EGG-TFBP-5600 Revision 1

May 1982

OPERATIONAL TRANSIENT TEST SERIES

TEST OPT 1-2

EXPERIMENT OPERATING SPECIFICATION

NRC Research and for Technical Assistance Rept

Z. R. Martinson

U.S. Department of Energy

Idaho Operations Office . Idaho National Engineering Laboratory

This is an informal report intended for use as a preliminary or working document

Prepared for U.S. Nuclear Regulatory Commission Under DOE Contract Number DE-AC07-76ID01570 FIN No. A6041

8208030048 820531 PDR RES 8208030048 PDR

INTERIM REPORT

Accession No. Report No. EGG-TFBP-5600 Revision 1

Contract Program or Project Title:

Thermal Fuels Behavior Program

Subject of this Document:

Operational Transient Test Series, Test OPT 1-2, Experiment Operating Specification

Type of Document:

Experiment Operating Specification

Author(s):

Z. R. Martinson

Date of Document:

May 1982

Responsible NRC Individual and NRC Office or Division:

M. Silberberg

This document was prepared primarily for preliminary or internal use. It has not received full review and approval. Since there may be substantive changes, this document should not be considered final.

EG&G Idaho, Inc Idaho Falls, Idaho 83415

Prepared for the U.S. Nuclear Regulatory Commission Washington, D.C. Under DOE Contract No. DE-AC07-761D01570 NRC FIN No. A6041

INTERIM REPORT

EGG-TFBP-5600 Rev. 1 May 1982

OPERATIONAL TRANSIENT TEST SERIES TEST OPT 1-2 EXPERIMENT OPERATING SPECIFICATION

Z. R. Martinson

R.K. McCandell

R. K. McCardell, Manager Experiment Specification and Analysis Branch

R.R. Hobbins, Manager

Program Development and Evaluation Branch

1.9. alund la

P. E. MacDonald, Manager LWR Fuel Research Division

J. P. Kester, Manager

J. P. Kester, Manager TFBP Technical Support Division

heratti

C. O. Doucette, Manager PBF Facility Division

THERMAL FUELS BEHAVIOR PROGRAM EG&G IDAHO, INC.

EGG-TFBP-5600, Rev. 1 May 1982

OPERATIONAL TRANSIENT TEST SERIES TEST OPT 1-2 EXPERIMENT OPERATING SPECIFICATION

5.1

Z. R. Martinson

r	0		T	C		T	C
L	U	IN		C.	n	1	2

1.	INTRODUCTION
2.	EXPERIMENT DESIGN
	2.1 Fuel Rods and Flow Shrouds
	2.2 Test Train 8
	2.3 Instrumentation
	2.3.1 Fuel Rod and Flow Shroud Instrumentation
3.	EXPERIMENT OPERATING PROCEDURE
	3.1 Instrument Status Checks and Minimum Operable Instrumentation
	3.2 Loop Heatup 21
	3.3 Radionuclide Tracer Injection 22
	3.4 Prenuclear Instrument Drift Recording 22
	3.5 Fuel Conditioning 22
	3.6 Variable Orifice Calibration
	3.7 Power Transient
	3.8 Post-Transient Steady-State Operation 29
	3.9 Loop Cooldown 29
4.	DATA ACQUISITION AND REDUCTION REQUIREMENTS
	4.1 Data Acquisition Requirements
	4.2 Data Reduction Requirements
	4.2.1 Quick Look Report 30 4.2.2 Test Results Report 36
5.	POSTTEST OPERATIONS SUPPORT 41
6.	POSTIRRADIATION EXAMINATION REQUIREMENTS
7.	REFERENCES

APPEN	NDIX ASTATUS CHECKLISTS FOR INSTRUMENTATION	45
APPEN	NDIX BFLOW BALANCE MEASUREMENTS	51
	FIGURES	
1.	Schematic of fuel rod shroud pair showing flow path	6
2.	Cross-sectional view of test assembly showing relation- ship between fuel rods, shrouds, and rod and shroud instrumentation	7
3.	Planned test rod peak power history during Test OPT 1-2 transient (0 to 60s)	26
4.	Planned test rod peak power history during Test OPT 1-2 transient (0 to 1200 s)	27
5.	Strip chart setup for OPT 1-2 power calibration, conditioning and power burst phases	35
	TABLES	
1.	Test OPT 1-2 fuel rod designations and burnups	4
2.	Test OPT 1-2 fuel rod design characteristics	5
3.	Test OPT 1-2 fuel rod and snroug instrumentation	9
4.	Test OPT 1-2 test train assembly instrumentation	11
5.	Operating conditions for power calibration and conditioning and transient phases for Test OPT 1-2	17
6.	Minimum required operable instrumentation during various phases of Test OPT 1-2	20
7.	Test rod power history for Test OPT 1-2 transient	28
8.	Test OPT 1-2 instrument identification, data channel recording and display requirements	. 31
9.	Quick look data processing requiremens	37
10.	Data qualification requirements	39

1. INTRODUCTION

This document describes the experiment operating specifications for the Operational Transient Test OPT 1-2 to be conducted in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory (INEL) as part of the Nuclear Regulatory Commission's Fuel Behavior Program.¹ The overall experiment requirements and objectives for the OPTRAN Test Series are described in the OPTRAN Experiment Requirements Document,² while the experiment specifications for the test OPT 1-2 are described in the Test OPTRAN 1-2 Experiment Specifications Document³ and the pretest predictions are presented in the Test OPT 1-2 Experiment Prediction Document.⁴ OPTRAN Test Series¹ objectives are to provide fuel behavior data to determine the consequences of anticipated transients and support the evaluation and possible revision of current licensing criteria regarding anticipated transients in commercial nuclear power plants.

The purpose of this document is to specify the experiment operating procedure for Test OPT 1-2. The objectives of Test OPT 1-2 are: (a) to determine whether light water reactor fuel rods are likely to fail or be severely damaged and (b) to identify the damage mechanisms which may occur during a severe boiling water reactor anticipated transient without scram (ATWS). The OPT 1-2 test rods will be subjected to a power and flow transient which is representative of that predicted by vendor analyses for the most severe ATWS--a main steam isolation valve closure without scram. Two shrouded preirradiated BWR/6 segmented fuel rods will be tested and two unirradiated BWR type heater fuel rods will be used to preheat the coolant for the two test rods. The two test rods were enriched with 2.87% 235 U, clad with Zircaloy 2, and irradiated to an average burnup of 8 and 9.6 GWd/t in a General Electric boiling water reactor (BWR). The two heater rods are unirradiated and fabricated with 10 wt% 235 U and Zircaloy-2 cladding.

The test consists of extensive steady state power operation to condition the test fuel rods, fuel rod power calibration, a power transient and a steady-state power operation if fuel rod failure is not detected following the power transient. The PBF power transient will begin with steady state coolant conditions of: 7.93 MPa and 1400 kg/m²·s shroud coolant mass flux. The core power will be ramped in order to provide an axial peak rod power transient history which starts at 37 kW/m,^a increases to 328 kW/m, and then decreases to zero power. The test rod coolant mass flux will be reduced to 500 kg/m².s within 22 s after the power transient to simulate a recirculation pump trip and consequent flow reduction in a BWR. The test rod cladding may fail due to pellet cladding interaction in a manner similar to Rod 802-3 in Test RIA 1-2 which had 22 longitudinal cracks, all less than 1 cm long. The heater rods may fail due to cladding overstress from fuel expansion. Test rod or heater rod cladding failure is not expected to result in significant coolant pressure pulses (less than 0.5 MPa) or in the significant loss of fuel (less than 1 g U0₂).

The design of the test fuel rods and heater fuel rods, test assembly, and instrumentation associated with Test OPT 1-2 are discussed in Section 2. Section 3 presents the plans for the conduct of Test OPT 1-2. Section 4 discusses the data acquisition and reduction requirements. Sections 5 and 6 describe the posttest operations support and the postirradiation examination requirements. Appendix A provides the status check lists for instrumentation and flow balance sheets.

a. Initial rod power will be the maximum rod power achievable in PBF at thermal power of 26.5 MW.

2. EXPERIMENT DESIGN

Test OPT 1-2 will be conducted with four fuel rods; two irradiated rods and two unirradiated rods. The shroud outlet of each unirradiated rod is attached by tubing to the shroud inlet of a BWR/6 previously irradiated fuel rod. The fuel rods, flow shrouds, and fuel rod instrumentation are supported by the test train. This section briefly describes the design associated with each component of the fuel rods, flow shroud, test train and instrumentation. Further information is available in the Experiment Specification Document and the Experiment Configuration Specification.

2.1 Fuel Rods and Shrouds

Two preirradiated BWR/6 segmented test fuel rods provided by the General Electric Co. will be tested. In addition to the two test rods, two unirradiated fuel rods will be used to heat the coolant for the test rods. The designations for the rods will be 902-1, 902-2, 902-3, and 902-4. Designations and burnups for the four fuel rods are given in Table 1. The nominal design characteristics for the OPT 1-2 fuel rods are given in Table 2. A schematic of a pair of rods and the coolant flow path is shown in Figure 1. A plan view of the fuel rod orientation and instrumentation within the in-pile tube (IPT) is shown in Figure 2.

