

Docket No. 50-312

ORB\#4 Rds	RED	Gray Fife	july	\& 1 to 92
DEisenhut	JSLOlz			
ECase	ACRS			
TNovak	OLD			
RIngram	IE			
MPadovan	PAS			
Memo File	MWilliams			

MEMORANDUM FOR: Atomic Safety and Licensing Appeal Board for Rancho Seco
FROM:
Thomas M. Novak, Assistant Director for Operating Reactors, Division of Licensing, NRR

SUBJECT: BOARD NOTIFICATION (B N-82-75) - RANCHO SECO
This report presents the initial results of a program that was begun as a result of one of the Lewis Committee recommendations following their review of WASH -1400, the Reactor Safety Study. The Precursor Program uses Licensee Event Reports to evaluate potential nuclear plant accident precursors occurring at operating reactors. These individual plant precursors are then summarized to evaluate the risk (for a particular time period) from all operating nuclear power plants. This report covers the period from 1969 to 1979. The estimate is between 1.7×10^{-3} and 4.5×10^{-3} per reactor year and includes contributions from three major events:
(1) the loss of feedwater and stuck-open relief valve at Three Mile Island Unit 2 (which actually resulted in severe core damage), (2) the loss of nonnuclear instrumentation at Rancho Seco, and (3) the fire in the cable spreading room at Browns ferry 1. This report was released as a progress report with the expectation that some conclusions may need to be changed as the report undergoes continuing peer review and public comment.

This information relates directly to issues on the probability of accidents for nuclear power reactors. Since it estimates the probability to be much higher than past studies, it may put a different light on the issue. I would like to point out that this document does not represent an NRC position concerning the probability of accidents, and is being furnished to you as background information. The report is a contractor's assessment of the past (1969-1979) probabilities based on the events and plant characteristics which existed during that period.

Approximately 85% of the total risk cited in the study should be mitigated by the NRC required modifications resulting from the events at TMI-2, Browns Ferry, Crystal River and Oconee 3. (I.E. Bulletin 79-27). In addition, the upgrading of the Auxiliary Feedwater System reliability and other generic improvements should further reduce the total risk. The attached information refers to the future work in this area.

Due to the size of this report (3^{n} thick) only summary information is being provided. Copies of the report are available as noted in the attachment.

Thomas M. Novel

Thomas M. Novak, Assistant Director for Operating Reactors
Division of Licensing
Enclosure: As Stated


```
Sacramento Municipal Utility
```

cc w/enclosure(s):

```
```

```
cc w/enclosure(s):
```

```

David S. Kaplan, Secretary and General Counsel
Sacramento Municipal Utility District
6201 S Street
P. O: Box 15830

Sacramento, California 95813

Sacramento County
Board of Supervisors
827 7th Street, Room 424
Sacramento, California 95814
Business and Municipal Department
Sacramento City-County Library
828 I Street
Sacramento, California 95814

Regional Radiation lepresentative
EPA Reaion IX
215 Fremont Street
San Francisco, California 94111
Mr. Robert B. Borsum
Babcock \& Wilcox
Nuclear Power Generation Division
Suite 220, 7910 Woodmont Avenue
Bethesda, Maryland 20814
Thomas Baxter, Esq.
Shaw, Pittman, Potts \& Trowbridge 1800 M Street, N.W.
Washington, D. C. 20036
Herbert H. Brown, Esq.
Lawrence Coe Lanpher, Esq.
Hill, Christopher and Phillips, P.C.
1900 M Street, N.W.
Washington, D. C. 20036
Helen Hubbard
P. O. Box 63

Sunol, California 94586

Christopher Ellison, Esq.
 Dian Grueuich, Esq.

