

Commonwealth Edison

Quad Cities Nuclear Power Station 22710 206 Avenue North Cordova, Illinois 61242 Telephone 309/654-2241

AMS-93-12

November 2, 1993

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D.C. 20555

SUBJECT: Quad Cities Nuclear Station Units 1 and 2 Monthly Performance Report NRC Docket Nos. 50-254 and 50-265

Enclosed for your information is the Monthly Performance Report covering the operation of Quad-Cities Nuclear Power Station, Units One and Two, during the month of October 1993.

Respectfully,

COMMONWEALTH EDISON COMPANY QUAD-CITIES NUCLEAR POWER STATION

Anthony M. Scott System Engineering Supervisor

AMS/dak

Enclosure

cc: J. Martin, Regional Administrator T. Taylor, Senior Resident Inspector

PDR

9311150185 93103:

ADOCK 05000254

PDR

TECHOP3/NRC/MONTHLY.RPT

151101

QUAD-CITIES NUCLEAR POWER STATION

UNITS 1 AND 2

MONTHLY PERFORMANCE REPORT

October 1993

COMMONWEALTH EDISON COMPANY

AND

IOWA-ILLINOIS GAS & ELECTRIC COMPANY

NPC DOCKET NOS. 50-254 AND 50-265

LICENSE NOS. DPR-29 AND DPR-30

.

TABLE OF CONTENTS

- I. Introduction
- II. Summary of Operating Experience
 - A. Unit One

B. Unit Two

- III. Plant or Procedure Changes, Tests, Experiments, and Safety Related Maintenance
 - A. Amendments to Facility License or Technical Specifications
 - B. Facility or Procedure Changes Requiring NRC Approval
 - C. Tests and Experiments Requiring NRC Approval
 - D. Corrective Maintenance of Safety Related Equipment
- IV. Licensee Event Reports
- V. Data Tabulations
 - A. Operating Data Report
 - B. Average Daily Unit Power Level
 - C. Unit Shutdowns and Power Reductions

VI. Unique Reporting Requirements

A. Main Steam Relief Valve Operations

B. Control Rod Drive Scram Timing Data

VII. Refueling Information

VIII. Glossary

TECHOP3\NRC\MONTHLY.RPT

I. INTRODUCTION

Quad-Cities Nuclear Power Station is composed of two Boiling Water Reactors, each with a Maximum Dependable Capacity of 769 MWe Net, located in Cordova, Illinois. The Station is __intly owned by Commonwealth Edison Company and Iowa-Illinois Gas & Electric Company. The Nuclear Steam Supply Systems are General Electric Company Boiling Water Reactors. The Architect/Engineer was Sargent & Lundy, Incorporated, and the primary construction contractor was United Engineers & Constructors. The Mississippi River is the condenser cooling water source. The plant is subject to license numbers DPR-29 and DPR-30, issued October 1, 1971, and March 21, 1972, respectively; pursuant to Docket Numbers 50-254 and 50-265. The date of initial Reactor criticalities for Units One and Two, respectively were October 18, 1971, and April 26, 1972. Commercial generation of power began on Pebruary 18, 1973 for Unit One and March 10, 1973 for unit Two.

This report was compiled by Matt Benson and Debra Kelley, telephone number 309-654-2241, extensions 2995 and 2240.

II. SUMMARY OF OPERATING EXPERIENCE

A. Unit One

Quad Cities Unit One began the month of October 1993 at full power. On October 16, Unit One was reduced to 25% power so a drywell entry could be made to test the torque switch settings of the recirculation 1-0202-5A ...alve. Concern over the 1-0202-5A valves ability to close under design basis differential pressure lead to the test.

B. Unit Two

Quad Cities Unit Two began the month of October 1993 at full power. On October 1, Unit Two reduced power and took the turbine off line due to a hot cable in the Main Power transformer cabinet. The cable was replaced and the generator was back on line less than 5 hours later that same evening.

On October 17, Unit Two was reduced to 25% power so a drywell entry could be made to test the torque switch settings of the recirculation 2-0202-5B valve. Concern over the 2-0202-5B valves ability to close under design basis differential pressure lead to the test.

III. PLANT OR PROCEDURE CHANGES, TESTS, EXPERIMENTS, AND SAFETY RELATED MAINTENANCE

A. Amendments to Facility License or Technical Specifications

There were no Amendments to the Facility License or Technical Specifications for the reporting period.

B. Facility or Procedure Changes Requiring NRC Approval

There were no Facility or Procedure changes requiring NRC approval for the reporting period.

