NES 81A0095, Rev. 1 9/26/78

STRUCTURAL ANALYSIS REPORT for the LACROSSE BOILING WATER REACTOR SPENT FUEL POOL STRUCTURE

Prepared Under Project 5101 for DAIRYLAND POWER COOPERATIVE

by Nuclear Energy Services, Inc. Danbury, Connecticut 06810



Prepared by: I. Husain J. Risley

Approved by: / Suchand Mul att 4

RELCon presento, 600 Q.A. Manager

Date: 15 2478

7810160146 P

.

# TABLE OF CONTENTS

|    |                                                 | Page       |
|----|-------------------------------------------------|------------|
| 1. | SUMMARY                                         | 1-1        |
| 2. | INTRODUCTION                                    | 2-1        |
| 3. | DESCRIPTION OF THE SPENT FUEL STORAGE POOL      | 3-1        |
| 4. | APPLICABLE CODES, STANDARDS AND SPECIFICATIONS  | 4-1        |
| 5. | LOADING CONDITIONS                              | 5-1        |
|    | 5.1 Load Cases                                  | 5-1<br>5-2 |
| 6. | STRUCTURAL ACCEPTANCE CRITERIA                  | 6-1        |
| 7. | METHOD OF ANALYSIS                              | 7-1        |
|    | 7.1 Mathematical Models                         | 7-1        |
|    | Static Analysis                                 | 7-1<br>7-2 |
| 8. | RESULTS OF ANALYSIS                             | 8-1        |
|    | 8.1 Spent Fuel Storage Pool Structural Analysis | 8-1        |
| 9. | CONCLUSIONS                                     | 9-1        |
| 0. | REFERENCES                                      | 0-1        |
| 1. | APPENDIX                                        | 1-1        |

# LIST OF TABLES

| 0 1 | 이 에너 것이 가지는 것이 가지 않는 것이 같이 가지 않는 것이 가지 않는 것이 같아. 집에 있는 것이 같이 같아. 집에 있는 것이 같이 같이 같이 같이 같아. 집에 있는 것이 같이 | Page  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 0.1 | Results of the Storage Pool Structural<br>Analysis Load Combination #1,<br>1.4 D + 1.7 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| 8.2 | Results of the Storage Pool Structural<br>Analysis Load Combination #2,<br>1.4 D + 1.76 + 1.9 E (OBE Seismic Event)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 8-3 |
| 8.3 | Results of the Storage Pool Structural<br>Analysis Load Combination #3, 0.75<br>(1.4 D + 1.76 + 1.7 T).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • 8-4 |
| 8.4 | Results of the Storage Pool Structural<br>Analysis Load Combination #4, 0.75<br>(1.4 D + 1.76 + 1.9 E + 1.7 T).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • 8-5 |
| 8.5 | Results of the Storage Pool Structural<br>Analysis Load Combination #5, D + L +<br>1.25 E + I.L. (Cask Drop Event)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 8-6 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8-7   |

# LIST OF FIGURES

|       |                                                                                   | Page |
|-------|-----------------------------------------------------------------------------------|------|
| 3.1   | Fuel Storage Pool Elevation - North and<br>South Walls                            |      |
| 3.2   | Fuel Storage Pool Elevation - East and<br>West Walls                              | 3-2  |
| 3.3   | Spent Fuel Storage Rack Arrangement Plan                                          | 3-3  |
| 7.1.a | Spent Fuel Storage Pool - Finite Element<br>Model Dimensions and Node Numbers     | 3-4  |
| 7.1.b | Spent Fuel Storage Pool - Finite Element<br>Model Plate Element Numbers           | 7-4  |
| .1.c  | Spent Fuel Storage Pool - Finite Element<br>Model Plate Element Numbers           | 7-5  |
| .1.d  | Spent Fuel Storage Pool - Finite Element<br>Model Appropriate Boundary Conditions | 7-6  |

### 1. SUMMARY

This report, prepared for Dairyland Power Cooperative (DPC), presents the results of the structural analyses performed by Nuclear Energy Services, Inc. to verify the adequacy of the fuel storage pock structure to accommodate the additional dead weight, vertical and lateral seismic loads of the high density fuel storage racks. Detailed structural analyses of various structural members of the pool (pool floor, walls) have been performed to verify the adequacy of the design to withstand the loadings associated with normal operations, the severe and extreme environmental conditions of the 1/2 safe shutdown and safe shutdown earthquakes and the abnormal loading conditions of an accidental cask drop event.

The response of the fuel storage pool structure to the specified static loading conditions have been evaluated by means of linear elastic analysis using the finite element method. Applicable loads and load combinations have been considered using the guidelines given in USNRC Standard Review Plan Section 3.8.4. The allowable section strength of the reinforced concrete members have been calculated based on the ultimate strength design methods described in ACI-318-71. For the specified loading conditions, the maximum stresses of the storage pool structure have been calculated and shown to be less than the allowable values.

It has been concluded from the results of the structural analysis that the spent fuel storage pool design is sufficiently adequate to withstand the loadings associated with normal operating and abnormal conditions.

#### 2. INTRODUCTION

Nuclear Energy Services, Inc. (NES) has designed the crash pad and the high density spent fuel storage racks for the Dairyland Power Cooperative to be installed in the LaCrosse Boiling Water Reactor fuel storage pool. The structural design of the high density spent fuel storage racks is given in NES document 81A0546, Rev. 2, dated August 7, 1978 (Reference 1). The spent fuel shipping cask drop analysis is given in NES document 81A0550, Rev. 2, dated September 20, 1978 (Reference 2).

This report (NES 81A0095) presents the results of the structural analysis that have been performed by Nuclear Energy Services, Inc. to evaluate the adequacy of the fuel storage pool structure to withstand loadings associated with the additional dead load and seismic response of the high density spent fuel storage racks and the reaction loads resulting from a cask drop event. The fuel storage pool floor and walls have been mathematically represented by a three dimensional finite element model consisting of plate elements and having appropriate boundary conditions. The response of the finite element model of the storage pool structures to the applicable loads have been determined using linear static analysis methods. Loads and load combinations have been developed based on the guidelines given in USNRC Standard Review Plan Section 3.8.4 (Reference 6). The adequacy of the reinforced concrete members have been evaluated using ultimate strength design methods for reinforced concrete structures. The applicable codes, regulatory standards, structural acceptance criteria are also presented in the report. The detail loading and structural calculations are given in Appendices A through D.

## 3. DESCRIPTION OF SPENT FUEL POOL STRUCTURE

The fuel storage pool is located inside the reactor containment building (south of the reactor pressure vessel) between elevation 659'-5-5/8" and 701'-3". The fuel storage pool is a 11' x 11' x 40' deep reinforced concrete structure lined with AISI Type 316 stainless steel plate. The 56 inch thick storage pool floor is lined with 3/8 inch thick stainless steel plate and is supported along its perimeter by the four pool walls and along its mid-span by a 29 inch thick wall. The pool walls, which vary in thickness, are lined with a 1/16 inch thick stainless steel sheet. A detailed layout of the pool floor and its supporting walls are shown in Reference 3. Elevation sections of the pool floor, the north, south, east and west walls including their detailed reinforcement patterns, changes in wall thickness and pool floor support walls are indicated in Figures 3.1 and 3.2.

In the arrangement of the storage racks, and crash pad in the fuel storage pool (shown in Figure 3.3), the two-tier  $9 \times 8$  and  $4 \times 10$  storage rack are located adjacent to the east, west and north walls of the pool and the crash pad is located adjacent to the south wall of the pool.

The horizontal seismic loads are transmitted from the rack structures to the fuel storage pool walls at three elevations (the top grid of the upper tier rack section, centerline of the inter-section of upper and lower rack tiers, and the bottom grid of the lower tier rack section) through adjustable pads attached to the rack structures. The vertical dead-weight and seismic loads are transmitted to the storage pool floor by the rack support feet. The impact loads associated with the cask drop event are transmitted to the pool floor by the crash pad.



FUEL STORAGE POOL ELEVATION - NORTH AND SOUTH WALLS



. .

FUEL STORAGE POOL ELEVATION - EAST AND WEST WALL

FIGURE 3.2



· . . .

#### FIGURE 3.3

SPENT FUEL STORAGE RACK ARRANGEMENT PLAN

## 4. APPLICABLE CODES, STANDARDS AND SPECIFICATION

The following design codes, regulatory guides and references have been used in the structural analysis of the fuel storage pool structure.

- ACI 318-71 "Building Code Requirements for Reinforced Concrete" American Concrete Institute.
- 2. Uniform Building Code, 1973 Edition.
- 3. USNRC Standard Review Plan, Section 3.8.4.
- 4. "USNRC Proposed Position for Review and Acceptance of Spent Fuel Storage and Handling Application."
- Nuclear Energy Services, Inc. document NES 81A0544, Rev. 0. "Quality Assurance Program Plan for the LaCrosse Boiling Water Reactor Spent Fuel Storage Rack Design Program", March 1978.
- George Winter, et al "Design of Concrete Structures", McGraw Hill Book Company, 1964.

## 5. LOADING CONDITIONS

The following load cases and load combinations have been considered in the analysis in accordance with the requirements of USNRC Standard Review Plan, Section 3.8.4 (Reference 6).

5.1 Load Cases

Load Case 1 - Dead Weight D (Normal Load)

The weight of the empty pool concrete structure is considered as the dead weight loading.

# Load Case 2 - Live Load, L (Normal Load)

Under normal operations, the storage pool is subjected to the live loads associated with the hydrostatic pressure and the weights of the fully loaded racks, crash pad and spent fuel shipping cask.

# Load Cases 3 to 6 - 1/2 Safe Shutdown Earthquake, E (Severe Environmental Load)

The fuel storage pool walls are individually subjected to the seismic inertia loading of the concrete walls, pool water mass, and the maximum seismic reaction loads of the fuel storage racks (Reference 1) for the 1/2 Safe Shutdown Earthquake event.

The load combinations (Section 5.2) involving the Safe Shutdown Earthquake (E') are less severe than those involving the 1/2 Safe Shutdown Earthquake (E) while the acceptance criteria for these load combinations are same. Therefore, the analyses have been performed for the 1/2 Safe Shutdown Earthquake loading condition only.

# Load Case 7 - Thermal Loading, To (Normal Load)

Clearances are provided between the individual racks and between the racks and the pool walls to allow unrestrained growth of the racks for the maximum temperature differential based on a maximum pool temperature of 150°F. Consequently the storage racks will not impose any thermal loading on the storage pool walls. The spent fuel pool cooling system analysis (Reference 7) of the storage pool for the high density storage rack application indicates that the pool water temperature will not be greater than 120°F for the maximum heat load condition. The Technical Specifications, however, permit the fuel pool to operate at temperatures up to 150°F. The pool floor and walls are conservatively analyzed (Appendix C) for a linear thermal gradient of 80°F (150°F inside pool temperature and 70°F ambient temperature outside the pool) across the thickness of concrete elements.

Load Case 8 - Spent Fuel Shipping Cask Drop Impact Load I.L. (Abnormal Load)

The maximum reaction load associated with the spent fuel shipping cask drop event (Reference 2) are applied to the affected area of the pool floor.

- 5.2 Load Combinations
- (a) For service load conditions, the following load combinations are considered using the ultimate strength design methods of ACI-318-71 (Reference 10).
  - (1) 1.4 D + 1.7 L
  - (2) 1.4 D + 1.7 L + 1.9 E
  - (3) 0.75 (1.4 D + 1.7 L + 1.7 T<sub>o</sub>)
  - (4) 0.75 (1.4 D + 1.7 L + 1.9 E + 1.7 T<sub>o</sub>)
- (b) For factored load conditions, the following load combinations are considered using the ultimate strength design methods of ACI-318-71 (Reference 10).
  - (2) 1.4 D + 1.7 L + 1.9 E > D + L + E'\*
  - (5) 1.4 D + 1.7 L + I.L.

The detail calculations for various loading data and load combinations are given in Appendix A and C.

<sup>\*</sup>Lateral seismic inertia loading of the concrete walls, pool water mass and the maximum seismic reaction loads of the fuel storage racks for the 1/2 Safe Shutdown Earthquake (E) are 73% that of the Safe Shutdown Earthquake (E') (page A-8 of Appendix A). Therefore, load combination 1.4D + 1.7L + 1.9E involving 1/2 Safe Shutdown Earthquake is more severe than load combination D + L + E' involving Safe Shutdown Earthquake.