California Energy Commissioń

1111 Howe fi"enue

Sacramento, California 95825

Ms. Eleanor Schwartz
California State Office
600 Pennsylvania Avenue, S.E., Rm. 201 Washington, D. C. 20003

Docketing and Service Section Office of the Secretary U.S. Nuclear Reg"latory Commission Washington, D. C. 20555
Resident Inspcctor/Rancho Seco
c/o U. S. IH. R. C.
14410 Twin Cities Road Herald, CA 95638

Dr. Richard F. Cole
Atomic Safetv i Licensing Board Panel U.S. Nuclear Regulatory Commission Washington, D. C. 20555

Mr. Frederick J. Shon
Atomic Safety and Licensing Soard Panel
U.S. Nuclear Regulatory Cormission Washington, D. C. 20555

Elizabeth S. Bowers, Esq.
Chairman, Atomic Safety and Licensing Board Panel
U.S. Nuclear Regulatory Commission

Washington, D. C. 20555

Atomic Safety and Licensing Board Panel
U.S. Nuclear Regulatory Commission Washington, D. C. 20555
Sacramento Municipal Utility

District
```

Atomic Safety and Licensing Appeal

```
    Board Panel
U.S. Nuclear Regulatory Commission
Washington, D. C. 20555
Alan' S. Rosenthal, Chairman
Atomic Safety and Licensing
    Appeal Board
U. S. Nuclear Regulatory Commission
Nashington, D. C. 20555
Or. John H. Buck
Atomic Safety and Licensing
    Appeal Board
U. S. Nuclear Regulatory Commission
Washington, D. C. 20555
Christine : i. Kohl
Atomic Safety and Licensing
    Appeal Board
U. S. Nuclear Regulatory Commission
Washington, D. C. \(2055{ }^{\circ}\)
California Department of Health
ATTN: Chief, Environmental
    Radiation Control Unit
Radiological Health Section
714 P Street, Room 498
Sacramento, California 95814

Mr. Robert H. Engelken, Regional Administrato U. S. Nuclear Regulatory Commission, Region \(V\) 1990 N. California Boulevard, Suite 202 Walnut Creek, California 94596

PRECURSORS TO POTENTIAL SEVERE CORE DAMAGE ACCIDENTS: 1969-1979 A STATUS REPORT

\author{
J. W. Minarick \\ C. A. Kakielka \\ Science Applications, Inc.
}

Manuscript Completed - April 1982 Date Pablished - Jane 1982

Prepared for the
U.S. Nuclear Regulatory Commission Office of Naclear Regulatory Research Under Interagency Agreements DOE 40-551-75 and 40-552-75

NRC FIN No. B1583
Prepared by the
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37830
operated by
UNION CARBIDE CORPORATION
for the
DEPARTMENT OF ENERGY

The Accident Sequence Precursor stady involves the review of Licensee .... Event Reports of operational events that have occurred at light-water pover reactors to identify and categorize precursors to potentially significant accident sequences. Accident sequences considered in the study are those that conld lead to severe core damage. Accident sequence precursots of interest are events that are important elements in a chain of events (an accident sequence) possibly leading to core damage. Sach precursors might be infrequent initiating events or equipment failares that, when coupled with one or more postulated events, conld result in a plant condition leading to severe core damage.

A nuclear plant has safety system equipment for mitigating accidents or of f-normal initiating events thet may occur during the course of plant operation. These safety systems are built to bigh quality and are redondant; nonetheless, they have a definite probability of failing or being in a failed state when required to operate. This report uses LERs and other plant data to calculate the onavailability of plant safety systeas. It then uses these calcalated safety system unavailabilities and the expected average frequency of initiating events (loss of feedwater, loss of offsite power, loss-of-coolant accidents, and steam line breaks, also determined when possible from the precursors) to evaluate the end results of safety system unavailability for two situations:
1. Safety system failures without initiating events. Given an LER-reported failure of a safety system or partial failures in several systems, the report ases expected initiating event occurrence rates to determine the number of initiating events that will challenge the failed and backup safety systems during the period the safety system is failed. It maltiplies the challenges by system failure probabilities, using evint trees to evaluate the likelihood of the overall event sequence occurring.
