

ARKANSAS POWER & LIGHT COMPANY POST OFFICE BOX 551 LITTLE ROCK, ARKANSAS 72203 (501) 371-4000

July 21, 1982

ØCANØ78211

Director of Nuclear Reactor Regulation ATTN: Mr. Robert A. Clark, Chief Operating Reactors Branch #3 Division of Licensing U. S. Nuclear Regulatory Commission Washington, D. C. 20555

Director of Nuclear Reactor Regulation ATTN: Mr. J. F. Stolz, Chief Operating Reactors Branch #4 Division of Licensing U. S. Nuclear Regulatory Commission Washington, D. C. 20555

> Subject: Arkansas Nuclear One - Units 1 & 2 Docket Nos. 50-313 and 50-368 License Nos. DPR-51 and NPF-6 Additional Information Relative to Operator Training

Gentlemen:

In response to your request for additional information, dated April 13, 1982, (ØCNAØ482Ø4), concerning the Training and Requalification Program for Arkansas Nuclear One Units 1 and 2, enclosed is the information you requested. The information is cast in a format of listing the questions from the letter of request and answering them in succession. Enclosed for supporting documentation is an organization chart, an outline of the ANO training program's operator requalification program, and requalification documents from our simulator vendors, Babcock & Wilcox and Combustion Engineering.

incerely

John R. Marshall Manager, Licensing

m003

JRM: RCE: s1

cc: Dr. R. T. Liner Science Applications, Inc.

8208060174 820721 PDR ADDCK 05000313 P PDR

ENCLOSURE 1

RESPONSE TO SPECIFIC QUESTIONS

Requalification Program (Section A.1)

1. Are the lectures and quizzes on the subject of accident mitigation given to Shift Technical Advisors and operating personnel from the plant manager through the operations chain to the licensed operators? If they are, would you please provide the titles of the people who are trained and an organization chart which illustrates their position in the operations chain?

Response

Shift Technical Advisors receive accident mitigation requalification along with the licensed operators. Enclosed is an organization chart with those persons participating in the requalification indicated. (Enclosure 2)

Requalification Program (Section A.2)

2. Do the <u>Requalification</u> Program elements which involve heat transfer, fluid flow, thermodynamics and accident mitigation involve 80 contact hours in each program? (A contact hour of instruction is a one-hour period in which the course instructor is present or available for instructing or assisting students; lectures, seminars, discussions, problem-solving sessions, and examinations are considered contact periods under this definition.)

Response

The Requalification Frogram, both onsite and at the simulator locations (CE-B&W), involves heat transfer, fluid flow, thermodynamics and accident mitigation, but does not necessarily involve 80 contact hours. Since it is assumed that the licensees have been taught those subjects in the detail required by Denton's letter in the training program, the Requalification Program is designed to provide a review with special emphasis being placed on those areas identified as needing attention based on the latest Annual Requalification Examination results.

Requalification Program (Section A.3)

3. Does your Requalification Program for Reactor Operator and Senior Reactor Operator cover the subjects of heat transfer, fluid flow, and thermodynamics? If it does, is the coverage to the level of detail spelled out in Enclosure 2 of Denton's letter? Please send a course outline if available.

Response

Yes, the Reactor Operator and Senior Reactor Operator Requalification Program covers heat transfer, fluid flow, and thermodynamics. The response to item A2 spells out the method used. A course outline is not available since the areas and depth of coverage in the Requalification Program may vary from year to year depending upon the results of the latest Annual Requalification Examination.

Requalification Program (Section A.4)

4. Does your Requalification Program for Reactor Operator and Senior Reactor Operator cover the subject of using installed plant systems to control or mitigate an accident in which the core is severely damaged? If it does, is the coverage to the level of detail spelled out in Enclosure 3 of Denton's letter? Please send a course outline if available.

Response

Yes, the Reactor Operator and Senior Reactor Operator Requalification Program does cover such use of installed plant systems. Coverage is to the level of detail in Enclosure 3 of Denton's letter. A course outline is not available since the areas and depth of coverage in the Requalification Program may vary from year to year depending upon the results of the latest Annual Requalification Examination.

Requalification Program (Section A.5)

5. Dose your Requalification Program for Reactor Operators and Senior Reactor Operators cover the required training in control manipulations? If it does, is the coverage to the level of detail and frequency spelled out in Enclosure 4 of Denton's letter?

Response

Yes, the Reactor Operator and Senior Reactor Operator Requalification Program does cover the required training in control manipulations to the level of detail and frequency spelled out in Enclosure 4 of Denton's letter.

Training Program (Section B.1)

 The course summary for mitigating core damage has lectures which appear to address the subject of using installed plant systems to control or mitigate an accident in which the core is severely damaged. Do these lectures address the topic and do they cover the subject to the level of detail spelled out in Enclosure 3 of Denton's letter? Please send course outline if it is different from that used in the training program.

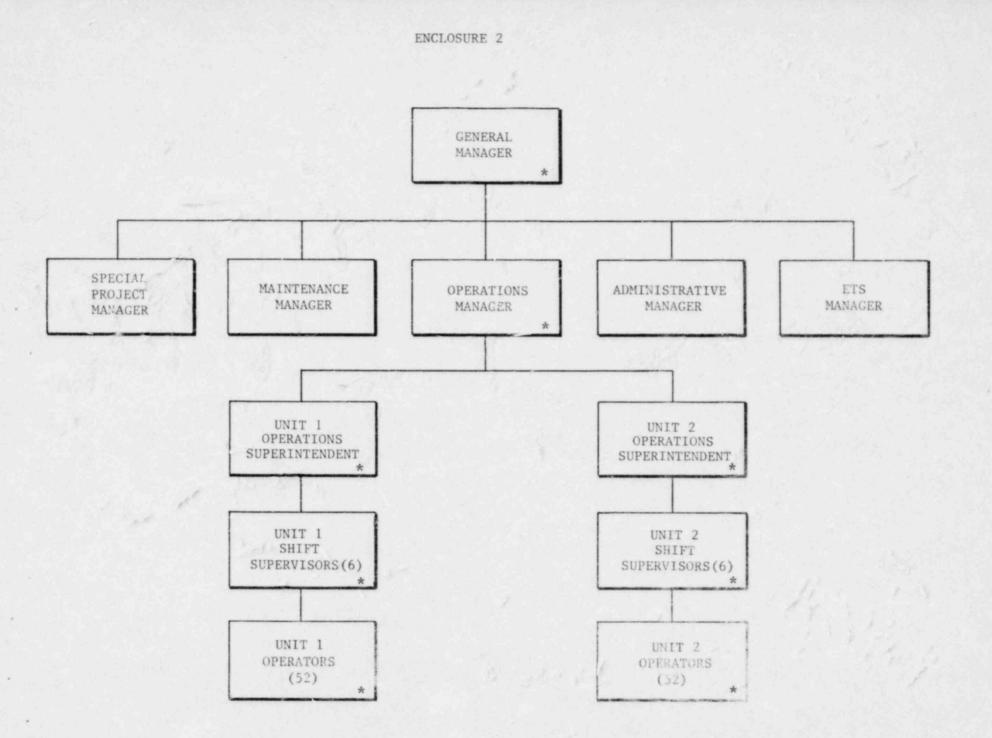
Response

Yes, these lectures do address the topics to the levels spelled out in Enclosure 3 of Denton's letter. The training program follows the course outline.

Training Program (Section B.2)

1. Are the lectures and quizzes on the subject of accident mitigation given to the Shift Technical Advisors and operating personnel from the plant manager through the operations chain to the licensed operators? If they are, would you please provide the titles of the people who are trained and an organization chart which illustrates their position in the operations chain?

Response


All new Shift Technical Advisors and Reactor Operator candidates receive the courses as outlined in the letter ANO-80-3228 from J. P. O'Hanlon to Paul Collins. See Enclosure 2 for the organization chart.