Each test fuel rod is surrounded by a coolant flow shroud. The shrouds are fabricated from zircaloy-4 tubing and have a circular cross section with an inner diameter of 19.05 ± 0.1 mm and a wall thickness of 1.8 mm. The outlets of the flow shrouds for rods 902-1 and 902-3 are connected by tubing to the shroud inlets of Rods 902-2 and 902-4, respectively. Remotely operated orifices, installed at the shroud outlets for Rods 902-1 and 902-3, provide a bypass for the coolant exiting the heater rods. The orifice will be adjusted to provide the required flow reduction following the power transient.

3

Original Rod Designation	Original Core Axial Location	Rod Type	PBF OPTRAN Designation	Burnup (GWd/t)	Fissile Mass of U ₂₃₅ + Pu (g)
N. A.	N. A.	Reference	902-1	0	62.0
0007-4	Тор	Reference	902-2	9.6	13.9
N. A.	N. A.	Reference	902-3	0	62.0
0A06-4	Тор	Reference	902-4	8.0	14.5

TABLE 1. TEST OPT 1-2 FUEL ROD DESIGNATIONS AND BURNUPS

Characteristics ^a	GE BWR/6 Rods	Hester Pode	
Fuel			
Material	110-	110.	
Enriched pellet stack length (mm)	752 60	757 6	
Pellet outside diameter (mm)	10 57/10 620	10.57	
Pellet length (mm)	10.57710.02	10.57	
End configuration	chamfer	chamfer	
Density (TD)	95 to 96	05 to 05	
Initial enrichment (wt%)	2.87	10	
Cladding			
Material	7-2	7= 2	
Tube outside diameter (mm)	12 52	12 52	
Tube inside diameter (mm)	10.90	10.90	
Cladding thickness (mm)	0.86	0.86	
Fuel Rod			
Overall length (mm)	1133 35	052	
Gas plenum length (mm)	170 7	953.5	
Flux depressor pellets	02 34 UF0- 7 74 V-0-	50.8	
Diametral gas gap (mm)	0 220/0 1780	0 220	
Fill gas composition	As received	Helium	
Fill gas pressure	As received	0.31 MPa	
Getter assembly outside diameter (mm)	6.10	none	
Getter assembly length (mm)	50.8	none	
Shrouds			
Material	Tr-A	7- 4	
Tube outside diameter (mm)	22 225	22 225	
Tube inside diameter (mm)	19.05	10.05	
Connecting line outside diameter (mm)	15.88	17 49	
Connecting line inside diameter (mm)	13.89	14 33	

TABLE 2. TEST OPT 1-2 FUEL ROD DESIGN CHARACTERISTICS

.

a. Data are preirradiation values.

b. Pellet stack also contains 12.7 mm of hafnium-yttrium oxide pellets at each end of fuel column. Total length 778 mm.

c. 0007-4/0A06-4

d. Theoretical density (TD) of UO2 is 10.97 g/cm³.

S

Figure 2. Cross-sectional view of test assembly showing relationship between fuel rods, shrouds, and rod and shroud instrumentation.

2.2. Test Train

A Battelle Northwest Laboratory four-rod test train will be used for OPT 1-2. Each fuel rod is fixed rigidly to the shroud at the top and the rod is free to expand axially downward against the fuel rod axial growth measurement transducer (LVDT). The test fue! rods are positioned such that the axial midplane of each active fuel stack is at the same elevation as the axial midplane of the PBF core fuel rods (± 4 mm) and each rod is centered in each flow shroud.

2.3 Instrumentation

A brief description of the OPT 1-2 instrumentation is provided in this section. The experiment instrumentation is designed to provide calorimetric measurement of the rod power during steady state operation and to aid in determining fuel rod characteristics and failure mechanisms during the transients. None of the fuel rods will be opened in order to maintain the fuel chemistry in the irradiated rods. No rod internal instrumentation will be used.

2.3.1 Fuel Rod and Flow Shroud Instrumentation

The fuel rod instrumentation is summarized in Table 3 which include; instrument description, location, rod designation, and range.

The two irradiated rods (Rods 902-2 and 902-4) are each instrumented with three cladding thermocouples (6 thermocouples). The cladding thermocouples are 0.70 mm diameter, zircaloy sheathed tungsten-rhenium. One thermocouple on each of Rods 902-2 and 902-4 is located at the 0° orientation (towards the test train axial centerline) and 70 \pm 2.5 mm above the axial midplane of the test rod fuel. A second thermocouple on each rod is located at 120° and plus 170 \pm 2.5 mm, and the third at 240° and plus 270 \pm 2.5 mm.

TABLE 3. TEST OPT 1-2 FUEL ROD AND SHROUD INSTRUMENTATION

.

Instrument	Measurement Location ^a	Fuel Rod or Shroud Number ^b	Instrument Range	Comments
Cladding Inermocouples (6)	$\begin{array}{r} 70 \pm 2.5 \ \text{mm} - 0^{\circ} \\ 170 \pm 2.5 \ \text{mm} - 120^{\circ} \\ 270 \pm 2.5 \ \text{mm} - 240^{\circ} \end{array}$	902-2 902-4	300 to 2000 K	Resistance Welded. Premium grade tungsten-rhenium.
Shroud flux wires (4)	180°	902-1, 902-2, 902-3, 902-4,	as received	0.51% cobalt, 99.49% aluminum.

a. All elevations are relative to the axial midplane of the PBF core, all orientations relative to the center of the assembly.

b. Shroud number is the same as its corresponding rod number.

9

Four (0.51% cobalt--99.49% aluminum) flux wires each enclosed in a small diameter zircaloy tube, are attached to the outer wall of the flow shroud at 180° in each quadrant. The flux wires extend over the active fuel length of the rods; the bottom of the flux wires aligned with the bottom of the active fuel stack.

2.3.2 Test Train Support Structure Instrumentation

Table 4 contains a list of the instrumentation for the test train support structure including information on the measurement, location, range, and response time. The test train instrumentation consists of the following:

- A 69 MPa pressure transducer located near the upper particle screen to measure changes in coolant pressure.
- A 13.8 MPa pressure transducer located outside the IPT head connected by tubing to the midplane of flow shroud 902-2 to measure normal system pressure.
- A 13.8 MPa pressure transducer located outside the IPT head connected by tubing to the midplane of flow shroud 902-4 to measure normal system pressure.
- A 13.8 MPa pressure transducer located outside the IPT head connected by tubing to sense the pressure just above the shroud outlet of Rod 902-4.
- A turbine flow meter located at the inlet of each flow shroud of Rods 902-1 and 902-3 to measure experiment coolant flow.
- A turbine flow meter located in the cross-over tube of Rods 902-2 and 902-4 to measure inlet flow.

TABLE 4. TEST OPT 1-2 TEST TRAIN ASSEMBLY INSTRUMENTATION

1. A. A.

1

Measurement Instrument		Instrument Location	Recording Range	Comments	
Coolant pressure	Pressure transducer (2)	Transducers attached by tub- ing to the mid- plane elevation of 902-2 and 902-4 flow shroud	0 to 13.8 MPa	To measure normal system pressure. Transducers will be outside IPT head.	
Co⇔lant pressure	Pressure transducer (1)	One transducer located near the upper particle screen	0 to 69 MPa	To measure system pressure changes.	
Coolant pressure	External pressure transducer (1)	Outside IPT head; near the shroud outlet of 902-4.	0 to 13.8 MPa	To measure normal system pressure.	
Coolant flow	Turbine flowmeter (4)	Inlet of flow shroud	$63 \text{ to } 1000 \text{ cm}^3/\text{s}$		
Outlet coolant flow	Turbine flow- meter (2)	In outlet of flow shrouds 902-2 and 902-4.	63 to 1000 cm ³ /s		
Coolant inlet temperature	Thermocouple (2)	In flow shroud at inlet of Rods 902-2 and 902-4	300 to 1500 K	Premium grade Type K thermocouples.	
Coolant inlet temperature	Thermocouple (2)	Inlet of flow shroud 902-1 and 902-3	300 to 1500 K	Premium grade Type K thermocouples.	
Coolant outlet temperature	Thermocouple (2)	Outlet of flow shroud 902-2 and 902-4	300 to 1500 K	Premium grade Type K thermocouples.	
Coolant outlet t∢mperature	Thermocouple (4) at outlet of Rods 902-1 and 902-3.	In flow shreuds (2) and above variable orifice outlet (2)	300 to 1500 K	Premium grade Type K thermocouples.	
Coolant inlet temperature	RTD (1)	Inlet region of Rod 902-2	300 to 600 K	Premium grade RTD.	
Coolant differential temperature	Thermocouple pairs (6)	At inlet and outlet	0 to 30 K	Premium grade Type K (4) each shroud and Type T (2) thermocouples for 902-1 and 902-3.	