2. Initiatizg event occurzences. Although standby safety systems are ideally always available, there is a statistical probability that these systems will fail when called on to mitigate expected accidezt or transient initiating events. Therefore, the report calculates the likelihood of severe core damage occurrence for each LER-reported initiating event based on expected response (failure probabilities) of the safety systers. Failed or degraded safety systems existing at the time of the initiating event are accounted for in the calculations.

The study effort has been divided into several tasks, which are described in detail in later sections of this report. These tasks inclade (1) selection of LERs for detailed review as precursors; (2) in-depth revien of those LERs; (3) identification, description, and categorization of events considered to be precarsors; (4) selection of precursors considered significant; and (5) subsequent analysis of the precursors to determine if any trends or unique relationships exist among them.

For this stady, LER events vere selected as precursors if they met one of the following requirements:
1. The event involved the failure of at least one fanction required to mitigate an initiating event of interest.
2. The ovent involved the degradation of more than one function required to mitigate an initiating event of interest.
3. The event involved an unusual actual initiating ovent (e.g... a total. ........ loss of offsite power, a stuck-open primary reliof valve, or another infrequent event).
Approximately 19,400 LERs concerning events that occurred dnring 1969-1979 were screened for accident sequence precrrsors according to the sbove requirements. Of these, over 500 LERs ( \(\sim 3 \%\) ) were selocted for detailed reviev.

All LERs selected for derailed review were subjected to sin indepth evaluation, which included
1. a reviow of the accident sequence (if there was one) as described in the LER,
2. a reviev of the design of systems in the reactor plant reporting the LER to determine the impact of the failure on the operation of these systems, and
3. a reviev of the plant accident analyses to determine the ertent to Which affected systems would be required to function for different offnormal and accident conditions.
As a result of this dotailed review, 169 events were solocted as accident sequence precursors. For esch of these ovents, four itoms were prepared: a sheet describing the event, a categorization sheet including event- and reactor-specific information ased in subsequent analyses, and two event trees. The first event tree describes the zctual occrirence as reported in the LER and identifies the potential for severe core damage stemming from the actual ovent. The secord ovent tree describes a postrlated sequence of events that conld have been affocted by the actual re ported failures. A set of these four items for each of the 169 events is included in Appendiz B.

The failure information contained in the precrisors was used to estimate initiating event frequencies and function failuro-on-demand probabilities. This information was nsed, in conjunction with the precursor event treos, to determine a measure of the probability of severe core damage associsted with each event soquence. This probability is an estimate of the chance of severo core damage givea the precursor event occurred in the manner it did. These probability measures were then used to rank the pro cursors. Fifty-two precursors with probability measures of \(\geq 10^{-3}\) were selected as significant.

The probabilities of severe core damage associated with the precursors vere also msed to ostimate the frequency of severe core damage per reactor year for the years 1969-1979. This point estimate is between 1.7 \(x 10^{-1}\) and \(4.5 \times 10^{-3}\) per reactoz yeer and includes contributions from three major events: (1) the loss of feedwater and stuck-open relief valve at Throe Mile Island Unit 2 (which actually resinted in sevore core dam ago). (2) the loss of nonnuclear instrumentation at Rancho Seco, and (3) the fire in the cable spreading room at Brown Ferry 1.

These numbers are compared ith other estimates from PRAs and from the THI-2 event alone in Fig. 1.


Fig. 1. Comparison of ASP results vith other core damage ostimates.

Subsequent analyses of the information included in the selected precarsors resulted in the following additional conclusions:
1. Kany of the initiating event frequencies and function failure-ondemand probabilities developed from operational event information agree reasonably well (within a factor of 10) with the Reactor Safety Stuiy \({ }^{2}\) median results.