Training Program (Section B.2)

2. Do the training program elements which involve heat transfer, fluid flow, thermodynamics and accident mitigation involve 80 contact hours in each program? (A contact hour of instruction is a one-hour period in which the course instructor is present or available for instructing or assisting students; lectures, seminars, discussions, problem-solving sessions, and examinations are considered contact periods under this definition).

Response

No, the heat transfer, fluid flow, and thermodynamics program involves about 40 contact hours. The mitigation of core damage program involves approximately 20 to 40 contact hours.

* Indicates those persons trained in accident mitigation.

	PLANT MANUAL SECTION: HUMAN RESOURCES	PROCEDURE/WORK	PLAN TITLE:			NO:
	ADMINISTRATION	OPERATIONS	TRAINING	PROGRAM		1023.08
	ARKANSAS NUCLEAR ONE			PAGE	9 of 295	
		REVISION	2 DATE	10/20/81		
	t da ter i ins districtura tita, da			CHANGE	DATE	

6.6 Operator Regualification Program

6.6.1

This program is established for the purpose of maintaining licensed operators at a level of knowledge and proficiency which is necessary for continued safe operation of the plant. License holders shall participate in the requalification program. Failure to complete training shall result in written notification to the licensee and their supervisor within one week of licensee's scheduled training. If the training is not completed within seven additional weeks, written notification will be made to the licensee, the licensee's supervisor, and licensee's department manager. If training is not completed within an additional four weeks, written notification will be made to those listed above and the General Manager.

Licensed individuals receiving less than 80% in a category of the annual requalification exam shall attend requalification lectures covering topics in the weak category and successfully complete examinations covering those areas of the annual requalification exam.

Licensed individuals should attend lectures on series topics included in the annual program. Because of operations work load while on four shift rotation, attendance to selected training lectures may be waived by the Operations Manager if the individual scored greater than 80% on that topic on the last annual regualification exam.

The lecture series will be conducted as the annual requalification examinations indicate the need in the following areas:

- A. Theory and principles of operation
- B. General and specific plant operating characteristics
- C. Plant instrumentation and control systems
- D. Plant protection systems
- E. Engineering safety features systems
- F. Normal, Abnormal, and Emergency Operating Procedures

FOR INFORMATION ONLY

THIS DOCUMENT IS NOT CONTROLLED. BEFORE USE, VERIFY INFORMATION WITH A CONTROLLED DOCUMENT

	PLANTMANY		PROCEDURE/WORK	PLAN TITLE:			NO:
1414	ADMINIS	STRATION	OPERATION	S TRAININ	IG PROGRAM		1023.08
B	ARK	ANSA	S NUCLEAR	ONE	PAGE REVISION CHANGE	2 DATE DATE	10720781
		G. Ra	diation control a	nd safety			
		Н. Те	echnical Specifica	tions			
		I. Ap	plicable portions	of 10CFF	ε		
		J. He	eat transfer and f	luid flow	i		
		K. Mi	tigating core dam	age			
		L. En	mergency Plan Trai	ning			
		qualifi shall b for the	itor the progress ication training c be maintained by t requalification contain:	ycle, a r he Operat	equalificat ions Traina	tion stat er respor	tus log isible
		A. Pr	cogram title				
		B. Le	ectures scheduled				
		C. Na	ames of individual	s require	d to attend	i	
		D. Th	ne date training w	as given			
		Е. Ех	amination scores				
		F. Da	te the notificati	ons of mi	ssed traini	ing were	made
		G. Da	ate and/or exam sc	ores for	retraining	conducte	ed
			ites when annual p istributed and whe			on forms	were
			atus log_is a tra only, and is not				
	6.6.2	Operato	or Performance				
		ma op	ach licensed opera ance of duties, sa peration of system f operating proced	tisfactor s, appara	y understar	nding of	

(3

MB	PLANT MANUAL SECTION: HUMAN RESOURCES ADMINISTRATION OPERATIONS TRAINING			NC: 1023.08		
	ARKANS	AS	NUCLEAR O		PAGE 11 of 2 REVISION 2 DATE CHANGE DATE	95 E 10/20/8
	Β.	stati nated will	ised operators sha on design, proced by the Operation be reviewed by li or during the lect	ures, a s Supe censed	and facility lice rintendent. Thes personnel either	nse as desig e changes
	c.	emerg year.	sed operators sha gency operating pro- Licensed person dure reviews while es.	ocedure nel wi	es not less than 11 participate in	twice each these
	D.	proce exami	dition to the sem edures, on shift d nations, should be edures annually:	rills,	class room revie	ws, and
		1.	1202.02/2202.02	Blac	ckout	
		2.	1202.03/2202.03	Turl	bine Trip	
		3.	1202.04/2202.04	Read	ctor-Turbine Trip	
		4.	1202.05/2202.05	Deg	raded Power	
		5.	1202.06/2202.06		s of Reactor Cool ssure	ant/Coolant
		6.	1202.14/2202.14	Loss	s of Reactor Cool.	ant Flow
		7.	1202.18/2202.18	Emer	rgency Shutdown	
		8.	1202.23/2202.23	Stea	am Generator Tube	Rupture
		9.	1202.24/2202.24		am Supply System I	Rupture
		techn	g annual simulator ical specification ed where possible.	requa ns and	alification train	

AE	PLANT MANUAL SECTION: HUMAN RESOURCES	PROCEDURE/WORK PLAN TITLE:		NO:
	ADMINISTRATION	OPERATIONS TRAININ	G PROGRAM	1023.08
			PAGE 12 of 3	95
	ARKANSAS NUCL	NUCLEAR ONE	REVISION 2 DAT	E 10/20/81
			CHANGE DAT	5

operations for four or more montas shall, before resuming licensed activities, demonstrate adequate knowledge of current station operations. This shall be accomplished by the observations of station operations for a minimum of 40 hours followed by a documented oral examination given by the Operations Manager or designated representative with emphasis placed on changes which were made during the period the operator was inactive. An unsatisfactory result on the oral examination shall require the operator to have additional training in areas of weakness. If the job responsibilities of licensed individuals requires that they report to the ANO plant site on a day-to-day basis, they shall be considered to be actively involved with plant operations.

6.7 Requalification Training for Licensed Non-Shift Personnel.

- 6.7.1 Section 6.7 is applicable to licensed individuals whose day-today work does not involve activities that require manipulation of control or supervise the manipulation of controls as defined in 10 CFR 55.
- 6.7.2 Licensed non-shift individuals shall participate in the following activities:
 - A. Annual written examinations in accordance with section 6.8.1.
 - B. Attend lectures on topics in the categories in which a grade of less than 80% was scored on the annual examination.
 - C. Semi-annual emergency procedure review in accordance with section 6.6.2.C.
 - D. Simulator training in accordance with section 6.10.
 - E. Annual evaluation by their supervisor in accordance with section 6.8.3.
 - F. Reactivity manipulations in accordance with section 6.9.
- 6.7.3 Licensed non-shift personnel should attend the lectures on all topics in the requalification lecture series, and should complete special training in accordance with section 6.11.
- 6.7.4 Licensed non-shift individual's training shall be reviewed, and the individual certified by the Operations Manager, before being allowed to manipulate facility controls, or supervise the manipulation of controls, as defined in 10 CFR 55. If the individual is deemed unqualified to manipulate facility controls, the individual shall complete additional training and be re-examined before being allowed to manipulate the controls.

AE	PLANT MANUAL SECTION: HUMAN RESOURCES	PROCEDURE/WORK PLAN TITLE:		NO:
	ADMINISTRATION	OPEFATIONS TRAININ	IG PROGRAM	1.023.08
			PAGE 13 of 29	5
	ARKANSAS NUCLEAR ON	NUCLEAR ONE	REVISION 2 DATE	10/20/81
			CHANGE DATE	

6.8 Evaluation

6.8.1 Annual written examinations shall be given to licensed operators. These examinations may be prepared and evaluated by either ANO station personnel, or an outside agency. A minimum average grade of 80% is required for passing the exam with greater than 70% in each category of the exam.