C. Tests and Experiments Requiring NRC Approval

There were no Tests or Experiments requiring NRC approval for the reporting period.

D. Corrective Maintenance of Safety Related Equipment

The following represents a tabular summary of the major safety related maintenance performed on Units One and Two during the reporting period. This summary includes the following: Work Request Numbers, Licensee Event Report Numbers, Components, Cause of Malfunctions, Results and Effects on Safe Operation, and Action Taken to Prevent Repetition.

UNIT 1 & 1/2 MAINTENANCE SUMMARY

NWR#	SYSTEM	EPN#	WORK REQUESTED	WORK PERFORMED
Q10057	1000	1-1001-34B	Install new motor, pinion, and worm shaft gear for 1B torus spray/torus cooling stop valve.	Replaced limitorque with new motor, worm shaft, and pinion.
Q10142	1400	1-1402-57	Troubleshoot/repair ESS fill system pump. Motor temperature observed high.	Found filter clogged. Replaced entire pump/motor assembly.
Q10171	1100	1-1100	Adjust heat tracing for standby liquid control piping.	Adjusted heat tracing to acceptable range.
Q10275	203	1-203-1B	Troubleshoot/repair 1B MSIV. Dual indication received.	Replaced and adjusted limit switch.
Q10396	5700	1/2-5741- 335	Repair pressure indicator for "B" control room HVAC compressor discharge.	Removed gauge, recalibrated, and reinstalled.
Q10519	756	1-756-6	Troubleshoot/repair APRM #6. Positive voltage out of tolerance.	Replaced voltage regulator.
Q89660	8350	1/2-8350	Investigate/repair 250VDC charger.	Installed new relays and circuit boards.

UNIT 2 MAINTENANCE SUMMARY

NWR#	SYSTEM	EPN#	WORK REQUESTED	WORK PERFORMED
Q07630	1000	2-1001-65C	Repair RHR service water pump as required.	Replaced casing ring and rebuilt pump.
Q08627	300	2-305-125- 1043	Replace nitrogen/water accumulator. Water is leaking past piston.	Replaced accumulator with a new one.
Q09529	263, 600	2-263- 100A,B 152A,B 2-640- 29B,3B 2-646B	Repair/recalibrate reactor water level indicators.	Calibrated both "A"and "B" loops.
Q09837	220	2-220-62B	Repair "B" feedwater header 1st outboard check valve. Seal ring leaks.	Replaced seal ring and tightened bolts to 1 1/2 times normal torque. Reduced leakage from 3 and 1/2 gal/min to 1 quart/min.
Q09997	203	2-203-1A	Repair 1A inboard MSIV. Did not fail safe during surveillance.	Replaced live load assembly and packing assembly.
Q09998	203	2-203-1D	Repair 1D inboard MSIV. Did not fail safe during surveillance.	Unpacked valve and repacked valve with a new carbon spacer.
Q10092	750	2-750-7G	Investigate/repair IRM spiking full scale.	Replaced preamplifier.
Q19107	1000	2-1001-34A	Troubleshoot RHR torus spray/dump shutoff valve.	Replaced motor, worm shaft, pinion, and overload heater.

NWR#	SYSTEM	EPN#	WORK REQUESTED	WORK PERFORMED
Q10218	2300	2-2301-3	Investigate/repair leak on HPCI turbine inlet valve.	Replaced valve stem, seal ring, valve sleeve, and packing assembly.
Q10361	1000	2-1099-75C	Repair 2C RHR service water pump upstream seal isolation valve.	Found valve exterior badly corroded and valve stem frozen in the closed position. Took valve apart, cleaned, and reinstalled.
Q10363	1000	2-1099-76C	Repair 2C RHR service water pump downstream seal isolation valve.	Found valve exterior badly corroded and valve stem frozen in the closed position. Took valve apart, cleaned, and reinstalled.
Q10542	1700	2-1705-3B	Troubleshoot/repair "B" steam jet air ejector log rad monitor.	Replaced printed circuit board with correct type.
Q106D8	590	2-590-108D	Repair SCRAM relay. Aux contact arm was disengaged from main relay.	Installed plunger post back into plunger arm.
Q10788	300	2-305-101- 1831	Repair CRD insert valve leak.	Found packing bolt broken off and valve leaking. Installed new valve, bolt, and nut.