2. Avariation in the rate of occurrence of significant precursors per plant as a function of plant age cannot be justified.
3. Differences do not appear to exist in the number of significant precursors observed between plant types and among reaccor vendors, archi-tect-engineers, and plant pover zatings.
4. Approximately \(38 \%\) of all significant precrusors involvod haman error.

These analyses did not involve extrome statistical sophistication but
vere first attempts to determine if trends vere discernible in the selected ovents. Changes arde in reactor plant operation after the TMI-2
accident (particularly the potontial use of high-pressore injection following auxiliary foedwater system failure and the ability to provide flow ............. from at least one auxiliary feedwater pump during a loss of ac power in PWRs) are expected to reduce this estimate considerably in later years. For reference, highlights of this stady are summarized in Table 1.

Table 1. Accident Sequence Precursor study highlights


\section*{Reference}
1. U.S. Nuclear Regulatory Comission, Reactor Safety Study: An Assessment of Accident Risks in U.S. Commercial Juclear Power Plants, (TASE-1400 (NUREG-75/014) (October 1975).

PRECURSORS TO POTENTIAL SEVERE CORE DAMAGE ACCIDENTS: 1969-1979

A STATUS REPORT

\author{
J. W. Minarick* C. A. Kakielka*
}

\begin{abstract}
Descriptions of 169 operational events reported as Licensee Event Reports, wich occurcei at commercial light-water reactors during 1969-1979 and which are considered to be precursors to potential severe core damage, are presented, along with associated event trees and categorizations and subsequent analyses. The report summarizes work in (1) the development of methods used to screen \(\sim 19,400\) LER abstracts for potential precursors, (2) the initial screening of those abstracts to determize which should be revieved in detail, (3) the dotailed review of those selected LERs that yielded the 169 events, (4) the categorizztion of the 169 events, (5) the calculation of function failure estimates based on precursor data, (6) the use of probability of severe core damage estimates to rank precursor events and estiwate the frequency of severe core damage, (7) the identification of 52 events considered significant, (8) trends analyses of those significant events, and (9) the identification of the other events of interest that occurred within 1 month of significant events.
\end{abstract}

\section*{1. INTRODUCTION}

The Accident Sequence Precursor study involves the reviem of Liceasee Event Reports of operational events that have occurred at light-water power reactors between 1969 and 1981 to identify and eategorize precursors to potential severe core damage accident sequences. This progress report details this effort for 1969-1979 LERs. Althongh Licensee Event Reports vere not required until mid-1975, event reports comparable to LERs existed before the inception of the LER system and are considered to be LERs for the propose of this strdy. [The requirements of Licensee Event Reports are described in Regalatory Guide 1.16 (Ref. 1).] Work on the ASP study began at the Nuclear Safety Information Center on June 15, 1979, in re sponse to FY-1979 Naclear Regulatory Research Order 60-79-185, "Accident Sequezce Precrisor Study" dated June 7, 1979, and sabsequent orders.

The program was initiated, in part, because of conclusions contained in the Risk Assesament Review Group Report. \({ }^{2}\) This report states "that onidentified event sequences significant to risk might contribute . . a
*Science Applications, Inc.
small increment . . . [to the overall risk]." The report recommends: "It is important, in our view, that potentially significant (accident) sequences, and precursors, as they occur, be subjected to the kind of anaiy \(s\) is contained im FASE-1400 [Ref. 3]. . . ."

Accident sequences considered in the study sre those that could lead to severe core damage. Accident sequence precursors of interest are events that are important elements in a chain of events (an accident sequence) possibly leading to core damage. Such precursors conld be infrequent initiating events or equipment failures that when conpled with one or more postulated events, conld result in a plant condition leading to severe core damage.

