

# ENTERGY OPERATIONS INCORPORATED ARKANSAS NUCLEAR ONE 20 of 20

# Q

# ENGINEERING REPORT FOR ARKANSAS NUCLEAR ONE RUSSELLVILLE, ARKANSAS

| -    | 93082300<br>PDR ADO<br>P | 08 930811<br>CK 05000368<br>PDR                          |          |          |           |
|------|--------------------------|----------------------------------------------------------|----------|----------|-----------|
| 1 I  | 8/11/93                  | MINOT REVISIONS FOR CLARIFICATION                        | ACKAT    | Î24      | 115       |
| O    | 9/2/92                   | Initial Issue                                            | ACK      | Ta       | hulwin    |
| NO.  | DATE                     | REVISIONS                                                | BY       | СН'К     | APPR.     |
|      | ANO-2<br>ANALY           | STEAM GENERATOR DEGRADED TUBE<br>SIS PER FEG GUIDE 1.121 | 92-R-2   | 025-01   | 1 or Aces |
| FORM | TITLE                    |                                                          | REPORT   | REV.     |           |
|      | FNGI                     | FERING REPORT COVER SHEET                                | FORM NO. | 010.017A | REV.      |

92-R-2025-01 Rev. 1 Page 1 of 4

TABLE OF CONTENTS

1.0 PURPOSE

2.0 SUMMARY OF APPROACH

3.0 SUMMARY OF RESULTS

4.0 ATTACHMENTS

Attachment A - C-E Report CR-9417-CSE92-1102, REV. 0, "Evaluation of Circumferential Defects at the Expansion Transition in Arkansas Nuclear One Unit 2 Steam Generator Tubes".

Attachment B - MPR Associates, Inc. Report dated August 26, 1992, "Evaluation of Arkansas Nuclear One Unit 2 Steam Generator Tube Wall Degradation".

#### 1.0 PURPOSE

In March 1992, ANO-2 was shut down as a result of a tube leak in the "A" steam generator (one of two steam generators: 2E24 A & B). Inspections were performed to determine the extent of degradation associated with the leaker. These inspections revealed significant degradation in the expansion transition region of the tubing, just above the tubesheet, on the hot leg side, primarily in the "A" generator, but also in the "B" generator. This degradation was essentially circumferential in nature, with axial extent limited to less than 0.25 inch, based on eddy current testing. This is also consistant with the limited axial extent of the expansion transition where the residual stresses imposed on the tube by the expansion contribute to the stress corrosion cracking which caused the defects, based on tubes pulled from the generators for examination. Due to the large size of the defects (both circumferential and thru-wall extent), an evaluation of the allowable tube wall degradation was performed. The purpose of this report is to document the evaluation done to determine the maximum allowable tube wall degradation in accordance with (draft) Reg Guide 1.121. This allowable degradation is used to support the tube plugging criteria and related safety margins for ANO-2 steam generators.

#### 2.0 SUMMARY OF APPROACH

A structural evaluation of maximum allowable degradation was performed by Combustion Engineering (C-E) in accordance with the Reg Guide requirements, as interpreted by C-E. The report of this work is contained in Attachment A. This report was then independently reviewed by MPR Associates, Inc. Their review, along with their interpretations of the requirements of the Reg Guide, were factored into their report, Attachment B. In addition, since axial cracking in the egg crate support region is also an emerging issue for ANO-2, MPR was tasked to expand their results to include additional information to support criteria specifically for axial cracks.

#### 2.1 C-E Approach

C-E evaluated the structural integrity of the flawed tubing for normal operating conditions including flow induced vibration, and accident loads coincident with Safe Shutdown Earthquake (SSE) loads. These loads were considered for three cases:

- 1) Unlimited axial and circumferential extent,
- A limited axial extent of 0.25 inch maximum and unlimited circumferential extent, and

92-R-2025-01 Rev. 1 Page 3 of 4

3) A limited axial extent of 0.25 inch maximum, and the maximum allowable 100% thru-wall defect was determined.

The analysis considered both Code required mimimum material strength, and a conservative estimate of actual material strength expected in ANO-2 based on yield strengths of typical tubing supplied to C-E in accordance with their tubing specifications. In addition, the analysis also considered degradation initiating on both the inside and outside of the tubing.

#### 2.2 MPR Approach

MPR provides a point by point discussion of the Reg Guide requirements, compares the C-E analysis to them, and provides additional evaluations where necessary, based on their interpretation of the Reg Guide. Significant items from the report are:

- MPR agrees with the results of the first case for unlimited axial and circumferential extent.
- 2) The C-E evaluation uses the tube burst data directly to estimate the allowable degradation for the second case defect. The MPR evaluations also utilize the burst test data, but account for differences in tubing and defect parameters between the burst test tubing and the ANO-2 tubing.
- 3) The results for C-E's third case of limited axial extent and 100% thru-wall are misleading, as they actually apply to slot type defects rather than a defect which is 0.25 inch wide. However, based on burst tests for other tubing with defects similar to ANO-2, it is expected that ANO-2 tubing will behave such that average remaining wall thickness is the appropriate criteria. See Attachment B, pages 3-6 and 3-7, for additional information.

#### 3.0 SUMMARY OF RESULTS

The overall results are summarized in Table 1, below.

92-R-2025-01 Rev. 1 Page 4 of 4

#### TABLE 1

| Types of Degradation                                 | <u>C-E Results<sup>2</sup></u> | MPR Results <sup>2</sup> |
|------------------------------------------------------|--------------------------------|--------------------------|
| Unlimited axial and circumferential extent           | 65.8%                          | 66%                      |
| 0.25 inch max axial<br>length at 360° circ<br>extent | 77%                            | 79%                      |
| axial slot type                                      | NA                             | See Attach.<br>B, Fig. 1 |

asymmetrical defects at the tubesheet or tube support elevations, or symmetrical defects at any location

<sup>2</sup> conservative best estimate tubing properties

Based on a detailed review of Attachments A and B, Design Engineering considers a limit of 79 % through wall to be appropriate for the pertinent defects of current interest (0.25 inch maximum axial length, 360 degree circumferential extent). Notably, this 79% value is based on calculations/tests for planar defects and is, therefore, conservative with regard to actual ANO-2 defects which have ligament strength between microcracks. ABB COMBUSTION ENGINEERING NUCLEAR POWER Combustion Engineering, Inc.

# EVALUATION OF

# CIRCUMFERENTIAL DEFECTS AT THE

# EXPANSION TRANSITION IN ARKANSAS NUCLEAR ONE

# UNIT 2 STEAM GENERATOR TUBES

CR-9417-CSE92-1102, REV. 0

| MATTACH A | PAGE     | 1 | OF  | 41  |
|-----------|----------|---|-----|-----|
| DOCUMENT  | 92 · R · | 2 | 025 | -01 |



# NCS ENGINEERING CALCULATION REPORT

CR-9417-CSE92-1102, REV. 0

# EVALUATION OF CIRCUMFERENTIAL DEFECTS

# AT THE EXPANSION TRANSITION

IN ARKANSAS NUCLEAR ONE - UNIT 2 STEAM GENERATOR TUBES

PREPARED BY: C.L. Stubbi Church & Hatte DATE: 4/23/92

| document n<br>Review usi       | -Related desi<br>as been verif<br>ng Checklist( | ied to be ( | correct by m<br>of QAM- | ed in this<br>eans of Desi<br>101. |
|--------------------------------|-------------------------------------------------|-------------|-------------------------|------------------------------------|
| Name <u>B.A.</u><br>Independen | BELL Sig                                        | nature 🗷    | a. Bell                 | Date 4/23/9                        |

Saly DATE: 4123/92 APPROVED BY: J.H. Sodergren



| POCUMENT<br>PPE & NO. | þ | 2  | •  | R |   | 3 | 0 | 3 | 5 |   | 0 | 1 |
|-----------------------|---|----|----|---|---|---|---|---|---|---|---|---|
| ATTACH A              |   | PA | GE |   | - | 2 | - | 0 | F | 4 | 1 |   |

# CR-9417-CSE92-1102, REV. 0 Page 2 of 40

| 0 04/23/92 Original Issue C. L.<br>Stubbs B.A. Bell Sodergren | NUMBER DATE | PARAGRAPH(S)<br>INVOLVED | PREPARED        | INDEPENDENT<br>REVIEWER | APPROVED           |
|---------------------------------------------------------------|-------------|--------------------------|-----------------|-------------------------|--------------------|
|                                                               | 0 04/23/9   | 2 Original Issue         | C. L.<br>Stubbs | B.A. Bell               | J. H.<br>Sodergren |
|                                                               |             |                          |                 |                         |                    |
|                                                               |             |                          |                 |                         |                    |
|                                                               |             |                          |                 |                         |                    |
|                                                               |             |                          |                 |                         |                    |
|                                                               |             |                          |                 |                         |                    |
|                                                               |             |                          |                 |                         |                    |
|                                                               |             |                          |                 |                         |                    |
|                                                               |             |                          |                 |                         |                    |
|                                                               |             |                          |                 |                         |                    |
|                                                               |             |                          |                 |                         |                    |
|                                                               |             |                          |                 |                         |                    |
|                                                               |             |                          |                 |                         |                    |