6.8.2 The performance of licensed operators shall be evaluated at least annually by their supervisor. This shall include evaluation of actions taken or to be taken during actual or simulated abnormal and emergency conditions. An appropriate simulator may be used to meet this requirement.

6.8.3 An average grade of less than 80% overall, and less than 70% in any category, on an annual written examination, or an unsatisfactory performance evaluation, shall require an operator or senior operator to be relieved of licensed duties so he may participate in an accelerated requalification program. The operator shall be removed from his licensed duties by the General Manager when advised of unsatisfactory performance by the Operations Manager or Operations Superintendent.

> An operator who has been removed from licensed duties may return to license duties following completion of requalification training in areas of weakness, and completion of an examination with a grade of not less than 80%.

6.8.4 Written examinations shall be given covering material presented in the requalification program lecture series. These examinations shall include abnormal and emergency operating procedures and will normally be prepared and evaluated by ANO station personnel.

> Failure to score equal to or greater than 80% on a lecture series examination shall result in written notification to the licensee and their supervisor within one week of the examination. The licensee shall complete additional training and complete an examination with a score of greater than or equal to 80% within seven weeks of notification. If the above requirement is not met, written notification will be made to licensee, licensee's supervisor, and licensee's department manager. If the above requirements are not completed within an additional four weeks, written notification of failure to complete requalification training will be made to those listed above and the General Manager.

石居	PLANTMANUALSEGREES ADMINISTRATION	PROCEDURE/WORK PLAN TITLE: OPERATIONS TRAININ		NO:
			PAGE 14 01 2	2]
	ARKANSAS NUCLEAR ON		REVISION - DATE	E 10/20/81
			CHANGE DATE	

6.9 Reactivity Manipulations

The following control manipulations and plant evolution are acceptable for meeting the reactivity control manipulations required by Appendix A, Paragraph 3.a. of 10 CFR Part 55. Licensed operators shall perform or participate in a combination of reactivity control manipulations based on the availability of plant equipment and systems. Those control manipulations which are not performed at the plant may be performed on a simulator. The use of ANO Technical Specifications should be maximized during simulator control manipulations. Personnel with senior licenses are credited with these activities if they direct or evaluate control manipulations of licensed operators.

The starred items shall be performed on an annual basis; other items shall be performed on a two-year cycle. Completed manipulation forms shall be forwarded to training department for tracking and filing.

- 6.9.1* Plant or reactor startups to include a range that reactivity feedback from nuclear heat addition is noticeable and heatup rate is established.
- 6.9.2 Plant shutdown.
- 6.9.3 Manual control of steam generators and/or feedwater during startup and shutdown.
- 6.9.4 Boration and or dilution during power operation.
- 6.9.5* Any significant (>10%) power changes in manual.
- 6.9.6 Any reactor power change of 10% or greater where load change is performed with load limit control or where flux, temperature, or speed control is in manual.
- 6.9.7 Loss of primary coolant including:
 - 1. Significant steam generator leaks
 - 2. Inside and outside primary containment

TAR	HUMAŇ	JAL SECTION: RESOURCES STRATION	PROCEDURE/WORK PLAN TITL OPERATIONS TRAINI		NO: 1023.08
			NUCLEAR ONE	PAGE 15 of 20	10/20/8
		3. Large	and small, including	leak-rate determina	tion
		4. Satur	ated Reactor Coolant r	response	
	6.9.8	Loss of in	strument air.		
	6.9.9	Loss of el	ectrical power and/or	degraded power	ces.
	6.9.10*	Loss of co	re coolant flow/natura	al circulation.	
	6.9.11	Loss of co	ndenser vacuum.		
	6.9.12	Loss of se	rvice water.		
	6.9.13	Loss of sh	utdown cooling.		
	6.9.14	Loss of concomponent.	mponent cooling system	n or cooling to an i	ndividual
	6.9.15	Loss of no	rmal feedwater or norm	nal feedwater system	failure.
	6.9.16*	Loss of al	l feedwater (normal an	nd emergency).	
	6.9.17	Loss of pro	otective system channe	21.	
	6.9.18	Misposition	ned control rod or rod	ds (or rod drops).	
	6.9.19	Inability	to drive control rods.		
	6.9.20	Conditions	requiring use of emer	gency boration.	
	6.9.21	Fuel cladd: offgas.	ing failure or high ac	ctivity in reactor c	colant or
	6.9.22	Turbine or	generator trip.		
	6.9.23	Malfunction reactivity	n of automatic control	system(s) which af	fect
	6.9.24	Malfunction	n of reactor coolant p	pressure/volume cont	rol system.
	6.9.25	Reactor tra	ip.		
	6.9.26	Main steam	line break (inside or	outside containmen	t).
	6.9.27	Nuclear ins	strumentation failure(s).	

(

0

148	PLANTMAN HALSEGREPS	PROCEDURE/WORK PLAN TITLE:		NO:
	ADMINISTRATION	OPERATIONS TRAININ	G PROGRAM	1023.08
			PAGE 16 OT	295
	ARKANSAS	ARKANSAS NUCLEAR ONE		E 10/20/81
		the second s	CHANGE DAT	E

6.10 Simulator Training

· · · · ·

Annually, licensed operators shall complete a one (1) week simulator requalification training course. During this training, required reactivity manipulations may be completed.

6.11 Special Training

Special training will be conducted during requalification training, as deemed necessary, in the following areas:

- 6.11.1 DCP's affecting plant operation
- 6.11.2 Significant plant events
- 6.11.3 Procedure changes affecting plant operations
- 6.11.4 Topics that the operations experience assessment group deems necessary
- 6.11.5 Those requirements outlined in OP 1023.07, General Employee Training Program, that require annual retraining for plant personnel

6.12 Forms and Attachments

1023.08A Systems Qualification Guide Auxiliary Operator Unit 1
1023.08B Systems Qualification Guide Auxiliary Operator Unit 2
1023.08C Systems Qualification Guide Waste Control Operator Unit 1
1023.08D Systems Qualification Guide Waste Control Operator Unit 2
1023.08E Waste Control Operator Shift H.P. Qualification
1023.08F Shift H.P. Representative Certification
1023.08G Waste Control Operator Training and Certification
1023.08H Control Room Qualification Guide Unit 1
1023.08I Control Room Qualification Guide Unit 2

ENCLOSURE 5 TYPICAL REQUALIFICATION TRAINING OUTLINE (CUMBUSTION ENGINEERING SIMULATOR) Tel. 203/688-1911

C-E Power Systems

Combustion Engineering, Inc. 1000 Prospect Hill Road Windsor, Connecticut 06095

POWER SYSTEMS

July 2, 1982 NT-82-5144

Mr. Jim Constantin Arkansas Power & Light Co. P. O. Box 608 Russellville, Arkansas 72801

Subject: Simulator Training for Arkansas Power and Light, April through June, 1982

Dear Mr. Con-tantin;

The purpose of this letter is to document the various training programs conducted at the CE Simulator for the Arkansas Power and Light staff during the period of April 26 through June 18, 1982. The names of the attendees and the type of program attended are listed on enclosure 1. The training schedules which describe the various programs are included as enclosure 2. Also included, where applicable, are the Record of Reactivity Control Manipulation sheets (enclosure 3) for each student.

Members of the AP&L staff attended one week requalification programs during the weeks beginning April 26, May 3, 10, and 17, 1982. The program consisted of twenty hours of simulator training and twenty hours of classroom training and exams. The exams administered and proctored by the CE staff, were the RO and SRO exams generated by the AP&L training staff.

During the week of May 24, 1982, five members of the AP&L staff attended a one week introductory course for executives. The program was designed for persons with little or no previous nuclear experience.