IV. LICENSEE EVENT REPORTS

The following is a tabular summary of all licensee event reports for Quad-Cities Units One and Two occurring during the reporting period, pursuant to the reportable occurrence reporting requirements as set forth in sections 6.6.B.1 and 6.6.B.2 of the Technical Specifications.

UNIT 1

There were no licensee event reports for Unit 1 for this reporting period.

Licensee Event Report Number	Date	Title of occurrence
93-022	10-07-93	RCIC declared INOP when floor drain check valve failed test.

UNIT 2

V. DATA TABULATIONS

The following data tabulations are presented in this report:

- A. Operating Data Report
- B. Average Daily Unit Power Level
- Unit Shutdowns and Power Reductions

APPEN	DIX C		
OPERATING D	ATA REPORT		
		DOCKET NO.	50-254
		UNIT	One
		DATE	November 4, 1993
		COMPLETED BY	Matt Benson
		TELEPHONE	(309) 654-2241
OPERATING STATUS			
0000 100193 1. REPORTING PERIOD: 2400 103193 GROSS HOURS IN	REPORTING PERIOD	: 745	
2. CURRENTLY AUTHORIZED POWER LEVEL (MWt): 251 DESIGN ELECTRICAL RATING (MWe-NET): 789	1 MAX > DEPEND	> CAPACITY: 769	
3. POWER LEVEL TO WHICH RESTRICTED (IF ANY) (MW	e-Net): N/A		
4. REASONS FOR RESTRICTION (IF ANY):			
	THIS MONTH	YR TO DATE	CUMULATIVE
5. NUMBER OF HOURS REACTOR WAS CRITICAL	745.00	6494.20	149255.1(
6. REACTOR RESERVE SHUTDOWN HOURS	0.00	0.00	3421.90
7. HOURS GENERATOR ON LINE	745.00	6428.80	144820.40
8. UNIT RESERVE SHUTDOWN HOURS	0.00	0.00	909.20
9. GROSS THERMAL ENERGY GENERATED (MWH)	1756263.00	15052293.30	312634117.10
10. GROSS ELECTRICAL ENERGY GENERATED (MWH)	574387.00	4932446.00	101351536.00
11. NET ELECTRICAL ENERGY GENERATED (MWH)	549380.00	4718622.00	95594134.00
12. REACTOR SERVICE FACTOR	100.00	89.01	78.99
13. REACTOR AVAILABILITY FACTOR	100.00	89.01	80.80
14. UNIT SERVICE FACTOR	100.00	88.11	76.64
15. UNIT AVAILABILITY FACTOR	100.00	88.11	77.12
16. UNIT CAPACITY FACTOR (Using MDC)	95.89	84.10	65.75
17. UNIT CAPACITY FACTOR (Using Design MWe)	93.46	81.97	64.12
18. UNIT FORCED OUTAGE RATE	0.00	11.89	6.30
19. SHUTDOWNS SCHEDULED OVER NEXT 6 MONTHS (T)	YPE, DATE, AND DU	RATION OF EACH)	
20. IF SHUTDOWN AT END OF REPORT PERIOD < ESTIMA	TED DATE OF STAR	TUP:	
21. UNITS IN TEST STATUS (PRIOR TO COMMERCIAL OPE	RATION):		
	FORECAST	ACHIEVED	
INITIAL CRIFICALITY			
INITIAL ELECTRICITY			
COMMERCIAL OPERATION			