# 6. STRUCTURAL ACCEPTANCE CRITERIA

The following allowable stress/load limits constitute the structural acceptance criteria used for each of the loading combinations presented in Section 5.2.

| Load          |       |
|---------------|-------|
| Combinations  | Limit |
| 1, 2, 3, 4, 5 | U     |

Where U is the required section strength based on the ultimate strength design methods described in ACI-318-71. The compressive strength of concrete at 28 days is taken as 3500 psi (Reference 10).

## 7. METHOD OF ANALYSIS

## 7.1 Mathematical Models

In order to perform the linear static analysis of the fuel storage pool structure, the various structural components (pool floor and walls) of the pool structure are represented by a composite three dimensional finite element model. As shown in Figures 7.1.a through 7.1.c, the three-dimensional finite element model consists of plate elements interconnected at a finite number of nodal points. Stiffness characteristics of the structural elements are related to the plate thicknesses. Six degrees of freedom (three translational and three rotational) are permitted at each nodal point. Nodal points are selected to adequately represent the changes in the wall thicknesses, discontinuity effects, various loadings and boundary conditions.

Appropriate boundary conditions, as shown in Figure 7.2, have been assumed at the interface of the storage pool and shield building.

# 7.2 Mathematical Formulation of the Static Analysis

The static analysis of the finite element model has been performed using the direct stiffness methods of structural analysis. If the force displacement relationship of each of the discrete structural elements is known (the element stiffness matrix) then the force-displacement relationship for the entire structure can be assembled using standard matrix methods as shown below.

For each element

k u = f

where:

k = Element stiffness matrix u = Element nodal displacement vector f = Element nodal force vector

For the idealized system the equation of equilibrium may be written, in matrix form, as follows:

$$K U = F$$
 (2)

(1)

where:

K = Assembled stiffness matrix for the system

 $= \sum_{i=1}^{n} k$ 

U = Nodal displacement vector for the system

F = External nodal point force vector

If sufficient boundary conditions are specified on U to quarantee a unique solution, Equation (2) can be solved for the nodal point displacements at each node in the structure, knowing the system stiffness matrix and external force matrix. From the displacement response of the system, the internal forces and stresses in each structural element can be calculated.

## 7.3 Stress Analysis

For the plate element the internal forces and moments are related to the stresses by the following equations.

| $ \left\{ \begin{matrix} MX \\ MY \\ MXY \end{matrix} \right\}$ | $=\left(\frac{\mathrm{T}^2}{\mathrm{12}}\right)\left[$ | $\left\{ \begin{array}{c} SX\\ SY\\ SXY \end{array} \right\}_{+Z}$ -             | ${SX \\ SY \\ SXY }$ | -z]             |
|-----------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------|----------------------|-----------------|
| $\left\{ \begin{matrix} FX\\FY\\FXY \end{matrix} \right\}$      | $=\left(\frac{T}{2}\right)$                            | $\left[ \left\{ \begin{matrix} SX\\ SY\\ SXY \end{matrix} \right\}_{+Z} \right.$ | + {SX<br>SY<br>SX    | <sub>y</sub> }] |

Where:

T = Plate thickness

 $+SX(\sigma_X) = Stress in element X direction on the positive Z surface.$  $+SY(<math>\sigma_X$ ) = Stress in element Y direction on positive Z surface. +SXY( $\sigma_{XY}$ ) = Shear stress on positive Z surface. -SX( $\sigma_X$ ) = Stress in element X direction on negative Z surface.

 $-SY(\sigma_{Y}) = Stress in element Y direction on negative Z surface.$ 

-SXY  $(\sigma_{XY})$  = Shear stress on negative Z surface.



7-2

 $F_x$ ,  $F_y$ ,  $F_z$  = Element internal forces along element x, y and z axes.

# $M_x$ , $M_y$ , $M_z$ = Element internal moments about element x, y and z axes.

The maximum shear and compressive stresses are compared to the allowable shear and compressive stress values for a reinforced concrete element. The maximum tensile stresses are converted to the equivalent internal moments and the internal moments are compared with the allowable ultimate moment carrying capacities of the reinforced concrete sections. The ultimate moment carrying capacities of the reinforced concrete sections for various reinforcement patterns and wall thicknesses are calculated using the ultimate strength design methods of ACI-318-71 (Reference 10). The calculations are presented in Appendix B. The structural analysis and stress analysis calculations are performed using the STARDYNE computer program (Reference 13).



7-4



FINITE ELEMENT MODEL - PLATE ELEMENT NUMBERS



.

SPENT FUEL STORAGE POOL FINITE ELEMENT MODEL - PLATE ELEMENT NUMBERS



FIGURE 7.2 SPENT FUEL STORAGE POOL FINITE ELEMENT MODEL - APPROPRIATE BOUNDARY CONDITIONS

## 8. THE RESULTS OF THE ANALYSIS

The results of the static structural/stress analysis of the LaCrosse Boiling Water Reactor fuel storage pool performed with the STARDYNE computer code are contained in Reference 14.

Appendices A through D contain the loading data, allowable ultimate moment capacity of the pool floor and walls, thermal loading effects and seismic loading effects from other building structures.

# 8.1 Spent Fuel Storage Pool Structural Analysis

The results of the storage pool structural analysis for load combinations 1 and 2 which includes the effects of dead, live and earthquake loadings are summarized in Tables 8.1 and 8.2. These tables present the maximum shear stresses, compressive stresses and calculated design moments in each of the elements of different thickness in the pool structure and compares them with the allowable values as specified in the acceptance criteria of Section 6. From Table 8.1, it can be seen that for load combination 1, the maximum shear stress, compressive stress and critical design moments (for the horizontal and vertical reinforcements) are 0.058 ksi, 0.115 ksi, 243.6 K in/ft and 18.14 K in/ft respectively. These stress and moment values are considerably lower than the corresponding allowable values of 0.20 ksi, 2.082 ksi, 1260 K.in/ft and 528.6 K.in/ft respectively.

Table 8.2 presents the results for load combination #2. From this table it can be seen that the maximum shear stress, compressive stress, critical (horizontal and vertical reinforcements) design moment values of 0.075 ksi, 0.167 ksi, 695.3 K. in/ft and 77.8 K. in/ft respectively are lower than the corresponding allowable values of 0.20 ksi and 2.082 ksi, 2142.0 K in/ft and 528.0 K in/ft respectively.

The results of the storage pool structural analysis for load combinations 3 and 4 which includes the effects of dead, live, earthquake and thermal loadings are summarized in Table 8.3 and 8.4. These tables show that in the critical section (pool floor) the maximum moment of 702.9 K in/ft for load combination 3 and 4 is lower than the allowable value of 1200 K in/ft. Table 8.5 presents the results for abnormal load combination 5 which includes the effects of dead, live and cask drop impact loads. From this table it can be seen that the maximum shear stress, compressive stress, critical (horizontal and vertical reinforcements) design moment values of 0.089 ksi, 0.153 ksi, 675.8 K in/ft and 149.5 K in/ft respectively are lower than their allowable values of 0.20 ksi, 2.082 ksi, 2142.0 K in/ft and 897.6 K in/ft respectively.

The effects of additional loadings from the adjacent building structures on the pool structures are evaluated in Appendix D. The sum of the ratios of maximum shear stress to allowable shear stress for the pool structure and for the over all building structure (Reference 15) is 0.479. Similarly, the sum of the ratios for the maximum moment to allowable moment is 0.432. Since these two ratios are less than 1, it can be concluded that the storage pool structures are adequate to withstand its own internal loadings as well as those from the adjacent building structures.