The program for the week of May 31, 1982 was designed to prepare members of the AP&L staff for the SRO at-power exams administered by the NRC on June 4, 1982. In addition, the program served as a requalification mechanism to allow documentation of the required reactivity control manipulations.

The programs for the weeks of June 7 and 14, were designed to prepare the AP&L staff members for NRC at-power exams to be administered later in the year. These staff members consisted mainly of the students from the Hot License class of April, 1982.

Very truly yours,

Theli Unand Armand Dieli

Armand Dieli Supervisor, Simulator Training

AD:ch Encls.

SUMMARY OF ATTENDEES AND PROGRAMS ATTENDED BY AP&L STAFF APRIL THRU JUNE 1982

Requalification and Proctored Written Exams

4/26/82

the state of

5/3/82

C. Taylor

R. Wewers R. Froehlich

5/17/82

R. Hamilton

R. Terwilliger M. Gulick L. McClure R. Dyer

5/10/82

J.	Teter	G. Woolf
Ε.	Morris	R. Doty
Ρ.	House	T. Loyd
Β.	Baker	L. McCarty

Introductory Training Program

1

5/24/82

D.	Shehadeh	W.	Bell
Τ.	Ott	М.	Azami
	R.	Evans	

NRC At-Power Exam for SRO

5/31/82

М.	Harris	R.	Rust
J.	Constantin	R.	Espolt

Intensive Review for NRC At-Power Exams

6/7/82

6/14/82

C. Keen G. Wrightam L. Taylor R. Edington R. Pierce D. Robison

D. Johnson G. King D. McKinney S. Hamick M. Ruder R. Hargrove

* ARKANSAS POWER & LIGHT Classroom A

Regualification Week of 4/26/82

TIME	SUBJECT		D-P-E-C	INSTRUCTOR
Monday				
1200-1400	Plant OP. Char. and H	Heat Transfer	С	WS
1400-1530	SG Feed Ring Problems		С	WS
1600-1800		PS-20	P	LC
1800-2000	Plant Maneuvering H	PS-26	Р	LC
Tuesday				
1200-1530	Reactor Operating Cha	aracteristics	С	TS/RH
1600-1800	Plant Maneuvering - H R. Terwilliger PS-		Р	RR
1800-2000	Plant Maneuvering H		Р	RR
Wednesday				
1200-1530	NRC exam review w/pro	oblem calculations	С	TS
100-1000	stressing Reactor I		Ŭ	10
1600-1800	Plant Maneuvering . H	PS-40	Р	LC
1800-2000	Plant Maneuvering H	PS-43	Р	LC
Thursday				
1200-1530	AP&L Written Exams		С	TS
1600-1800		PS-45	P	RR
1800-2000		?S-46	P	RR
Friday				
1200-1530	AP&L Written Exams		С	TS
1600-1800	a set as an a set of a set as	PS-49	P	RR
1800-2000	Plant Maneuvering H	PS-54	Р	RR
TRADE				

LEGEND

C = Classroom D = Demonstration P = Practice E = Exercise

Rev. 0 4/20/82

ARKANSAS POWER & LICHT Classroom B

REQUAL

.

Week of 5/3/82

TIME	SUBJECT	D-P-E-C	INSTRUCTOR
Monday			
1200-1400 1400-1530 1600-1800	Plant OP Characteristics & Hea SG Feed Ring Problems - Waterh Plant Maneuvering PS-20		RR RR RH
1800-2000	Plant Maneuvering PS-26	P	RH
Tuesday			
1200-1530	Reactor Operating Characterist	ics C	RR
1600-1800	Plant Maneuvering - Rx Startup Manip one student PS-33		RH
1800-2000	Plant Maneuvering PS-36	Р	RH
Wednesday			
1200-1530	NRC exam review w/Problem Calc stressing Reactor Physics	ulations C	RH
1600-1800	Plant Maneuvering PS-40	Р	RH
1800-2000	Plant Maneuvering PS-43	Р	RH
Thursday			
1200-1530	AP&L Written Exams	CP	RH
1600-1800	Plant Maneuvering PS-45	P	RH
1800-2000	Plant Maneuvering PS-46	Р	RH
Friday			
1200-1530	AP&L Written Exams	С	RH
1600-1800	Plant Maneuvering PS-49	C P	RH
1800-2000	Plant Maneuvering PS-54	Р	RH

LEGEND

C = Classroom D = Demonstration P = Practice E = Exercise

10-061701

Rev. 0 4/26/82

Curt Taylor Ray Wewers Russell Froehlich Randy Hamilton

* ARKANSAS POWER & LIGHT

Classroom B

REQUALIFICATION

Week of 5/10/82

TIME	SUBJECT	D-P-E-C	INSTRUCTOR
Monday			
1200-1400	Plant OP Characteristics & Heat Transfer	С	LC
1400-1530	SG Feed Ring Problems - Waterhammer	С	LC
1600-1800	Plant Maneuvering PS-20	P	LC
1800-2000	Plant Maneuvering PS-26	P	LC
Tuesday			
1200-1530	Reactor Operating Characteristics	С	BPO
1600-1800	Plant Maneuvering - Rx Startup Control Manipulation - one student PS-33	P	TK
1800-2000	Plant Maneuvering PS-36	Р	TK
Wednesday			
1200-1530	NRC exam review w/Problem Calculations	С	LC
	stressing Reactor Physics		
1600-1800	Plant Maneuvering PS-40	Р	LC
1800-2000	Plant Maneuvering PS-43	Р	LC
Thursday			
1200-1530	AP&L Written Exams	С	TK
1600-1800	Plant Maneuvering PS-45	Р	TK
1800-2000	Plant Maneuvering PS-46	Р	TK
Friday			
1200-1530	AP&L Written Exams	С	TK
1600-1800	Plant Maneuvering PS-49	Р	TK
1800-2000	Plant Maneuvering PS-54	P	TK

LEGEND

.

C = Classroom D = Demonstration P = Practice E = Exercise

10-061701

Rev. 0 5/3/82

Jerry Teter (SRO) Bud Morris Paul House Basil Baker (Special Written Exam)

* ARKANSAS POWER & LIGHT

.

Classroom B

REQUALIFICATION

Week of 5/17/82

TIME	SUBJECT		D-P-E-C	INSTRUCTOR
Monday				
1200-1400	Plant OP Character	istics & Heat Transfer	С	BPO
1400-1530	SG Feed Ring Probl	ems - Waterhammer	С	BPO
1600-1800	Plant Maneuvering		P P	BPO
1800-2000	Plant Maneuvering	PS-26	Р	BPO
Turadau				
Tuesday				
1200-1530	Reactor Operating	Characteristics	С	TK
1600~1800		- Rx Startup Control one student PS-33	Р	TK
1800-2000	Plant Maneuvering	PS-36	Р	BPO
Wednesday				
1200-1530	NRC exam Review w/ stressing Reacto	Problem Calculations	С	BPO
1600-1800	Plant Maneuvering		Р	BPO
1800-2000	Plant Maneuvering	PS-43	P	BPO
Thursday				
1200-1530	AP&L Written Exams		С	TS
1600-1800	Plant Maneuvering	PS-45	P	BPO
1800-2000	Plant Maneuvering	PS-46	P	BPO
Friday				
1200-1530	AP&L Written Exams		с	TS
1600-1800	Plant Maneuvering	PS-49	P	BPO
1800-2000	Plant Maneuvering	PS-54	P	BPO

LEGEND

C = Classroom	D = Demonstration	P= Practice	E = Exercise
10-061701			Rev. 0 5/11/82
George Woolf (SRO) Bob Doty (SRO) Tom Lloyd (SRO) Larry McCarty			