#### RECORD OF REVISIONS

| POCUMENT | \$2-R | - 20 | )25 | -01 |
|----------|-------|------|-----|-----|
| ATTACH A | PAGE  | 3    | OF  | 41  |

CR-9417-CSE92-1102, REV. 0 Page 3 of 40

# TABLE OF CONTENTS

|      |      |                                                                                                                                  | PAGE                   |
|------|------|----------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 0.1  | INTR | ODUCTION                                                                                                                         | 4                      |
| 2.0  | SUM  | MARY OF RESULTS                                                                                                                  | 5                      |
| 3.0  | REFE | RENCES                                                                                                                           | 6                      |
| 1.0  | GEO  | METRY DESCRIPTION OF S/G TUBE BUNDLE                                                                                             | 8                      |
| 5.:0 | STRU | ICTURAL ANALYSIS                                                                                                                 | 9                      |
|      | 5.1  | LOADINGS TO BE CONSIDERED                                                                                                        | 9                      |
|      | 5.2  | ASSUMPTIONS APPLICABLE TO STRUCTURAL LOADINGS                                                                                    | 11                     |
|      | 5.3  | NRC REQUIRED STRUCTURAL INTEGRITY MARGINS                                                                                        | 11                     |
|      | 5.4  | STRESS EVALUATION OF TUBE WITH UNLIMITED AXIAL AND CIRCUMFERENTIAL DEFECTS                                                       | D<br>13                |
|      | 5.5  | NRC REGULATORY GUIDE 1.121 EVALUATION OF TUBE WITH<br>DEFECT OF 0.25 INCH MAX. AND UNLIMITED CIRCUMFEREN<br>DEFECT               | I AXIAL<br>ITIAL<br>34 |
|      | 5.6  | NRC REGULATORY GUIDE 1.121 EVALUATION OF TUBE WITH<br>DEFECT OF 0.25 INCH MAX. AND ALLOWABLE CIRCUMFERE<br>100% THRU-WALL DEFECT | I AXIAL<br>NTIAL<br>37 |

| DOCUMENT<br>TYPE & NO. | þ | 2   | ×  | R | 5     | 0 | 2  | 5 | -0 | 1 |
|------------------------|---|-----|----|---|-------|---|----|---|----|---|
| VATEACH A              | 1 | PAC | 3E |   | <br>4 |   | CF | 4 | 1  | - |

## 1.0 INTRODUCTION

The analysis presented herein is performed to establish the maximum allowable tube wall degradation for the Arkansas Nuclear One - Unit 2 steam generator tubes per the requirement of NRC Regulatory Guide 1.121. The results of this analytical study will be used in conjunction with prior pressure testing results to assess the steam generator tube integrity when subjected to either inner diameter or outer diameter circumferential cracking at the tube expansion transition region.

This report addresses the structural aspects of NRC Regulatory Guide 1.121 regarding the minimum wall thickness of steam generator tubing. The report does not address the primary to secondary leakage rate data used in meeting Regulatory Position C.3.(d)(3). The structural integrity of the flawed tubing is evaluated based on normal operating conditions and possible accident conditions such as Loss of Coolant Accidents (LOCA) plus Safe Shutdown Earthquake (SSE) loads and Main Steam Line Break (MSLB) plus SSE loads. Since the tubes containing flaws may be located near the outer periphery of the tube bundle the tubes will also be evaluated for flow induced vibration due to the tecirculating fluid.

The report also considers two tube cases with localized defects. The first case has an axial defect of 0.25 in. maximum and an unlimited circumferential extent. The second case also has an axial defect of 0.25 in. maximum, but the allowable circumferential extent for 100% thru-wall defect is determined.

#### CSE-92-164

PE & NO 92 - R - 2025 -01

## 2.0 SUMMARY OF RESULTS

This analysis evaluates the loading of a flawed tube due to normal operation, Loss of Coolant Accident (LOCA), Main Steam Line Break (MSLB), and Safe Shutdown Earthquake (SSE). The allowable tube wall degradation is established to be 61.5% for the case of unlimited axial and circumferential extent of defect in accordance with the stress allowed by the ASME Code Section III and the structural integrity margins required by NRC Regulatory Guide 1.121. When the probable tube wall degradation can be increased to 65.8% for the case of unlimited axial and circumferential extent of defect and still meet the structural integrity margins required by NRC Regulatory Guide 1.121.

The maximum stress intensity due to a 61.5% degraded tube was found to be 26.75 ksi and 30.24 ksi for a 65.8% degraded tube, which is less than the allowable of 56 ksi for the steam generator tube material, Inconel SB-163.

For the two tube cases with specific defects, the maximum allowable tube defect per NRC Regulatory Guide 1.121 tube burst requirements is 77% tube wall degradation for an axial extent of 0.25 in. maximum and unlimited circumferential extent. With 100% thru-wall defect, the maximum allowable circumferential extent is 274°, with 86° of the total circumference having no tube wall degradation.

| TYPE & NO. | \$2 . R. | 20 | 2.5 | -01 |  |
|------------|----------|----|-----|-----|--|
| А нолтта   | PAGE     | 6  | OF  | 41  |  |

CR-9417-CSE92-1102, REV. 0 Page 6 of 40

## 3.0 REFERENCES

- 3.1 U.S NRC Regulatory Guide 1.121, "Bases for Plugging Degraded PWR Steam Generator Tubes", August 1976.
- 3.2 Analyses to Determine Allowable Tube Wall Degradation for Palisades Steam Generator, CENC-1264, Pevision 03, January 1976.
- 3.3 Arkansas Steam Generator Structural Analysis of Tubes for Pipe Rupture Accidents, CENC-1262-1, September 23, 1977
- 3.4 Maine Yankee Steam Generator Analysis of Circumferentially Flawed Tubes at Tubesheet, CENC-1934, January 1991.
- 3.5 ASME Boiler and Pressure Vessel Code, Section III for Nuclear Power Plant Components.
- 3.6 Connors, H.J., Jr., "Fluidelastic Vibration of Tube Arrays Excited by Nonuniform Cross Flow", Flow-Induced Vibration of power Plant Components, ASME, PVP-41, p. 93.
- 3.7 Heilker, W.J. and Vincent, R.Q., "Vibration in Nuclear Heat Exchangers Due to Liquid and Two-Phase Flow", Engineering for Power, April 1981, Vol.103, No.2.
- 3.8 ANSYS Engineering Analysis System. Finite Element Computer Program, Revision 4.1, March 1, 1983, John A. Swanson, Ph.D.
- 3.9 Lowry, J.C. memo to J.H. Sodergren on "Hydraulic Conditions at the Tube Bundle Entrance for Arkansas Steam Generator," ATH-92-069, April 10, 1992.
- 3.10 Heilker, W.J. and Beard, N.L., "Flow Induced Vibration Analysis in Support of the Design of the Yongwang Units 3 and 4 Steam Generators", Proceeding of the International Symposium on Pressure Vessels Technology and Nuclear Codes and Standards, April 19-21, 1989, Seoul, Korea.
- 3.11 Drawing E-234-825, "Baffle and Tube Support Assembly, Rev. 04.
- 3.12 Engineering Specification for a Steam Generator Assembly, Specification No. 06370-PE-120.

| PE & NO   | 92 · R | - 2 | 025 - | 01 |
|-----------|--------|-----|-------|----|
| NATIACH A | PAGE   | 7   | CIF 4 | 1  |

- 3.13 Analytical Report for Arkansas Nuclear One Unit 2 Steam Generator, CENC-1223, July, 1974.
- 3.14 Roark, R.J. and Young, W.C., "Formulas for Stress and Strain", Fifth Edition, 1975.
- 3.15 "Design Guide for Calculating Hydrodynamic Mass Part I: Cylindrical Structures", Chen, S.S. and Chung, H., June, 1976, Argonne National Laboratory.
- 3.16 Main Steam Line Break Analysis of Palisades Steam Generator Internals (Including Tube Sleeves), CENC-1288, June 3, 1977.
- 3.17 Analytical Report for Arizona Public Service Company Palo Verde Unit No. 3 Steam Generators, CENC-1479, August, 1981.
- 3.18 Annual Progress Report for Steam Generator Tube Integrity Program, NUREG/CR-0277, PNL-2684, R5, January 1-December 31, 1977.

| and a little | -              |      |     |        | 201  |
|--------------|----------------|------|-----|--------|------|
|              | Sec            | 1.14 | C   | Th (4) |      |
|              | and the second |      | 2 m |        | 64 - |
|              | ALC: NO        |      |     |        | × .  |
|              |                |      |     |        |      |

ATTACH A PAGE 8 OF 41

# 4.0 GEOMETRY DESCRIPTION OF S/G TUBE BUNDLE

The Arkansas steam generator tube bundle is comprised of 0.75 inch diameter tubes with 0.048 inch wall thickness which are supported by grid type ("egg-crate") tube supports in the axial flow region. In the cross flow region the tube bundle is supported by three different types of supports. Two of these, drilled plates and "egg-crates", support the vertical portion of the tubes and "batwing" configurations support the horizontal section. This report is concerned only with the stresses occurring in the tube expansion region of the bundle and is therefore only considering forces acting on the vertical portion of the tube bundle.