4.1

TABLE 4. (continued)

Measurement	Measurement Instrument Location		Recording Range	Comments
Relative neutron flux	Cobalt SPNDs (833 mm-Q2) (762 mm-Q4)	One detector located on the water tubes in quadrants 2 and 4. (O-mm eleva- tion).	0 to ₂ 2.5 x 10 ¹⁴ n/cm ² 's	Reuter-Stokes SPND in Q2 Idaho Laboratory SPND in Q4
Relative neutron flux	Cobalt SPNDs (100 mm) (5)	Five detectors located on the water tube in quadrant 1 (-300, -120, +7, +166, +300 mm)	0 to 2.5 x 10 ¹⁴ n/cm ² ·s	
Relative neutron flux	Cobalt SPNDs (100 mm) (5)	Five detectors located on the water tube in quadrant 3. $(0, \pm 150, \text{ and} \pm 300 \text{ mm})$	0 to 2.5 x 10 ¹⁴ n/cm ^{2·s}	
Relative neutron flux	U-235 fission chambers (2)	One fission cham- ber and gamma compensating chamber located on the water tubes in quad- rants 2 and 4. (0-mm elevation)	0 to 2.5 x 10 ¹⁴ n/cm ² ·s	
Relative gamma flux	Platinum SPGD (100 mm) (2)	One detector located on the water tubes in quadrants 1 and 3. (O-wm eleva- tion)	0 to 6.0 x 10 ⁸ R/br	
Cladding axial elonga- tion.	LVDT (4)	Bottom end of each rod	2.5-25.4 mm + 12.7 mm	Two Schaevitz (Q2 and Q4) LVDTS Two EG&G (Q1 and Q3) LVDTS
Variable orifice position	Stepping motor encoder	Out of IPT	0 to 38 mm	Readout will be in terms of 0 to 100%.
Variable orifice pressure	Pressure transducer	Out of IPT	5.5 to 12.5 MPa	

- A turbine flow meter located at the outlet of flow shrouds 902-2 and 902-4 to measure coolant flow.
- A Chromel-Alumel (type K) thermocouple mounted at the inlets of each flow shroud to measure inlet coolant temperature.
- A Chromel-Alumel (type K) thermocouple mounted near the outlets of each flow shroud to measure outlet coolant temperature.
- A Chromel-Alumel (type K) thermocouple mounted above the variable orifice outlet of Rods 902-1 and 902-3 to measure outlet coolant temperature.
- 11. A platinum resistance thermometer (RTD), located in the inlet region of the test train, to measure coolant inlet temperature.
- 12. Four pairs of Chromel-Alumel (type K) thermocouples connected differentially, one junction located at the inlet and one junction at the outlet of each flow shroud, to measure temperature rise in the coolant.
- 13. Two pairs of copper-constantan (type T) thermocouples connected differentially one junction located at the inlet of the flow shroud and one junction at the outlet of the variable orifice of flow shrouds 902-1 and 902-3, to measure temperature rise in the coolant.
- 14. Twelve self powered neutron detectors (SPNDs), one each in quadrants 2 and 4, and 2 strings of 5 SPNDs located in quadrants 1 and 3.
- 15. Two U-235 fission chambers and two detectors for gamma compensation located in quadrant 2 and 4 to measure relative neutron flux.

- Two platinum self-powered gamma detectors (SPGD) located in quadrant 1 and 3 to measure relative gamma flux.
- A linear variable differential transformer (LVDT) located at the bottom of each fuel rod to measure cladding axial elongation.
- 18. Variable orifice position (2).
- 19. Variable orifice line pressure (2).

2.3.3 Plant Instrumentation

Plant instrument data to be recorded along with the test train instrument data are as follows:

1. NMS-3 and NMS-4 ion chambers.

- 2. PPS-1, and PPS-2, ion chambers
- 3. TR-1, TR-2 ion chambers.
- 4. EV-1 ion chamber.
- 5. In-pile tube system pressure.
- 6. In-pile tube differential pressure.
- 7. Loop flow rate.
- 8. Loop fission product detection system.
 - a. 1 gamma spectral data channel (PDP-15)
 - b. 3 gross gamma channels
 - c. 1 delayed neutron channel

- d. 2 flowmeter channels
- e. 1 thermocouple channel
- 9. Loop pressure transducers (6).
- 10. Loop pressure Heise gauge.
- 11. Transient rod position (4).
- 12. Power demand function (1).
- 13. PPS protective function (4).
- 14. Primary heat exchanger differential temperature (1).
- 15. Reactor coolant flow (1).
- Three 0.51% cobalt-99.49% aluminum flux wires in existing flux wire holder localtions.

3. EXPERIMENT OPERATING PROCEDURE

Details of the experimental procedure of Test OPT 1-2 for each operating phase are discussed below along with instrumentation status check requirements and heat up procedures.

The nuclear operation for Test OPT 1-2 will consist of fuel rod calibration and conditioning phase during a slow power ramp followed by a shutdown for xenon decay and then a power ramp preceeding the power transient. Interspaced between these phases will be instrument status checks. Based on OPT 1-1 results the expected indicated figure-of-merit (FOM) for the OPT 1-2 fuel rods is ~1.15 kW/m per MW for the test rods and ~2.1 kW/m per MW for the heater rods for the control rods withdrawn to 30 inches and the transient rods at 10 inches. The specific operating sequence for the test is presented in Table 5. The total planned core energy release for the test is about 1200 MW hours. Each experimental operating phase and the instrumentation status requirements are considered below.

3.1 Instrument Status Checks and Minimum Operable Instrumentation

To monitor the experiment and to meet test objectives, it is necessary that certain instrumentation be operable throughout the experiment or during specific phases of the experiment. The loss of a critical instrument or a critical combination of instruments needed for a current or subsequent test phase will require that test procedures be suspended until the OPT 1-2 Project Engineer's approval has been obtained to continue the test. Since instrument status will be monitored on the PBF/DARS display, the source of instrument output difficulites can range from instrument malfunction or failure, signal conditioning, transmissions or DARS calibration problems. If the experiment is interrupted by an apparent instrumentation malfunction, it will be necessary for cognizant data system and instrumentation personnel to determine the source of the malfunction indicated and the remedial action necessary for test procedures to continue. If it is determined that a critical instrument has failed or that repairs can only be made by removing the test train from the reactor,

16

Time Duration (hours)	Anticipated Reactor Poser (MN)	Peak Rod Power kW/m	Inlet Temperature (k)	Heater Rod Shroud flow (1/s)	Coolant Pressure ^d (MPa)	Comments
8	0	0	Ambient	0	Ambient to 8.3	Cold hydrostatic check of loop pressure should not exceed 8.3 MPa (1200 psia).
8	0	0	Ambient to 550	0.68	Ambient to 7.93	DARS autocalibrations; Instrument check at 350 K, loop heatup to 550 K or maximum possible with loop heaters.
4	0	0	550	0.68	7.93	Instrument check, zero offsets, and DARS autocalibration
8	0	0	550	0.30	7.93	Radionuclide injection (may be done at this or a later time).
2	0 to 20	0 to 26	550	0.95	• 7.93	Fuel conditioning (ramp rate of 0.5 kW/m/minute.
32	20 to 26.5	26 to 37a	550	0.95	7.93	(Ramp rate of 0.35 kw/m/hr); core power measurements.
12	26.5	37 a	550	0.95 to 0.30	7.93	End of fuel conditioning; core power measurements.
56	0	0	b	p	b	Shutdown for xenon decay. Loop cooldown, variable orifice liquid installed, loop heatup, flow measurements.
2	0 to 26.5	0 to 37ª	550	0.95	7.93	DARS autocalibration, power ramp rate of 0.5 kW/m/minute.
2	26.5 (initial)	378	550	0.30	7.93	Two hour hold, flow measurements.
0.333	26.5 (initial)	37 to 328	550	0.30	7.93	Power transient.
4	0	0	550	0.30	7.93	Shutdown for data reduction.

TABLE 5. OPERATING CONDITIONS FOR POWER CALIBRATION AND CONDITIONING AND TRANSIENT PHASES FOR TEST OPT 1-2

TABLE 5. (continued)

Time Duration (hours)	Anticipated Reactor Power (MW)	Peak Rod Power kW/m	Inlet Temperature (k)	Heater Rod Shroud flow (1/s)	Coolant Pressured (MPa)	Comments
2	0 to 26.5	0 to 37ª	550	0.95	7.93	Power ramp rate of 0.5 kW/m/minute. ^C
8	26.5	378	550	0.95	7.93	Eight hour hold or until rod failure detected.
8	0	0	550 to ambient	0.95 to 0	7.93 to ambient	Loop cooldown.

٠

(154 hr or 6.4 days)

a. The maximum rod power (up to 37 kW/m) achievable at a core thermal power of 26.5 MW.

b. As required by PBF operations.

c. Post-transient steady-state operation will not be performed if fuel rod failure detected after power transient.

d. Coolant pressure at test train location.

test procedures will remain suspended. This experiment status will be maintained pending a decision by the OPT 1-2 Project Engineer and TFBP management as to the course of action to be followed.

Instrumentation for Test OPT 1-2 have been defined in terms of minimum operable instrumentation in Table 6 for various times during the test sequence. Instrument status checks are planned before and during the test in order to ensure conformity to the requirements in Table 6. Instrument status checks before the test will occur at the TRA assembly area and again in the reactor building following the loading of the test train in the IPT.