ARKANSAS UNIT 2

Classroom B

REQUAL

Week of 5-31-82

TIME	SUBJECT	D-P-E-C	INSTRUCTOR
Monday			
1600-1800 1800-2000 2000-2100 2100-2400	Plant Operating Characteristics Steam Generator Tube Rupture Orientation PS-1 Reactor Startup PS-6	C C P	ТК ТК ТК
Tuesday			
1600-1800 1800-2000 2000-2200 2200-2400	Reactor Operating Characteristics Reactor Operating Characteristics NRC at Power Exam Scenarios Instructors' Choice	C C P P	ТК ТК ТК ТК
Wednesday			
1600-1800 1800-2000 2000-2200 2200-2400	SG Feed Ring Problems - Waterhammer Loss of Coolant Accident NRC at Power Exam Scenarios Instructors' Choice	C C P P	ТК ТК ТК ТК
Thursday			
1600-1800 1800-2000 2000-2200 2200-2400	Excess Steam Demand Natural Circulation NRC at Power Exam Scenario Instructors' Choice	C C P P	ТК ТК ТК ТК
Friday			
1600-1800 1800-2000 2000 <u>-</u> 2200 2200-2400	Accident Identification Accident Identification NRC at Power Exam NRC at Power Exam	C C P P	TK TK TK/WS TK/WS
LEGEND			

÷ ,

. .

C = Classroom D = Demonstration P = Practice E = Exercise

Rev. 0 5/25/82

ARKANSAS POWER & LIGHT

INTENSIVE REVIEW

Classroom B

Wee	k	of	61	71	82
ucc	~	01	U1	11	20

TIME	SUBJECT	D-P-E-C	INSTRUCTOR
<u>Monday</u> 1600-1800 1800-2000 2000-2200 2200-2400	Plant Operating Characteristics Natural Circulation NRC At Power Exam Scenarios Instructor's Choice	C C P P	BPO BPO BPO BPO
<u>Tuesday</u> 1600-1800 1800-2000 2000-2200 2200-2400	Reactor Operating Characteristics Reactor Operating Characteristics NRC At Power Exam Scenarios Instructor's Choice	C C P P	BPO BPO BPO BPO
<u>Wednesday</u> 1600-1300 1800-2000 2000-2200 2200-2400	LOCA S/G Feedring Problems NRC At Power Exam Scenarios Instructor's Choice	C C P P	BPO BPO BPO BPO
Thursday 1600-1800 1800-2000 2000-2200 2200-2400	Steam Generator Tube Rupture Excess Steam Demand NRC At Power Exam Scenarios Instructor's Choice	C C P P	BPO BPO BPO BPO
<u>Friday</u> 1200-1530 1600-1800 1800-2000	Accident Identification NRC At Power Exam Scenarios NRC At Power Exam Scenarios	C P P	WS TS TS
LEGEND			
C = Classroo	m D = Demonstration P = Practice	E = Exercis	e
Dwight Johnso George King David McKinne Sam Hamick Mike Ruder Ron Hargrove		Rev. O	6/2/82

ARKANSAS POWER & LIGHT

Classroom A

INTENSIVE REVIEW Week of 6/14/82

TIME	SUBJECT	D-P-E-C	INSTRUCTOR
Monday 1600-1800 1800-1930 2000-2200 2200-2400	Plant Operating Characteristics Natural Circulation NRC At Power Exam Scenarios Instructor's Choice	C C P P	RR RR RR RR
<u>Tuesday</u> 1600-1800 1800-1930 2000-2200 2200-2400	Reactor Operating Characteristics Reactor Operating Characteristics NRC At Power Exam Scenarios Instructor's Choice	C C P P	
Wednesday 1600-1800 1800-1930 2000-2200 2200-2400	LOCA S/G Feedring Problems NRC At Power Exam Scenarios Instructor's Choice	C C P P	RR RR RR RR RR
<u>Thursday</u> 1600-1800 1800-1930 2000-2200 2200-2400	Steam Generator Tube Rupture Excess Steam Demand NRC At Power Exam Scenarios Instructor's Choice	C C P P	RR RR RR RR
<u>Friday</u> 1600-1930 2000-2200 2200-2400	Accident Identification NRC At Power Exam Scenarios NRC At Power Exam Scenarios	C P P	WS WS WS
LEGEND			
C = Classr	room D = Demonstration P = Practice	E = Exerci	se
10-061701		Rev. 0	6/8/82
Chuck Keen George Wrighta Larry Taylor	Randy Edington am Roger Pierce Dennis Robison		

Pressurized Water Reactor Simulator

Ot

21

Date	Company	Simulator Instructor	
Pract	NT Vall, PRZR IIV Fail, Hot Leg Rupture ice Session# Time Allowed_2 hours al Conditions_2% Power BOL	Name	Operating Stationg
Seque	nce:		
. 1.) 2.	Increase power to 750 MWe with the CEDS and selected pressurizer level controller in manual operation. (CM#1,5,3) ALSO SG. LEVEL - FEED PP SPEED AND FW REG. VALVES Transfer controls to automatic.	Control Manipulations	Operating Station
3. 4.	MAL #13 Lin. A up Det. Fail.(CM#27, 17) MAL #22 Pressurizer level transmitter X or Y high or low. Fail non-selected channel low. Set F-720 on digi-box to 1 to fail channel low.(CM#24)	Control Manipulations	
5. 6. 7. 8.	Increase plant load to 850 MWe. Maintain reactive load at 200 MVAR out. MAL #90 External power loss. (CM#9) MAL #30 Reactor hot leg rupture. (CM#7, 10) Carry out required actions.		Operating Station
		Control Manipulations	Operating Station
		Control Manipulations	
			1.

Date	Company	Simulator Instructor	
Penetic	Second on [] of Intelant Second on [] of Intelant Second time	Name1	Operating Station 0
Sequenc	 Maintain reactive load at 200 MVAR lagging. MAL #75 Heater drain pump 12 off. Reduce plant load to 600 MWe. Plant chemist informs shift supervisor that the boron concentration in 11 B.A. storage tank 5.8 wt.%. MAL #76 Heater 13B level control freeze. Increase plant load to 883 MWe. 	Control Manipulations Name Control Manipulations	Operating Station
	 MAL #72 Circ. water pump 14 off/loss of cond. vacuum. (CM #11) MAL #85 Loss 4KV bus 11. (CM #9) 	Name Control Manipulations	
		Name Control Manipulations	Operating Station

	Combustion Engi	ineering, Inc.	Rev. 1 3-81
	Pressurized Water	Reactor Simulator	21
Date	Company	Simulator Instructor	0
Title	Turbine Startup/Person Increase/Turbine Trip ice Session#3Time Allowed 2 hours	Hento	Operating Station
	1 Conditions 2% Power BOL		
Sequer	nce:		
1.	Start turbine. (CM#2)	Control Manipulations	
2.	Parallel generator to grid.	Name	Operating Station
3.	Increase plant load to 883 MWe with CEDS in manual sequential and the feedwater flow control valves in manual. (CM#5)		-
4.	MAL #70. SG level signal to RPS low. (CM#17,27)		· · · · · · · · · · · · · · · · · · ·
5.	When at 883 MWe, place the CEDS and feedwater . flow control valves in automatic.	Control Manipulations	
6.	MAL #40. Selected charging pump overcurrent trip. Short. (CM#24)	Name	Operating Station
7.	Reduce plant load to 575 MWe by boration. Maintain reactive load at 350 MVAR lagging.(CM#4)		
8.	MAL #54. 'Turbine 1st stage pressure signal to EHC low. (CM#22) If a turbine trip does not occur, trip the turbine on MAL# 89 Loss of Exitation.	Control Hanipulations	
9.	Place the plant in a hot shutdown condition.	Name	Operating Station
		Control Manipulations	

Combustion _______ Inc.