Note that the results achieved in this report have been obtained bas: \(\mathcal{A}\) on events reported in LERs and subsequentiy selected as precursors. Becarse of the ase of LERs, biases may have been introduced as a result of differences in plant technical specifications and approaches to LER re porting and of changes in LER reporting requirements over the period of the study. These considerations may result in the failure to include certain events that under different circumstances would have been selected for inclusion. However, the events selected were more serious than most, and it is expected that most of these would have been reported independently of smell differences in reporting requirements.

The ASP study effort has been divided into the following tasks:
1. selection of LERs deserving a detailed review as precrasors;
2. detailed review of selected LERs;
3. identification, description, and categorization of events considered accident sequence precursors;
4. Selection of precnrsors that are considered significant; and
5. analysis of precursors to determine if any trends or mique relation ships exist.
These tasks are described in detail in the followizg sections.

\section*{References}
1. U.S. Nuclear Regulatory Commission, Regulatory Guicie 1.16, Reporting of Operating Information, Appendiz A: Technical Specifications, Rev. 4 (August 1975).
2. U. S. Nuclear Regulatory Commission, Risi Assessment Review Group Report, p. 15, NUREG/CR-0400 (September 1978).
3. U.S. Nuclear Regrlatory Commission, Reactor Safety Study: An Assessment of Accident Risks in U.S. Commercial Nuclear Power Plants, TASH1400 (NUREG-75/014) (Octobe= 1975).

\section*{FOREWORD}

This report presents the initial results of a program that was began as a result of one of the Lew is Comittee recommendations following their review of WASE-1400, the Reactor Safety Study. One of the committee's reviev findings was that more uso should be made of operational data to assess the risk from nuclear power plants. The Precursor Program, per formed at Oak Ridge National Laboratory and administered by the Naclear Rogulatory Commission, responds to this Lewis committeo finding. The Pre carsor Program uses Licensee Event Reports to evaluate potential nuclear plant accident procursors occurring at operating reactors. These individas plant precarsors are then sumarized to evaluate the risk (for a par ticalar time period) from all operating nuclear power plants. This roport, covering \(1969-1979\) LERs, is being released as a progress report with the expectation that some conclusions may need to be changed as the report undergoes continuing peer review and public comment. The next report (using 1980-1981 LER data) should reflect the risk from nuclear plants since the TMI-2 accident and may show wat effects nev procedures and equipment modifications (lessons learned) have had.

In addition to the documentation of 169 identified precursors and preliminary trends amalyses, the report estimates the frequency of severe core damage based on the precursor information. It is a difficult problem to derive a crodible probability for severe core damage using limited operational experience data from plants that have many significant physical and operational difforences among them. The authors of this report partially account for plant differences by using generalized (functional) event trees for individual precursor evaluation, which in their quantification are then specialized, as much as possible, to the particular plant. Nonetheless, simplified methods are used to determine and quantify severe core damage precrrsors. Several aspects of this report are expected to affect the calcalated resilts, either conservatively or monconservatively. The first two of the following items are expected to introduce a conservative and nonconservative bias, respectively. The remaining items may introduce either conservetive or nonconservative biases.
- The probability of subsequent core damage given the precrisormay be conservative in some cases.
- The LER screening process may have overlooked procursors that should have been inclnded.
- The accuracy and completeness of the LERs in reflecting pertinent oper ational failure or intiating events is somewhat questionable.
- The event trees used for most precursors are generic and may not adequately reflect differences among plants.
- Average or generic data are combined with plant-specific operational occurrences in calculating the probability of subsequent severe core damage.
- The repair (recovery) credit for system failure involves engineering \(j n d g m e n t\).
- The method ased to calculate the frequency of severe core damage is subject to various interpretations because of the combined nse of event
statistics and generic initiating ovent and fonction failuro probabilities.