Prior to any data acquisition, the PBF/DARS output will be verified by the input of signals to the low level amplifiers or in accordance with a checklist to be supplied by the Instrument and Data System Section. This checklist will be incorporated into the experimental operating procedures and will be signed off by the supervisor of the Instrument and Data System Section or his alternate prior to loop heatup.

The pressure during the cold hydrostatic test should not exceed 8.3 MPa (1200 psia) to prevent cladding deformation. During the cold hydrostatic test, instrument readings at pressures of 20%, 40%, 60%, 80%, 100%, 80%, 60%, 40%, 20% of the 8.3 MPa system pressure will be performed as follows:

- 1. Allow the system to come to equilibrium at each pressure step.
- Obtain a DARS printout of measurement data and statistics while simultaneously recording the Heise gauge pressure at each pressure step.

In the event of a DARS channel failure, permission must be obtained from the supervisor of the Instrumentation and Data Section or his alternate before the failed channel can be changed. New channels must be verified. A posttest integrated data systems calibration will be performed after reactor building reentry is permitted.

19

TABLE 6. MINIMUM REQUIRED OPERABLE INSTRUMENTATION DURING VARIOUS PHASES OF TEST OPT 1-2ª

Instrumentation	Number of Instruments	Pre-Installation of Test Train in IPT	During Heatup	Pre-Power Calibration Phase	Pre-Power Transient Burst Phase	
Cladding thermocouples	6	b	4 of 6	4 of 6	3 of 6	
Coolant pressure	4		2 of 4	2 of 4	2 of 4	
Coolant inlet flow meter	4		4 of 4	2 of 4	2 of 4	
Coolant outlet flow meter	2	D	2 of 2	1 of 2	1 of 2	
Coolant inlet temperature	4	b	2 of 4	2 of 4	2 of 4	
Coolant outlet temperature	6	b	3 of 6	3 of 6	3 of 6	
Coolant shroud differential	6	^D	6 of 6	6 of 6	2 of 6	
Comperature	2	b	1 of 2	1 of 2	1 of 2	
SPNU	10 (5 in a string)	b	6 of inc	6 of 10 ^C	6 of 10C	
U 225 Fission chambons	2	b	1 of 2	l of 2	1 65 2	
U-325 Fission champers	ć	ь	ActA	2 05 4	2	
LVDT	4	b	4 01 4	3 01 4	3 01 4	
Loop pressure gauge		b	1	1	!	
RTD	14			0	0	
Fission product detection system	30		0	0	3	
Variable orifice positioners	2	^D	2	2	2	
SPGD	2	^D	1 of 2	1 of 2	1 of 2	

a. Any discrepancies must be approved by OPT 1-2 Project Engineer.

b. All instruments shall be operable at installation except for those accepted on a QDR as (use as is).

c. 3 in each string of 5 should be operable.

d. No. 1 Gamma Detector, Neutron Detector and gamma spectrometer.

After DARS checkout is completed, instrument status checks are to be made (a) at about 350 K, (b) after heatup prior to power calibration phases, and (c) prior to the power transient. Checklists will be completed during the status checks (Appendix A). Certification that each instrument is within an acceptable range must be made by the Test OPT 1-2 Project Engineer or his designated alternate. If the readings are not within range, or at any time during the test there is an apparent malfunction in an instrument or data channel, remedial actions must be completed or the Test OPT 1-2 Project Engineer approval must be obtained in order to continue test operation. Autocalibration of the DARS channels is required before the initial and each subsequent loop heatup and prior to reactor startup for the fuel conditioning and before each power transient.

3.2 Loop Heatup

The initial part of testing will consist of a hydrostatic pressure check followed by heatup of the loop to the desired coolant temperature. and pressure of 550 K and 7.93 MPa at the test train location. DARS printouts will be taken at 50 K intervals from ambient to 550 K^a during the initial and any subsequent loop heatups. Maximum flow through the shroud flowmeters shall be less than 1000 cm³/s. Instrument status checks will be made at about 350 K and and again after the loop coolant temperature has reached 550 K. The loop pump will be turned off for a few minutes to normalize the coolant pressure transducers to the Heise gauge pressure at 550 K for the initial and any subsequent loop heatups and prior to nuclear operation of each main test phase. The IPT flow by-pass will be measured at 550 K by measuring the flow through the flow shrouds and the total loop flow (see Appendix B) with the variable orifice closed, provided the shroud flow does not exceed 1000 cm³/s. A by-pass ratio of about 2.5 ± 1 is expected. After the flow by-pass measurements are completed. the flow shall be adjusted such that a test rod shroud flow of 300 cm^3/s is obtained.

a. The loop temperature will be increased to 550 K or maximum achievable with electrical loop heater. Nuclear heating will probably be required to obtain 550 K.

Data will be recorded on the DARS during the hydrostatic pressure check, the heatup, and the flow checks.

3.3 Radionuclide Tracer Injection

Prior to test completion and following loop heatup and by-pass flow measurement, fission product transport behavior in the test loop will be characterized by the release of a radioactive tracer material for measurement by the FPDS. At a convenient time during the test sequence when the ATR metal rabbit facility and the variable orifice system are operational, the injection sample will be prepared, loaded into the sample injection accumulators, delivered to PBF and installed in the PBF reactor building. With loop conditions maintained at 550 K,^a 7.93 MFa and 300 cm³/s test rod shroud flow with the variable orifices opened,^b the sample injection system will be operated in accordance with D.O.P. 3.1.28 to provide controlled release of the tracer material to the test loop via a small diameter tube. The exact time of initiation of the sample injection will be recorded in the plant operations log and data will be recorded on the DARS during the sample injection and for 4 hours following the injection. The test rod shroud flow will then be increased to 950 cm³/s.

3.4 Prenuclear Instrument Drift Recording

Data channels shall be recorded for at least 30 minutes to establish any instrument drift rates. This recording should be done after heatup and prior to nuclear operation at stable system conditions.

3.5 Fuel Conditioning

The primary purpose of this test phase is to condition the fuel rods to a peak rod power of 37 kW/m or the maximum rod power achievable at a core power of 26.5 MW. The fuel rods were irradiated in a BWR at a power

a. 550 K or as high as possible with electrical loop heater.

b. As specified by OPT 1-2 Project Engineer.

of only about 13 kW/m. The fuel conditioning will consist of a 34 hour gradual power increase to 37 kW/m and a twelve hour hold at 37 kW/m. During this operation the heater roo and test rod peak power will be calorimetrically measured under single-phase coolant conditions and the rod power will be intercalitrated with the SPNDs, SPGDs, and fission chambers on the test assembly. As calculated by reactor physics, an axial peak-to-average neutron flux ratio of 1.25 will be used for these 0.752 m long fuel rods. The required initial coolant conditions are: 550 K^a heater rod inlet temperature, 7.93 MPa IPT pressure at test train locations, and 950 cm³/s coolant flow through each test rod with the variable orifice in the closed position. Core thermal power measurements will also be obtained during the fuel conditioning phase.

The test rod power will be increased from 0 to 26 kW/m at a maximum power ramp rate of 0.5 kW/m per minute and a maximum ramp rate of 0.35 kW/m per hour from 26 to 37 kW/m. At a fuel rod peak power greater than 26 kW/m, the transient rods will be positioned at -34 inches for a few minutes and the figure-of-merit measured. The transient rods will then be positioned at -52 inches for the remainder of the fuel conditioning. In case of a reactor shutdown during the fuel conditioning, the test rod power may be increased during the next nuclear operation at a maximum ramp rate of 0.5 kW/m per minute up to the maximum rod power reached just prior to the shutdown or 26 kW/m (whichever is greater) and then at a maximum ramp rate of 0.35 kW/m per hour up to 37 kW/m. The test rod power will be held approximately constant at 37 kW/m for 12 hours. The reactor will then be shutdown for about 56 hours for xenon decay. The power decrease rate should not exceed -2 kW/m per minute from 37 to 10 kW/m.

a. 550 K or as high as possible with electrical loop heater.

3.6 Variable Orifice Calibration

During the 56 hour shutdown period, the loop will be cooled and the variable orifice system will be filled with DOW THERM A fluid to make the system operable. The loop will be heated to 550 K^a and the flow shall then be adjusted to obtain a shrowd flow of 950 cm³/s with the variable orifice closed. The variable orifice will then be opened and then closed in about 10% flow steps. DARS data printouts will be taken at each variable orifice position stage as the variable orifice is opened and then closed. Practice flow reduction during a simulated power transient will also be made.

3.7 Power Transient

Following the 56 hour shutdown, the power transient will be performed. The required coolant conditions are 550 K.^a 7.93 MPa at the test train, and 950 cm³/s shroud flow. After the reactor is critical the transient rods will be inserted into the core as required for this transient. The rod power will then be increased to 37 kW/m or the maximum rod power achievable at an core indicated power of 26.5 MW at a maximum ramp rate of 0.5 kW/m per minute. After reaching a peak test rod power of 37 kW/m, the heater rod inlet flow will gradually be decreased from 950 cm³s to decrease the test rod coolant mass flux to about 1400 kg/m²·s.^b A test rod mass flux of 1400 kg/m²·s is equivalent to a heater rod flow rate of ~300 cm³/s if there is no coolant leakage past the variable orifice. The variable orifice will remain closed during the first set of flow reductions. A DARS printout will be obtained at heater rod inlet flow rates of 950, 800, 700, 600, 500, 400, and 300 cm³/s. The variable orifice will then be opened in small steps as specified by the OPT 1-2 Project Engineer to decrease the heater

a. 550 K, or maximum temperature achievable with electric loop heaters.b. Equivalent flow rates will be calculated by OPT 1-2 Project Engineer.