The egg-crate and drilled support plates are spaced incrementally up the tube bundle as shown in Figure 5.4-1. The first support is located at 28.125 inches above the tube sheet. The remaining full and partial supports are located vertically in the following increments (all in inches). 30, 33, 35, 30, 33, 35, 25.5, 26.5, 22. The last three increments correspond to locations of partial supports. (Reference 3.11)

Tube Row 110 is modeled in ANSYS to be evaluated throughout this report. This tube row is chosen as a bounding condition and corresponds to the location evaluated in the Palisades steam generator report (Reference 3.2). Resulting time history displacements from this Palisades report will be applied to the ANO2 steam generator and it is necessary that the identical location in the ANO2 generator be modeled to produce compatible results.

CSE-92-164

ATTACH A PAGE 9 OF 41

CR-9417-CSE92-1102, REV. 0 Page 9 of 40

#### 5.0 STRUCTURAL ANALYSIS

## 5.1 LOADINGS TO BE CONSIDERED

#### 5.1.1 LOCA Rarefaction Wave

A Loss-of-Coolant Accident (LOCA) produces a rarefaction wave which propagates at the speed of sound away from the break location. As the rarefaction wave passes through the tubes in the bend region of the steam generator, it imparts a lateral pressure loading on the tube bundle. The pressure loading on a particular tube is proportional to the pressure difference acting between the midpoints of the bends. Fluid friction and the centrifugal forces generated as the fluid negotiates the bends also contributes to the lateral loading on the tube bundle. The net force on a particular horizontal section of the tube is the algebraic sum of the pressure, friction, and centrifugal forces.

#### 5.1.2 Pipe Break Impulse Response

A LOCA accident produces an externally applied impulse to the steam generator caused by the fluid escaping from its respective loop. A detailed system LOCA analysis has been done for the Palisades steam generator, Reference 3.2. The results of this analysis were time history displacements at the steam generator uppermost full eggcrate tube support. These displacements were used in a dynamic ANSYS finite element analysis on a model of the Maine Yankee steam generator to calculate the tube stresses near the secondary face of the tubesheet and at the uppermost eggcrate support. The following discussion will show that these results can be conservatively applied to the ANO2 steam generator tubes.

Palisades analyzed the stress at the uppermost eggcrate while Maine Yankee (MY) calculated this stress as well as the stress at the secondary tubesheet face. The stress calculated for both plants at the uppermost eggcrate was the same. The steam generators for these two plants are compared with ANO2 on the bases of volume and geometry. The volume of the Maine Yankee generator is smaller than Palisades and ANO2 (the volume of ANO2 is similar to Palisades), but the geometry of MY is more unstable than Palisades. Since the resulting stress calculated at the uppermost eggcrate for both plants was the same and the geometry of ANO2 is more stable than that for Palisades and MY, it is assumed that the results obtained by MY for the stresses at the tubesheet are conservative for ANO2.

## 5.1.3 MSLB Secondary Side Blowdown

A Main Steam Line Break (MSLB) produces a transient pressure loading on the steam generator internals. The pressure loading results from the relative rates at which the secondary fluid leaves adjacent region. In general, the blowdown rate following a main steam line break depends upon the steam generator geometry, the secondary pressure, the secondary mass, and the nozzle area.

Previous analyses of a main steam line break for a wide range of operating conditions and different steam generator geometries (References 3.16 and 3.17) indicate that peak pressure loads on steam generator internals are realized at either zero or low power operation. This is due to the fact that the secondary pressure increases to near 900 psi under zero and low power operation, from 825 psi during normal operation. The pressure load across the tube bend region caused by this blowdown is maximized at zero percent power. During the main steam line break, the rapid depressurization of the secondary fluid and its acceleration toward the break location are unaffected by the primary system.

## 5.1.4 Flow Induced Vibration

A tube placed perpendicular to a flowing fluid tends to extract energy from the fluid and vibrate with some amplitude. The steam generator tubes in the tubesheet region are affected in this manner by the recirculating fluid in the generator. Reference 3.7 gives a method of calculating an equivalent static loading using flow induced vibration evaluation methods which are based on the velocity of the fluid cross flow, the natural vibration frequencies of the tube, and the mode shapes of the tube vibration.

# 5.1.5 Differential Pressure ( $\Delta P$ )

During the MSLB event a tube is subjected to a net pressure force which produces an axial force in the vertical straight portion of the tube. With the primary pressure remaining approximately constant during the secondary side blowdown at a maximum of 2500 psia, a differential pressure stress is developed which increations from normal operating differential stress to some maximum value which varies from plant to plant. In order to select a conservative value, it will be assumed that the secondary side has dropped to atmospheric pressure while the primary side is at design condition.

During the LOCA event a type is subjected to a net pressure force which produces an axial force in the vertical straight portion of the tube. With the

| CSE-92-  | 164  |     |     |     |
|----------|------|-----|-----|-----|
| PE & NO  | 92-  | R-2 | 025 | -01 |
| ATTACH A | PAGE | 11  | CF  | 41  |

CR-9417-CSE92-1102, REV. 0 Page 11 of 40

secondary pressure remaining approximately constant during the LOCA event at 900 psia, a differential pressure stress is determined based on this pressure and the primary pressure at the time of maximum LOCA stresses. Since the pressure in the primary side will not exceed 2500 psia, the maximum  $\Delta P$  caused by LOCA will be less than that caused by MSLB. Therefore, the stress caused by the  $\Delta P$  due to the MSLB will be evaluated in this report and will envelope that caused by the LOCA. The analysis concludes that tube buckling is not a concern, with the higher  $\Delta P$  being outside the tube, due to the circumferential nature of the defects.

#### 5.1.6 . Safe Shutdown Earthquake (SSE)

The project specification for the ANO2 unit states that the steam generator shall be capable of withstanding a maximum seismic loading equivalent to a 1.5G lateral and 1.4G vertical simultaneously applied static loading (Reference 3.12).

# 5.2 ASSUMPTIONS APPLICABLE TO STRUCTURAL LOADINGS

- 5.2.1 The stresses in the tube at the tubesheet expansion location caused by LOCA Impulse response as calculated by Maine Yankee in Reference 3.4 are conservatively assumed to apply to the ANO2 steam generator tubes
- 5.2.2 The velocity flow in the tubesheet region due to recirculating fluid is constant over the vertical span of 0-15 inches above the tubesheet and zero from there to the top of the tube.
- 5.2.3 The maximum amount of degradation for the unlimited axial and circumferential extent of defect is calculated for both the ASME Code allowables and the "probable" tube material properties.
- 5.2.4 The stress caused by △P due to a main steam line break envelopes that caused by a LOCA event.
- 5.2.5 Where exact data and equations are not applicable, the stress caused by the degradation of the tube will be estimated from the stress resulting on the healthy tube, using a factor based on the percent of degradation.

# 5.3 NRC REQUIRED STRUCTURAL INTEGRITY MARGINS

In Section 5.1, various loadings including postulated pipe break accident, earthquake, flow induced vibration, and operational differential pressure were identified as

| PE & NO  | 92 · R |   | 2 | 02 | 5 | -0 | 1 |
|----------|--------|---|---|----|---|----|---|
| аттася А | PAGE   | 1 | 2 | 07 | 4 | 1  |   |

CR-9417-CSE92-1102, REV. 0 Page 12 of 40

conditions which in combination must satisfy appropriate ASME Code, Section III allowable stresses. In addition to those requirements, the NRC Regulatory Guide 1.121 requires that certain structural integrity margins be satisfied for flawed tubes which have not been removed from service:

These criteria include:

- 1. Tubes with detected acceptable defects will not be stressed during the full range of normal reactor operation beyond the elastic range of tube material.
- 2. The factor of safety against failure by bursting under normal operating conditions is not less than three at any tube location where defects have been detected.

These criteria represent margins of safety which are inherent in the design rules of Section III of the ASME Code. It is possible for flawed tubes to meet these requirements because steam generator tubes are designed with margins much larger than the minimum ASME Code requirements.

