) Four-Arm Quencher                                                                                                                                                                                                                                                                                                                                                  | (b) KWU "T" Quencher                                                                                                                                                  | LOCA/SRV Submerged Structure<br>Loads | A. LOCA/SRV Jet Loads | 1. LOCA/Rams head SRV<br>Jet Loads                                                                                                                                                                                                                                                                                                                                                 |

C.1-6

.

|    | LOAD OR PHENOMENON        | LOAD SPECIFICATION                                                                                                                                                                                               | NRC REVIEW STATUS     | LA SALLE POSITION ON ACCEPTANCE CRITERIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | 2. SRV-Quencher Jet Loads | No loads specified for lead plants.<br>Model under development in long-<br>term program.                                                                                                                         | NRC Criteria III.A.Ż  | Open Item. The spherical zone of influence defined in<br>the Acceptance Criteria is not appropriate for the<br>two arm quencher. A zone of influence for each arm will<br>be defined as a cylinder with an axis coincidental<br>with the quencher arm. The length of the cylinder will<br>be equal to the length of the quencher arm plus 10 end<br>cap hole diameters. A definition for the radius of the<br>cylinder is being developed.                                                                                                                                             |
|    |                           |                                                                                                                                                                                                                  |                       | It is anticipated that the jet penetration will avoid<br>load impingement on any structures in the pool.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3. | LOCA/SRV Air Bubble Drag  |                                                                                                                                                                                                                  |                       | Open Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1. | i. LOCA Air Bubble Loads  | The methodology follows the LOCA<br>air carryover phase from bubble<br>charging, bubble contract, pool<br>rise and pool fallback. The<br>drag calculations include standard<br>and acceleration drag components. | NRC Criteria III.B.I. | The NRC Acceptance Criteria lists a number of modifications<br>to the present methodology. These are addressed as follows:                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    |                           |                                                                                                                                                                                                                  |                       | a) Bubble Asymmetry - Although bubble asymmetry has been<br>in the NRC Criteria, the conservatisms used in modeling<br>the LOCA blowdown are sufficient to account for the<br>small asymmetric effects postulated. No additional<br>multipliers are necessary on the fluid velocity.                                                                                                                                                                                                                                                                                                   |
|    |                           |                                                                                                                                                                                                                  |                       | b) Standard Drag in Accelerating Flows - Drag coefficient<br>will be appropriately modified as discussed in the<br>November 14, 1978 meeting between the Mark II owners<br>and the NRC Staff.                                                                                                                                                                                                                                                                                                                                                                                          |
|    |                           |                                                                                                                                                                                                                  |                       | c) Velocity and Acceleration Definition - The assumption that<br>drag may be calculated using the velocity predicted at the<br>center of the structure is a logical simplification of the<br>problem. To do otherwise would greatly increase the com-<br>plexity of the calculation with only minimal effect on the<br>loads. The present method is the most reasonable way to<br>predict the total velocity drag load on the structure. The<br>acceleration at the center of the structure is the tech-<br>nically correct value to use in calculation of acceleration<br>drag loads. |

1the

194

al.

0

C.1-7

|    | LOAD OR PHENOMENON                   | MARK II OWNERS CROUP<br>LOAD SPECIFICATION                                                                                                                                         | NRC REVIEW STATUS                                                                                                                                                           | LA SALLE POSITION ON ACCEPTANCE CRITERIA                                                                                                                                                                                                                                                                                                                                      |
|----|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                      |                                                                                                                                                                                    |                                                                                                                                                                             | <ul> <li>d) Interference Effects - Drag Loads are altered by effects of neighboring structures. Loads are increased in some c.ses and decreased in others. The extent and magnitude of these effects in the La Salle suppression pool is being investigated.</li> <li>e) Interference in Downcomer Bracing - Does not apply to La Salle.</li> </ul>                           |
|    | 2. SRV-Rams Head Air<br>Bubble Loads | The methodology is based on an<br>analytical model of the bubble<br>charging process including bubble<br>rise and oscillation. Accelera-<br>tion drag alone is considered.         | NRC Criteria III.B.2                                                                                                                                                        | <ul> <li>Open Item</li> <li>a) Neglecting Standard Drag - Standard drag is calculated<br/>and included for all submerged structure load calculations.</li> <li>b) LOCA Bubble Criteria - The same comments apply to the SRV<br/>bubbles except for b). Standard drag is affected by the<br/>oscillating SRV bubbles. The impact of this is being<br/>investigated.</li> </ul> |
|    | 3. SRV-Quencher Air<br>Bubble Loadw  | No quencher drag model provided for<br>lead plants. Lead plants propose<br>interim use of rams head model (See<br>III.B.2 above). Model will be<br>developed in long-term program. | NRC Criteria III.B.3.                                                                                                                                                       | Open Item<br>The bubble location and radius recommended in the acceptance<br>criteria is not appropriate for T-quenchers. Bubbles are<br>actually located near the arms. The bubble size is predicted<br>from the line air volume.                                                                                                                                            |
| c. | Steam Condensation Drag<br>Loads     | No generic load methodology<br>provided. Generic model under<br>development in long-term program.                                                                                  | Lead plant load spe-<br>cification and NRC<br>review will be con-<br>ducted on a plant<br>unique basis with<br>confirmation in<br>long-term program<br>using generic model. | Described in La Salle Closure Report                                                                                                                                                                                                                                                                                                                                          |