24

rod coolant mass flux while the heater rod inlet flow is maintained at 300 cm^3 /s and the test rod peak power is held at 37 kW/m. DARS printouts will be obtained at each step. The test rod coolant mass flux will not be reduced to less than $\sim750 \text{ kg/m}^2 \cdot \text{s}$. After the variable orifices are fully opened or a test rod mass flux of 750 kg/m² $\cdot \text{s}$ has been obtained, the variable orifices will be closed in 10% steps until the orifices are fully closed.

Following a total of at least one hour steady state operation at a peak fuel rod power of 37 kW/m, the power transient will be performed. The required initial conditions are: 550 ± 1 K heater rod inlet temperature, 7.93 ± 0.05 MPa, and 1400 kg/m²·s coolant mass flux through the test rod flow shrouds.

After the initiation of Gallop, the reactor thermal power will be increased over at least a one minute time span to 26.5 MW, which is equivalent to an indicated reactor power of 28.6 MW when the transient rods are inserted 10 inches. The power transient power history is shown in Figures 3 and 4 and listed in Table 7. The reactor will be operated to increase peak rod power from 37 to 328 kW/m and then decreased to zero over a 1200 s time span. Using the variable orifice controller, the test rod coolant mass flux will be reduced to about 500 kg/m² s over a 20 s time span starting \sim 2 s or as requested by the OPT 1-2 Project Engineer after transient initiation.^a If failure of the test rods or heater rods is detected, loop coolant conditions are to be maintained approximately constant for four hours. Cladding failure of the test rods or the heater rods will be evaluated by the response of the fission product detection system.

a. According to FRAP-T6 calculations,⁴ the maximum test fuel rod and heater rod cladding temperatures will be about 1050 and 1580 K, respectively following the power transient.

Figure 4. Planned test rod peak power history during Test OPT 1-2 (0-1200 s).

27

TABLE 7. TEST ROD POWER HISTORY FOR TEST OPT 1-2 TRANSIENT

Time (s)	Test Rod Peak Power ^a (kW/m)	Nominal Indicated Reactor Power ^b (MW)
0.0	33	28.6
0.95	38	33.0
1.30	50	43.0
1.70	76	65.0
2.00	180	152.7
2.20	264	223.5
2.43	328	277.5
2.65	279	232.0
3.10	59	50.6
5.10	33	28.6
7.00	22	19.1
20.0	10	8.7
33.5	35	30.4
35	11	9.6
46	14	12.2
60	10	8.7
1200.00	10	8.7
1200.01	0	0
1210.01	0	0

a. Transients will be performed with an initial rod peak power of 37 kW/m provided the thermal reactor power does not exceed 26.5 MW. Preliminary values for PBF reactor power history were obtained by dividing peak fuel rod powers by calculated figure-of-merit (1.15 kW/m per MW). The actual reactor power history for the transient will be determined after the figure-of-merit has been measured during the fuel conditioning phase.

b. The indicated reactor power is 8% higher than the true thermal reactor power when the transient rods are inserted 10 inches.

3.8 Post Transient Steady-State Operation

If failure of the test rods or heater rods is not detected within four hours after the power transient, the fuel rods will be operated at 37 kW/m for about 8 hours. The purpose of this phase is to determine if incipient cladding cracks formed during a power transient will produce delayed cladding failures during subsequent power operations. The test rod power will be increased from 0 to 37 kW/m at a maximum power ramp rate of 0.5 kW/m per minute and then held approximately constant at 37 kW/m for about 8 hours or until rod failure occurs. The required coolant conditions are: 550 k^a heater rod inlet temperature, 7.93 MPa IPT pressure, and 950 cm³/s test rod shroud flow.

3.9 Loop Cooldown

The loop will be cooled to ambient after nuclear testing is completed. If fuel rod failure is detected the loop conditions are to be maintained approximately constant for four hours after the power transient to allow acquisition of FPDS data. All data channels shall be recorded through loop cooldown until the loop pump is secured if fuel rod failure is detected.

a. 550 K or as high as possible with the loop electrical heaters.

4. DATA ACQUISITION AND REDUCTION REQUIREMENTS

Instrumentation displays on the PBF/DARS will identify the fuel rod test assembly and plant instruments according to the identifiers in Table 8.

4.1 Data Acquisition Requirements

The data channels should be set to record the data based on the requirements of Table 8. All of the narrow band DARS channels should be available for display on the Vector General. The PBF/DARS will record data during the cold hydrostatic pressure check, the flow calibration, the heatup phases, during all nuclear operations, and 60 minutes after the transient unless a fuel failure is suspected and then it will be until the loop pump is secured after the transient. Figure 5 indicates the data channels which will be required to be displayed on the strip charts. The display and recording requirements are subject to change at the discretion of the TFBD representative in the case of instrument failure or unusual test behavior.

4.2 Data Reduction Requirements

Data reduction and plotting requirements are separated into 3 segments for discussion below. The first segment concerns data reduction and plot requirements needed for the test conduct. The second segment concerns data reduction and presentation requirements for the OPT 1-2 Quick Look Report. The third segment concerns the Test Results Report. Additional plotting requirements will be stipulated for the test analysis based on test performance and posttest code analysis.

4.2.1 Quick Look Report

For the evaluation of the transient power controllability and the transient PPS channels following the power transient, plots and printouts of the following parameter are requested.

1. Power demand function (1)

Measurement	Instrument	Location ⁸	Rod Number	Identifier ^b	Recording Range	Minimum Frequency Response Required (Hz)
Fuel Rod						
Cladding elongation	LVDT	Bottom of each rod	902-1 902-2 902-3 902-4	CLADbDSPbbb01 CLADbDSPbbb02 CLADbDSPbbb03 CLADbDSPbbb04	-12 to 12 mm 2.5 to 25.4 mm -12 to 12 mm 2.5 to 25.4 mm	10, WB ^f
Cladding temperature	Tungsten-rhenium thermocouple	Cladding	902-2 902-2 902-2 902-4 902-4 902-4	CLADbTMPbbb70-bb02 CLADbTMPbb170-1202 CLADbTMPbb270-2402 CLADbTMPbbb70-bb04 CLADbTMPbb170-1204 CLADbTMPbb270-2404	300 to 2100 K	100
Flow Shroud						
Coolant inlet temperature	Type K thermocouple	Shroud Inlet	902-1 902-2 902-3	INLTTEMP66001 INLTTEMP66002 INLTTEMP66003	300 to 600 K	10
Coolant outlet temperature	Type K thermocouple	Shroud outlet	902-1 902-2 902-3	OUTTEMP66004 OUTTEMP66001 OUTTEMP6602 OUTTEMP6603	300 to 600 K	10
Coolant flow	Turbine flowmeter	Inlet	902-4 902-1 902-2 902-3	SHRDFLOWbbIN01 SHRDFLOWbbIN02 SHRDFLOWbbIN03	0 to 1200 $cm^{3/5}$	10
Flow turbine frequency	AC output from flow turbine	Inlet	902-4 902-1 902-2 902-3	ACFLOWbbbblin01 ACFLOWbbbblin01 ACFLOWbbbblin02 ACFLOWbbbblin03	As required	WB ^f
Coolant temperature	RTD	Inlet Q-2	902-4	RTDbTEMP66601	300 to 600 K	10
Variable orifice position		Above shroud outlet	902-i 902-3	VARIORF6660000000000000000000000000000000000	0 to 100% open	10
Variable orifice outlet coolant temperature	Type K thermocouple	Above orifice outlet	902-1 902-3	VARIORF bbbtemp01 VARIORF bbbtemp03	300 to 600 K	10
Variable orifice pressure	Pressure transducer	Orifice system		VARIORF bbbpre SC 1 VARIORF bbbpre SC 3	5.5 to 12.5 MPa	10

TABLE 8. TEST OPT 1-2 INSTRUMENT INDENTIFICATION, DATA CHANNEL RECORDING, AND DISPLAY REQUIREMENTS

TABLE 8. (Continued)