The following sections verify that a 61.5% degradation for unlimited axial and circumferential extent of defect irrespective of O.D. or I.D. initiation when using the ASME Code allowables for S<sub>y</sub> and S<sub>y</sub>. The minimum required thickness is based on pressures, temperature and material properties at normal operating conditions.

Dimensions of a healthy tube are  $R_s = 0.327$ ,  $R_s = 0.3750$ , and t = 0.048 inches

5.3.1 Tube Degraded from the Inside

New dimensions:  $R_1 = 0.3565$ ,  $R_2 = 0.3750$ , and t = 0.0185 inches

1. Flawed tube not stressed beyond elastic limit

The code equation for required minimum tubewall thickness (t,) in cylindrical shells is used with the most conservative combination of pressure loadings. S, is used to evaluate the required thickness with respect to the elastic limit of the material.

$$\frac{(P_1 - P_2) Ri}{Sy - 0.5(P_1 + P_2)} = \frac{(2.25 - 0.900)(.3565)}{27.9 - 0.5(2.25 + 0.900)} = 0.0183 in. Equation 1$$

| PE & NO | 9. | 2 - | R | * | 22 | 0 | 2   | 5 | -0 | 1 |
|---------|----|-----|---|---|----|---|-----|---|----|---|
| нласн А | P  | AGE |   | 1 | 3  | - | CF. | 4 | 1  |   |

CR-9417-CSE92-1102, REV. 0 Page 13 of 40

2. Flawed tube maintains a safety factor of 3

The code equation for required minimum tubewall thickness in cylindrical shells is used with the most conservative combination of pressure loadings.  $S_{ij}$  is used to show that the factor of 3 is maintained with regard to the ultimate strength of the material.

 $c_r = \frac{3\left(P_1 - P_2\right)R_1}{S_u - 0.5\left(P_1 + P_2\right)} = \frac{3\left(2.25 - 0.900\right)\left(.3565\right)}{80 - 0.5\left(2.25 + 0.900\right)} = 0.0184 \text{ in.} \quad Equation 2$ 

5.3.2 Tube Degraded from the Outside

New dimensions:  $R_1 = 0.327$ ,  $R_2 = 0.3455$ , and t = 0.0185 inches

1. Flawed tube not stressed beyond elastic limit

The code equation for required minimum tubewall thickness (t,) in cylindrical shells is used with the most conservative combination of pressure loadings. S, is used to evaluate the required thickness with respect to the elastic limit of the material.

Using Equation 1, L = 0.0168 in

2. Flawed tube maintains a safety factor of 3

The code equation for required minimum tubewall thickness in cylindrical shells is used with the most conservative combination of pressure loadings.  $S_{ii}$  is used to show that the factor of 3 is maintained with regard to the ultimate strength of the material.

Using Equation 2,  $t_{\rm c} = 0.0169$  in

# 5.4 STRESS EVALUATION OF TUBE WITH UNLIMITED AXIAL AND CIRCUMFERENTIAL DEFECTS

The following analyses will be discussed based on three states of the tube: healthy, degraded on the inside, and degraded on the outside. The individual loading conditions may have been evaluated for one, two or three of these cases. Where only the healthy tube was analyzed, a factor based on the percent degradation will be applied to estimate

| TE & NO   | 92 · F | 2.20 | 25  | -01 |
|-----------|--------|------|-----|-----|
| алтасні А | SAGE   | 14   | 0:4 | 1   |

the stress in the degraded cases. Where the degraded cases were analyzed the actual resulting stress is known. However, this factor of degradation will be also applied to the healthy case and the largest of the actual and estimated stress will be used.

Factor of Degradation:

maximum allowable percent degradation = 61.5%

factor = 1/(1.615) = 2.60

# 5.4.1 LOCA RAREFACTION WAVE

The LOCA rarefaction wave can cause severe lateral loading at the top of the tube bundle, as described in Section 5.1.1. However, the tube flaws being evaluated in this study occur exclusively in the tube expansion region. Therefore, the rarefaction wave produces no stress at the location of interest in this analysis.

# 5.4.2 PIPE BREAK IMPULSE RESPONSE

The postulated LOCA event causes a shock loading to the steam generator which causes the steam generator shell to deflect as a rigid body about the bottom of the sliding base (Figure 5.4-2). The time history displacements of the steam generator shell at the uppermost full eggerate support locations are calculated in Reference 3.2 and shown in Figure 5.4-3. These displacements were applied to an ANSYS finite element model of the vertical portion of a Maine Yankee steam generator tube in a dynamic analysis of the tube (Reference 3.4). The results showed that the maximum stress at the tubesheet was 0.5 ksi. Figure 5.4-4, and the maximum stress, occurring at the uppermost eggcrate was 2.0 ksi. This stress at the uppermost eggcrate is consistent with the results of the Palisades steam generator report. (Note: the input data for the MY analysis was taken from the Palisades report) The volume of ANO2 is similar to that of Palisades and the geometry of ANO2 is more stable, with the tube supports being closer together. Therefore, the results of the MY analysis showing the maximum stress at the tubesheet to be 0.5 ksi can be conservatively applied to the ANO2 steam generator tubes.

The previously mentioned analysis was done for a healthy tube. As discussed above a factor based on the percent degradation will be applied to this value to estimate the stress which would occur on a degraded tube. This stress will be applicable to degradation on the inside or outside of the tube. Stress on degraded tube =  $0.5 \times 2.60 = 1.3$  ksi.

CSE-92-164

PE & NO 92 - R - 2025 -01

# 5.4.3 MSLB SECONDARY SIDE BLOWDOWN

The tubes in the cross-flow region are subjected to an external flow induced loading during the MSLB event. The loading imposed on the horizontal span of each tube is based on the assumption that the force acting is proportional to the ratio of an individual tube's projected area to the total cross-flow tube area of the bundle. Since the tube flaws being evaluated in this study occur exclusively in the expansion region just above the tubesheet, the flow forces described above produce no significant primary loading at this location.

#### 5.4.4 FLOW INDUCED VIBRATION

An ANSYS model of the straight portion of a Row 110 ANO2 steam generator tube was created. It consists of 109 STIF16, 3-D pipe elements with supports at 10 locations above the tube sheet, Figure 5.4-5. The boundary conditions are: (1) the model is fixed at Node 1, the tubesheet face, and (2) the tube is simply supported at each tube support location. This model was used to generate an Eigenvalue analysis to give frequencies and mode shapes which are required to evaluate the flow induced vibrations loading.

The resulting Eigenvalues are listed in Table 5.4-1 for a healthy tube and for a tube degraded on the outside. Mode 9 is the critical mode for both cases, since the maximum displacement in this mode occurs in the first span. The mode shape plot is similar for both cases and is shown in Figure 5.4-6 for Mode 9. Table 5.4-2 and 5.4-3 give the expanded Eigenvector for Mode 9 for the healthy tube and tube degraded outside, respectively.

The effective mass is required for this analysis and is calculated as follows:

$$p_{\text{eff}} = (1/A,g)(p_1A_1 + p_{nt}A_1 + C_np_nA_n)$$
 Equation 3 (Reference 3.15)

Where:

A

= Acceleration due to gravity  $(in/sec^2)$ 

- $A_1 = Area of tube wall per inch of tube (in<sup>2</sup>)$ 
  - = Density of tube (lb/in<sup>3</sup>)
    - = Area of displaced flow based on inside radius per inch of tube (in<sup>2</sup>)

= Density of primary fluid (lb/in<sup>1</sup>)

 $A_n = Area of displaced flow based on outside radius per inch of tube$ (in<sup>2</sup>)

$$\rho_{st}$$
 = Density of secondary fluid (lb/in<sup>3</sup>)

C<sub>m</sub> = Virtual mass coefficient

| COCUMENT<br>VE & NO | 92 - R | - 2 | 025 | i -0 1 |
|---------------------|--------|-----|-----|--------|
| A HOATTACH          | PAGE   | 16  | 05  | 41     |

CR-9417-CSE92-1102, REV. 0 Page 16 of 40

When tubes in a heat exchanger are subjected to a fluid cross flow, there is a threshold velocity where the onset of fluid-elastic unstable vibrations occur. This is defined as the critical velocity and is given by the equation:

 $Vcr = fn \ Kd \ [\frac{M_{\rho} \ \delta_{\rho}}{\rho_{\rho} \ d^{2}}]^{4} \quad Equation \ 4$ 

(Reference 3.7)

Where:

| 1.1                |     | Natural frequency of nth mode of vibration (Hz) |
|--------------------|-----|-------------------------------------------------|
| K                  | 172 | Threshold of instability constant               |
| d                  |     | Tube O.D. (in)                                  |
| $M_{\alpha}$       | -   | Reference mass of tube per unit length (lb/in)  |
| $\tilde{\phi}_{o}$ | ÷.  | Logarithmic decrement = $2\pi\xi$               |
| 14                 | 77  | Damping ratio of tube in fluid                  |
| $\rho_{o}$         | -   | Reference fluid density (lb/in3)                |

The above parameters are obtained from the tube geometry and from test and operating plant data.