•

\* \*

RESULTS OF THE STORAGE POOL STRUCTURAL ANALYSIS LOAD COMBINATION #1, 1.4 D # 1.7 L

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | STRUCTURAL                                                | SHEAR          | THUM"            | CON PESS       | INUM.           | MAX            | INDA TENI                    | 2117 5755      |                             | DECYCL                | MUM                  |                                 |                    | DEST GN/  | WIONARI W                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------|------------------|----------------|-----------------|----------------|------------------------------|----------------|-----------------------------|-----------------------|----------------------|---------------------------------|--------------------|-----------|-----------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DELARIPTION                                               | Elenent<br>No. | Stress<br>(Ksi)  | Element<br>No. | Stress<br>(Ksi) | Element<br>No. | Norazonta<br>Reint.<br>Disil | Element<br>No. | Vertical<br>Reinf.<br>[Ksv] | Norizontal<br>Feanity | Vertical<br>Fertical | Horizonta<br>Horizonta<br>Feint | Net Lical<br>Reinf | Perisona. | RATIO<br>Wertical<br>Reinf. |
| $ \begin{array}{l l l l l l l l l l l l l l l l l l l $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fool Floor (S6" Element)<br>North Kall                    | 161            | 0.033            | 167            | 0.051           | 162            | 0.068                        |                |                             |                       |                      |                                 |                    |           |                             |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E1. 580*-5" to 701'-3"<br>(36" Elements)                  | 61             | 0.029            | 19             | 0.046           | 19             | 0.041                        | ,              | •                           | 106.3                 |                      | 1260.0                          | 528.0              | -         |                             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | El. 678°-5" to 680°-5"<br>(33.5" "lowent)                 | 36             | 0.027            | 0.8            | 0.068           | 22             | 0.056                        | 17             | 0.007                       | 125.7                 | 15.7                 | 1239.0                          | 519.6              | 0.102     | 0.030                       |
| E1, $659^{-5}, 532^{-5}$ to $678^{-5}$ 158       0.033       159       0.063       126       0.041       -       36.2       -       713       4.54       503 $50013^{-5}$ E1 second)       86       0.033       71       0.072       70       0.013       7.13       4.54       503 $5001^{-5}$ E1 second)       85       0.033       135       0.033       135       0.033       149       0.033       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2 </td <td>E1. 659*-5.625* to 678-57<br/>(36" 5140000)</td> <td>141</td> <td>0.058</td> <td>128</td> <td>0.115</td> <td>128</td> <td>0.094</td> <td>125</td> <td>0.007</td> <td>243.6</td> <td>18.14</td> <td>1260.0</td> <td>528.6</td> <td>101.0</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E1. 659*-5.625* to 678-57<br>(36" 5140000)                | 141            | 0.058            | 128            | 0.115           | 128            | 0.094                        | 125            | 0.007                       | 243.6                 | 18.14                | 1260.0                          | 528.6              | 101.0     |                             |
| E1. 672 <sup>-07</sup> to 701 <sup>-37</sup> 86 0.023 71 0.072 70 0.011 69 3.007 7.13 4.54 504 (59 - 5.625 <sup>+</sup> to 701 <sup>-37</sup> 1 1 0.029 135 0.009 - 5.625 <sup>+</sup> to 612 <sup>+0</sup> 133 0.029 135 0.009 - 5.625 <sup>+</sup> to 612 <sup>+0</sup> 133 0.029 135 0.009 - 5.625 <sup>+</sup> to 612 <sup>+0</sup> 133 0.029 136 <sup>+</sup> 130 0.029 149 0.009 - 5.625 <sup>+</sup> to 701 <sup>+-3<sup>+</sup></sup> 58 0.050 59 0.064 42 0.005 - 142.6 - 1260 15. <sup>6</sup> Element) 0.1 <sup>-3<sup>+</sup></sup> 58 0.059 146 0.051 67 0.061 - 1000 - 142 0.055 - 142.6 - 1260 15. <sup>6</sup> 5 <sup>+</sup> 5.625 <sup>+</sup> to 680 <sup>+-5<sup>+</sup></sup> 146 0.039 146 0.051 67 0.061 - 10001 - 10000 - 142.6 - 142.6 - 1260 15. <sup>6</sup> 5 <sup>+</sup> 5.625 <sup>+</sup> to 680 <sup>+-5<sup>+</sup></sup> 148 0.039 145 0.051 67 0.061 - 10001 - 10000 - 142.6 - 142.6 - 1260 15. <sup>6</sup> 5 <sup>+</sup> 5.625 <sup>+</sup> to 680 <sup>+-5<sup>+</sup></sup> 148 0.039 145 0.051 67 0.061 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 100000 - 10000 - 10000 - 100000 - 100000 - 100000 - 100000 - 10000 - | El. 659'-5.625" to 678-5"<br>[21" Element]<br>South Wall  | 158            | 0.035            | 159            | 0.063           | 126            | 0.041                        |                | 1                           | 36.2                  | ,                    | 114.3                           | 299.2              | 150.0     | 0.034                       |
| E1, 659'-5,625' to 672'-0       133       0.029       135       0.059       149       0.009       -       58.5       -       58.5       -       28.5       -       142.6       -       58.5       -       142.6       -       142.6       -       142.6       -       1260       -       1260       -       142.6       0.055       -       142.6       0.055       -       142.6       0.055       -       142.6       0.055       -       142.6       -       142.6       -       142.6       -       142.6       -       142.6       -       142.6       -       142.6       -       142.6       -       142.6       -       142.6       -       142.6       -       142.6       -       142.6       -       142.6       -       142.6       -       142.6       -       142.6       -       142.6       -       142.6       -       142.6       -       142.6       -       142.6       -       142.6       -       142.6       -       142.6       -       142.6       -       142.6       -       142.6       -       142.6       -       142.6       -       142.6       -       142.6       -       142.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | El. 672'-3" to 701'-3"<br>(18.0" Elument)                 | 98             | 0,023            | t/             | 0.072           | 70             | 0.011                        | 69             | 0.007                       | 7.13                  | 4.54                 | 504.0                           | 211.4              |           |                             |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | El. 659'-5.625" to 672'-0"<br>(57" Element)               | 133            | 0.029            | 135            | 0.059           | 149            | 0.009                        |                | ,                           | 58.5                  | 1                    | 2142.0                          | 897.6              | \$10.0    | 0.022                       |
| E1. 680'-5" to 701'-3" 58 0.050 59 0.044 42 0.055 - 142.6 - 1260<br>E1. 659'-5.625 to 680'-5" 146 0.039 145 0.051 67 0.061 - 236.4 - 2142<br>E1. 659'-5.625 to 680'-5" 148 0.031 51 0.044 35 0.055 - 236.4 - 2142<br>$\frac{6est Wall}{(35" Element)}$ 51 0.044 35 0.055 142.6 - 1260<br>E1. 680'-5" to 701'-3" 51 0.039 145 0.051 67 0.061 236.4 - 2142.<br>E1. 680'-5" to 680'-5" 148 0.039 145 0.051 67 0.061 236.4 - 2142.<br>E1. 659'-5.625" to 680'-5" 148 0.039 145 0.051 67 0.061 236.4 - 236.4 - 336.4 - 336.4 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 336.4 - 3                                                                                                                                                                                                                                                                                                                                | East Wall                                                 |                |                  |                | *               |                |                              |                |                             |                       |                      |                                 |                    | 170.0     |                             |
| E1. $659^{-}-5.627^{\circ}$ to $660^{\circ}-5^{\circ}$ 14E 0.039 145 0.051 67 0.061 - 396.4 - 2142<br>$(57^{\circ}$ Element) - 51 260<br>$(57^{\circ}$ Element) - 51 0.031 51 0.031 51 0.044 35 0.055 - 142.6 - 142.6 - 1260<br>$(36^{\circ}$ Element) - 148 0.039 145 0.051 67 0.061 396.4 - 2142.<br>$(57^{\circ}$ Element) 396.4 2142.6 - 142.6 - 148 0.039 145 0.051 67 0.061 236.4 - 2142.<br>$(57^{\circ}$ Element)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | El. 680'-5" to 701'-3"<br>(36" Element)                   | 58             | 0.050            | 5.9            | 0.044           | 42             | 0.055                        | ,              | ı                           | 142.6                 |                      | 1260.0                          | 578.0              |           |                             |
| Seet Mall       51       0.031       51       0.044       35       0.055       -       142.6       -       1260         E1. 659'-5.625" to 680'-5"       148       0.033       145       0.051       67       0.061       -       236.4       -       2160         F1. 659'-5.625" to 680'-5"       148       0.033       145       0.051       67       0.061       -       -       236.4       -       2160         *Allowable Shear Stress = 0.201 fsi       **Allowable Compressive Stress = 2.082 ksi       -       -       -       236.4       -       2162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | El. 659'-5.625" to 680'-5"<br>(57" Element)               | 146            | 0.039            | 145            | 150.0           | 67             | 0.061                        | ,              | ,                           | 396.4                 | 1                    | 2142.0                          | 897.6              | 201 C     |                             |
| EL 659'-5.625' to 680'-5" 148 0.039 145 0.051 67 0.061 396.4 - 396.4 - 396.4 - 396.4 - 2142.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <pre>%cst Wall E1. 680'-5" to 701'-3" [36" Elcment]</pre> | 51             | 160.0            | 51             | 0.044           | 35             | 0.055                        | ,              |                             | 142.6                 |                      | 0.030                           |                    |           | ,                           |
| *Allowable Shear Stress = 0.20; Fei<br>•Allowable Compressive Stress = 2.C82 Ksi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | El. 659'-5.625" to 680'-5"<br>(57" Element)               | 148            | 0.039            | 145            | 0.051           | 67             | 0.061                        |                | ,                           | 396.4                 | 1                    | 142.0                           | 3 7 28             | SIL.O     | •                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *Allowable Shear Stress<br>*Allowable Compressive         | Stress =       | . rsi<br>2.082 K | sî             |                 |                |                              |                |                             |                       |                      |                                 |                    |           | •                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                           |                |                  |                |                 |                |                              |                |                             |                       |                      |                                 |                    |           |                             |

\*

8-3

..

HESULTS OF THE STURACE POOL AMALVEIS LOAD COMBINATION #2 1.40 + 1.7 L + 1.9 E - DBE SEISMIC EVENT

| STRUCTURAL                                                                | SHEAR               | . INUN .        | COUPARSE       | ** WOW IN | L       |            |         |          | 1       |             |          |          |          |                       |
|---------------------------------------------------------------------------|---------------------|-----------------|----------------|-----------|---------|------------|---------|----------|---------|-------------|----------|----------|----------|-----------------------|
| DESCRIPTION                                                               | Elenent<br>No.      | Strers<br>(Ksi) | Element<br>No. | Stress    | Element | Sort Zonta | Element | Vertical | DESIG   | N NOWENT    | ALLOWAS  | BLE MONE | NT NONEN | /ALLOWABLE<br>T PATIO |
| Board Plane                                                               |                     |                 |                |           | .02     | [F=4]      | . 0N    | (153)    | W-in/ft | L (K-In/it) | (K-11/ft | (K-LD/P) | Reinf.   | al Wertical Reint.    |
| North Wall                                                                | 171                 | 0.066           | 163            | 0.136     | 162     | 0.069      |         |          |         |             |          |          |          |                       |
| El. 680'-5" to 701'-3"<br>(36" Elements)                                  | 61                  | 0.037           | 61             | 0.066     | 61      | 0.06       | 19      | 0.010    |         |             |          |          |          |                       |
| El. 68045* to 701'-3"<br>(21° Eleronts)                                   | THPT #1             | 0.027           | 1              | 0.056     | 1       | 0.041      | -       |          | 6.00T   | 77.8        | 1260.0   | 528.0    | 0.123    | 0.147                 |
| F1, 638'-5" to 686'-5"<br>(33.5" E10. cnts)                               | 78                  | 0.045           | 78             | 0.104     | 78      | 0.088      |         | 20.0     | 36.2    | 17.6        | 714.0    | 2.99.2   | 0.051    | 0.059                 |
| El. 659'-5,625 to<br>678'-5" (36" Elements)                               | 144                 | 0.075           | 128            | 0.167     | 128     | 0.147      | 125     | 810.0    | 197.5   | 40.4        | 1239.0   | 519.6    | 0.159    | 0.078                 |
| E1. 659'-5.625" to<br>678'-5" (21" Elements)                              | 143                 | 0.046           | 127            | 0.131     | 126     | 0.102      | 126     | 750.0    | 0.185   | 28.5        | 1260.0   | 528.0    | 0.302    | 0.054                 |
| Scuth Wall                                                                |                     |                 |                |           |         |            |         | ***      | 0.06    | 22.93       | 714.0    | 239.2    | 0.126    | 0.077                 |
| El. 672'-0" to 701'-3"<br>(18" Elements)                                  | 86                  | 0.027           | 102            | 0,083     | 20      | 0.016      | 70      | 0.008    |         |             |          |          |          |                       |
| El. 659'-5.625" to<br>672'-0" (57.0 Elements)                             | 119                 | 0.041           | 134            | 0.078     | 152     | 0.010      | 134     | - 00 o   |         | 5.2         | 504.0    | 211.2    | 0.021    | 0.025                 |
| East Wall                                                                 |                     |                 |                |           |         |            |         |          | 0.00    | 58.5        | 2142.0   | 897.6    | 0.030    | 0.065                 |
| El. 680' to 701'-3"<br>(36.0" Elements)                                   | 58                  | 0.041           | 42             | 0.071     | 42      | 0.092      | 42      | 0.011    | × 82.0  |             |          |          |          |                       |
| E1. 659'-5.625" to 680'<br>(57.0" Elements)                               | 74                  | 0.054           | 74             | 0.084     | 74      | 0.106      | 155     | 0.018    |         | C.87        | 1260.0   | 528.0    | 0.189    | 0.054                 |
| West Wall                                                                 |                     |                 |                |           |         |            |         |          | 0.000   | 0.711       | 2142.0   | 897.6    | 0.322    | 0.130                 |
| E1. 680'-0" to 701'-3"<br>(36.0" Element)                                 | 51                  | 0.041           | 35             | 0.071     | 35      | 0.092      | 35      | 110.0    | 238.5   |             |          |          |          |                       |
| E1. 659'-5.625" to<br>680'-0" (57" Elerents)                              | 67                  | 0.056           | 67             | 0.084     | 67      | 0.107      | 146 0   | 810      |         | C           | 0.042    | 528.0    | 0.189    | 0.054                 |
| <ul> <li>Allowable Shear Stress</li> <li>Allowable Compressive</li> </ul> | - 0.201<br>Stress - | ksi<br>2.082 ks |                |           |         |            |         |          | r       | 117.0 2     | 142.0    | 897.6    | 0.325    | 661.0                 |
|                                                                           |                     |                 |                |           | -       | -          |         |          | -       |             |          | -        |          | -                     |

, e

8-4

# RESULTS OF THE STORAGE POOL STRUCTURAL ANALYSIS LOAD COMBINATION #3, 0.75(1.4D + 1.7L + 1.7T<sub>0</sub>)

.

| Contraction of the second seco | And a second sec | and the second | and the second |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| STRUCTURAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MAXIMUM<br>DESIGN MOMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ALLOWABLE<br>MOMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DESIGN/ALLOWABLE                                                                                                 |
| DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HORIZONTAL<br>REINFORCEMENT<br>(K-in/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HORIZONTAL<br>REINFORCEMENT<br>(K-in/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MOMENT RATIO                                                                                                     |
| Pool Floor (56"Element)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 702.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.586                                                                                                            |
| North Wall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 - <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
| El. 680'-5" to 701'-3"<br>(36"Elements)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 502.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1260.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.398                                                                                                            |
| E1. 680'-5" to 701'-3"<br>(21" Elements)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 183.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 714.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.257                                                                                                            |
| E1. 678'-5" to 680'-5"<br>(33.5" Elements)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 451.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1239.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.364                                                                                                            |
| El. 659'-5.625" to<br>678'-5" (36" Elements)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 605.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1260.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.480                                                                                                            |
| El. 659'-5.635" to<br>673'-5" (21" Elements)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 210.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 714.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.295                                                                                                            |
| South Wall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
| El. 672'-0" to 701'-3"<br>(18" Elements)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 146.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 504.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.290                                                                                                            |
| El. 659'-5.625" to<br>672'-0" (57" Elements)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 774.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2142.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.361                                                                                                            |
| East Wall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 이 영양되었어.                                                                                                         |
| E1. 630'-5" to 701'-3"<br>(36" Elements)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 529.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1260.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.420                                                                                                            |
| E1. 659'-5.625" to<br>680'-5" (57" Elements)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1027.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2142.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.488                                                                                                            |
| West Wall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |
| El. 680'-5" to 701'-3"<br>(36' Elements)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 529.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1260.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.420                                                                                                            |
| E1. 659'-5.625" to<br>680'-5" (57" Elements)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1027.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2142.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.480                                                                                                            |