Measurement	Instrument	Location ^a	Rod Number	î dent if ier ^b	Recording Range	Minimum Frequency Response Required (Hz)
Ccolant differential Temperature	Differential thermocouple pair type K	Top & bottom of each flow shroud	902-1 902-2 902-3 902-4	DELTEMPbbbb01 DELTEMPbbbb02 DELTEMPbbbb03 DELTEMPbbbb04	0 to 20 K	10
Coolant flow	Turbine flowmeter	Outlet	902-2 902-4	SHRDFLOWDDOUT02 Shrdflowddout04	0 to 1200 cm^3/s	100
Flow turbine frequency	AC output from flow turbine	Outlet	902-2 902-4	ACFLOWbbbb0UT02 ACFLOWbbbb0UT04	As required	WB ^f
Test Train						
System pressure	69 MPa EG&G Pxd	Near shroud outlet		SYSEPRE SEE	0 to 69 MPa	10, WB ^f
System pressure	13.8 MPa Sensotec	Outside of IPT	902-2 902-4 902-4	SYSEPRE SEE 14 DCL 02 SYSEPRE SEE 14 DCL 04 SYSEPRE SEE 14 DOUT 04	0 to 28 MPa	10
Neutron flux	Cobalt SPND	Water tube 0 mm		NEUTOFLXDbQ2bb0		`00
Neutron flux	Cobalt SPND	Water tube		NEUTOFLX0004000		100
Neutron flux	Cobalt SPND	Quadrant-4 0 mm Quadrant-1-300 mm -120 mm 7 mm 166 mm		NEUTOFLXDDQ1-300 NEUTOFLXDDQ1-120 NEUTOFLXDDQ1bb+7 NEUTOFLXDDQ1+166	10 ⁻¹¹ to 10 ⁻³ A	100
Neutron flux	Cobalt SPND	300 mm Quadrant-3-300 mm -150 mm 0 mm 150 mm		NEUTOFLXDbQ1+300 NEUTOFLXDbQ3-300 NEUTOFLXDbQ3-150 NEUTOFLXDbQ3bbb0 NEUTOFLXDbQ3+150	10 ⁻¹¹ to 10 ⁻³ A	100
Gamma compensation	Dummy lead	Quadrant-1 7 mm Quadrant-2 0 mm Quadrant-3 0 mm Quadrant-4 0 mm		REUTOFEXDDQ3+300 GAMACOMP6bQ16660 GAMACOMP6bQ26660 GAMACOMP66036660 GAMACOMP66036660	10-11 to 10-3 A	10, WB ^f
Variable orifice coolant differential temperature	Differential thermocouple pair Type T	Bottom of flow shroud and above variable orifice outlet	902-1 902-3	VARIORF DODDEL TMP01 VARIORF DODDEL TMP03	0 to 20 K	10

TABLE 8. (Continued)

÷

Measurement	Instrument	Location ^a	Rod Number	Identifier ^b	Recording Range	Minimum Frequency Response Required (Hz)
Neutron flux	U-235 fission chamber	Water tubes quadrant-2 0 mm		F1SSCHBRbbQb2b0	10 ⁻¹¹ to 10 ⁻³ A	100
Gamma flux	SPGD	Water tubes quadrant-4 0 mm Water tube quadrant-1 0 mm Water tube quadrant-3 0 mm		F I SSCHBRbbQb4b0 GAMMAbbbbb01b0 GAMMAbbbbb03b0	10 ⁻¹¹ to 10 ⁻³ A	100 10, WB ^f
FPDSd						
Isotope Concentration Gross Gamma Rate Gross Gamma Rate Gross Gamma Rate Gross Neutron Rate FFDS Flow Rate FPDS Flow Rate Pipe Temperature	FPDS Spectrometer No. 1 Gamma Detector No. 2 Gamma Detector No. 3 Gamma Detector Neutron Detector No. 1 Flowmeter No. 2 Flowmeter Thermocouple	FPDS FPDS FPDS FPDS FPDS FPDS FPDS FPDS		FP SPEC FPbGAMMAbbNo.bb1 FPbGAMMAbbNo.bb2 FPbGAMMAbbNo.bb3 FPbNEUTbbbFP FPbFLOWbbbNo. 1 FPbFLOWbbbNo. 2 FPbFLOWbbbNo. 2 FPbFLOWbbbNo. 2	PDP-15 ^C 10 to 10 ⁶ counts/s 10 to 10 ⁶ counts/s 10 to 10 ⁶ counts/s 10 to 10 ⁶ counts/s 0 to 44 cm ³ /s 0 to 44 cm ³ /s 300 to 600 K (ss); 1000 K (tr)	NA 10 10 10 10 10 10
Plant						
NMS-3 (30 MW) NMS-4 (30 MW) PPS-1 (MW) ^e PPS-2 (MW) ^e TR-1 (MW) ^e TR-2 (MW) ^e EV-1 (MW) ^e System Pressure IPI Pressure Differential Loop Flow Loop Coolant Pressure Loop Coolant Pressure	Ion Chamber Ion Chamber Ion Chamber Ion Chamber Ion Chamber Ion Chamber Evacuation Chamber PXD PXD Venturi 0 to 34 MPa PXD 0 to 34 MPa PXD	Plant Plant Plant Plant Plant Plant Plant Plant Plant Plant Plant Plant Plant		REACbPOWbbNMS-03PT REACbPOWbbNMS-04PT REACbPOWbbPPS-01PT REACbPOWbbPPS-02PT REACbPOWbbTR1PT REACbPOWbbTR2PT REACbPOWbbEV1PT SY SPRE SbbbHE1SEbPT IPTbDELPbbbbbbbbPT LOOPDFLObbbbbbbbPT LOOPPRE Sbbb5-20bPT LOOPPRE Sbbb5-24bPT	0 to 30 MW 0 to 30 MW 0 to MW ^e 0 to MW ^e 0 to MW ^e 0 to MW ^e 0 to 17 MPa 0 to 0.69 MPa 0 to 34 MPa 0 to 34 MPa 0 to 34 MPa	10 10 100 100 100 100 100 100 10 10 10, WB f 10, WB f 10, WB f
Primary Heat Exchanger Differential Temperature Reactor Coolant Flow Spool Piece Coolant Temperature	Primary HX DT Reactor Flowmeter	Plant Plant Plant		PFHXRDTbbbHXDTPLNT REARFLOWbbPR1MFLOW ICSSTEMPbbTE20ST1C	0 to 25°F O to 17000 gpm As required	10 10 10
Spool Piece Coolant Pressure	PXD	Plant		ICPRESSWbbPE09ST1C	As required	10

TABLE 8. (Continued)

Measurement	Instrument	Location ⁸	Rod Number	I dent if ier ^b	Recording Range	Minimum Frequency Response Required (Hz)
Loop Coolant Pressure	O to 34 MPa PXD	Plant		LOOPPRESEBB5-256PT	O to 34 MPa	io. WBF
Loop Coolant Pressure	O to 34 MPa PXD	Plant		1.00PPRESbbb5-34bPT	0 to 34 MPa	10, WBf
Loop Coolant Pressure	O to 34 MPa PXD	Plant		LOOPPRESbbb5-35bPT	0 to 34 MPa	10, WB ^f
Core Pressure	0 to 34 MPa PXD	Plant		COREPRE Sbbbwbbbbpt	O to 34 MPa	10. WB
Core Pressure	O to 34 MPa PXD	Plant		COREPRESEDENEEDEPT	O to 34 MPa	10, WB ^f
Core Pressure	O to 34 MPa PXD	Plant		CORFPRESEBBB	0 to 34 MPa	iO, WB ^f
Transient rod position 1	LVDT	TR drive 1		TRANSROODDNUMDO 1PT	o to 52 in.	10. WBf
Transient rod position 2	LVDT	TR drive 2		TRANSRODDDNUML02PT	o to 52 in.	10, WB ^f
Transient rod position 3	LVDT	TR drive 3		TRANSROODDNUMDC3PT	o to 52 in.	10. 68'
Transient rod position 4	LVDT	TR drive 4		TRANSRODDSNUMD041'T	o to 52 in.	10, Wef
Power demand function PPSI high power protection				POWDEMFNbhbbbbbbbbbb	As required	10, HEF
function PPS1 low nower protection				PPSIHIGHbbpROTFNIH	As required	IO, WB ^f
function				PPSILOWOODPROTENIL	As required	10, WB ^f
function				PPS2HIGHbboROTFN2H	As required	10, WB ^f
PPS2 low power protection function				PPS2LOWbbbPROTFN2L	As required	10, WB ^f

a. All elevations are measured from axial midplane of the fuel stack. The positive direction is with the coolant flow. Radial orientations are defined by Figure 1.

b. b denotes blank.

c. Not recorded on DARS.

d. Fission Product Detection System (FPDS).

e. As required for each transient.

f. Recorded on wide band during power transients.

CLD DSP 01	SHRD FLOW IN OT	SHRD FLOW IN 03
CLD DSP 02	SHRD FLOW IN 02	SHRD FLOW IN 04
CLD DSP 03	SHRD FLOW OUT 02	FP GAMMA No. 1
CLD DSP 04	SHRD FLOW OUT 04	FP GAMMA No. 2
CLAD TMP 170-04	CLAD TMP 270-02	CLAD TMP 70-02
CLAD TMP 270-04	CLAD TMP 70-04	CLAD TMP 170-02
SYS PRES 69 EGG	REAC POW 30 NMS4 PT	FP GAMMA No. 3
SYS PRES 17KA	REAC POW TR1 PT	FP NEUT FP

Figure 5. Strip chart setup for OPTRAN 1-2 power calibration, conditioning, and transient phases.

- Transient power from power measurement channels used for power control. (TR-1 and TR-2) (2)
- 3. Transient rod positions (4)
- Transient power from PPS channels (PPS-1 and PPS 2)-(2).
- 5. PPS protection functions (4)
- 6. Variable orifice position (2)

These data should cover a time span from one second prior to transient initiation to one second after reactor scram.