A comprehensive flow test program was conducted by Combustion Engineering to evaluate the vibration behavior of various tube bundle arrangements when subjected to liquid cross flow (References 3.7 and 3.10). The triangular pattern with 0.75 O.D tubes used in the CE generators was one of those evaluated. The tubes were driven to instability and critical velocities were determined for various flow orientations. The K value for the subject tube geometry was determined to be 3.2 (Reference 3.10).

If the cross flow velocity is not constant over the entire tube span, an effective velocity must be determined. Reference 3.10 presents a method for calculating Vett. The equation is:

 $V_{eff}^{2} = \frac{\int (\rho(x)/\rho_{o}) - v^{2}(x) - \phi^{2}(x) - dx}{\int (M(x)/M_{o}) - \phi^{2}(x) - dx} \qquad Equation 5$ 

Where:

Φ = Density of secondary fluid
 M = Effective mass of tube

 $\phi$  = Modal displacement (in) V = Cross flow gap velocity

= Cross flow gap velocity (in/s)

| PE & NO  | 92.  | R- | 20 | 2  | 5 -0 | 1 |
|----------|------|----|----|----|------|---|
| Аптасн А | PAGE | 1  | 7  | CF | 41   |   |

All parameters vary with distance along the tube, x.

The onset of instability occurs when the stability ratio reaches 1. This is based on a procedure of defining, from test data, critical velocity corresponding to the onset of instability to be the velocity at which the tube response suddenly deviates from linearity or exceeds an rms displacement of 10 mils. Stability ratio is defined as :

$$S.R = V_{eff} / V_{ef}$$
 (Reference 3.10)

The flow data for the tube span between the tubesheet and the first tube support is taken from Reference 3.9. The velocity profile is assumed to be constant over the flow region. Although this results in a lower maximum velocity than a linear distribution, the equation for effective velocity is such that velocity and modal displacement are related. The velocity corresponding to the maximum modal displacement for constant velocity distribution is larger than that for a linear distribution. Therefore, the constant velocity distribution is conservative.

5.4.4.1 Flow Induced Vibration for Healthy Tube

Effective Mass:

Substituting the following values into Equation 3 gives.

 $\rho_{eff} = 0.001948 \, \text{lb-sec}^2/\text{in}^4$ 

Where:

| G               | $= 386 \text{ in/sec}^2$  |   |
|-----------------|---------------------------|---|
| Α,              | = 0.106 in <sup>2</sup>   |   |
| $\rho_1$        | = 0.305 lb/in             |   |
| A               | $= 0.336 \text{ in}^2$    |   |
| $\rho_{\rm pf}$ | $= 0.026 \text{ lb/in}^3$ |   |
| A.,             | $= 0.442 \text{ in}^2$    |   |
| Pat             | = 0.0282 lb/in            | 1 |
| Cm              | = 3.1                     |   |

Critical Velocity:

Substituting the following values into Equation 4 gives,

 $V_{er} = 364.7 \text{ in/s}$ 

| PE & NO | p  | 2 | -  | R |   | 2 | 0 | 2  | 5 | -0 | 1 |
|---------|----|---|----|---|---|---|---|----|---|----|---|
| A MOATT | 11 | A | 3E |   | 1 | 8 |   | C7 | 4 | 1  |   |

CR-9417-CSE92-1102, REV. 0 Page 18 of 40

 $\begin{array}{ll} I_{\rm s} &= 191 \ {\rm Hz} \\ {\rm K} &= 3.2 \\ {\rm d} &= 0.75 \ {\rm in} \\ {\rm M}_{\rm o} &= 0.0797 \ {\rm lb/in} \\ \tilde{\varrho}_{\rm o} &= 2\pi\xi = 0.126 \\ \tilde{\xi} &= 0.02 \\ \rho_{\rm o} &= 0.0282 \ {\rm lb/in^3} \end{array}$ 

Effective Velocity:

Using the equation previously defined with the effective mass of the tube and the density of the secondary fluid constant over the tube span, a velocity of 11.44 ft/s from 0-15 inches above the tubesheet, and modal displacements from Table 5.4-2, the effective velocity is calculated to be 83.8 in/s.

Stability Ratio:

S.R. = 83.8 / 364.7 = 0.23

Tube Loading:

 $F_p = C_p d (\rho V_{st}^2 / 2g) = 0.0770 \text{ lb/in}$ 

Equation 6

Where:

C<sub>1</sub> = 0.4 (Reference 3.7) d = 0.75 in p = 0.0282 lb/in<sup>3</sup>  $V_{\rm eff}$  = 83.8 in/s g = 386 in/sec<sup>2</sup>

This loading of .077 lb/in is inputted as static load to the previously described ANSYS model. Figure 5.4-5. The maximum stress is calculated to be less than a .1 ksi at the tubesheet face.

5.4.4.2 Flow Induced Vibration for Tube Degraded Outside

Effective Mass:

Substituting the following values into Equation 3 gives.

CSE-92-164 SOCUMENT 92 · R · 2025 ·01 ATTACK A PAGE 19 CF 41

CR-9417-CSE92-1102, REV. 0 Page 19 of 40

 $\rho_{\rm eff} = 0.003225 \, \rm lb-sec^2/in^4$ 

Where:

Critical Velocity:

Substituting the following values into Equation 4 gives.

 $V_{cr} = 292.5 \text{ in/s}$ 

Where:

| $-f_n$         | = 183.3 Hz                 |
|----------------|----------------------------|
| K              | = 3.2                      |
| d              | = 0.696 in                 |
| M.             | = 0.05565 lb/in            |
| ô <sub>o</sub> | $= 2\pi\xi = 0.126$        |
|                | = 0.02                     |
| Da             | $= 0.0282 \text{ lb/in}^3$ |

Effective Velocity:

Using the equation defined above with the effective mass of the tube and the density of the secondary fluid constant along the tube span, a velocity of 11.44 ft/s from 0-15 inches above the tubesheet, and modal displacements from Table 5.4-3, the effective velocity is calculated to be 83.8 in/s.

Stability Ratio:

S.R. = 83.8 / 292.5 = 0.29

Tube Loading:

Substituting the following values into Equation 6 gives,

 $F_{\rm F} = 0.0803 \; \text{lb/in}$ 

Where:

This loading of 0.080 lb/in is inputted as a static load to the previously described ANSYS model, Figure 5.4-5. The maximum stress is calculated to be less than .1 ksi at the tubesheet face. Since the healthy tube had a stress of 0.10 ksi at the tubesheet, a degradation factor of 2.60 is applied to this value, thus producing an estimated stress of 0.260 ksi for the degraded cases.

# 5.4.5 DIFFERENTIAL PRESSURE

As discussed in Section 5.1.5, the differential pressure for MSLB will be conservatively assumed to be the difference between the primary side pressure remaining constant at a maximum of 2500 psia and the secondary side dropping to atmospheric pressure. O psia. The resulting pressure differential is:

 $\Delta P = (P_1 - P_2) = 2500 - 0 = 2500 \text{ psia}$ 

The membrane stress intensity associated with this pressure differential is calculated below. The coordinate system used is shown below:

$$\sigma_{1} + \sigma_{1} = \frac{(P_{1} - P_{2})R_{1}^{2}}{2R_{2}t} + \frac{(P_{1} + P_{2})}{2} \quad Equation$$

Where:





CR-9417-CSE92-1102, REV. 0 Page 21 of 40

Healthy Tube:

Dimensions:  $R_1 = 0.327$ ,  $R_2 = 0.3750$ , and t = 0.048 inches

Substituting these dimensions into Equation 7 gives.

 $\sigma_{\rm r} - \sigma_{\rm r} = 9.18$  ksi

Degraded Outside:

Dimensions:  $R_t = 0.327$ ,  $R_o = 0.3455$ , and t = 0.0185 inches

Substituting these dimensions into Equation 7 gives.

 $\sigma_{\rm r} - \sigma_{\rm r} = 22.74$  ksi

Degraded Inside:

Dimensions:  $R_i = 0.3565$ ,  $R_o = 0.375$ , and t = 0.0185 inches

Substituting these dimensions into Equation 7 gives,

$$\sigma_{\rm t} - \sigma_{\rm r} = 24.73$$
 ksi

Since these stresses are calculated using code equations with actual plant specific data, the actual stresses will be used, and the degradation factor will not be applied to the case of the healthy tube to estimate the stress for the degraded cases.