TECHOP3/NRC/MONTHLY.RPT

APPEN	DIX C		
OPERATING D	ATA REPORT		
		DOCKET NO.	50-265
		UNIT	Two
		DATE	November 4, 1993
		COMPLETED BY	Matt Benson
		TELEPHONE	(309) 654-2241
OPERATING STATUS			
0000 100193 1. REPORTING PERIOD: 2400 103193 GROSS HOURS IN	REPORTING PERIOD): 745	
2. CURRENTLY AUTHORIZED POWER LEVEL (MWt): 251 DESIGN ELECTRICAL RATING (MWe-NET): 789	1 MAX> DEPEND	> CAPACITY: 769	
3. POWER LEVEL TO WHICH RESTRICTED (IF ANY) (MW	e-Net): N/A		
4. REASONS FOR RESTRICTION (IF ANY):			
	THIS MONTH	YR TO DATE	CUMULATIVE
5. NUMBER OF HOURS REACTOR WAS CRITICAL	745.00	3965.50	143140.7
6. REACTOR RESERVE . AUTDOWN HOURS	0.00	0.00	2985.8
7. HOURS GENERATOR ON LINE	740.30	3781.40	139422.8
8. UNIT RESERVE SHUTDOWN HOURS	0.00	0.00	702.9
9. GROSS THERMAL ENERGY GENERATED (MWH)	1732716.00	8269142.00	300932551.2
10. GROSS ELECTRICAL ENERGY GENERATED (MWH)	577251.00	2688045.00	96713306.0
11. NET ELECTRICAL ENERGY GENERATED (MWH)	552497.00	2545349.00	91576092.0
12. REACTOR SERVICE FACTOR	100.00	54.35	76.3
13. REACTOR AVAILABILITY FACTOR	100.00	54.35	77.9
14. UNIT SERVICE FACTOR	99.37	51.83	74.4
15. UNIT AVAILABILITY FACTOR	99.37	51.83	74.7
16. UNIT CAPACITY FACTOR (Using MDC)	96.44	45.37	63.5
17. UNIT CAPACITY FACTOR (Using Design MWe)	93.99	44.22	61.9
18. UNIT FORCED OUTAGE RATE	0.63	29.13	8.5
19. SHUTDOWNS SCHEDULED OVER NEXT 6 MONTHS (T)	YPE, DATE, AND DU	RATION OF EACH)	
20. IF SHUTDOWN AT END OF REPORT PERIOD < ESTIMA	TED DATE OF STAR	TUP:	
21. UNITS IN TEST STATUS (PRIOR TO COMMERCIAL OPE	RATION)		
	FORECAST	ACHIEVED	
INITIAL CRITICALITY			
INITIAL ELECTRICITY			
COMMERCIAL OPERATION			

TECHOP3/NRC/MONTHLY.RPT

APPENDIX B AVERAGE DAILY UNIT POWER LEVEL

		DOCKET NO UNIT DATE COMPLETED BY TELEPHONE	November 4, 1993 Matt Benson
MONTH	October 1993		
DAY AVER	AGE DAILY POWER LEVEL (MWe-Net)		DAILY POWER LEVEL (MWe-Net)
i.	761	17	660
2.	762	18	757
3.	727	19	761
4	760	* 20	760
5.	754	21	758
6.	75.8	22	760
7.	755	23	729
8.	756	24	755
9	760	25	757
10.	758	26	758
11.	754	27	759
12.	757	28	757
13.	758	29	761
14	760	30	760
15	734	, 31	760
16	280		

INSTRUCTIONS

On this form, list the average daily unit power level in MWe-Net for each day in the reporting month. Compute to the nearest whole megawatt. These figures will be used to plot a graph for each reporting month. Note that when maximum dependable capacity is used for the net electrical rating of the unit, there may be occasions when the daily average power level exceeds the 100% line (or the restricted power level line). In such cases, the average daily unit power output sheet should be footnoted to explain the apparent anomaly.

1.16-8

APPENDIX B AVERAGE DAILY UNIT POWER LEVEL

		DOCKET NO UNIT DATE	50-265 Two November 4, 1993	
		COMPLETED BY	Matt Benson	
MONTH	A October 1993	TELEPHONE	(309) 654-2241	
DAY 2	AVERAGE DAILY POWER LEVEL (MWe-Net)		DAILY POWER LEVEL (MWe-Net)	
1.	503	17	400	
2.	697	18	754	
з.	766	19	760	
4.	768	20	763	
5.	769	21	765	
6.	766	22	765	
7.	766	23	765	
8.	764	24	761	
9.	765	25	762	
10.	766	26	765	
11.	766	27	764	
12.	763	28	765	
13.	755	29	766	
14.	761	30	766	
15.	765	31	765	
16.	747			

INSTRUCTIONS

On this form, list the average daily unit power level in MWe-Net for each day in the reporting month. Compute to the nearest whole megawatt. These figures will be used to plot a graph for each reporting month. Note that when maximum dependable capacity is used for the net electrical rating of the unit, there may be occasions when the daily average power level exceeds the 100% line (or the restricted power level line). In such cases, the average daily unit power output sheet should be footnoted to explain the apparent anomaly.

APPENDIX D UNIT SHUTDOWNS AND POWER REDUCTIONS

DOCKET NO. 50-254

UNIT NAME COMPLETED BY Matt Benson One October 1993 DATE October 6, 1993 REPORT MONTH TELEPHONE 309-654-2241 METHOD OF SHUTTING DOWN REACTOR COMPONENT T.ZE FORS SYSTEM CODE REASON LICENSEE DURATION EVENT CORRECTIVE ACTIONS/COMMENTS NO. DATE (HOURS) REPORT 93-54 10-15-93 17.8 F B 5 LPCI Mode INOP because of Recirc 5A Valve Torque Switch setting.