The ase of LERs to attempt to extract sovero core damago probabilities, on a scale and to the detail such as done in this roport, is onique. The full meaning and limitations of the severo core damage calculations made in this report are not clear. It is felt, however, that the report provides valuable information that can help validate or supploment probabilistic risk essessments performed on nuclear power plants. Kuch of the basic data and information needed for additional calcalations or infer ences of reactor risk by the reader is included in the report. As mertioned, this report will be followed by other reports that will evaluate LERs in the 1980-1981 time period and also vill provide further analysis, refinement, and practical ase of the basic data contained within this ro port.

Reader comments and suggestions are earnestly solicited and shonld be sent to the Chief, Reactor Risk Branch, Division of Risk Analysis, at the address below.

\author{
R. M. Bernero, Director Division of Risk Analysis Office of Nuclear Regalatory Research U.S. Nuclear Regulatory Comaission Washingtor, DC 20555
}

\section*{PREFACE}

The work reported here was undertaken by the Nuclear Operations Analysis Center at Oak Ridge National Laboratory on behalf of the Division of Risk Analysis of the Nuclear Regulatory Commission. The FY-1982 NRC technical monitor, F. K. Manning, succeeded \(\mathbb{H}\). A. Taylor, who was technical monitór until his reassignment in November 1981. The work on accident sequence precursors was initiated early in 1979 with R. L. Scort as pró ject manager, assisted by the authors of this report. However, wher Scott was reassigned in July 1980 , J. W. Minarick became acting manager and has retained that role since. Both Minarick and C. A. Kulkielka are Science Applications, Inc., employees and performed their work under subcontract to NOAC. Mosi of the work was performed at NOAC offices because of the availability of relevent documents and technical support. The training and background of these authors well qualified them for the task. Minarick, unelectrical engineer, has had 12 years of reactor systemserperience, including 5 years on Admiral H. G. Rickover's staff and 3.5 years with Babcock \& Wilcor Company. Kulkielka, who received his M.S. degree in nuclear engineering in 1979, had 2 years' prior experience with the U.S. Army nuclear program before joining SAI in 1979.

This status report covers the first 2.5 years of effort. The work involved (1) development of selection criteria for the identification of those reactor events that are precursors of potential severe core damage, (2) application of these criteria against all the licensee event reports that have been received since 1969, and (3) detailed analyses of the selected events. This report covers the work completed for LERs submitted during the 11 -year period from 1969 to 1979 . Although the NRC has previously reviewed the selection criteria and the events selected, it has not been directly involved in the application of these criteria against the existing LERs. This task has been performed entirely by the NOAC staff, using ifs best judgment in doing so. While this judgment reflects many years of experience in reactor design, reactor operations, and sys tems evaluations, the process is subjective, and not all specialists will necessarily agree with every event selected and/or omitted.

This report deals only with historical data and, at this point, with minimal statistical interpretation. The THI-2 accident is responsible for about half the core damage frequency value estimated herein. Yet, could one say - given the conditions of early 1979 - that the frequency of a TMI-2-type accident at that time was once every 4 years or once every 100 years? Furthermore, the same selection criteria that were used in this study woild also have been applicable had the top event been severe fuel cladding failure, severe core damage, or coremeltdown. In any event, the mamy changes that have occuraed in nuclear plant designand operation since 2979 are expected to substantially reduce the future probability of all such events.

Continning ork on this program is expected to include:
- an assessment of the ancertainty in the core damage probability calculations (a simplified approach, based on the fact that TMI-2 has been the only true core damage statistic, indicates the report estimate could be too low by a factor of 2 to 3 or too 1 arge by one or two orders of magnitude) and
- a calculation of the probability of severe core damage accidents based on the \(\sim 7500\) LERs submitted in 1980 and 1981.

Inevitably, the resilts of this report will be compared.with the data ....... in the Reactor Safety Study (WASE-1400) and other probabilistic risk as sessment studies. Althongh the casual reader may interpref the Accident Sequezce Precursor study results as incompatible with other core damage estimates, it is quite likely that because of the statistical uncertainty, no significant difference exists. That, of course, remains to be demonstrated.