# RESULTS OF THE STORAGE POOL STRUCTURAL ANALYSIS LOAD COMBINATION #4, 0.75(1.4D + 1.7L + 1.9E + 1.7To)

| STRUCTURAL<br>ELEMENT                        | MAXIMUM<br>DESIGN MOMENT                 | ALLOWABLE<br>MOMENT                      | DESIGN/ALLOWABLE |
|----------------------------------------------|------------------------------------------|------------------------------------------|------------------|
| DESCRIPTION                                  | HORIZONTAL<br>REINFORCEMENT<br>(K-in/ft) | HORIZONTAL<br>REINFORCEMENT<br>(K-in/ft) | MOMENT RATIO     |
| Pool Floor (56" Element)                     | 702.9                                    | 1200.0                                   | 0.586            |
| North Wall                                   | 방송은 가슴 가슴!                               |                                          |                  |
| El. 680'-5" to 701'-3"<br>(36" Elements)     | 538.9                                    | 1260.0                                   | 0.423            |
| E1. 680'-5" to 701'-3"<br>(21" Elements)     | 210.8                                    | 714.0                                    | 0.294            |
| El. 678'-5" to 680'-5"<br>(33.5" Elements)   | 505.3                                    | 1239.0                                   | C.408            |
| El. 659'5.625" to<br>678'-5" (36" Elements)  | 708.0                                    | 1260.0                                   | 0.562            |
| El. 659'-5.625" to<br>678'-5" (21" Elements) | 251.1                                    | 714.0                                    | 0.352            |
| South Wall                                   |                                          |                                          |                  |
| El. 672'-0" to 701'-3"<br>(18" Elements)     | 149.1                                    | 504.0                                    | 0.296            |
| E1. 659'-5.625" to<br>672'-0" (57" Elements) | 779.1                                    | 2142.0                                   | 0.364            |
| East Wall                                    |                                          |                                          |                  |
| El. 680'-5" to 701'-3"<br>(36" Elements)     | 601.2                                    | 1260.0                                   | 0.477            |
| E1. 659'-5.625" to<br>680'-5" (57" Elements) | 1246.9                                   | 2142.0                                   | 0.582            |
| West Wall                                    |                                          |                                          |                  |
| El. 680'-5" to 701'-3"<br>(36" Elements)     | 601.2                                    | 1260.0                                   | 0.477            |
| El. 659'-5.625" to<br>680'-5" (57" Elements) | 1246.9                                   | 2142.0                                   | 0.582            |

TAFLE 8.5

# RESULTS OF THE STORAGE FOOL STRUCTURAL ANALYSIS LOAD COMBINATION #5, D + L + 1.25 E + 1.L. - CASE DROP EVENT

| STRUCTURAL                                           | SHEAR    | STHESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CONTRESS I     | VE 577255       | MAX            | NUM TENS                       | SILE CTRES     | 5                          | DESICK  | TMUM              | ALLONARI                             | A MOUSE           | 1/NDISE  | TONOUT    |
|------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|----------------|--------------------------------|----------------|----------------------------|---------|-------------------|--------------------------------------|-------------------|----------|-----------|
| DESCRIPTION                                          | No.      | Stress<br>(Kei)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Elenent<br>No. | Stress<br>(Ksi) | Elerent<br>No. | NEL KONTAL<br>Neture:<br>(KSA) | Element<br>No. | Vertical<br>Kend.<br>(Kai) | Servin. | Vertical<br>Reinf | Horizonta<br>Neuriconta<br>(Y-un/ft) | Vertical<br>Reinf | Part and | Via tical |
| teol Floor                                           | 167      | 0.066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 163            | 0.136           | 163            | 0.157                          |                |                            |         |                   |                                      |                   |          |           |
| 1. 680'-5" to 701'-3"<br>(36" Elements)              | 61       | 0.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 61             | 0.033           | 61             | 0.029                          |                |                            | 75.2    |                   | 1260.0                               | 528.0             | 0.060    | ,         |
| 21. (80'-5" to 701'-3"<br>(21" Flanests)             | 1        | 0.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ĸ              | 0.039           | 1              | 0.027                          | .1             | 0.009                      | 23.8    | 8.0               | 714.0                                | 229.2             | 0.033    | 0.035     |
| 1. (12'-5" to 630'-6"<br>(33.5" Elements)            | 0.8      | 0.044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 69             | 0.085           | 08             | 0.000                          | 2.2            | 0.016                      | 179.6   | 35.9              | 1239.0                               | 519.6             | 0.145    | 0.069     |
| <pre>[1, 659'-5.624" to 678'-5" [36" Elements)</pre> | 141      | 0.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 160            | 0.18            | 125            | 0.134                          | 125            | 0.005                      | 347.3   | 13.0              | 1260.0                               | 528.0             | 0.276    | 0.025     |
| 1. 659'-5.625" to 678'-5"<br>(21" Elements)          | 159      | 0.046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 159            | 0.153           | 127            | 0.104                          | 126            | 0.033                      | 92.0    | 28.7              | 714.0                                | 2.99.2            | 0.129    | 960.0     |
| Such Wall                                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |                |                                |                |                            |         |                   |                                      |                   |          |           |
| 1. 672'-0" to 701'-3"<br>(18" Element)               | 102      | 0.027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 103            | 0.075           | 70             | 0.006                          | 70             | 0.001                      | 4.0     | 1.0               | 504.0                                | 211.2             | 0.008    | 0.005     |
| 1. 659'-5.625" to 672'-0"<br>(57" Element)           | 152      | 680.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 149            | 0,139           | 152            | 0.019                          | 152            | 0.015                      | 123.5   | 97.5              | 2142.0                               | 897.6             | 0.058    | 0.109     |
| set Wall                                             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |                |                                |                |                            |         |                   |                                      |                   |          |           |
| 1. 650'-5" to 701'-3"<br>(36" Elenent)               | 58       | 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42             | 0.044           | 42             | 0.46                           | 42             | 0.014                      | 119.2   | 36.3              | 1260.0                               | 528.0             | 260.0    | 0.069     |
| 1. 659'-5.625" to 680'-5"<br>(57" Element)           | 14       | 0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74             | 0.085           | 153            | 0.061                          | 155            | 0.023                      | 396.4   | 49.5              | 2142.0                               | 897.6             | 0.185    | 0.167     |
| set Kall                                             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |                |                                |                |                            |         |                   |                                      |                   |          |           |
| 1. 680'-5" to 701'-3"<br>(36" Element)               | 51       | 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35             | 0.034           | 35             | 0.047                          | 35             | 0.014                      | 121.8   | 36.3              | 1260.0                               | 528.0             | 960.0    | 0.069     |
| 1, 659'-5,625" to 680'~5"<br>(57" Element)           | 67       | 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .19            | 0.086           | 67             | 0.104                          | 146            | 0.023                      | 675.8   | 2.94              | 2142.0                               | 897.6             | 0.315    | .167      |
| * Allowable Shear Str<br>** Allowable Compressi      | ces = 0. | 201 ksi<br>s = 2.062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | kei            |                 |                |                                |                |                            |         |                   |                                      |                   |          |           |
| spectra and an an annual sector and an               |          | ALC NAMES OF A DESCRIPTION OF A DESCRIPR |                |                 | 1              | 1                              |                | -                          |         |                   |                                      |                   |          |           |

8-7

## 9. CONCLUSIONS

The results of the structural analysis of the fuel storage pool structure indicate that the maximum stresses and internal moments in the pool floor and walls resulting from the loadings including those associated with the augmented spent fuel storage requirements are within the allowable limits for Seismic Category 1 structure. It is, therefore, concluded that the design of the LaCrosse Boiling Water Reactor Spent Fuel Storage pool is adequate to withstand the normal and abnormal loading conditions.

### 10. REFERENCES

- Nuclear Energy Services, Inc. "Structural Analysis Design Report for the LaCrosse Boiling Water Reactor High Density Spent Fuel Storage Racks, NES Document 81A0546 (Rev. 2), revision dated 8/7/78.
- Nuclear Energy Services, Inc. "Spent Fuel Shipping Cask Drop Analysis for the LACBWR Nuclear Power Plant", NES Document 81A0550, (Rev. 2), September 20, 1978.
- 3. Sargent and Lundy Engineers "LACBWR" Project Drawings.
- Nuclear Energy Services, Inc. Drawings for LaCrosse Boiling Water Reactor Spent Fuel Storage Racks.
- Nuclear Energy Services, Inc. Document NES 81A0544, Rev. 0, "Quality Assurance Program Plan for the LaCrosse Boiling Water Reactor Spent Fuel Storage Rack Design Program", March 1978.
- 6. USNRC Standard Review Plan, Section 3.8.4.
- Nuclear Energy Services, Inc. "Evaluation of the Spent Fuel Pool Cooling System LaCrosse Boiling Water Reactor High Density Fuel Storage Rack Program" NES Document 81A0549 (Rev. 1), July 1978.
- Dairyland Power Cooperative, "LaCrosse Boiling Water Reactor Technical Specifications" DPRA-6 (Appendix A).
- 9. "USNRC Proposed Position for Review and Acceptance of Spent Fuel Storage and Handling Applications".
- ACI 318-71 "Building Code Requirements for Reinforced Concrete", American Concrete Institute.
- 11. Uniform Building Code, Volume 1, 1970 Edition.
- George Winter, et.al. "Design of Concrete Structures", McGraw Hill Book Company, 1964.
- MRI/Stardyne 3 Static and Dynamic Structural Analysis System for Scope 3.4 "Operating System User's Information Manual", Revision B, Control Data Corporation, April 1978.

- "LaCrosse Boiling Water Reactor Spent Fuel Storage Pool Stardyne Structural Analysis Project 5101, Task 237", NES Computer Output Binder No. S32, June 1978.
- 15. Gulf United Services, Document SS-1162 "Seismic Evaluation of the LaCrosse Boiling Water Reactor".
- "Structural Analysis and Design of Nuclear Plant Facilities", American Society of Civil Engineers, 1976.
- ST-57 "Circular Concrete Tanks Without Prestressing" Portland Cement Associates, Chicago, Illinois.
- BC-TOP-9A-Rev. 2 "Design of Structures for Missile Impact", Bechtel Power Corporation, San Francisco, California September 1974.
- Roark, R. J., "Formulae for Stress and Strain" McGraw-Hill Book Company, 1965.

## APPENDIX

- A. LOADING DATA
- B. SPENT FUEL STORAGE POOL FLOOR AND WALL ALLOWABLE ULTIMATE MOMENT CAPACITY
- C. EQUIVALENT THERMAL MOMENT CALCULATIONS
- D. EFFECTS OF SEISMIC LOADINGS FROM ADJACENT BUILDING STRUCTURES

BY JE DATE 7/14/78 PROJ. 5101 TASK 237 CHKD. 1. H DATE 9-15-78 PAGE 2-1 OF 2-8 LACEWE

| APPERIDIX A                                  | REF. |
|----------------------------------------------|------|
| Londing Dam                                  |      |
| The LONSVICE CREES TO BE NPPLIED             |      |
| TO THE SPENT FUEL STORAGE POOL MODEL         |      |
| ARE CONSIDERED IN ACCORDANCE WITH            |      |
| THE REQUIREMENTS OF USNRE STANDARD           |      |
| REVIEW PLAN, SERTION 3.8.4 ( REFERENCE # 6). |      |
| FOR SERVICE LOND CONSITIONS - USING ULTIMATE |      |
| STRENGTH DESIGN, The combination of LODD     | i    |
| CASES AS SPECIFIED BY SECTION 3.8.4 FOR      |      |
| CONCRETE STRUCTURES ARE:                     |      |
| 1. 1.4D + 1.7L                               |      |
| 2. 1.4D + 1.7L + 1.9E (REF "C)               |      |
| WHERE !                                      |      |
| D = DEAD LONGS OF THE STORAGE POOL           |      |
| L= LIVE LOADS ASSOCIATED WITH THE WEIGHTS    |      |
| OF THE FULLY - LONDED PACKS, CRASH PAD,      |      |
| SPERUT FUEL SHIPPING CASE AND HYDROSTATIC    |      |

PRESSURES:

FOR THESE LOND COMPLIANTIONS, THE STRESSES AND moments Generated must be Less THRAN 4 which is the Ultimate Section Strendart Reduired to resist Design Londos Based ON THE Strendard Design Moments Described in ACI 318-71 (REFERENCE # 10).