APPENDIX D UNIT SHUTDOWNS AND POWER REDUCTIONS

DOCKET NO. 50-265

UNIT NAME	Two	COMPLETED BY	Matt Benson
DATE	Novebmer 4, 1993 REPORT MONTH October, 1993	TELEPHONE	309-654-2241

NO.	DATE	TYPE F OR S	DURATION (HOURS)	REASON	METHOD OF SHUTTING DOWN REACTOR	LICENSEE EVENT REPORT	SYSTEM CODE	COMPONENT	CORRECTIVE ACTIONS/COMMENTS
93-16	10-01-93	P	4.7	В	5				Hot Cable on TR2 Cabinet.
93-17	10-16-93	F	13.5	В	5				LPCI Mode INOP because of Recirc 5B Valve Torque Switch Setting.
						*			
			filia de la						
-									
in an i strange e conse									
						*			
						General and a second			

VI. UNIQUE REPORTING REQUIREMENTS

The following items are included in this report based on prior commitments to the commission:

A. Main Steam Relief Valve Operations

There were no Main Steam Relief Valve Operations for the reporting period.

B. Control Rod Drive Scram Timing Data for Units One and Two

The basis for reporting this data to the Nuclear Regulatory Commission are specified in the surveillance requirements of Technical Specifications 4.3.C.1 and 4.3.C.2.

The following table is a complete summary of Units One and Two Control Rod Drive Scram timing for the reporting period. All scram timing as performed with reactor pressure greater than 800 PSIG.

RESULTS OF SCRAM TIMING MEASUREMENTS PERFORMED ON UNIT 1 & 2 CONTPOL ROD DRIVES, FROM 01/01/93 TO 12/31/93

			3E TIME IN TED FROM H			MAX. TIME FOR 90% INSERTION	DESCRIPTION
DATE	NUMBER OF RODS	<u>5</u> 0.375	20 0.900	50 2,00	90 3.5	7 sec.	Technical Specification 3.3.C.1 & 3.3.C.2 (Average Scram Insertion Time)
01-28-93	1	0.30	0.67	1.42	. 5	H-12 2.15	For Accumulator Replacement
02-12-93	1	0.33	0.72	1.54	2.77	D-5 2.77	Accumulator Replacement U2 Q05404
02-26-93	1	0.32	0.69	1.46	2.61	K-7 2.61	Scram Inlet Valve U2 Q05593
05-28-93	177	0.32	0.705	1.49	2.60	D-9 3.47	U2 Start Up Scram Timing Q2R12
07-13-93	4	0.33	0.73	1.51	2,60	D-9 2.69	For WR Test Q08085 Q07146 U2 Q08364 Q07147
07-23-93	90	0.31	0.69	1.45	2.53	D-8 3.4	U1 SEQA & Q08229
07-29-93	1	0.32	0.71	1.51	2.66	F-10 2,66	U2 Q08629 Accumlator
08-07-93	1	0.28	0.64	1.37	2.39	F-15 2.39	Ul Q09059 Scram Solenoid
08-19-93	1	0.28	0,60	1.26	2.19	A-8 2.19	Ul 209374 Diaphragm
09-24-93	1	0.32	0.68	1.41	2.46	C-11 2.46	U2 Q08627 Accumulator
10-23-93	1	0.34	0.71	1.45	2.51	D-4 2.51	U1 Q11022 Scram Valve
10-28-93	1	0.28	0,65	1.42	2.52	J-12 2.52	U1 Q11231, Q11151 2 WR 1 CRD

VII. REFUELING INFORMATION

The following information about future reloads at Quad-Cities Station was requested in a January 26, 1978, licensing memorandum (78-24) from D. E. O'Brien to C. Reed, et al., titled "Dresden, Quad-Cities and Zion Station--NRC Request for Refueling Information", dated January 18, 1978.