## 5.4.6 SAFE SHUTDOWN EARTHQUAKE (SSE)

The model as described in Section 5.4.4 is utilized to apply a 1.5G lateral, 1.4G vertical static seismic loading to the steam generator tube. This loading is applied in ANSYS as an acceleration and produces the stress at each nodal location. This loading was applied to all three tube cases, with the maximum stress at the tubesheet being 0.178 ksi and the overall maximum stress occurring at the uppermost full eggcrate and being 0.302 ksi. Both of these maximums are from the case of degradation from the outside

The healthy tube had a stress of 0.177 ksi at the tubesheet. Applying the degradation factor to this value produces 0.460 ksi for the estimated stress of the degraded cases.

| DOCUMENT<br>PE & NO. | 92-  | R-21 | 12: | 5-0 | 1 |
|----------------------|------|------|-----|-----|---|
| N MOATTACH           | PAGE | 22   | OF  | 41  |   |

# 5.4.7 COMBINED STRESSES ON TUBE WITH ASME CODE ALLOWABLES

The resulting stress acting on the tube at the tubesheet interface is compared to the guidelines as specified in Appendix F of Section III. This Appendix F of the ASME Code defines the allowable membrane stress allowable for the faulted conditions considered in this report as  $S_{memb} = 0.7 S_{\odot}$ . The ultimate strength for the SB-163 Inconel is  $S_{\odot} = 80.0$  ksi ar the maximum operating temperature of 600°F. Therefore, the allowable membrane stress in the steam generator tube is:

$$S_{memb} = 0.7 S_{11} = 56.0 \text{ ksi}$$

The resulting stress intensities from the loadings of the previous sections are combined arithmetically as follows:

| Loading                           | Healthy     | Degraded     | Degraded     |
|-----------------------------------|-------------|--------------|--------------|
| Condition                         | <u>Tube</u> | Outside      | Inside       |
| Pipe Break Impulse Response (ksi) | = 0.5       | 1.30         | 1.30         |
| Flow Induced Vibration (ksi)      | = 0.1       | 0.260        | 0.260        |
| Maximum ΔP During MSLB (ksi)      | = 9.18      | 22.74        | 24.73        |
| Safe Shutdown Earthquake (ksi)    | = 0.177     | <u>0.460</u> | <u>0.460</u> |
| Total Stress Intensity            | = 9.96      | 24.76        | 26.75        |

Maximum S.L. = 26.75 < 56.0 ksi

Therefore, 61.5% degradation of the steam generator tubes is allowable and fulfills both NRC and ASME requirements.

# 5.4.8 COMBINED STRESSES ON TUBE WITH "PROBABLE" TUBE MATERIAL PROPERTIES

When the "probable" tube material properties for  $S_y$  and  $S_u$  are used in place of the ASME Code allowables mentioned earlier, a 65.8%, degradation can be considered for unlimited axial and circumferential extent of defect irrespective of O.D. or I.D. initiation. The Factor of Degradation = 1/(1-.658) = 2.92. The minimum required thickness is based on pressures and temperature at normal operating conditions.

A. Dimensions of a healthy tube are  $R_i = 0.327$ ,  $R_o = 0.3750$ , and t = 0.048 inches.

| POCUMENT<br>PPE & NO. | 92.1 | 8-2 | 50 | 5 -( | 1( |
|-----------------------|------|-----|----|------|----|
| LATTACH A             | PAGE | 23  | OF | 41   |    |

CR-9417-CSE92-1102, REV. 0 Page 23 of 40

B. Tube Degradation From the Inside

New dimensions:  $R_i = 0.3586$ ,  $R_o = 0.3750$ , and t = 0.0164 inches

- 1. Flawed tube not stressed beyond elastic limit using Equation 1 with  $S_v = 35.2$  ksi.  $t_r = 0.0144$  in.
- 2. Flawed tube maintains a safety factor of 3 using Equation 2 with  $S_a = 90.0$  ksi, t<sub>r</sub> = 0.0164 in.
- C. Tube Degraded From the Outside

New dimensions:  $R_s = 0.327$ ,  $R_o = 0.3434$ , and t = 0.0164 inches

- Flawed tube not stressed beyond elastic limit using Equation 1 with  $S_y = 35.2$  ksi, t, = 0.0131 in.
- 2. Flawed tube maintains a safety factor of 3 using Equation 2 with  $S_u = 90.0$  ksi, t<sub>r</sub> = 0.0150 in.
- 5.4.8.1 LOCA Rarefaction Wave

As mentioned earlier there is no stress at this location of interest.

5.4.8.2 Pipe Break Impulse Response

Stress on degraded tube =  $0.5 \times 2.92 = 1.46$  ksi.

5.4.8.3 MSLB Secondary Side Blowdown

There is no significant primary loading at this location.

5.4.8.4 Flow Induced Vibration

Stress on degraded tube =  $0.10 \times 2.92 = 0.292$  ksi.

- 5.4.8.5 Differential Pressure
  - A. Degraded Outside:

 $\sigma_c - \sigma_f = 25.56 \ ksi$  Using Equation 7

| DOCUMENT<br>TYPE & NO | 9 | 2  | - | R | - | 2 | 0 | 2  | 5 | -0 | 1 |
|-----------------------|---|----|---|---|---|---|---|----|---|----|---|
| A HOATTACH            | P | AG | E |   | 2 | 4 |   | OF | 4 | 1  |   |

CR-9417-CSE92.1102, REV. 0 Page 24 of 40

B. Degraded Inside:

 $\sigma_t - \sigma_r = 27.97 \text{ ksi}$  Using Equation 7

5.4.8.6 Safe Shutdown Earthquake (SSE)

Stress on degraded tube =  $0.177 \times 2.92 = 0.517$  ksi.

5.4.8.7 Summary of Stresses

The resulting stress intensities from the previous loading are combined arithmetically as follows:

| Loading                           | Healthy                    | Degraded     | Degraded     |
|-----------------------------------|----------------------------|--------------|--------------|
| Condition                         | Tube                       | Outside      | Inside       |
| Pipe Break Impulse Response (ksi) | = 0.5 = 0.1 = 9.18 = 0.177 | 1.46         | 1.46         |
| Flow Induced Vibration (ksi)      |                            | 0.292        | 0.292        |
| Maximum ∆P During MSLB (ksi)      |                            | 25.56        | 27.97        |
| Safe Shutdown Earthquake (ksi)    |                            | <u>0.517</u> | <u>0.517</u> |
| Total Stress Intensity            | = 9,96                     | 27.83        | 30.24        |

Maximum S.I. = 30.24 < 56.0 ksi

Therefore, 65.8% degradation of the steam generator tubes is allowable when the probable tube material properties are used.

| PE & NO  | 92.  | R- | 21 | )2 | 5 | -0 | 1 |
|----------|------|----|----|----|---|----|---|
| A HOATTA | PAGE | 21 | 5  | OF | 1 | 11 |   |

CR-9417-CSE92-1102, REV. 0 Page 25 of 40



Figure 5.4.1 Location of Support Plates for ANO2 Steam Generator

| TOOLMENT   | 92-  | R-2 | 02 | 5-0 | 1 |
|------------|------|-----|----|-----|---|
| A HOATTACH | PAGE | 26  | OF | 41  |   |



Figure 5.4-2 Displacement of Steam Generator Tube

| C:'2-92  | -164              |
|----------|-------------------|
| E & NO   | 92 · R · 2025 -01 |
| A HOAT 4 | PAGE 27 CF 41     |

CR-9417-CSE92-1102, REV. 0 Page 27 of 40



Displacement (inches)



| CSE-9      | 2-164 | à   |      |     |
|------------|-------|-----|------|-----|
| PE & NO    | 92-   | R-2 | 025  | -01 |
| A HOATTACH | PAGE  | 28  | CF / | 41  |

CR-9417-CSE92-1102, REV. 0 Page 28 of 40



Time (sec)



| CS      | E-9 | 2- | 1 | 6 | 4 |   |   |    |   |   |   |   |
|---------|-----|----|---|---|---|---|---|----|---|---|---|---|
| POCUMEN | 0   | 8  | 2 | * | R | * | 2 | 50 | 5 |   | 0 | 1 |
| STIACH  | A   | 15 | A | Æ |   | 2 | 9 | C  | 1 | 4 | 1 | - |

CR-9417-CSE92-1102, REV. 0 Page 29 of 40

$$7110$$
  
 $704$   
 $78$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $72$   
 $7$ 

Figure 5.4-5 ANSYS Model of ANO2 Steam Generator Tube

| CSE     | -92 | - 3 | 6   | 4 |      |    |   |   |   |    |    |
|---------|-----|-----|-----|---|------|----|---|---|---|----|----|
| PE & NO | 7   | 9   | 2   | R | *    | S  | 0 | 3 | 5 | .0 | 1  |
| ATTACH. | A   |     | RAG | Ē | 1.11 | 30 | ) | - |   | 41 | i. |