FOR SERVICE LOND LONDITIONS - USING UCTIMATE STRENGTH DESIGN AND INECUDING THE THERMEL

1

| BY          | DATE 9/15/73 | PROJ | 5101 | TASK 237 |
|-------------|--------------|------|------|----------|
| CHKD. 1. 11 | DATE 9-15-72 | PAGE | 1-7. | OF 1-3   |
| LACEUIA     | 2            |      |      |          |

| STRESSES GENERATED DUE TO TERRITOR                | 1 |
|---------------------------------------------------|---|
| Disseptiment and the first                        |   |
| The interest person poor proor and conces ,       | 1 |
| Section 3.8.4 (LET # 6) ARE:                      |   |
| 3. 0.75 (1.4 D + 1.72 + 1.770) (PEEE)             |   |
| 4. 0.75 (1.4D + 1.7L + 1.9E + 1.7To) (100 0)      |   |
| WHERE : TO = THERMOL EFFECTS AND COADS            |   |
| DURING NORMAL OPERATING OR                        |   |
| SULTDOWN CONDITIONS, BASED ON MOST                |   |
| CRITICAL STENDY-STATE CONDITION.                  |   |
| E- LOADS GENERATED BY 1/2 SRFE SHUT-              |   |
| DOWN EXPTHOUREE.                                  |   |
| NoTE: The Specified Combinations to INCLUDE       |   |
| THE SHUT SHUTTOWN EXPANDERE (DILITIE')            |   |
| is LESS SEVERE THAN THOSE INCLUDING               |   |
| The 1/2 SAFE SHUTDOWN EARTHQUARE                  |   |
| 0.75 ( 14D + 1.7L + 1.7T + 1.9E) NAD THEREFORE is |   |
| NOT PREFORMED.                                    |   |
| FOR FRETOR LOND CONDITIONS WHICH REPRESENT        |   |
| NONDER LODDING CONDITIONS, USING ULTIMOTE         |   |
| STRENGTAI DESIGN METHODS, LOAD COMBINATIONS REE:  |   |
| 5. D+L + 1.25E + I.L.                             |   |
| WHERE: I.L LONDS ASSUCIATED WITH CASE             |   |
| DROP EVENT.                                       |   |
| 비행 방법을 위해 집에 가지 않는 것이 같이 가지 않는 것이 같아.             |   |
|                                                   |   |

CHKD. 1.H DATE 8-25-78 PAGE A-3 OF A-9

| LOADING DRIR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | REF |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| DERD LODD PARCYONS D'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| The DEND WEIGHT OF THE POOL MICLUSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| The WEIGHT OF The REMITORICED CONCRETE WALLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| AND FLOOR ONLY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| The DEND WEIGHT LONDS AND STRESSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| in The POOL STRUCTURE ARE MARLYTICALLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| DETERMINED BY RPRYING & VERTICAL 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| RECELERNMONS TO THE SWENT FUEL POST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| MODEL" WITH REPEOPRINTE BOUNDERY CONDITIONS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| The WEIGHT OF THE POOL is DETERMINED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| By APPLYING & REINFORCED CONCRETE DENSITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| IN APPLICAELE UNITS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| CONCRETE DEVISITY = 144 16/FT ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| $= \frac{144}{1000} \times \frac{57^3}{1728} = 0.83 \times 10^{-4} \frac{1}{1000} \times \frac{1}{10$ |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |

BY \_\_\_\_\_ DATE <u>B/24/13</u> PROJ. <u>5101</u> TASK <u>237</u> CHKD. <u>1.H</u> DATE <u>8-25-78</u> PAGE <u>A-4</u> OF <u>A-9</u> LACEWR

REF.

| LUDDING | DATA  |
|---------|-------|
| CONDING | 12001 |

Live LOAD AMALYSIS'L'

The MAX. LIVE LOND IN THE SPENT FUEL POOL FLOOR WELLIDES THE FULL POOL WATER WEIGHT, THE WEIGHT OF THE FULLY LONDED RACKS, WEIGHT OF A SPENT FUEL SHIPPING CASK. THE LIVE LOND ON THE SPENT FUEL POOL WALLS INSCLUDES THE HYDROSTOTIC PRESSURE OF THE WATER.

The WEIGHT OF EACH OF THE LOAD CONTRIBUTORS is CONVERTED JUTO A PRESSURE LOAD (B.A.4 (A.S) AND APRIED TO THE PRESSURE QUAD-PLATE IN THE SPENT FUEL POOL MODEL. Pox FLORE PRESSURE LOADING

1. POUL WATER PRESSURE LOAD - (ASSUMING FULL POOL) WATER dEPTH in POUL = (EL. 700'-9") - (EL. 659'-5625")= 41.28125'

Pressure (ORD ON ROOR = <u>H'x 11'x 41.28125 x 62.4'</u>= 2575.95' 16/ SO.FE OR 0.0179' KiP/ SQ. iN.

2. WEIGHT OF FUEL STORAGE RACKS + FUEL =  $650.0 \ \frac{16}{cell}$  (  $8x9 \times 271eRS \times 2RACKS + 4x10 \times 277ERS$  REF.1  $\times 2 \ LACKS$ ) = .650 K × 440 CELLS = .286.0 KIPS

PRESSURE LOND ON FLOOR DOSUMED UNIFORM UNDER RACK MRER =  $2 \times [3 \times 9 + 4 \times 10] \times (7" pitch)^2 = 10976 in^2$ 

PRESSURE LOND = 2412 KIPS = 0.0265 K/in2

\_\_\_\_\_

|       |     |                   |      | 171.911 |
|-------|-----|-------------------|------|---------|
| CHKD. | 1.H | DATE 8-25 TY PAGE | A- 5 | OF 1-3  |
|       | L.  | NBUR              |      |         |

|                  | LORDING D.           | 07A .                                                 | REF.  |
|------------------|----------------------|-------------------------------------------------------|-------|
| 3 CASE WEIGH     | 17 = 100 K           |                                                       | Es.Z  |
| Crist CRA        | PUD AREA & 70        | "×70" = 4900 in2                                      | PEF 2 |
| CASK PRESSUR     | = LOAD = 100<br>4900 | $k = 0.0204 k/m^2$                                    |       |
| D CASE DEOP.     | REACTION LOAD =      | 7174.3 KIPS                                           | EF.Z  |
| CNSK DRON ,      | Reessure LORD = 7    | 174.3 K = 1.464 K/in 2                                |       |
| PODE WALL PR     | Essure LOADS         |                                                       | -     |
| O HYDROSTRITIC   | PRESSURE LOND RE     | SULTIN'S FROM THE                                     |       |
| POSL WATER 15    | EQUAL TO W           | h WHERE W= 62.4ª                                      | 47    |
| TIMES THE HEIG   | NT FROM THE          | WATER SURFACE.                                        | ET ]  |
| The Rule. Pres.  | SURE LOND O          | J QUAD DIDTES OT                                      |       |
| ERCH ELEVATION   | is TAKEN             | as the up traits                                      |       |
| The herbur TO    | The mip-he           | SIGHT AF THE                                          |       |
| QUED- MATES.     |                      |                                                       |       |
| THENEFORS: Hypro | osimite Pressure     | $= \omega h = \frac{62.4}{144} \times h(\text{FEET})$ |       |
| QUAD ARTE        | RUS HEISHT TO WATER  | PRESSURA LOAD                                         |       |
| No               | GURFACE (FE.)        | ( ×/ii) 2)                                            |       |
| 17 - 32          | 6.0'+ 5.0/= 8.5'     | 0.0013                                                |       |
| 33-49            | 11.0 + 5.0/2 = 13.5' | 0.00585                                               |       |
| 48-64            | 16.0+ 50/2= 18.5'    | 0.00802                                               |       |
| 65-80            | 21.0 + 2/2 = 22.0'   | 0.00953~                                              |       |
| 87 - 76          | 23.0+ 4/2 = 25.0'    | 0.0108 4                                              |       |

27.0+ 4/2 = 29.0'

31.0 + 42 = 32.0'

33.0 + 4/2 = 35.0'

37.0 + 5/2 = 39.5'

0.01257'

0.01387 "

0.01517 ;

NES 105 (2/74)

97 - 112

113 - 128

129 - 144

145 - 160

BY JR DATE 8/24/73 PROJ. 5101 TASK 237 CHKD. 1. H DATE 8-26-78 PAGE A-6 OF 4-9 LACBUSP

DATA LODDING REF. FUEL POR SEISMIC ANNLYSIS A SEISMIC ANALYSIS OF THE SPENT FUEL POOL INCLUDING & FULL COMPLIMENT OF FUEL STORAGE ASSEMBLIES is completed BY CALCULATING THE MINIMUM WALL FREQUENCY AND DETERMING A LATERAL ALLELERATION FROM The RESPONSE SPECTRA AT THAT ELEVATION. This LATERAL & is THEN APPLIED TO THE DEND WEIGHT AND LIVE LOADS AND COMBINED SEISMIC BRACING LODDS CALCULATED WITH THE IN REF. 1, TO DETERMINE THE SERSMIC STRESSES IN THE POOL WALLS AND FLOOR GENERATED BY AN ENRIHOUNKE. MINIMUM FREQUENKY OF WALL - ASSUMING A 12" DEEP STRIP OF WALL 11' LONG FIXED AT BOTH ENDS, AND LATERALLY LOADED. BY A PORTION OF WATER 11' LONG, 11' WIDE AND 1' DEEP:  $W = \omega l = \frac{62.4}{1000} k_{T3} \times 11 \times 11 \times 1$ 144 × 1.75 × 11 = 10.332 × l= 11.0' (132.0") MOMENT OF INERTIA OF 1.75' THICK SCAB IC = 1(12):21.0) = 9261.012 LATEROL FREQUENLY = 3.55/ 384 EI REF. 19  $3.55 \sqrt{(384)(9261.0)(3000)}_{(10.332)(11\times12)^3} = 75.22 \text{ CPS}$ 

BY \_\_\_\_\_ DATE 407100 PROJ. 2101 TASK 601 CHKD. \_\_\_\_\_ DATE S-26.78 PAGE 19-7 OF 1-0 LACBUR

| LOADING DATA                                                                                                      | REF.   |
|-------------------------------------------------------------------------------------------------------------------|--------|
| FROM ALCERATIONS SPECTER :                                                                                        | REF 5  |
| . Accelerations Values G35E = 0.45 ; G35E = 0.33                                                                  |        |
| 3) The EQUIVALENT STATIC PRESSURE LOAD :                                                                          |        |
| $P_{RESSURE} \ LORD \ (k \ 55E) = \frac{62.4}{1000} \times \frac{(11.0)(1.0)(1.0)(0.33)}{144} = 0.001573 \ M/m^2$ |        |
| PRESSURE LOND (35E) = 0.001573 × 0.45 = 0.002145 K/102                                                            |        |
| 3 Seionic BRACING LATERAL PRESSURE LONDS:                                                                         |        |
| The seismic BRACING is LOCATED AT 3 ELEVATION                                                                     | 5.     |
| (SEE NES SPENT FUEL RALK DRAWINGS")                                                                               | REF. 4 |
| THE TOTAL LATERAL WALL LOADS AT EACH ELEVATION                                                                    |        |
| is converted into A PRESSURE LOND AND APPLIED                                                                     |        |
| RT THE NPPROPRIATE ELEVATIONS IN THE POOL                                                                         |        |
| MODEL ".                                                                                                          |        |
| A. UPPER GRID - MAX. WALL LOAD (SSE) = 46.8 K                                                                     | LEF. 1 |
| 655 PRESSURE LOND = $\frac{46.8 \text{ K}}{(11)(2.0)(144)} = 0.0148 \text{ K}_{1.02}$                             |        |
|                                                                                                                   |        |
| $1/255E$ PRESSURE LOND = $34.3^{K}$ = 0.0108 K/in <sup>2</sup><br>(1)(2.0)(44)                                    |        |
| NOTE : PRESSURE LOND is APPLIED AT UMPER GRID                                                                     |        |
| SEISMIC BENCING ELEVATION COINCIDING WITH                                                                         |        |
| QUED-PLATES 65-80 (Pol-3,7-6) AND THEREFORE THE PRESSURE                                                          |        |
| LOAD is DISTRIBUTED DUER THE 2' DEPITH (PG-7-4).                                                                  |        |
| B. JUNER MEDINIE GRID - MAX. WALL LOND (558) = 93.5 K                                                             |        |
| $(125)=68.5^{K}$                                                                                                  |        |
| 555 REESSINE LOND = 93.5 = 0.0295 K1.7                                                                            |        |