QTP 300-S32 Revision 2 October 1989

QUAD CITIES REFUELING INFORMATION REQUEST

1.	Unit:	Reload:	Cycle:	13	
2.	Scheduled date for nex	t refueling shutdown:		3-14-94	
3.	Scheduled date for res	tart following refueling:		6-13-94	

 Will refueling or resumption of operation thereafter require a Technical Specification change or other license amendment:

 Scheduled date(s) for submitting proposed licensing action and supporting information:

11-19-93

6. Important licensing considerations associated with refueling, e.g., new or different fuel design or supplier, unreviewed design or performance analysis methods, significant changes in fuel design, new operating procedures:

160 GE10 Fuel Bundles will be loaded during Q1R13.

The number of fuel assemblies.

a.	Number	of	assemblies	in	core:			724
b.	Number	of	assemblies	In	spent	fuel	poo1:	1557

8. The present licensed spent fuel pool storage capacity and the size of any increase in licensed storage capacity that has been requested or is planned in number of fuel assemblies:

а.	Licensed storag	e capacity for spent fuel:	3657
b.	Planned increas	e in licensed storage:	0

9. The projected date of the last refueling that can be discharged to the spent fuel pool assuming the present licensed capacity: 2009

> APPROVED 001 3.0 1989 0.C.O.S.R.

14/0395t

(final)

YES. Safety Limit MCPR to be changed from 1.06 to 1.07 due to GE10 Fuel.

QUAD CITIES REFUELING INFORMATION REQUEST

QTP 300-532 Revision 2 October 1989

ţ.	Unit:Q2	Reload: 12	Cycle: 13
2.	Scheduled date for next	refueling shutdown:	09-24-94
3.	Scheduled date for rest	art following refueling:	12-04-94

 Will refueling or resumption of operation thereafter require a Technical Specification change or other license amendment:

YES - Safety limit MCPR to be changed from 1.06 to 1.07 due to GE10 Fuel.

- Scheduled date(s) for submitting proposed licensing action and supporting information: 5-13-94
- Important licensing considerations associated with refueling, e.g., new or different fuel design or supplier, unreviewed design or performance analysis methods, significant changes in fuel design, new operating procedures:

GE10 Fuel will be loaded during Q2R13.

7. The number of fuel assemblies.

ā.	Number o	fassemblies	in	core:	724
b.	Number o	fassemblies	in	spent fuel pool:	2583

8. The present licensed spent fuel pool storage capacity and the size of any increase in licensed storage capacity that has been requested or is planned in number of fuel assemblies:

а.	Licensed sto	rage capaci	ty for spent fuel:	3897
b.	Planned incr	ease in lic	ensed storage:	0

9. The projected date of the last refueling that can be discharged to the spent fuel pool assuming the present licensed capacity: 2009

> APPROVED 001 3 0 1989 0.C.O.S.R.

VIII. GLOSSARY

The following abbreviations which may have been used in the Monthly Report, are defined below:

ACAD/CAM	÷,	Atmospheric Containment Atmospheric
		Dilution/Containment Atmospheric Monitoring
ANSI	-	American National Standards Institute
APRM	\sim	Average Power Range Monitor
ATWS	14	Anticipated Transient Without Scram
BWR	÷	Boiling Water Reactor
CRD	-	Control Rod Drive
EHC	į,	Electro-Hydraulic Control System
EOF		Emergency Operations Facility
GSEP		Generating Stations Emergency Plan
HEPA		High-Efficiency Particulate Filter
HPCI		High Pressure Coolant Injection System
HRSS		High Radiation Sampling System
IPCLRT		Integrated Primary Containment Leak Rate Test
IRM		Intermediate Range Monitor
ISI		Inservice Inspection
LER		Licensee Event Report
LLRT		Local Leak Rate Test
LPCI		Low Pressure Coolant Injection Mode of RHRs
LPRM		Local Power Range Monitor
MAPLHGE		Maximum Average Planar Linear Heat Generation Rate
MCPR		Minimum Critical Power Ratio
MFLCPR		Maximum Fraction Limiting Critical Power Ratio
MPC		Maximum Permissible Concentration
MSIV		Main Steam Isolation Valve
NIOSH		National Institute for Occupational Safety and Health
PCI		Primary Containment Isolation
PCIOMR		
RBCCW		Preconditioning Interim Operating Management Recommendations
RBM		Reactor Building Closed Cooling Water System Rod Block Monitor
RCIC		
		Reactor Core Isolation Cooling System
RHRS		Residual Heat Removal System
RPS		Reactor Protection System
RWM		Rod Worth Minimizer
SBGTS		Standby Gas Treatment System
SBLC		Standby Liquid Control
SDC		Shutdown Cooling Mode of RHRS
SDV		Scram Discharge Volume
SRM		Source Range Monitor
TBCCW		Turbine Building Closed Cooling Water System
TIP		Traversing Incore Probe
TSC	-141	Technical Support Center