CR-9417-CSE92-1102, REV. 0 Page 30 of 40



Figure 5.4-6 Mode Shape 9 for ANO2 Steam Generator Tube

| C       | SE-     | 92 | -1  | 64 |     |     |     |
|---------|---------|----|-----|----|-----|-----|-----|
| PE & NO | ii<br>D | 19 | 2 - | R  | . 5 | 025 | -01 |
| ATTACH  | A       | 15 | AGE |    | 31  | 05  | 41  |
CR-9417-CSE92-1102, REV. 0 Page 31 of 40

| HEALTH | IY TUBE | DEGRADE | D OUTSIDE |
|--------|---------|---------|-----------|
| 1      | 70.5    | 1       | 67.6      |
| 2      | 77.9    | 2       | 74.7      |
| 3      | 98.2    | 3       | 94.2      |
| 4      | 110.9   | 4       | 106.4     |
| 5      | 113.6   | 5       | 126.2     |
| 6      | 136.4   | 6       | 130.8     |
| 7      | 154.1   | 7       | 147.8     |
| 8      | 186.3   | 8       | 178       |
| 9      | 191.0   | 9       | 183.3     |
| 10     | 234.6   | 10      | 225.1     |
| 11     | 293.0   | 11      | 281.1     |
| 12     | 381.2   | 12      | 366.0     |
| 13     | 391.9   | .13     | 376.3     |
| 14     | 504.7   | 14      | 484.7     |
| 15     | 526.4   | 15      | 505.8     |

Table 5.4.-1 Eigenvector for Healthy and Degraded ANO2 Steam Generator Tube

| CSE-92   | -104 |     |     |     |
|----------|------|-----|-----|-----|
| PE & NO. | 92-  | R-2 | 025 | -01 |
| ATTACH A | PAGE | 32  | 02  | 41  |

CR-9417-CSE92-1102, REV. 0 Page 32 of 40

| Sea | 112 | ny | tub | e |  |
|-----|-----|----|-----|---|--|

| mode                                   |      | mode      |      | node    |
|----------------------------------------|------|-----------|------|---------|
| node displ.                            | node | dispi.    | node | dispol. |
| 1 0.0000                               | 41   | 5.0110    | 81   | 0 3220  |
| 2 0.1998                               | 42   | 3.4786    | 82   | 0 4705  |
| 3 0.7189                               | 43   | 2.1087    | 83   | 0.5060  |
| 4 1.5213                               | 44   | 0.9375    | 84   | 0.0000  |
| 5 2.5717                               | 45   | 0 0000    | 25   | 0.4041  |
| 6 3,8344                               | 48   | -1 1805   | 00   | 0.1756  |
| 7 5 2733                               | 17   | -0.2201   | 00   | 0.0000  |
| 3 6 8546                               | 10   | 1 0 4 1 7 | 07   | 0.0855  |
| 9 8 5441                               | 10   | 1.3411    | 00   | 0.2473  |
| 10 10 3057                             | 43   | 0.0402    | 89   | 0.3297  |
| 10 1000                                | 50   | 0.4260    | 90   | 0.2521  |
| ··· ··· ··· ··· ··· ··· ··· ··· ··· ·· | 21   | 11.0491   | 91   | 0.0185  |
|                                        | 24   | -3.9026   | 92   | 0.0000  |
|                                        | 53   | 15.2720   | 93   | 0.2879  |
| 14 17.4581                             | 54   | 15.4738   | 94   | 0.5752  |
| 15 19.1260                             | 55   | 14.3653   | 95   | 0.7306  |
| 16 20.6881                             | 56   | 12.1952   | 96   | 0.6673  |
| 17 22.1271                             | 57   | 9.2530    | 97   | 0.3516  |
| 18 23.4223                             | 58   | 5.8548    | 98   | 0.0000  |
| 19 24.5481                             | 59   | 2.5713    | 99   | -0 1653 |
| 20 25.4959                             | 60   | 0.0000    | 100  | -0 1270 |
| 21 26.2523                             | 61   | -1.2420   | 101  | 0 0124  |
| 22 26.7988                             | 82   | 2 4087    | 102  | 0.1450  |
| 23 27.1359                             | 63   | 5 9409    | 102  | 0.1400  |
| 24 27.2587                             | 8A   | 5 5407    | 100  | 0.1004  |
| 25 27.1570                             | CE.  | 0.0401    | 104  | 0.0000  |
| 26 26 8403                             | 36   | 0.0001    | 100  | -0.2922 |
| 27 28 3126                             | 27   | 0.0000    | - 20 | -0.5573 |
| 28 25 5707                             | 20   | -U.034U   | -07  | -0.7039 |
| 29 24 6282                             | . 20 | .0384     | 108  | -0.6635 |
| 30 23 5010                             | 00   |           | 109  | -0.3956 |
| 21 00 0014                             | 10   | 1. 26B    | 110  | 0.0000  |
|                                        | 11   | 0.7152    |      | 0.0000  |
| 22 20.7810                             | - 22 | 0.0000    |      |         |
| 36 19.2230                             | 23   | 0.2177    |      |         |
| 34 17.5415                             | 17.4 | 0.8153    |      |         |
| op op.7773                             | 75   | 1.2176    |      |         |
| 35 13.9570                             | 76   | 1.0045    |      |         |
| 3/ 12.1041                             | 77   | 0.4543    |      |         |
| 38 10.2522                             | 78   | 0.0000    |      |         |
| 39 8.4322                              | 79   | -0.0535   |      |         |
| 40 6.6734                              | 80   | 0.1037    |      |         |

Table 5.4-2 Expanded Modal Displacements for Mode 9 on a Healthy Tube

| CSE-92-    | -164   |      |        |
|------------|--------|------|--------|
| VPE & NO   | 92 - R | - 21 | 025-01 |
| A POATTACH | PAGE   | 33   | CF 41  |

CR-9417-CSE92-1102, REV. 0 Page 33 of 40

Degraded Outside

|         | mode     |      | mode    |       | mode    |
|---------|----------|------|---------|-------|---------|
| node    | displ.   | node | displ.  | node  | dical   |
| 1       | 0.0000   | 41   | 7.6997  | 81    | 0.4930  |
| 2       | 0.3041   | 42   | 5.3442  | 82    | 0 1221  |
| 3       | 1.0997   | 43   | 3,2390  | 83    | 79999   |
| 4       | 2.3315   | 44   | 1 4396  | 84    | 0 6917  |
| 5       | 3,9450   | 45   | 0.0000  | 25    | 0.0217  |
| e.      | 5 RREA   | 16   | 1 0000  | 00    | 0.2708  |
| 7       | 2 0070   | 10   | -1.0444 | 00    | 0.0000  |
|         | 10 5000  | 47   | -V.5216 | 67    | 0.1287  |
|         | 10.0200  | 48   | 2.9739  | 38    | 0.3770  |
| 2       | 10.1204  | 48   | 7.7445  | 89    | 0.5046  |
| 10      | 10.8342  | 50   | 12.9483 | 90    | 0.3869  |
|         | 18.6081  | 51   | 17.7527 | 91    | 0.0294  |
| -1. der | 21.3985  | 62   | 21.3756 | 92    | 0.0000  |
| 13      | 24.1528  | 53   | 23.4835 | 93    | 0 4384  |
| 14      | 26.8334  | 54   | 23.7939 | 94    | 0 8770  |
| 15      | 29.3986  | 55   | 22 0914 | 95    | 1 1144  |
| 16      | 31.8013  | 56   | 18 7542 | 30    | 1 0170  |
| 17      | 34.0147  | 57   | 14 2280 | 07    | 1.01/0  |
| 18      | 36 0067  | 50   | 17.2200 | 00    | 0.0360  |
| 19      | 37 7386  | 50   | 3.0021  | 30    | 0.0000  |
| 20      | 39 1066  | 00   | 3.9528  | 33    | -0.2530 |
| 21      | 40, 3600 | 00   | 0.0000  | 100   | -0.1965 |
| 00      | 40.0000  | DI   | -1.9167 | 101   | 0.0176  |
| 20      | M1.2010  | 52   | 3.7006  | 102   | 0.2207  |
| 20      | 41.7198  | 63   | 9.1350  | 103   | 0.2536  |
| - 4     | 41.3087  | 64   | 8.5235  | 104   | 0.0000  |
| -0      | 41.7528  | -35  | 4.1120  | 105   | -0.4457 |
| 25      | 41.2660  | 66   | 0.0000  | 106   | -0.8504 |
| 27      | 40.4544  | 67   | -0.6079 | 07    | -1 0743 |
| 28      | 39.3168  | 68   | 1,2902  | 108   | -1 0126 |
| 29      | 37.8798  | 69   | 3 0376  | :00   | -0 6020 |
| 30      | 36.1629  | 70   | 7 6567  | 110   | 0.0000  |
| 31      | 34.1786  |      | 1 1003  | ~ ± V | 0.0000  |
| . 32    | 31,9647  |      | 0.0000  |       |         |
| 33      | 29 5500  |      | 0.0000  |       |         |
| 34      | 26.9663  | 7.4  | 0.0040  |       |         |
| 35      | 24 2535  |      | 2028    |       |         |
| 28      | 21 1540  | 10   | 1.0/16  |       |         |
| 27      | 18 6050  | 6    | 1,5448  |       |         |
| 20      | 10.0000  | 77   | 0.6988  |       |         |
| 20      | 10.7575  | 78   | 0.0000  |       |         |
| 23      | 12.3092  | 79   | -0.0833 |       |         |
| 40      | 10.2552  | - 80 | 0.1576  |       |         |