C

ŝ,

| BY JR      | DATE 8/24/78 PROJ. | 5101 | TASK_237 |
|------------|--------------------|------|----------|
| СНКО. 1. Н | DATE 8-26.78 PAGE  | A-9  | OF 4-4   |
|            | LACBUR             |      |          |

| LODDING DATA.                                                                          | REF. |
|----------------------------------------------------------------------------------------|------|
| 1/2 55E PRESSURE LOND = 68.5 = 0.0216 K/in2                                            |      |
| C. LOWER GRID MAX. WALL LOAD (SSE) = 52.6"                                             |      |
| (1/2 55E) = 38.6K                                                                      |      |
| 55E PRESSURE LOND = 52.6K = 0.00664 K/in 2<br>(11.0×5.0)144 = 0.00664 K/in 2           |      |
| 1/2 55E PRESSURE LOND = 38.6<br>(11.0×(5.0) 144 = 0.00487 K/in2                        |      |
| COMPRESON OF Seismic LONDINGS FOR 1/2 SSE AND SSE EVENTS                               |      |
| RATIO OF BEISMIC INERTIN LONDING OF THE CONCRETE                                       |      |
| WALLS, AND POOL WATER MASS FOR 1/2 SSE AND                                             |      |
| DBE (PG. D-7) = 0.001573 = 0.733  or  73.3%                                            |      |
| RATIO OF THE MAX. Seismic REACTION LOOPS OF                                            |      |
| THE FUEL STORAGE RACKS FOR 1/255E AND SSE EVENT:                                       |      |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                   |      |
| INTERMEDIATE GRID $(P_{4}, A^{-7}) = \frac{68.5}{93.5} = 0.733 \text{ OR } 73.3.7_{0}$ |      |
| $Lower Grid (Po. 1-7) = \frac{38.6}{52.6} = 0.734 \text{ or } 73.4.70$                 |      |
| Since The RATTO OF THE 1/2 SSE TO SSE SETSMIC                                          |      |
| LOADS is RAPPEARIMATELY 73% , THE LOAD COMBINATION                                     | s    |
| INVOLVING THE 1/2 SSE EVENT WIll BE MORE                                               |      |
| SEVERE.                                                                                |      |

CHKO. 1. H DATE 9-12-72 PAGE B-1 OF B-3 LACBUR FUEL STORAGE Proof

| APPENDIX B                                             | REF.   |
|--------------------------------------------------------|--------|
| SPENT FUEL POOL FLOOR AND WHILL ALLOWARLE              |        |
| ULTIMATE MOMENT CRASCITY                               |        |
| The STRUCTURE RECEPTENCE CIRERIN FOR                   |        |
| THE LACBUR SPENT FUC: STORAGE (SECTION 6 OF            |        |
| REPART) is SPECIFICA IN USARC STORMARD                 |        |
| REVIEW PLAN, SECTION 3.8.4 (REF. 6).                   |        |
| FROM (REF# 6), FOR THE FACTORED                        |        |
| LORD COMBINETIONS, RS SPECIFIED IN DEPENDIX A.         |        |
| THE DLOWNBLE LIMITS (SALL, COMPRESSION, TENSILE) WHICH |        |
| CONSTITUTE THE DECEPTANCE CITERIR ARE THE ULTIMATE     |        |
| SECTION STREAMSTHE REQUIRCE TO RESIST DESIGN LONDS     |        |
| DAVIS MONDETHTS BASED ON THE ULTIMARE STRENGTH         |        |
| Desison methods or DET 318-71 (REF. 10).               | 100    |
| FROM REF #10, The RELOWARCE SHENE STRESS               | 1      |
| is 4 3 / 1 ( [ WHERE: \$ - 0.95 \$ 1 = 3500 psi]       | Rer #1 |
| or 201. 1. Mie pussible compression smess              |        |
| is assigned L'anere: \$ 0.7 \$ fe= 3500 FS: 7          | RET TA |
| and (0,85) (0.7) /3500) = 2082.5 PSC. The AllowABLE    |        |
| TENSILE STRESSES ( ULTIMATE SMENGAN DESIGNS)           |        |
| NRE RESPRESENTED BY THE ALLOUIDBLE UISTA               | 0 25   |
| MOMENT CAPACITY OF VARIOUS CONCRETE SECTIONS           | 1      |
| ( A FUNCTION OF THE STEEL AREA AND SLAP                |        |
| THICFNESS) AND COMPARED WITH THE DESIGN                |        |
| moments obtained in the " Spent FUR                    |        |
| Conner Par Para "                                      |        |

BY \_\_\_\_\_ DATE <u>8/21/79</u> PROJ. <u>5101</u> TASK <u>237</u> CHKD. <u>1. H</u> DATE <u>9-12-78</u> PAGE <u>B-2</u> OF <u>B-9</u> LACBUR

| CONCRETE WALL ULTIMATE MOMENT CAPACITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | REF.    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| ENST WALL - EL. 680'-0.0" to 701'-3.0"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| Pour<br>side<br>side<br>*6 @ 12"<br>CONSTRUCTED OF REINFORCED<br>*6 @ 12"<br>*6 @ 12"<br>CONSTRUCTED OF REINFORCED<br>CONSTRUCTED OF REINFORCED<br>CONSTRUCTED OF REINFORCED<br>CONSTRUCTED OF REINFORCED<br>CONSTRUCTED OF REINFORCED<br>CONSTRUCTED OF REINFORCED<br>CONSTRUCTED OF REINFORCED<br>SIDE OF THE WALL AND SIZE                                                                                                                                                                                                 | REF.3   |
| $\frac{3}{3} \underbrace{(Typ)} + 3 \underbrace{(9'')} = on  The FRA SIDE.$ $\frac{3}{3} \underbrace{(Typ)} = The VERTICAL REINFORCEMENT MICLUDES$ $SIZE + 6 \underbrace{(17'')} = on  EOTH SIDES  on  The WAL.$ $\frac{ULTIMNTE}{MOMENT} \underbrace{(NPACITY)} (PER (INERR FOOD OF (WALL))$ $M_{U} (NBOUT X2 AXIS)  TUISHE REINFORCEMENT ROTIO P_{E} = \frac{As}{bd}$ $\frac{12'' + 46 \underbrace{(12'')}}{2} = on  AA I$                                                                                                  | REF. 12 |
| $A_{s} = 0.44 m^{2}$ $B_{s} = 0.001$ $B_{s} = 0.000$ | )       |
| ENSURES STEEL VIELDING CONTROLS.<br>ULTIMATE MOMENT (VERTICAL BENFOREMONT) $M_{ULT_{NL}} = A_s f_y d_t$<br>$M_{ULT_{NL}} = (0.44)(40 \text{ ksc})/(\frac{30}{12}) = 44^{\circ} \text{ K-FT}$<br>OL 528  K-m / Ft of wall (Since TEXELE STEEL EQUALS COMPLETESSION STEEL, NO DOWITIONAL MOMENT CAPPOLITY FROM CONCRETE)                                                                                                                                                                                                        | PEF.)   |

BY \_\_\_\_\_ DATE <u>B/22/78</u> PROJ. <u>5101</u> TASK <u>237</u> CHKD. <u>1. H</u> DATE <u>9-R. R</u> PAGE <u>B-3</u> OF <u>B-8</u> LACBUR

| CONCRETE WALL ULTIMATE MOMENT CAPACITY                                                                                                    | REF  |
|-------------------------------------------------------------------------------------------------------------------------------------------|------|
| MULT ( ABOUT X3 AXIS) TENSILE REINFORCEMENT RATIO                                                                                         |      |
| $\frac{36.0''}{bd} = \frac{A_5}{bd} = \frac{(1.33)}{(36)(12)} = 0.0031 \pm 0.0031$                                                        |      |
| 12.0" STEEL VIELDING -                                                                                                                    |      |
| The minimum ULTIMOTE                                                                                                                      |      |
| As= 1.33in As= 1.05 in 2 MOMENT COPALITY OF THE                                                                                           |      |
| WALL 13 DETERMINED                                                                                                                        |      |
| VIELD IN TENSION                                                                                                                          |      |
|                                                                                                                                           | 1    |
| $M_{uer} \left( \frac{HorizonTal}{EinForcement} \right) = A_S Fy d_t = \left( \frac{1.05}{40.0} \right) \frac{30}{12} = 105 \text{ k-FT}$ |      |
| OR 1260 K-IN/FE OF WALL                                                                                                                   |      |
| <u>EX21 GINEC - EL. 637 3.625 70 680.0</u>                                                                                                |      |
| 57.0" THE POOL EAST WALL IS 57.0"                                                                                                         |      |
| Thick FROM AN ELEY. 680-0.0"                                                                                                              | REF. |
| "" "GOIZ" DOWN TO FOOL FLOOR.                                                                                                             |      |
| lipe i used as is found at The                                                                                                            |      |
| ThinNER UPPETE SECTION.                                                                                                                   |      |
| 6012                                                                                                                                      |      |
| () ( DEDUT XI DEDIT COPACITY                                                                                                              | 1.   |
|                                                                                                                                           |      |
| $\frac{EEVATION}{War Cross-}$ $P = As = 0.44 = 0.0006 g$ $\frac{War Cross-}{(12 \sqrt{57})} = 0.0006 g$                                   |      |
| - 12" + #6012" MULT (PERTICAL) = (0.44)40)(510)                                                                                           |      |
| $x_2 = 74.8 k - Ft$                                                                                                                       |      |
|                                                                                                                                           |      |
| 51.0" \$ 57.0" LAXI. OR 807.6 K-in/                                                                                                       | 1    |
| 51.0" ST.O" LAXI. OR BOT.6 K-in/FE OF WALL                                                                                                |      |

BY \_\_\_\_\_\_ DATE <u>B/2/19</u> PROJ. <u>5:01</u> TASK <u>237</u> CHKD. <u>1. H</u> DATE <u>9-12-78</u> PAGE <u>B-4</u> OF <u>B-3</u> LACBUR

CONCRETE WALL ULTIMATE MOMENT CAPACITY REF. X3 AXis) The min. ULT. MOMENT MULT ( DBOUT 57.0" A ST. OF CAPACITY RESULTS WHEN MIN. 12" RREA OF RETAFORCEMENT IS IN TENSION. L #30 9" #909" 1 × 3 As= 1.05 in2 As= 1.3312 P= 1.05 = 0.00153 ok xZ Mult (HORIZONTOR) = AS Fy de = (1.05)(40) 51.0 = 178.5 K-FT D.C. 2142 K-IN/FE OF WALL WEST WALL ULTIMATE MOMENT CAPACITY REFS The DIMENSIONS AND REINFORCEMENT ARE Similar AT ALL ELEVATIONS TO THOSE OF THE EAST WALL. THEREFORE THE ULTIMATE MOMENT COPPCITIES OF THE SECTIONS WILL BE SimilAR TO THE ENST WALL ULTIMATE MOMENT CAPACITES NORTH WALL ULTIMATE MOMENT CAPACITY EL. 659-5.625 TO REF.3 EL. 678'-5" AND 680'-5" TO 701-3" 1×3 21.0" L+ XI The NORTH WALL FROM ELEV. 7809" - #909" 659-5.625"TO 678-5" AND 630-5" TO TO1-3" POIL is 21.0" THICK BEING LATERALLY Side REINFORCED WITH # 90 9' plant #6012' "2012" POOL SIDE KNO # B @ 3" ALONG FOR SIDE, THE WALL is ALSO REINFORCED VERTICALLY WITH #6 @ 12. 1-120-1 ELEVATION MULT (ABOUT X2 AXis) - #6012" 21.0  $P_{1} = \frac{A_{5}}{bd} = \frac{0.44}{(12)(21.0)} = 0.00175 ok$ 0 000 As=0.44 in 0000 =60:2" A. =0 44