Re 3-81

p.

	jineering, Inc.	Re 1 3-81
Pressurized Wate DateCompany	r Reactor Simulator Simulator Instructor	
Title Power incased and state of Allowed Circ. Demonstration Practice Session# 3a Time Allowed 2 hours Initial Conditions 15% BOL		_ Operating Station
Sequence: 1. Maintain reactive load at 75 MVAR lagging.	Control Manipulations	
 Increase plant load to 883 MWe with the following in manual control. a. CEDS (CM#5) b. Feed pump turbine speed controllers. c. Letdown flow control valve. d. Letdown pressure control valve. e. Feedwater flow control valves. Place systems in automatic when at full load. 	Name Control Manipulations	Chatting
 MAL #25 RCP 2B vibration high. LT1111 fails low, at Address 06J442 change Instruction to 22I631 (CM#15) MAL #49 Steam line break at the turbine. (CM#10, 20, 25, 26) 	Name	_ Operating Station
 7. Carry out required actions. 8. Natural Convection Demonstration (CM#9, 10) a. Reinitialize at 100% BOL b. Stop all 4 RCP's by opening RCP Bus Unit 1 	Control Manipulations	Uperating Station
 FDR BKR 252-1201 c. Observe and discuss AT/Natural circulation d. Manually control turbine bypass valves to increase AT and cause cooldown. 	Control Manipulations	

Rev. 1 3-81

DateCompany		Simulator Instructor				
Tit	le Power Charges with Halfunctions	Name	Operating Station	e 14		
Pra	ctice Session# 40 Time Allowed 2 hours	1		Page		
Ini	tial Conditions_100% Power MOL					
Seq 1.	uence: Reduce power to 300 MWe at 3%/min with the CEA's and feedwater in manual control. Maintain reactive load at 200 MVAR's out. (CM#5)	Control Manipulations				
2.	MAL #3. CEA group withdrawal/insertion at 400 MWe (CM#23)	Name	Operating Station.			
3.	Continue load decrease by boration. (CM#4)					
4.	Alarm - Purification filter ΔP - A,328,St .					
5.	Alarm - Actuation system sensor channel ZF tripped- A,428,5 t.					
6.	Clear MAL #3 and restore CEA's and feedwater to automatic operation when at 300 MWe.	Control Manipulations				
7.	Shift Supervisor is notified that a bistable on channel ZF for containment isolation signal is tripped I&C will investigate and repair.	Name	_ Operating Station			
8.	Alarm - Actuation system cabinet door open A,385,S +.					
9.	MAL #99. False containment isolation signal.(CM#14)					
10.	Increase load to 883 MWe.					
11.	Commence dilution at maximum rate when CEA's are fully withdrawn.	Control Manipulations				
12.	Alarm - Condensate pump #11 low oil flow A,103,St . Reset when operator opens pump breaker A,103,Rt . Give intermittent vibration alarm from digi-box as pump is slowing down - G-314 lt Bt .	ilame	_ Uperating Station			
13.	MAL #1. Stuck CEA. (CM#18)					
14.	MAL #17. Main steam safety valve leakage - max. Give 15 minutes before end of session.	Control Manipulations				
15.	MAL #74. Service water line rupture. (CM#12)	Na				

5

Date		r Reactor Simulator Simulator Instructo	or
lnit	<pre>tice Session# 43 Time Allowed 2 hours tice Session# 43 Time Allowed 2 hours ial conditions b) 23 Kil, Pat Turbine c) V,47,99991 and V,48,0000+ d) C,16,St e) Keys for PORV isolation valves removed from control room. f) V,19,99991</pre>	Name Reactivity Changes	Operating Station
	<pre>tives: Maintain proficiency and demonstrate adherence to procedures during normal secondary plant startups.</pre>	Name	Operating Station
b c	minor problems.) Practice manual operation of Control Board-operated equipment.		
, d Sequ	Demonstrate careful checkoffs of emergency procedure steps.	Reactivity Changes	Operating Station
2. S 3. R a	<pre>tart feed system. tart turbine generator and parallel to the grid.(CM-3) aise power to 883 MWe, during which: (CM-5) Fail CCW HX outlet valve (5206) shut [use computer panel]. (CM-14) Direct PPO to take manual control of the pressurizer</pre>	Reactivity Changes	
4. P 5. I 6. I	 b) Direct PPO to take manual control of the pressurized spray valves. At 800 MWe, put in MAL #53, "Gen. Load Sig. to EHC Freeze." ut in MAL #100, "LP Safety Injection Pump 12 Fails." solate Auxiliary Feedwater; V,63,0000+ & V,64,0000+. (CM-16) solate Main Feedwater; V, 28,0000+ & V,29,0000+. (CM-15) hen pressurizer pressure peaks, put in MAL#17, 	Name Reactivity Changes	Operating Station
	Power Opr. RV Vary Leakage." (CM-7)		Rev. 3/81

. .

A Combustion English Pressurized Water Ro	Simurace
ale	NameOperating Station
ate ractice Session# 45 The Alford 2 hours a) MAL#7 plus F015 & F016 to "1"; MAL#8 nitial Conditions b) 100%, HOL c) V,47,99991 & V,48,0000+ d) MAL#37, "Boric Acid Strainer Blocked"	
a) Maintain profilerennical Specifications furning roug	Reactivity Changes
 g) Demonstrate ability to recognize, and the to, an ATWS. Sequence: Adjust reactive load to 100 MVAR In. Reduce plant load to 300 MWe (CM-5) (CM-4) MAL#85, "4KV Bus 11 Loss." (CM-9) Raise load to 800 MMe. Reset MAL#85 Parallel 4KV bus to normal power Shutdown emergency diesels At computer, fail pressurizer spray valves open (CM 24) MAL#4, "Reactor Trip Bypass" Isolate auxiliary feedwater; V,63,0000+ & V,64,0000+(CM-16) 	Reactivity Changes Operating Station Name Operating Station

Combustion Engineering, Inc. N Pressurized Water Reactor Simulator 0 ~ Simulator Instructor Date Company age Practice Session# 46 Time Allowed 2 hours **Operating Station** Name a) The 17 elas 1015 & F016 to "1"; MAL#8 Initial Conditions b) 100% facer Ed. c) V.47,9999+ & V.48,0000+ **Objectives:** a) Demonstrate proficient transient operation of plant with key equipment in manual operation Reactivity Changes b) Demonstrate alert operation of reactivity control panel. Operating Station Name c) Demonstration of adherence to Tech. Specs. when safety related equipment is lost d) Demonstrate a knowledge of alternate means of accomplishing reactor makeup e) Practice diagnostic analysis to locate and respond to a system leak. Reactivity Changes Sequence: 1. MAL#61, "SG Feed Pump 12 Vary Output". Adjust potentiometer Operating Station Name enough that operators secure #12MFP. (CM-15) 2. At computer cause LT-1121 to fail low.(CM-15) 3. MAL #60, "FW Reg System 1] Vary FW Demand;" pot. to 60%(CM-15) 4. Tell students that previous watch processed a work request to service letdown control instrumentation shift letdown control valve to manual operation Reactivity Changes 5. Reduce load toward 440 MWe. 6. MAL#3, "CEA Withdrawal/Insertion". (CM-23) Operating Station Name 7. MAL#41, "VCTLC closes VCT Discharge Valve" (CM-24) 8. Students may charge through boration/dilution valve 9. Repair VCT discharge valve control. 10. Fail L-10 ANN window; Computer 11G314 to no-op. 11. Flash L-10 to simulate GM tube saturation (Digibox H413). Reactivity Changes 12. MAL#44 "SG Tube Leak Increase"; pot to about 10% (CM-7) 13. Digibox H413 to "1"; inform operators that Aux. Bldg. Rev. 3/81 stack monitor is alarming