In conclusion, I direct your attention to the various trends analyses included in this report. Althongh the statistical precirion is not great, the trends are of considerable iaterest. In any event, the results pre sented here indicate how very important it is thet the operating experience be analyzed for trends that a more casual surveillance of such exper ience might not reveal.

Wr. B. Cottrell, Director
Nuclear Operations Analysis Center P.O. Box Y

Oak Ridge, TN 37839

Printed in the United States of America. Available from National Technical Information Service US Department of Commerce 5285 port Royal Road. Springfield. Virginia 22161

\author{
Available from \\ GPO Sales Program \\ Division of Technical Information and Document Control \\ U.S. Nuclear Regulatory Commission Washington, D.C. 20555
}

This report was prepared as an account of work sponsored by an agency of the Unitez Sta:es Government Neither the United States Government nor any agency thereol no any of their emp'oyees, makes any warranty, express or implied, or assumes any legal liabilty or responsibility for the accuracy. completeness, or usefuiness of any information apparatus product, or process disclosed, or epresents that its use would not intringe privately owned rights. Reterence herein to any specific commercial product. process, or service by trade name, trademark manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation. or favoring by the United States Government or any agency therect The views and opinions of authors expressed herein do not necessanty state or reflect those of the United States Government or any agency
thereof再

\section*{CONTENTS}
\(-\mathrm{Pazo}\)
FOREW ORD ..... v
PREFACE ..... vii
LIST OF ACRONYMS AND INITIALISMS ..... ix
REPORT SUMHARY ..... xi
ABSTRACT ..... 1-1
1. INTRODUCTION ..... 1-1
Keferences ..... 1-2
2. CRITERIA FOR SELECTION OF LERs FOR DETAILED REVIEW AS PRECURSORS ..... 2-1
Reference ..... 2-2
3. DETALED REVIEF AND IDENTIFICATION OF SELECTED LERS AS ACCIDENT SEQUENCE PRECURSORS ..... 3-1
Reference ..... 3-15
4. QUANTIFICATION OF PRECURSORS AND IDENTIFICATION OF THOSE OUNSIDERED SIGNIFICANT ..... 4-1
4.1 Determination of Initiating Event Frequencies and Fanction Failure Probabilities ..... 4-1
4.2 Calcalation of Probability Measures Associated with Each Precursor ..... 4-2
4.3 Selection of Significant Precr sors ..... 4-23
5. ANALYSIS OF TRENDS IN SELECTED EVENTS ..... 5-1
5.1 Initiating Event Frequency and Function Failure Probability Comparisons ..... 5-1
5.2 Instantaneous Failure Rate Trends ..... 5-2
5.3 Time Lines for Initiating Events and Function Failures ..... 5-4
5.4 Variation in the Number of Significant Procursors as a Function of Plant Age ..... 5-4
5.5 Potertial Differences Betveen Plant Types end Among Vendors, Architect-Engineers, and Plant Power Ratings ..... 5-7
5.6 Identification of Degraded-Function Events that Occurred Within 1 Month of Each Significant Precursor ..... 5-7
5.7 Percentage of Precursors Involving Euman Error ..... 5-16
5.8 Estimation of the Probability of a Diesel Generstor Failing to Start Giver a Loss-of-Offsite-Power Demand ..... 5-18
References ..... 5-19
APPENDIX A. STANDARDIZED EVENT TREES ..... A-1
APPENDIX B. PRECURSOR SUMMARY SEEETS AND EVENT TREES ..... B-I
APPENDIX C. SUPPORT MATERIAL FOR SELECTION OF POTENTIAL PRECURSORS THAT ARE CONSIDERED SIGNIFICANT ..... C-1
APPENDIX D. SUPPORT MATERIAL FOR TRENDS ANALYSIS - TIME ON TEST PLOTS ..... D-1
APPENDIX E. ADDITIONAL SUPPORT MATERIAL FOR TRENDS ANALYSIS ..... E-1```