LSCS-MARK II DAR

12/78

C.1-8

|     | LOAD OR PHENOMENON                     | LOAD SPECIFICATION                  | NRC REVIEW STATUS                                     | LA SALLE POSITION ON ACCEPTANCE CRITERIA |
|-----|----------------------------------------|-------------------------------------|-------------------------------------------------------|------------------------------------------|
| Sec | ondary Loads                           |                                     |                                                       |                                          |
| Α.  | Sonic Wave Load                        | Negligible Load - none specified    | Acceptable                                            |                                          |
| в.  | Compressive Wave Load                  | Negligible Load - none specified    | Acceptable                                            |                                          |
| с.  | Post Swell Wave Load                   | No generic load provided            | Plant unique load<br>specification and<br>NRC review. | Described in La Salle Closure Report     |
| D.  | Seixmic Slosh Lond                     | No generic load provided            | Plant unique load<br>specification and<br>NRC review. | Described in La Salle Closure P port     |
| ε.  | Fallback load on Sebmerged<br>Boundary | Negligible load - none specified    | Acceptable                                            |                                          |
| F.  | Thrust Loads                           | Momentum balance                    | Acceptable                                            |                                          |
| G.  | Friction Drag Loads<br>on Vents        | Standard friction drag calculations | Acceptable                                            |                                          |
| н.  | Vent Clearing Loads                    | Negligible Load - none specified    | Acceptable                                            |                                          |

MARK II OWNERS GROUP

 $\frac{1}{2}$ 

party .

| LOAD OR PHENOMENON                           | MARK II OWNERS GROUP<br>LOAD SPECIFICATION | NRC REVIEW STATUS                                              | IA SALLE POSITION ON ACCEPTANCE CRITERIA                                                      |
|----------------------------------------------|--------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| FUNCTIONAL<br>CAPABILITY                     |                                            | Interim technical position (7/19/78)                           | Acceptable, Rodabu <b>d</b> gh criteria may be used in some cases if<br>NRC finds acceptable. |
| MASS-ENERGY<br>RELEASE FOR<br>ANNULUS PRESS. |                                            | Verify using RELAP <sup>4</sup> /<br>MOD                       | Acceptable                                                                                    |
| QUESTIONS<br>MEB-2, MEB-5                    |                                            | 15% peak broadening<br>to be used.                             | Acceptable                                                                                    |
| MEB-3, MEB-5                                 |                                            | Closely spaced modes combined Per 1.92                         | Acceptable. NSSS scope uses modified summatio:<br>per approved GESSAR.                        |
| MEB-1                                        |                                            | Dynamic analysis<br>methods acceptable                         | Acceptable                                                                                    |
| MEB-2                                        |                                            | OBE Damping - Level<br>A or B<br>SSE Damping - Level<br>C or D | Acceptable                                                                                    |
| MEB-6                                        |                                            | Seismic slosh-plant<br>unique review                           | Acceptable                                                                                    |
| MEB-7a and b                                 |                                            | Load Combinations:<br>AP+SSE<br>OBE+SRV                        | Acceptable. See load combination table for Case #2 and 7                                      |
| MEB-8                                        |                                            | Functional capability<br>and piping acceptance<br>criteria     | See load combination table.                                                                   |

| LOAD PHENOMENON | LOAD SPECIFICATION | NRC REVIEW STATUS                  | LA SALLE POSITION ON ACCEPTANCE CRITER'S                            |
|-----------------|--------------------|------------------------------------|---------------------------------------------------------------------|
| 1.              |                    | N*SRV <sub>X</sub> To B            | Acceptable                                                          |
| 2.              |                    | N+SRV *OBE to B                    | Acceptable Approved GESSAR approach used for NSSS.                  |
| 3.              |                    | N+SRV <sub>al1</sub> +SSE to C     | Acceptable                                                          |
| 4.              |                    | N+SRV ads +OBE+IBA to C            | Acceptable                                                          |
| 5.              |                    | N*SRV ads +OBE*IBA to C            | Acceptable                                                          |
| 6.              |                    | N+SRV <sub>ads</sub> +SSE+1BA to C | Acceptable                                                          |
| 7.              |                    | N+SSE+DBA to C                     | Acceptable                                                          |
| 8.              |                    | N to A                             | Acceptable                                                          |
| 9.              |                    | N+OBE to B                         | Acceptable                                                          |
| 10.             |                    | N+SRV_*SSE+DBA to C                | Applied to containment structure only (See M 020.22 and DFFR 5.2.4) |
|                 |                    |                                    |                                                                     |