BY \_\_\_\_\_ DATE 9/22/73 PROJ. 5/01 TASK 237 CHKD. \_\_\_\_\_ DATE 9-12-78. PAGE \_\_\_\_\_ B-5 OF \_\_\_\_\_ LACBUR

| CONCRETE WALL ULTIMATE MOMENT CAPACITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | REF.      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| $     M_{ULT} \left( \begin{array}{c} V \in \mathbb{Z}T, CAL \ \mathbb{E} \in W \in \mathbb{Z}, \\ \mathbb{Z} \in \mathbb{Z} \\ M_{ULT} \end{array} \right) = A_{S}  F_{G}d = (0, 44)(40) \left( \frac{21 - (2)3}{12} \right) = 22^{\vee} k \cdot F_{G} \\ 0R  264^{\vee} k \cdot in / F_{E} or u \\ 0R  264^{\vee} k \cdot in / F_{E} or u \\ M_{ULT}  (ABOUT  X3  AXIS) \\ min. \qquad M_{ULT}  will  Result $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | re        |
| WHEN THE SMALLER REINFORCEMENT is LOCATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ł         |
| $\frac{21.0^{n}}{10000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>ie</u> |
| 12.0" AS= 1.33in <sup>2</sup> Mult (HORIZ. REWF.)=AS Fy d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| $= (1.05)(40, 1/5) = 52.5 \text{ k-FT}$ $= (1.05)(40, 1/5) = 52.5 \text{ k-FT}$ $A_{5} = 1.05 \text{ m}^{2}$ $OR  630 \text{ k-m}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
| AT THE OF WALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| NORTH WALL OLTIMATE MOMENT CARGETY EL. 678-5 TO 680-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |
| The NORTH WALL IS CONSTRUCTED OF A 33.5"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RET.3     |
| UPPER PORTION,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| FOR THE ULTIMATE MOMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |
| "BOD" - DBOUT THE XZ AXIS, TAKE A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
| $\begin{array}{c} x_{3} \\ \vdots \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
| $H_{C12}^{*}$ XI $H_{C12}^{*}$ $P = As = 0.44$ T $P = As = 0.44$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| $= 0.00105 \ 0! \qquad 29.5" \qquad 335"$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| The strick of the state of the |           |
| (ReiNFORCEMENT) = NSTY d = (0.44)(40)(29.5)<br>$A_{S} = 0.44$ in <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
| = 43.3  k-Ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
| OR 519.6 K-in/ Ft of way                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1         |

BY \_\_\_\_ DATE 8/22/13 PROJ 5101 TASK 237 CHKD. 1. H DATE 9-12-76 PAGE \_\_\_\_\_\_ OF \_\_\_\_\_ B-B /ACRUR

CONCRETE WALL ULTIMATE MOMENT CAPACITY REF. ULTIMATE MOMENT ABOUT X3 AXIS MIN. MULT RESULTS WHEN 29.5 #800" \*909" A3=1.05 m2 The Smaller STEEL A3 = 1.33 in 2 12 11 NREA is IN TENSION. 33.5\* R = 1.05(12)(33.5) = 0.0026 0k Mur (HOEIZONTEL) = Astyd = (1.05 (40.0)(29.5) = 103.25 K-FT OR 1239. OZ-in/FE OF WALL NORTH WALL ULTIMATE MOMENT CAPACITY 659-5.625 TO TUI-3" 34.0" NOTE: THIS SECTION is Similar REF 3 809 "909" IN SIZE AND REINFORCEMENT TO THE 36" THICK SLAB OF THE EAST WALL. THEREFORE, \*6012" The MULT) will be THE SAME. MULT (VERTICAL RETNEORCE MENT) = 528 K-IN (P.J.2) ELEVATION MULT (HORIZ. REINFORCEMENT) = 1260 K-10/FE Sour WRLL ULTIMATE MOMENT CAPACITY EL 659-672-0" The LOWER SECTION OF THE SOUTH WALL (EL. 659'-5.625" TO 672 - 0") HAS A SIMILAR THICKNESS AND AS THE EAST AND WEST WALLS. REINFORCEMENT THERE FORE : MULT ( VERTICOL REINFORCEMENT) = 897,6 K-in/FR (P23-3) MULT ( MORIZONTAL RETNFORCE MENT) = 2142 K-in/ ( Ps. 8-4) NES 105 (2/74)

BY \_\_\_\_\_ DATE <u>8/22/79</u> PROJ. <u>5/01</u> TASK <u>237</u> CHKD. <u>1. H</u> DATE <u>9-12-78</u> PAGE <u>B-7</u> OF <u>B-3</u> LACBUR

CONCRETE Wale ULTIMATE Moment CALCULATIONS REF. South WALL ULTIMATE MOMENT CAPACITY - 672 TO 701-3" 18.0" THE SOUTH WALL FROM ELEY. 672 REF.3 #6012" TO 701-3" is 18.0" THICK AND - \$2012" ×3 SUPPORTED AT MID - POINT BY INTERSECTING WALL. THE SOUTH Paul SIDE \*809" WALL is LATERALLY RETNFORCED with #909' ON POOL SIDE AND #809" #10g". ON FAR SIDE. The WALL is ALSO ELEVATION VERTICALLY REINFORCED WITH #6 @ 12". MULT (X2 AXIS) (VERTICAL REINFORCEMENT) MULT ( VERTICAL REINFORCEMENT) = AS Fyd 12.0 " = (0.44)(40)(18-(2X3)) = 17.6 k-FTOR ZILZ K-iN/ LINEOR Ft. OF WALL 18.0" 12.0" #6 (012" (TYP) As = 0.44 in 2 MULT (X3 AXIS - HORIZONSTAL BEINFORCE MENT) 18.0 Using Asmin = 1.05 in = #909" Dona - #30 9" Muir (HORIZ. REINFORCEMENT) 12" As=1.05 in 2 = As Fy d 00 = (1.05×40)(12) = 42.0 K-Fr 12.0\* OR 504 K-in/FT. OF WALL.

BY \_\_\_\_\_ DATE 9/13/23 PROJ. 5101 TASK 237 CHKD. 1. H DATE 9-13-78 PAGE 8-9 OF 8-2 LACBWR

POOL FLOOR LILTIMATE MOMENT CAPACITY -REF. The SPENT FUEL POOL FLOOR (EL. 654-9" The (59-5") CONSISTS OF A 56" REINFORCED CONCRETE SLAB. SUPPORTED ALONG IT CENTERLINE IN THE E-W DIRECTION AND ALONG IT EDGES in The N-S DIRECTION. A TYPICAL I Ft. CROSS-SECTION 13 - SHOWN BELOW. 12" MULT = As Fyd REF.3 Note: THIS CROSS-SECTION is TYPICAL IN BOTH DIRECTIONS. 100000 50.0" 5.0 Mun = (0.6)(40) 50 = 100 K-FC OR 1700 K-IN/FE. OF FLOOR A 0000 10000 ELEVATION

BY \_\_\_\_\_ DATE 7/14/73 PROJ. 5101 TASK 731. CHKD. \_\_\_\_ DATE 9-19-77 PAGE \_\_\_\_ OF C-9 LACBOOR

APPENDIX.C.

- EQUINALENT THERMAL MOMENT CALCULATIONS-REF. The TEMPERNTURS DIFFERENINL NEROSS POOL THE FLOOR WALL 3 NID RESULTING FRONT SPENT NESETIBLY STORAGE FUEL 101 The Sparte POOL INTRODUCES THETIMAL LONDS 11 The STRUCTURE. ThE STENDY-SMITE TEMPERATURE GRADIEIT DELOSS TTIE WALLS ARE DETERMINED Assumials BULK Por WAIER TEMPERATURE OF 150 F DND 10 DIR TEMPERATURE BEHIND THE OF 70°F. WALL NN PRIALYSIS 05 THE TEMPERNIURE GRADIEIT 10) THE FUEL. POOL CONCRETE WALL (PG.C-9,C-9 FRIKLY 5+10623 UNIFORM DECRENSE 113 TENNERA RIRE INNER FROM 77.1E 10 OUTER FRCES OF THE POOL WNELS NIS FLOOR. THE THERMAL maneruts PRODUCED FROM THIS Linton TEMPERATURE GRADIENT DRE & RESULT OF:

> The inner fibers being hotter tend to expand more than the outer fibers, so if the segment is cut loose from the adjacent portions of the wall, Point A in Fig. 38 will move to A', B will move to B', and section



(REF #17)

AB, which represents the stressless condition due to a uniform temperature change throughout, will move to a new position A'B'. Actually the movements from A'to A' and B to B' are prevented since the circle must remain a circle, and stresses will be created that are proportional to the horizontal distances between ABand A'B'.

.0

BY \_\_\_\_\_ DATE \_\_\_\_\_ DATE \_\_\_\_\_ TASK \_\_\_\_\_ TASK \_\_\_\_\_ CHKD. \_\_\_\_\_ DATE \_\_\_\_\_ PAGE \_\_\_\_ OF \_\_\_\_ LACBWR

| EQUIVALENT THERMAL MOMENT CALCULATIONS                                                                                                       | REF.   |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------|
|                                                                                                                                              |        |
| It is clear that $AA' = BB' =$ movement due to a<br>temperature change of $\frac{1}{2}T$ or when e is the coefficient<br>of expansion, that  |        |
| $AA' = BB' = \frac{1}{2}T \times e$ per unit length of arc,<br>and                                                                           |        |
| $\theta = \frac{AA'}{\frac{1}{2}t} = \frac{T \times t}{t} \qquad (\text{Ref. } \#_{17})$                                                     |        |
| In a homogeneous section, the moment $M$ re-<br>quired to produce an angle change $\theta$ in an element of<br>unit length may be written as |        |
| $M_{\perp} = El\theta$                                                                                                                       |        |
| Eliminating 0 gives                                                                                                                          | 1      |
| $M = \frac{EI \times T \times \epsilon}{\epsilon}$                                                                                           |        |
| THE THEREMAL GRADIENT WITHODUCES TENSILE STRESSES                                                                                            |        |
| ON THE COLDER SIDE OF THE WALL PRODUCING                                                                                                     |        |
| W. RUME CRACKING IN THE EXTROME FIBERS, THE POOL WALLS                                                                                       |        |
| WO FLOOR ARE SURTED TO THIS HAMPLINE CRACKING AND DEREFORD                                                                                   |        |
| TE MANDENTS OF INCRIME SE THESE SECTIONS WILL BE R                                                                                           |        |
| FUNCTION OF A SECTION WITH THESE HATRLING CRACKS. FROM                                                                                       | 100    |
| REF# 18 " DESIGN OF STRUCTURES FOR Missice                                                                                                   | LEF TO |
| IMPACT", A COOFFICIENT FOR MOMERIT OF INERTIA                                                                                                |        |
| OF CRACKED SECTIONS is OBTRINED FOR EACH                                                                                                     |        |
| WALL THICKNESS, AFFLIED TO THE FULL SECTION                                                                                                  |        |
| marchill or Theat's an a                                                                                                                     | 1      |

SECTION MOMENT OF INSTRICT, This MODIFIED SECTION I is THEN USED in COLOURITIES THE THERMON MOMENTS DEVELOPED DUR TO THE TENNEPOTURE GREDENT.

| EQUIVALENT THERMAL MONTON CALCULATIONS                                                                                                                             | REF.  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| EAST WALL - THERMAN MOMENT Car wind EL. 690'-0" TO EL. 701                                                                                                         | 3*    |
| FROM EL. LOO'-O' TO TUI'-3", The EXET WALL                                                                                                                         |       |
| 15 36" THICE. The Hor contral RENFORCEMENT                                                                                                                         |       |
| ON THE POOL SIDE IS # 9 @ 9" (AS=1.33 in ) AND ON                                                                                                                  |       |
| The OPPOSITE SIDE #BOOT (13=1.05 in ) (FIGURE 3.2 OF<br>REPORT).                                                                                                   |       |
| CRACKED SECTION MOMENT OF TWARTIN ( RECURPTION                                                                                                                     |       |
| FROM " DESIGN OF STRUCTURES FOR TOPOLT" (PETHE)                                                                                                                    | int.  |
| THE CRACKED SECTION MOMENT OF INSERTIA (I)                                                                                                                         | teris |
| is: $I_{CR} = Fbd^3$                                                                                                                                               |       |
| WHERE: b= 12 ins (177 SECTION OF WALL)<br>d= DISTRINCE FROM EXTREME COMPRESSIONS<br>FIRER TO COT TENSILE REINFORCEMENT<br>F = COEFFICIENT FOR T OF CRACKED SECTION |       |
| $P(ROTIO OF TENSILE REINFORCEMENT) = \frac{A_0}{bl} = \frac{1.05}{(12)36} = 0.00243$                                                                               |       |
| $P'(RATIO OF COMPRESSIVE REINFORCEMENT) = \frac{As}{bd} = \frac{1.33}{(12)36} = 0.00303$                                                                           |       |
| $n(moduce Rain) = \frac{Es}{Ec} = \frac{29 \times 10^6}{3.6 \times 10^6} \approx 8.0^{\vee}$                                                                       |       |
| WHERE: $E_s = 29 \times 10^6 PSC$                                                                                                                                  |       |
| Ec = 33 w <sup>3/2</sup> /fc = (35)/150) 3/2 / 3500 = 3.6×10 <sup>6</sup> PS                                                                                       | REFE  |
| 1° = 3500 psc                                                                                                                                                      | 1-    |
| $\omega = 150 PCF$                                                                                                                                                 |       |
| RATIO PN = (0.00243)(8.0) = 0.0194                                                                                                                                 |       |
| FROM CHART P6 4-9 (PEF # 18) F= 0.016                                                                                                                              |       |
| $I_{CR} = Fbd^3 = (0.016)(12)(36-3)^3 = 6900^{11},4$                                                                                                               |       |
| 이 가지 않는 것 같은 것 같                                                                                                                     |       |