Test data plots and data pretest calculation comparison plots for the Quick Look Report are to be prepared as soon as practical after completion of the test. The plots generated will go directly into the Quick Look Report without redrawing or handling by graphics personnel. The plots should conform to 8-1/2 x 11 inch paper with conventional margins. All plotted data are to be in standard SI units. A preliminary list of the data processing required for the Quick Look Report is given in Table 9. A final data request will be submitted upon termination of the test. Upon termination of the test, the OPT 1-2 Project Engineer should be given copies of the PBF console log, strip charts and any other documentation necessary to establish specific data requirements and to prepare the Quick Look Report.

4.2.2 Test Results Report

Data plot requirements for the Test Results Report are expected to evolve during the analysis of the test data. These requirements will be transmitted to the data system group as the need arises. TABLE 9. QUICK LOOK DATA PROCESSING REQUIREMENTS

Time	Decimation Rate
All time ^a	.02 Hz (8 hr history file)
-5 to +20 s of peak power time	Undecimated
-5 to +20 min of peak power time	1 Hz
-5 to +15 s of peak power time	2000 Hz
	Time All time ^a -5 to +20 s of peak power time -5 to +20 min of peak power time -5 to +15 s of peak power time

a. Data should be included for following phases: hydrostatic pressure test, loop heatups, flow by-pass measurements, radionuclide trace injection, fuel conditioning, power transient, and loop cooldown. The data associated with the fuel rod and test assembly instrumentation presented in Table 10 shall be thoroughly reviewed and categorized as qualified or failed data. The time period and priority for which these data are to be qualified is also presented in Table 10.

	TABLE	10.	DATA	QUALIF	ICATION	REQUIREMENTS
--	-------	-----	------	--------	---------	--------------

Measurement	Instrument	Test Phase for Data Qualification	Priority
Shroud flow	SHRDFLOWbbIN01 SHRDFLOWbbIN02 SHRDFLOWbbIN03 SHRDFLOWbbIN04 SHRDFLOWbbOUT02 SHRDFLOWbbOUT04	All nuclear operation All nuclear operation All nuclear operation All nuclear operation All nuclear operation All nuclear operation	
Cladding elongation	CLADDDSPbbb02 CLADDDSPbbb04	All nuclear operation All nuclear operation	1
Cladding temperature	CLADbTMPbbb70-bb02 CLADbTMPbb170-1202 CLADbTMPbb270-2402 CLADbTMPbbb70-bb04 CLADbTMPbb170-1204 CLADbTMPbb170-2404	Power transient Power transient Power transient Power transient Power transient Power transient	1 1 1 1 1
Coolant inlet temperature	INLTTEMP66601 RTD6TEMP66601	All nuclear operation All nuclear operation	1
Coolant temperature rise	DELDTEMPDDD01 DELDTEMPDDD02 DELDTEMPDDD03 DELDTEMPDDD04	Each slow power ramp Each slow power ramp Each slow power ramp Each slow power ramp	1 1 1
System pressure	SYSEPRE SEE 14 DOUTO2	All nuclear operation	1
Neutron flux	NEUTDFLXDbQ2bbb0 NEUTDFLXDbQ3-300 NEUTDFLXDbQ3-150 NEUTDFLXDbQ3bbb0 NEUTDFLXDbQ3+150 NEUTDFLXDbQ3+300	All nuclear operation All nuclear operation All nuclear operation All nuclear operation All nuclear operation All nuclear operation	1 1 1 1 1
Gamma flux	FISSCHBRbbQb2b0 GAMAbFLXbbQ3bbb0	All nuclear operation All nuclear operation	1
Reactor power	REACDPOWDDDDDTR1PT REACDPOWDDDDDTR2PT REACDPOWDDDDDPPS1PT REACDPOWDDDDDPPS2PT	All nuclear operation All nuclear operation All nuclear operation All nuclear operation	1 1 1 1
Gross gamma rate	FPbGAMMAbbN0.bb1	Power transient if rod failure occurs.	1

TABLE 10. (continued)

Measurement	Instrument	Test Phase for Data Qualification	Priority
Gross neutron rate	FPDNEUTDDDFP	Power transient if rod failure occurs	1
Variable orifice VAR10RFbbbP0Sb01 position VAR10RFbbbP0Sb03		Power transient and during flow checks	1

5. POSTTEST OPERATIONS SUPPORT

Before the test and following the power transient, a loop water sample will be taken for fission product analysis. The sample should be tagged "For Fission Product Analysis" and with the date and time of sample and sent to the TRA counting laboratory for fission product and uranium analysis. Results of the analysis will be sent to the FPDS Project Engineer and the OPT 1-2 Project Engineer.

Due to the long duration of the test, the fission product inventory of the test rods will be large. The radioactivity (R/hr) of the test rods will be calculated after the test is completed.

Closure plugs should be installed on the upper and lower ends of each flow shroud after they are removed from the test assembly to prevent loss of material during handling and shipment to the hot cell if a rod has failed during testing. Posttest handling, shipment, and storage should be performed carefully to minimize the possibility of further fuel rod damage.

Three 0.51% cobalt-99.49% aluminum flux wire should be installed prior to the test in the existing flux wire holder and removed after the test is completed and shipped to the TRA counting room.

6. POSTIRRADIATION EXAMINATION REQUIREMENTS

The planned postirradiation examination (PIE) for Test OPT 1-2 consists of the following:

- A gamma scan and nvt. determination of the 0.51% cobalt, 99.49% aluminum flux wires. Each wire should be tagged to identify wire number, location, test, orientation, and bottom end of the wire.
- The visual, dimensional, and photographic examination of all four rods.
- 3. A leak check of all rods if cladding failure is not obvious.
- 4. Isotopic gamma scanning of Rods 902-2 and 902-4 for the axial distribution of specific fission product isotopes such as Cs-137 and if scanning can be done shortly after irradiation, I-131.
- 5. Neutron radiography of the Rods 902-2 and 902-4.
- Pulsed eddy current (PEC) defect inspection of Rods 902-2 and 902-4 to locate incipient cracks in cladding walls. Profilometry should be done if possible.
- Fission gas analysis and void volume measurements of Rods 902-2 and 902-4 if cladding failure does not occur.
- 8. Metallography:
 - (a) Fuel structure (including grain size, pore distribution, and cracking) of Rods 902-2 and 902-4.
 - (b) Fuel cladding chemical interaction of Rods 902-2 and 902-4.
 - (c) Cladding oxidation, microstructure and hydriding of Rods 902-2 and 902-4.

- (d) Cladding failure and incipient cracks of Rods 902-2 and 902-4.
- (e) Fuel melt radius of Rods 902-1 and 902-3.
- 9. Chemical analysis of Rods 902-2 and 902-4 only:
 - (a) Incipient cladding cracks.
 - (b) Cladding hydrogen and oxygen content.
 - (c) Concentration of measurable fission products in fuel.
 - (d) Fuel burnup
- 10. Cladding ductility of Rods 902-2 and 902-4.

7. REFERENCES

- United States Nuclear Regulatory Commission, Reactor Safety Research Program, Description of Current and Planned Reactor Safety Research Sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research, NUREG-75/058, June 1975.
- 2. D. W. Croucher, M. K. Charyulu, Experiment Requirements For The Study of Anticipated Transients With and Without Scram, TFBP-TR-308, January 1979.
- D. T. Sparks, <u>OPTRAN 1-2 Experiment Specification Document</u>, TFBP-TR-317, Revision 2, October 1980.
- 4. Z. R. Martinson and R. H. Smith, Operational Transient Test Series, Test OPT 1-2 Experiment Predictions, EGG-TFBP-5601, November 1981.

APPENDIX A INSTRUMENT STATUS CHECKS CHECK LISTS

APPENDIX A INSTRUMENT STATUS CHECKS CHECK LISTS

INSTRUMENT STATUS CHECK

Check List No. 1

Pre-Inpile Tube Loading:

This check list is in the Checkout Procedure identified in DOP 8.1.12, and includes instrument resistance checks prior to initial loading into the in-pile tube. PRE-HEATUP INSTRUMENT STATUS CHECKLIST NO.___

Reactor Power 0.0 MW		
Coolant Temperature	350 K	
Heise Gauge Pressure	NP a	
Shroud Flow Rate ^a	0.95 1/s	TFBP Representative

in charge

Instrument Identifier		PBF/DARS Reading	Required Instrument Reaging	Certification Instrument Within Range (b)	
CLAD DSP	01	mm	0.0 ± 0.5 mm ^C		
CLAD DSP	02	mm	$0.0 \pm 0.5 \text{ mm}$		
CLAD DSP	03	mm	$0.0 \pm 0.5 \text{ mm}$		
CLAD DSP	04	mm	$0.0 \pm 0.5 \text{ mm}$		
INLTTEMP	01	K	350 ± 10 K		
INLTTEMP	02	K	350 ± 10 K		
INLTTEMP	03	K	350 ± 10 K		
INLTTEMP	04	K	350 ± 10 K		
OUT TEMP	01	K	350 ± 10 K		
OUT TEMP	02	K	350 ± 10 K		
OUT TEMP	03	K	350 ± 10 K		
OUT TEMP	04	K	350 ± 10 K		
SHRDFLOW	IN O1	1/s	Avg ± 0.2 1/s		
SHRDFLOW	IN 02	1/s	Avg ± 0.2 1/s		
SHRDFLOW	IN 03	1/s	Avg ± 0.2 1/s		
SHRDFLOW	IN 04	1/5	Avg ± 0.2 1/s		
SHRDFLOW	OUT 02	1/5	Avg ± 0.2 1/s		
SHRDFLOW	001 04	1/s	Avg ± 0.2 1/s		
DELTEMP	01	K	$0.0 \pm 0.2 \text{ K}$		
DELTEMP	02	K	$0.0 \pm 0.2 \text{ K}$		
DELTEMP	03	K	0.0 ± 0.2 K		
DELTEMP	04	K	0.0 ± 0.2 K		
RID IFMP	01	К	350 ± 10 K		
CLAD IMP	70-02	K	350 ± 10 K		
CLAD TMP	170-1202	К	350 ± 10 K		
CLAD TMP	27-2402	K	350 ± 10 K		
CLAD TMP	70-04	K	350 ± 10 K		
CLAD TMP	170-1204	K	350 ± 10 K		
CLAD TMP	270-2404	K	350 ± 10 K		
SYS PRES	69 EG&G	MPa	± 3 MPa of Heise		
SYS PRES	14 OUT 02	MP a	± 1 MPa of Heise		
SYS PRES	14 OUT 04	MPa	± 1 MPa of Heise		
NEUTFLX	Q2 0	nA	0.0 ± 0.5 nA		
NEUTFLX	Q4 0	nA	0.0 ± 0.5 nA		
NEUTFLX	Q1 - 300	nA	$0.0 \pm 0.5 \text{ nA}$		
NEUTFLX	Q1 - 120	nA	0.0 ± 0.5 nA		
NEUTFLX	Q1 + 7	nA	0.0 ± 0.5 nA		

47

NEUTFLX	Q1 +	166	 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	nA 0.0	± 0.5	nA	
NEUTFLX	Q1 +	300	r	0.0 Ar	± 0.5	nA	
NEUTFLX	Q3 -	300	r	0.0 A	± 0.5	nA	the second secon
NEUTFLX	Q3 -	150	r	0.0	± 0.5	nA	
NEUTFLX	03	0	r	A 0.0	± 0.5	nA	······
NLUIFLA	43 +	150	r	0.0 A	± 0.5	nA	
NEUTFLX	Q3 +	300	n	0.0 A	± 0.5	nA	
GAMMA	Q1	0	r	0.0	± 0.5	nA	
GAMMA	Q3	0	n	A 0.0	± 0.5	nA	
FISSCHBR	Q2	0	r	0.0 A	± 0.5	nA	
FISSCHBR	Q4	0	r	0.0	± 0.5	nA	

a. Measured at flow shroud turbine meters.

b. To be initialed by the TFBP representative in charge.

c. Cladding displacement at ambient conditions is not generally zero. This offset must be taken into account.

PRE-NUCLEAR OPERATION INSTRUMENT STATUS CHECKLIST NO.___

Reactor Power		0.0 MW	
Coolant Temperature		550Ka	
Heise Gauge Pressure		7.93 MPa	
Shroud Flow Rate ^a	•	0.95 1/s	TFBP Representative

in Charge

Instrument Identifier		PBF/DARS Reading	Required Instrument Reading	Certification Instrument Within Range (b)	
CLAD DSP	01	mm	$0.0^{\circ} \pm 0.5 \text{ mm}$	and the second	
CLAD DSP	02	mm	0.0 ± 0.5 mm		
CLAD DSP	03	mm	0.0 ± 0.5 mm		
CLAU USP	04	mm	0.0 ± 0.5 mm		
INLITEMP	01	K	550 ± 10 K		
INLITEMP	02	K	550 ± 10 K		
INLITEMP	03	K	550 ± 10 K		
INLITEMP	04	K	550 ± 10 K		
OUT TEMP	01	K	550 ± 10 K		
OUT TEMP	02	K	550 ± 10 K		
OUT TEMP	03	K	550 ± 10 K		
OUT TEMP	04	K	550 ± 10 K		
SHRDFLOW	01	1/5	0.95 ± 0.2 1/s		
SHRUFLUW	02	1/5	0.95 ± 0.2 1/s		
SHRDFLOW	03	1/5	0.95 ± 0.2 1/s		
SHRUFLOW	04	1/5	0.95 ± 0.2 1/s		
DELTEMP	01	K	0.0 ± 0.2 K		
DELTEMP	02	K	0.0 ± 0.2 K		
DELTEMP	03	K	0.0 ± 0.2 K		
DELIEMP	04	×	0.0 1 0.2 K		
KUT TEMP	011 02	N.	550 ± 10 K		
SUBDELOW	001 02		$0.95 \pm 0.2 1/5$		
CLAD THD	70 02		550 + 10 V		
CLAD THP	10-02		550 1 10 K		
CLAD TMP	70-1202	V	550 I 10 K		
CLAD THP 2	70-2402	`	550 ± 10 K		
CLAD TMP	/0-04	K	550 I 10 K		
CLAD THP	70-1204	K	550 ± 10 K		
CLAU THP 2	TU-2404	MD	+ 2 MDa of Heiro		
STS PRES 05		MD a	+ 1 MDa of Hoise		
SYS PRES 14	001 02	MD a	+ 1 MDa of Heiro		
STS PRES 14	001 04	MP d	1 I MPa OF Merse		
NEUTELX (12 0	nA	0.0 ± 0.504		
NEUTELX	11 200		0.0 ± 0.504		
NEUIFLX (1 - 300	NA	0.0 1 0.5HA		

a. 500 K or maximum achievable with electrical loop heaters.

NEUTFLX	01	-	120	nA	0.0 ± 0.5nA
NEUTFLX	Q1	+	7	nA	0.0 ± 0.5nA
NEUTFLX	Q1	+	166	nA	0.0 ± 0.5nA
NEUTFLX	Q1	+	300	nA	0.0 ± 0.5nA
NEUTFLX	Q3	*	300	nA	0.0 ± 0.5nA
NEUTFLX	Q3		150	nA	0.0 ± 0.5nA
NEUTFLX	Q3		0	nA	0.0 ± 0.5nA
NLUTFLX	Q3	+	150	nA	0.0 ± 0.5nA
NEUTFLX	Q3	+	300	nA	0.0 ± 0.5nA
GAMMA FLX	QI		0	nA	0.0 ± 0.5nA
GAMMA FLX	Q3		0	nA	0.0 ± 0.5nA
FISSCHBR	Q2		0	nA	0.0 ± 0.5nA
FISSCHBR	Q4		0	nA	0.0 ± 0.5na

a. Measured at flow shroud turbine meters.

b. To be initialed by the TFBP representative in charge.

c. Cladding displacement at ambient conditions is not generally zero. This offset must be taken into account.

APPENDIX B FLOW BALANCE MEASUREMENTS

APPENDIX B FLOW BALANCE MEASUREMENTS

PRENUCLEAR OPERATION FLOW BYPASS MEASUREMENT^a

Coolant Temperature 550 K Coolant Pressure 7.93 MPa Valves GT-BB-10-29-and GT-BB-10-30 must be closed. Variable Orifice closed.

(1/s)	(1/s)	(1/s)	<u>(1/s)</u>	(1/s)	(1/s)
Nominal Shroud Flow ^b (1/s)	Flowrate Inlet Ol (l/s)	Flowrate Inlet 03 (l/s)	Average Shroud Flow (1/s)	Total Loop Flowrate (1/s)	Bypass ^b Flow Ratio (1/s)
0.1 0.2 0.3					
0.4					
0.7					
0.9					

a. To be performed only if maximum shroud flow does not exceed 1.0 1/s.

b. Defined as: Total Loop Flow Rate-(Average Shroud Flow x2). (Average Shroud Flow x2)

PRENUCLEAR OPERATION VARIABLE ORIFICE MEASUREMENTS (Rods 902-1 and 902-2)

Coolant Temperature 550 K Coolant Pressure 7.93 MPa Flowrate Inlet 01 0.30 1/s

Variable Orifice Position (Rod 902-1)	Flowrate Inlet Ol	Flowrate Inlet 02	Flowrate Outlet 02	Shroud Pressure
(% Open)	(1/s)	(1/s)	(1/s)	(MPa)
0				
0				
				Contract Contract of Contract
				An or other Property Stationers and
				And and a state of the state of
				The second second second second
				of the other to prove the second second
0				
0				

 $\frac{1}{2}$

PRENUCLEAR OPERATION VARIABLE ORIFICE MEASUREMENTS (Rods 902-3 and 903-4)

Coolant Temperature 550 K Coolant Pressure 7.93 MPa Flowrate Inlet 03 0.30 1/s

Variable Orifice Position (Rod 902-3) (% Open)	Flowrate Inlet 03 _(l/s)	Flowrate Inlet 04 (l/s)	Flowrate Outlet 04 (l/s)	Shroud Pressure 04 (MPa)
0				
0				