*

4 Pressurized Wate	9	
DaieCompany	Simulator Instructo	or a
Practice Session3 40 Time Allowed 2 hours (a) Yet & plus F015 & F016 to "1"; MAL#8 Initial Conditions (b) 10 4%, 601 (c) V,47,99591; V,48,0000t (d) C,16,St	Name	_ Operating Station
Objectives:		
a) Practice Secondary plant startup	Reactivity Changes	
b) Demonstration of procedure adherence	Reactivity changes	-
 c) Demonstrate proper malfunction identification d) Demonstrate procedural response to accidents and 	Name	_ Operating Station
malfunctions; checking of emergency actions against the procedure steps		
e) Practice of natural circulation cooldown.		
Sequence:		
1. Raise reactor power to 1-2% (CM-1)	Reactivity Changes	_
2. Startup secondary plant per Procedure B.5. (CM-3)	Name	Operating Station
 MAL#90, "External Power Loss" (CM-9) (CM-10) MAL#44, "SG11 Tube Leak Increase." (CM-7) (Pot at 30%) 		
5. Cool down in natural circulation.(CM-2)		
	Reactivity Changes	F
	Name	Operating Station
	Reactivity Changes	

		ion Engineering, Inc.	
	Pressurized	Water Reactor Simulator	
Date		Simulator Inst	tructor
Practice Session	M 53 Time Allowed 1 hour Acciden	nt Hame	Operating Station
Initial Conditio	ms 1007 COMPA value/3824 is Open, HIC-520 is "o" output	08	
Sequence:			
1. Slow dilu	tion (X,BB,221000,22A001, etc.)		
	HX outlet valves (see Computer Panel) let #2 CCWHX (see Computer Panel)	Reactivity Changes	
4. Fail-Open	Pzr Spray Valves (Address #09E500 to on 22H777)	Name	Operating Station
5. Turbine by	ypass valves Fail Open (see Computer Pane	1)	
6. Drop a Reg receives	gulating Group CEA, <u>After</u> Address #11S152 Instruction 00A000		
7. MAL#19, " evolution	CEA Group Withdrawal/Insertion" after is in progress that requires CEA motion.	Reactivity Changes	
	STUDENTS' CONTROL MANIPULATION TO INSURE ALL ITEMS COMPLETE.	D Name	Operating Station
		Reactivity Changes	
		Name	Operating Station
		Reactivity Changes	

Rev. 1 3-81

	, Reactor Stillardeor	5
DateCompany	Simulator Instructor	And the second sec
Title Reactor Startups to POAH (4 students) Practice Sessions 1 Time Allowed 4 hours Initial Conditions 100% Power	iiame	Operating Station
Sequence:		
 Initialize plant at 100% power. Record necessary data for ECP. 	Control Manipulations	P11
3. Trip reactor.	Name	Operating Station.
 Startup reactor by procedure. Establish critical rod height. 		
6. Place the reactor on a steady 1 DPM startup rate.		
7. Level reactor power at 5%. (CM#1) 8. Reduce reactor power to 5 x 10^{2} % and level off.		
 Make reactor 1.5% subcritical. 	Control Manipulations	
 Rotate operating stations and repeat steps 4 through 10 until all students have performed a reactor startup. 	Name	Operating Station
 The following malfunctions may be held during the startups. Indicate which malfunction was given and the startup during which it occurred. 		
a. MAL #1 Stuck CEA. (CM#19)	Line A	
b. MAL #16 Vary power range channel output.(CM#2		
c. MAL #14 Wide range subcritical multiplication absent. (CM#27)	Name	Uperating Station
d. MAL #15 Wide range channel noisy. (CM#27)		
	Control Manipulations	

Combustion	ineering, Inc.	Rev. 3-81
Pressurized Wate	er Reactor Simulator	
DateCompany	Simulator Instructo	r
Title Plant Startan an 2011 Power Practice Session# 6 Time Allowed 2 hours Initial Conditions 10 ⁻⁴ % Power, Hot Turbine, BOL Sequence:	Name	
 Raise reactor power. (CM#1) Start turbine. 	Control Manipulations	Operating Station
 Start main feed system. (CM#3) Parallel main generator to the grid. Increase power to 883 MWe. MAL #17 Power operated relief valve leakage. (CM#24) 		
7. Indicate other malfunctions given,	Control Manipulations	
	Name	Operating Station
	Control Manipulations	
	Name	Uperating Station
	Control Manipulations	

D. MCINTIRE G. LONGSTREET R.E. STANCLIFF J. CARSON D.W. SCHREINER B. BLACK

ENCLOSURE 4 TYPICAL REQUALIFICATION TRAINING OUTLINE (BABCOCK & WILCOX SIMULATOR)

BOB EVANS GARY DETHRAGE

ARKANSAS REQUALIFICATION

CLASS ROOM SCHEDULE

CONTROL ROOM SCHEDULE

017 K1.	Day/Date	Time	Subject	Reference Instructor	Time	Operation	Reference
1	MONDAY	0800 to 0945	ICS REVIEN	D.M.	1200 to	REACTOR STARTUP FROM SAFETYS OUT TO	
	4/19/82	0945 to 1130	CRD	G.L.	1600	UNANNOUNCED CASUALTIES	J.C.
2	TUESDAY 4/20/82	0800 to 1130	OPERATING LIMITS AND CORE CONTROL/REACTIVITY CURVE BASIS	BRIAN DELANO	1200 to 1600	UNANNOUNCED CASUALTIES	D.W.S.
3	WEDNESDAY	0800 to 0945	FUEL PERFORMANCE INCLUDING MECHANICAL MANEUVERING RATES	LEW MALTON	1200 to 1600	UNANNOUNCED CASUALTIES	D.M.
	WEDNESDAY 4/21/82	0945 to 1130	FUEL IN COMPRESSION CURVES	BRIAN METCALF	1000		
	THURSDAY 4/22/82	0800 to 1130	PRIMARY AND SECONDARY WATER CHEMISTRY (WITH AND LEVEL PROBLEMS)	MERL BELL	1200 to 1600	UNANNOUNCED CASUALTIES	R.E.S.
		0800 to 0945	OTSG TUBE RUPTURE GUIDELINES	R.E.S.	1200 to	UNANNOUNCED CASUALTIES	B.B.
- 1	FRIDAY 4/23/82	0945 to	EMERGENCY FEEDWATER TAP REPORT REVIEW (DISCUSSION OF NEW SYSTEM)	R.E.S.	1600		

BABCCCX & WHICER

۶.

10 · ···

MONDAY

- A. Reactor Startup
 - 1. Safety rods out to > 15% power.
 - 2. NI failure.
 - 3. Feedwater system failure.
 - 4. CRD malfunctions
 - a. Dropped rod
 - b. Inability to drive rod or rods

TUESDAY

- A. ICS malfunctions.
- B. Fail pressurizer spray and spray block valve.
- C. Small steam leak inside reactor building.
 - 1. Allow plant to be shut down to Z 15% before reactor building pressure reaches trip point for building isolation.
 - 2. After building isolation, have CCW valve fail to reopen.
 - Cooldown on single steam generator by natural circulation.
- D. RCS leak outside reactor building. (MU&P)

WEDNESDAY

- A. Failed electromagnetic relief and block valve.
 - 1. Isolable after pressurizer is full for \approx 10 min.
 - 2. Solid plant operations.
 - 3. Draw a bubble in the pressurizer.
- B. Reactor trip with failed secondary safety valve initiated by loss of condenser vacuum.

THURSDAY

٨	1000
Α.	LOCA

- 1. Small break with repressurization (\approx 180#/sec).
- B. Main steam line break outside containment.
- C. Tube leak of \approx 10 gpm increase by doubling \approx every 2 mins. until maximum of 350 GPM.

.

FRIDAY

- A. Overfeed accident.
- B. LOCA
 - 1. Establish long term cooling.
- C. Blackout with loss of both diesels, regain at least one diesel after 10 mins.
 - 1. Total loss of feedwater.
 - a. Primary feed and bleed.
 - 2. Regain emergency feedwater.
 - a. Establish natural circulation cooldown.
 - 3. Subsequent loss of emergency feedwater.
 - a. Complete cooldown to long term cooling using primary feed and bleed.