BY \_\_\_\_\_ DATE 7/14/73 PROJ. 5101 TASK 231 CHKD. \_\_\_\_\_ DATE 7/19-78 PAGE \_\_\_\_ OF \_\_\_\_ LACBUR

$$\frac{EDUPALENT}{DEPUTENCE MOMENT} CACULATIONS} REF.$$

$$Theremul Induces Advances = EI_{CR} \times \Delta T \times d_{E}$$

$$Theremul Induces Advances = EI_{CR} \times \Delta T \times d_{E}$$

$$Theremul Induces Advances = EI_{CR} \times \Delta T \times d_{E}$$

$$Theremul Induces Advances = EI_{CR} \times \Delta T \times d_{E}$$

$$Ter = 6300 \text{ ind}$$

$$T = 750 \text{ GeV} = 70^{1}\text{ F} = 80^{0}\text{ F} \times d_{E}$$

$$E = 0.001 \text{ Theremule accounts used on the there is there is the there$$

NUCLEAR ENERGY SERVICES INC. NES DIVISION

BY \_\_\_\_\_ DATE \_\_\_\_ PROJ \_\_\_\_ TASK \_\_\_\_ CHKD. \_\_\_\_ H DATE 9-KA-78 PAGE \_\_\_\_ OF \_\_\_\_ LACBUR

- EQUIVALENT THERMAL MOMENT CALCULATIONS-REF. WEST WALL THERMAL MOMENT CALCULATIONS The TEMPENNURE CHNNGE, WALL THICKNESS RID REINFORCEMENT REE SIMILAR TO THOSE OF THE EAST WALL. THERE FORE, THE THERMAL moment will be the same as in the ENST WALL. NORTH WALL THERMAL MOMENTS- EL 659'-5.625" TO 701-3" A PORTION OF THE NORTH WALL FROM EL. 659' - 5.625" TO 701' - 3" is 21" THICK AND is HOPPED VIELLY RETIFORCED WITH # 9 (0 9" ON POOL SIDE KIND # 82 9" ON THE OPPOSITE SIDE. (SEE FIGURE 3.1) The TENSILE REINFORCEME - KNTIO (P) = 1.05 = 0.00417 ASSUMING A IFT SECTION OF WALL. F ( CONFRICTION OF CENCRED SECTIONS) FOR PARATIO = (.00417) S.O) = 0.033' is 0.025 ( Ps. 4-8 or ReFTS) CRACKED MOMENT OF INFERTIA ICR = (0.025)(12)(21.0-3) = 1741.51 ThERMAL MOMENT = E Ice × BT × de LEFTIT M= (3.6×106) (1749.5) (80) (6.0×10-6) = 144.0 K-in (21.0)(1000) North WALL ThERMAL MOMENTS- EL. 678'-5" TO EL.680'-5" The NORTH WALL FROM EL. 679'-5" TO 630'-5" is composed of A 33.5" THICK WALL HORIZONTHELY REINFORCED WITH # 9 09" ON PORC. SIDE AND "8 @ 9" ON THE OPPOSITE SIDE. (SET Freuze 3.1)

BY \_\_\_\_\_ DATE 9/14/73 PROJ. 5101 TASK 237 CHKD. \_\_\_\_\_ DATE 9-14-78 PAGE C-6 OF C-4 LACBWR

EQUIVALENT THERMAL MOMENT CALCULATIONS REF. THE TENSILE REINFORCEMENT RATIO P = AS = 1.05 = 0.0026 The RATIO PN = (0.0026)(9) = 0.02091 FROM THE "COEFFICIENT FOR MOMENT OF INERTIA OF CRACKED SECTIONS" (RG. 4-8 OF REF# 18) F = . 0016 " Ice ( CRACKED SECTION I) = (0.01 6)(12)(33.5-3) = 5447.504 Therma Moment = EIce × DT Xde REFEM  $M_{t} = \frac{3.6 \times 10^{6} \times (5447.5) \times 90 \times 6 \times 10^{-6}}{(33.5) (1000)} = 280.1 \text{ K-in}$ NOTE: THE PORTION OF THE NORTH WAL WHICH is 36" THICK , HAS SIMILOR REINFORCEMENT AS THE EAST WALL (36" THICK - PG. 3 ). THEREFORE THEREMOL MOMENT Will BE Similar ROD EQUAL TO 331.2 K-12. SOUTH WALL THERMAL MOMENTS - EL 672' TO TOI'-3" THE SOUTH WALL FROM EG. 672 TO TO1'-3" is 18.0" THICK AND REINFORCED ON THE POOL SIDE WITH #9 BARS @ 9" AND ON THE OPPOSITE SIDE WITH # 8 BRES @ 9". THE TENSIE REINFORCEMENT RATIO  $p = \frac{As}{bd} = \frac{1.05}{(12)(18)} = 0.00486$ FROM REFE 18, THE COFFFICIENT FOR ICR is OBTOINED NS F= 0.0285 (FOR pn= (.00486)(8) = 0.039) Therefores: Ice = Fbd 3 = (0.0285)(12)(18-3)= 1154.3 , 4

CHKD. 1. H DATE 7-14-78 PAGE C-7 OF C-9

EQUIVALENT THERMAL MANIST CALCULATIONS REF. The THERMAL MOMENT = EICH XAT X dt Per Fi Ma = (3.6x106)(1154.3)(80)(6.0x10-6) = 110:3 K-in (18) (1000) Sound WALL THERMAL MOMENT EL. 659-5.625" TO 672-0" THE LOWER SETTIONS (51" THICK) HAS Similar DIMENSIONS AND REINFORCEMENT AS EAST WALL AND The DEFORE THERMAL MOMENT Will BE Similar. ML = 572.8 K-11 POOL FLOOR THERMAN MORNERST THE POOL FLOOR is COMPOSED OF A 56" THICK SLAB RETAILORCES WITH # 7 BAR @ 12" (AS= 0.6 112) TENSILE STEEL RETINFORCEMENT RATIO P= 0.6 = 0.00089 RATIO PN = (0.00089)(8.0) = .0071 THE CRACKED SECTION (Icr) = Fbd3, WHERE F is FUNCTION OF RATIO PN. FROM Po. 4-8 OF REF# 18, Fr 0.01 KND: REF TS Icr = (0.01) (12) (56-3) = 17865.2 in 4 THERMAL MOMENT = EILOXATX d.t. Per #17  $m_{t} = (3.6 \times 10^{6})(17865.2)(80)(6.0 \times 10^{-6}) = 551.3 \text{ E-in}$ (56) (000)



TEMPERATURE GRADIENT (STEADY STATE) IN FUEL Pool CRETE WALL

ASSUMPTIONS

1. BULK Prod WATER TEMP. = 150°F 2. BOUNDARY LAYER TEMP. DROP NEGLIGIELE 3. AIR TEMP. = 70°F BEAND WALL 4. AIR BOUNDARY LAYER TEMP. DROP CONSERVATIVELY IGNORED. 5. CONCRETE THERMAL CONDUCTIVITY (K) CONSTINUT, RESULTING IN LINEAR TEMP. DISTRIBUTION 5

AT BETWEEN CONCRETE LOCATION X AND BULK WATER TEMP. of 150°F ON PAGE 2/2 IN TABLE 1.

NUCLEAR ENERGY SERVICES INC. CHKD. BY 1.11 DATE 2153 PROJ 5101 TASK 237 NES DIVISION LACEWIR Fiel Stary Part

TABLE 1

AT AS A FUNCTION OF WALL LUCATION (S) AND BULK POOL TENIP. OF 150°F

|   |        | 8 = K/4/1 T |       |                   |      |
|---|--------|-------------|-------|-------------------|------|
|   | 1.     | 1-6"        | 1'-9" | 3'-0"             | 4-8" |
|   | 2"     | 9°          | 8°    | .4°               | 30   |
|   | 4*     | 18          | 15    | 9                 | 6    |
|   | 6"     | 27          | 23    | 13                | 9    |
|   | 8"     | 36          | 30    | 18                | 11   |
|   | 1'-0'  | 53          | 46    | 27                | 17   |
|   | 1'-2"  | 62          | 53    | 31                | 20   |
|   | 1'-4"  | 71          | 61    | 36                | 23   |
|   | 1'-6"  | 80          | 69    | 40                | 2.6  |
|   | 1'-8"  |             | 76    | 44                | 29   |
|   | 1'-10" |             |       | 49                | 31   |
|   | 2'-0"  | 1_1         | 1     | 53                | 34   |
|   | 2'.2"  |             | 111   | 58                | 37.  |
| X | 2'-4'  |             |       | 62.               | 40   |
|   | 2'-6"  | 11          |       | 67                | 43   |
|   | 2'-8"  |             |       | 7/                | 46   |
|   | 2'-10" | 1           |       | 76                | 49   |
|   | 3'-0"  | V           |       | 80                | 25   |
|   | 3'-2"  | 1           | 1     | 1                 | 54   |
|   | 3'-4"  | -11-        |       |                   | 57   |
|   | 3'-6   | -11         | 1     | 1/                | 60   |
|   | 3'-8   |             |       | 4/-1              | 43   |
|   | 3-10   | +++         |       | <u> </u>          | tila |
|   | 4-0    | 1-1         | 1-1   |                   | 69   |
|   | 4 2    | 1-1         | 1     | 1+                | -11- |
|   | 4.6    | 1-1         | 1-1   | $f \rightarrow f$ | 1.4  |
|   | 4'.8'  |             |       | /\                | 100  |

BY 1. H. DATE 7-15-18 PROJ 5101 TASK 251 CHKD. JE DATE 9-10:73 PAGE D-1 OF D-2 LACRUS TUEL POOL ANALYSIS

APPENDIX D REF. EFFECTS OF SEISMIC LONDINGS FROM ADJACENT BUILDING STRUCTURES The spent fuel storage pool is located inside the containment/shield building and it will be subjected to the seismic loads from the adjacent building structures. The effects of these additional loadings can be conservatively considered by determining the vatio of the denin moment to the allowable moment capacity for the building structure at the first storage pool elevation and calling it to the similar ontio from the pool analysis and comparing the -sum of these two rates to 1. Referring to pages 4-32 and 4-26 of the Grulf United Services Reput 55-1162 "Seisnuc Evaluation of the La Cousse Boiling Water Reactor" (Reference 15) Ratio of maximum seismic moment to yield Moment for element 17 (Nodis 19-20) Rmb = 0.285 Ratio of the maximum seismic share to Ultimete shan strength for element 17. RV6 = 0.100

BY \_\_\_\_ DATE 7-14-14ROJ 5101 TASK 521 CHKD. JP. DATE 9.18-18 PAGE D-2 OF \_\_\_\_ LACBWR FACT. POOL AMALYS 13

REF From Table 8.2 of this refert Maix. ratio of the design moments to allowable moment (Load combination 2, element no.61) for Vertical residucement = Rmp = 77.8 = 0.147 Max ratio of the shear stress to allowable Sheen storess RVp = 0.075 = 0.373 (Lond Combination 2 Element 144) . The sum of these two ratios Rmb + Rmp Clio 0,285+0147 = 0,432 21.0 0.K RUB + RUP 61.0 0.106 + 0.373 = 0.479 L1.0 O.K. CONCLUSIONS : The design of the pool stouchure is adequate to with stand the loadings from adjacent structure aswell as its own loadings.

| 0   |    |
|-----|----|
| 13  | NL |
| 123 |    |

SPEC NO. 81A0095

PAGE Append OF

|             |        |             | REVISION LOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------|--------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REV.<br>NO. | DATE   | PAGE<br>NO. | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1           | 9/26/7 | В           | CRA No. 534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | +      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | 1      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | ++     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | 1      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |        |             | allowing and a second s |
|             |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |