ATTACHMENT 3

UNITS 1 AND 2

Docket Nos. 50-352

50-353

License Nos. NPF-39

NPF-85

TECHNICAL SPECIFICATIONS CHANGE REQUEST

No. 93-19-0

LIST OF AFFECTED PAGES

UNIT 1 UNIT 2

5-8 5-8

DESIGN PRESSURE AND TEMPERATURE (Continued)

- b. For a pressure of:
 - 1. 1250 psig on the suction side of the recirculation pump.
 - 2. 1500 psig from the recirculation pump discharge to the outlet side of the discharge shutoff valve.
 - 3. 1500 psig from the discharge shutoff valve to the jet pumps.
- c. For a temperature of 575°F.

VOLUME

5.4.2 The total water and steam volume of the reactor vessel and recirculation system is approximately 22,400 cubic feet at a nominal steam dome saturation temperature of $547^{\circ}F$.

5.5 FUEL STORAGE

CRITICALITY

- 5.5.1.1 The spent fuel storage racks are designed and shall be maintained with:
 - a. A k_{eff} equivalent to less than or equal to 0.95 when flooded with unborated water, including all calculational uncertainties and biases as described in Section 9.1.2 of the FSAR.
 - b. A nominal center-to-center distance between fuel assemblies placed in the storage racks of greater than or equal to 6.25 inches.
- 5.5.1.2 The $k_{\rm eff}$ for new fuel for the first core loading stored dry in the spent fuel storage racks shall not exceed 0.98 when aqueous foam moderation is assumed.

DRAINAGE

5.5.2 The spent fuel storage pool is designed and shall be maintained to prevent inadvertent draining of the pool below elevation 346'0".

CAPACITY

5.5.3 The spent fuel storage pool is designed and shall be maintained with a storage capacity limited to no more than 4117 fuel assemblies.

5.6 COMPONENT CYCLIC OR TRANSIENT LIMIT

5.6.1 The components identified in Table 5.6.1-1 are designed and shall be maintained within the cyclic or transient limits of Table 5.6.1-1.

DESIGN PRESSURE AND TEMPERATURE (Continued)

- b. For a pressure of:
 - 1. 1250 psig on the suction side of the recirculation pump.
 - 2. 1500 psig from the recirculation pump discharge to the outlet side of the discharge shutoff valve.
 - 3. 1500 psig from the discharge shutoff valve to the jet pumps.
- c. For a temperature of 575°F.

VOLUME

5.4.2 The total water and steam volume of the reactor vessel and recirculation system is approximately 22,400 cubic feet at a nominal steam dome saturation temperature of 547°F.

5.5 FUEL STORAGE

CRITICALITY

- 5.5.1.1 The spent fuel storage racks are designed and shall be maintained with:
 - A k_{eff} equivalent to less than or equal to 0.95 when flooded with unborated water, including all calculational uncertainties and biases as described in Section 9.1.2 of the FSAR.
 - b. A nominal center-to-center distance between fuel assemblies placed in the storage racks of greater than or equal to 6.25 inches.
- 5.5.1.2 The $k_{\rm eff}$ for new fuel for the first core loading stored dry in the spent fuel storage racks shall not exceed 0.98 when aqueous foam moderation is assumed.

DRAINAGE

5.5.2 The spent fuel storage pool is designed and shall be maintained to prevent inadvertent draining of the pool below elevation 346'0".

CAPACITY

5.5.3 The spent fuel storage pool is designed and shall be maintained with a storage capacity limited to no more than 4117 fuel assemblies.

5.6 COMPONENT CYCLIC OR TRANSIENT LIMIT

5.6.1 The components identified in Table 5.6.1-1 are designed and shall be maintained within the cyclic or transient limits of Table 5.6.1-1.

ATTACHMENT 2

HOLTEC INTERNATIONAL LICENSING REPORT

SPENT FUEL STORAGE
CAPACITY EXPANSION FOR
LIMERICK GENERATING STATION,
UNITS 1 AND 2

SAFETY ANALYSIS REPORT

LICENSING REPORT FOR

SPENT FUEL
STORAGE CAPACITY EXPANSION

LIMERICK GENERATING STATION
UNITS 1 AND 2

Prepared by HOLTEC INTERNATIONAL Report No. HI-931012