-												
1	r	n	2	10	F	1			ł.	4		0
-	1		0	ο.		~	~	~	*		л,	Υ.

Name

Date

Unit 1 / / Unit 2 / /

REACTIVITY CONTROL MANIPULATION

	Initial Condition	Final Condition
Power level change		
Control Rod movement	1	•
Boron concentration change		
Time .	100 C	
Reactivity manipulation number		

Remarks

Shift Supervisor's Signature

Reactivity Manipulations

The following control manipulations and plant evolution are acceptable for meeting the reactivity control manipulations required by Appendix A, Paragraph 3.a. of 10 CFR Part 55. Each licensee operator shall perform or participate in a combination of reactivity control manipulations based on the availability of plant equipment and systems. Those control manipulations which are not performed at the plant may be performed on a simulator. The use of the Technical Specifications should be maximized during the simulator control manipulations. Personnel with senior licenses are credited with these activities if they direct or evaluate control manipulations as they are performed.

The starred items shall be performed on an annual basis; other items shall be performed on a two-year cycle.

12

Plant or reactor startups to include a range that reactivity feedback from nuclear heat addition is noticeable and heatup rate is established.

) Plant shutdown.

Hanual control of steam generators and/or feedwater during startup and shutdown.

Boration and or dilution during power operation.

(5°) Any significant (>10%) power changes in manual.

Any reactor power change of 10% or greater where load change is performed with load limit control or where flux, temperaature, or speed control is in manual.

(74) Loss of primary coolant including:

(1) significant sleam generator leaks

(2.) inside and outside primary containment

(C) large and small, including leak-rate determination

(4) saturated reactor coolant response

Loss of instrument air.

(3

64

6

8

100

12

13

(14

3

10

(18

20

22

22

0

0

G

) Loss of electrical power and/or degraded power sources.

Loss of core conlant flow/natural circulatiou.

Loss of condenser vacuum.

Loss of service water.

Luss of shtudnen cooling

Loss of component cooling system or cooling to an individual component.

Loss of normal feedwater or normal feedwater system failure.

Loss of all feedwater (normal and emergency).

Loss of protective system chanuel.

Mispusitioned control rod or rods (or rod drops).

Inability to drive control rods.

Conditions requiring use of emergency boration.

Fuel cladding failure or high activity in reacour coolant or officas.

Turbine or generator trip.

Halfunction of automatic control system(s) which affect reactivity.

Malfunction of reactor coolant pressure/volume control system.

Reactor trip.

Hain stram line break (inside or outside containment).

Nuclear instrumentation failure(s).

BENCHMARK RUNS 1981

		BENCHMARK RESPONSIBILITY	TAPE #	FILE #	DATA DECK #	DATE -
1.	Plant Heatup from 280 ⁰ F to 535 ⁰ F					
2.	Plant Startup to 100% Power				11 5	
з.	Reactor Trip from 100% Power followed by recovery to 100% Power				liec	
<i>.</i>	Load change 100-50-100 Automatic				ince	
5.	Load change 100-50-100 Turbine In Mancal				8	
6.	Load change 100-50-100 Reactor In Manual				13.	
7.	Load change 100-50-100 Feedwater In Manual				8.	
8.	Reactor Startup to 15% Power with 3 RCP Operating				00	
9.	Load Change 15-50-15 with 3 RCP Operating				0 5	
10	. Plant Shutdown from 100% Power to Hot Standby				1 de	A
11	. Plant Cooldown from Hot Standby to 200 ⁰ F				12 5	ATTACHNENT
12	. Plant Shutdown to Hot Standby with 3 RCP Operating				15.	H.
13	. Double Ended Tube Rupture with Offsite Power Available				3 3,	TN
14	. Double Ended Tube Rupture Coincident with Loss of Offsite Power				1º a	
15	. Largest Cold Leg Break that will not Actuate HPI-NO Feeuwater for 20 minut	es			0	
16	. Smallest Cold Leg Break that will Actuate HPI-NO Feedwater				10 00	
17	07 Ft ² Cold Leg Break - No Feedwater				Side	
18	. Largest Cold Leg Break that will not Actuate HP:-NO Feedwater or HPI after	20 minutes			3	
19	. Largest Cold Leg Break that will not Actuate HPI- Emergency Feedwater to E	Both S/G			4	
20	. Largest Cold Leg Break that will not Actuate HPI - Emergency Feedwater to	One S/G			12	
21	. Design Basis Accident (8.55 ft. ² break)				(II)	
22	. Stuck Open FORV .					
23	. Stuck Open Code Safety				2	
-24	toss-of-Instrument-Atr CRAINEST SIMULATE				N	
25	. Blackout					

Page 6

of 9 LENGHROARK ROLS 1551

-

* 1 × * *

		DENCHMARK RESPONSIBILITY	TAPE #	FILE #	DATA DECK #	DATE
26.	. Steam Leak Inside Containment .5%					
27.	Loss of One RCP 90% Power					
28.	Pump Restart 50% Power					
29.	Loss of All RCP Transition to Natural Circulation					
30.	Loss of Natural Circulation Due to Inadequate Feed					
31.	Loss of Natural Circulation Due to Primary Voiding					
32.	Regaining Natural Circulation					
33.	Loss of Condenser Vacuum					
34:	Loss of Cooling Water to Letdown Cooler					
35.	Loss of Decay Heat Removal Cooling					
36.	Loss of Main Feedwater					ATT.
37.	Feedwater Pump Trip					ATTACHMENT
38.	Main Feedwater Value Closure at Power					EN
39.	Loss of All Feedwater					-
	 a. Refill Dry OTSG with Emergency Feed b. Solid Plant Cooldown c. Draw a Bubble in Pressurizer d. Transition to Long Term Cooling 					
40.	TMI II Transient					
41.	Dropped Safety Rod					
42.	Dropped Regulating Rod					
43.	Dropped Regulating Group					
44.	Asymmetric Regulating Rod					
45.	Stuck Regulating Rod					
46.	Disabled Regulating Group					
47.	Gross Fuel Clad Failure					
48.	Turbine Trip 100%					
49.	Generator Trip 100%					

.

Page 7 of

9

BENCHMARK RUNS 1981

50.	Reactor Trip 100%	BENCHMARK RESPONSIBILITY	TAPE #	FILE /	DATA DECK #	DATE . BUN
51.	Ejected Rod					
52.	Continuous Rod withdrawal accident from Source Range					

- 53. Continuous Rod withdrawal accident from Intermediate Range
- 54. Spray Valve Fail Open
- 55. Loss of Pressurizer Heaters
- 56. Steam Line Break Inside Containment
- 57. Steam Line Break Outside Containment
- 58. Bypass Valve Failure at 90% Power
- 59. Steam Safety Value Failed Open on Reactor Trip
- 60. Bypass Valve Fails Open at 10⁻⁸ Amps
- 61. Reactor Trip with Feedwater in Hand
- 62. Fail Open MFW Control and Block Valve
- 63. Fail Th Low
- 64. Fail Tc High
- 65. Fail Tc Low
- 66. Fail RC Flow Low
- 67. Fail Steam HDR Pressure High
- 68. Fail Steam HDR Pressure Low
- 69. Fail FWP AP LOW
- 70. Fail OTSG SU Level Low
- 71. Fail OTSG Operating Level High
- 72. Fail FW Flow Low
- 73. Fail TAVE
- 74. Fail OTSG Pressure
- 8 of 9

Page

• • ATTACHMENT 1 . DATE RUN ... • DATA DECK # FILE # IAPE # BERCHMARK RESPONSIBILITY TUNUTE AND AUGUST 152 77. Loss of Diesel Generator 75. Fall FW Temperature 76. Fail Neutron Error Page 9 of 9