## Table 5.4-3

Expanded Modal Displacements for Mode 9 on a tube Degraded from the Outside

| 002-2             | 2-1.04 |     |      |     |  |
|-------------------|--------|-----|------|-----|--|
| POLUMENT PE & NO. | 92.1   | R-2 | 025  | -01 |  |
| A ROATTA          | PAGE   | 34  | OF A | 1   |  |

### CR-9417-CSE92-1102, REV. 0 Page 34 of 40

## 5.5 NRC REGULATORY GUIDE 1.121 EVALUATION OF TUBE WITH AXIAL DEFECT OF 0.25 INCH MAX. AND UNLIMITED CIRCUMFERENTIAL DEFECT

Section 5.4 verified that tubes with unlimited axial and circumferential extent of defects up to 65.8% of the wall thickness satisfy the Reference 3.1 safety factor against tube failure for operational and accident loadings.

This section will show that the Regulatory Guide 1.121 margin against burst is satisfied for a 77% uniformely degraded tube with a limited (1/4" max.) axial defect.

Figure 13 of Reference 3.18 presents burst pressure test data for various thinning defects. These tests were performed on 0.875" diameter x .050" wall tubing.

The aforementioned Figure 13 indicates that a tube with a .25 long uniform defect with a wall thinning of 75-80% can withstand a burst pressure up to 5100 psi.

The ratio of wall thickness/diameter for the test specimen is:

By comparison the ratio for the ANO-2 tubes is,

It can be therefore be concluded that at ANO-2 the burst pressure for a .25 inch long uniform defect with a 75-80% wall thinning will exceed 5100 psi.

The operational AP for ANO-2 is 1350 psi.

(3)(1350) = 4050 < 5100 ps

The ANO-2 tubes are structionally adequate to meet the Regulatory Guide 1.121 safety margin against burst with uniform (360°) defects that are .25 inches long and 77% degradation.

5.5.1 Differential Pressure

The maximum pressure differential loading will occur during a postulated MSLB event. The membrane stress intensity associated with this pressure differential is calculated below:

CSE-92-164

CR-9417-CSE92-1102, REV. 0 Page 35 of 40

$$\sigma_{t} = \sigma_{t} = \frac{(P_{1} - P_{2})Ri^{2}}{2Rmt} + \frac{(P_{1} + P_{2})}{2}$$
 Equation 1

Where:

 $P_1 = 2500 \text{ psia}$   $P_2 = 0 \text{ psia}$  Ri = 0.327 in Rm = 0.3325 int = .0110 in

Therefore:

## 5.5.2 LOCA Rarefaction Wave

The rarefaction wave produces no stress component at the secondary face of the tube sheet. This loading condition produces no stress component affecting tube burst.

## 5.5.3 Pipe Break Impulse Response

It was determined in section 5.4.2 that a pipe break shock loading would incur a maximum 0.5 ksi at the tubesheet elevation. This stress was for a healthy (not degraded) tube and adjusting for a 77% degraded tube results in 2.2 ksi.

 $0.5 \left(\frac{1}{1-.77}\right) = 2.2 \ ksi$ 

## 5.5.4 MSLB Secondary Side Blowdown

This loading condition will cause a drag load on the horizontal leg of the tube bundle. The load produces an axial stress component only and hence will have no influence on the tube burst.

# 5.5.5 Safe Shutdown Earthquake (SSE)

The distance between the tubesheet and the first tube support is 28.125". Calculating the weight of the tube and the fluid inventory in this span yields.

| CDI       | 1.2 | 2." | 10  | 14 |   |   |    |   |    |   |
|-----------|-----|-----|-----|----|---|---|----|---|----|---|
| VENT VENT |     | 9   | 2 - | R  |   | 2 | 02 | 5 | -0 | 1 |
| MOATT     | A   | P   | AGE |    | 3 | 6 | ¢7 |   | 41 |   |

W = 1.15 lbs

 $F_{SSE} = 4.5 \times 1.15 = 1.7 \text{ lb.}$ 

The resultant moment from this force is,

$$M = 1.7 \ \frac{28.125}{2} = 23.9 \ in-lb$$

The stress produced at the tubesheet elevation from this moment is in significant and hence can be neglected.

5.5.6 Flow Induced Vibration

The minute flow forces will not produce significant stresses in the tubes at the tubesheet elevation.

5.5.7 Inside Flow Inducement

This loading only produces an axial stress component at the tubesheet elevation and therefore will have no influence on the tube burst.

5.5.8 Combined Stresses On Tube

The resulting stress intensities from the loadings of the previous sections are combined arithmetically as follows:

| LOADING CONDITION                  | STRESS<br>INTENSITY |
|------------------------------------|---------------------|
| Maximum ΔP During MSLB (ksi)       | 37.8                |
| LOCA Rarefaction (ksi)             | 0                   |
| Pipe Break Impulse Response (ksi)  | 2.2                 |
| MSLB Secondary Side Blowdown (ksi) | 0                   |
| Safe Shutdown Earthquake (ksi)     | 0                   |
| Flow Induced Vibration (ksi)       | 0                   |
| Inside Flow Inducement (ksi)       | 0                   |
| Total Stress Intensity             | 40.0 ksi            |

Maximum S.1. = 40.0 ksi < 56.0 ksi

Therefore, 77% tube wall thickness degradation will not be subject to burst and its maximum stress intensity is below 56.0 ksi.

| PE & NO | 7. | 92.  | R- 2 | 02 | 5 -0 3 |
|---------|----|------|------|----|--------|
| ATTACH. | A  | PAGE | 37   | 05 | 41     |

CSE-97-164

CR-9417-CSE92-1102, REV. 0 Page 37 of 40

5.6 NRC REGULATORY GUIDE 1.121 EVALUATION OF TUBE WITH AXIAL DEFECT OF 0.25 INCH MAX. AND ALLOWABLE CIRCUMFERENTIAL 100% THRU-WALL DEFECT

Figure 5.6-1 shows the type of defect that will be considered in this section. "F" represents the total axial force pulling on the tube.



# 5.6.1 LOADINGS TO BE CONSIDERED FOR THE AXIAL FORCE

5.6.1.1 Differential Pressure during MSLB

During a main steam line break, the differential pressure creates two types of axial loads on the tube. The first one is a drag load and the second, an internal piston load. The drag load will be discussed in Paragraph 5.6.1.4.

The internal piston load occurs when the maximum pressure difference of 2500 psi is pushing on the I.D. of the tube. This load is:

= 2500 psi x  $\pi$  (R,)<sup>2</sup> = 2500 psi x  $\pi$  (.327)<sup>2</sup> = 859.8 lbs.

5.6.1.2 LOCA Rarefaction Wave

| PE & NO  | 92.  | R - 2 | 025 | 5-0 |
|----------|------|-------|-----|-----|
| ATTACH A | PAGE | 38    | 07  | 41  |

000 00 3CA

As mentioned earlier, the rarefaction wave produces no stress at the location of interest in this analysis. Thus, the axial loading is zero.

5.6.1.3 Pipe Break Impulse Response

Since there is no Y - Displacement for the pipe break impulse response (Reference 3.4), the axial loading is zero.

5.6.1.4 MSLB Secondary Side Blowdown

Reference 3.3 determined that this type of pressure differential due to secondary side blowdown resulted in a total drag load of 113, 290 lbs. across the cross flow region of the tube bundle. Since there are 8411 tubes in the steam generator, the drag load/tube is 113,290 lbs/8411 tubes or 13.5 lbs.

5.6.1.5 Safe Shutdown Earthquake (SSE)

Using the 1.4 G vertical applied static loading (Reference 3.12) results in the following equation for the SSE contribution to the total axial load.

 $F_5 = 1.4 \times W$  (Weight of tube)

Where: W = (Density of Primary Fluid) x (Volume of Fluid) + (Density of Tube) x (Volume of Tube)

Substituting:

 $W = (0.0260 \times \pi/4 \times 0.654^2 \times 326.7) + (0.305 \times \pi/4 \times ((0.75)^2 - (0.654)^2) \times 326.7)$ = 2.85 + 10.55

= 13.4 lbs.

Therefore,  $F_5 = 1.4 \times 13.4 = 18.8$  lbs.

5.6.1.6 Flow Induced Vibration

Since the flow forces do not produce a significant loading at the tubesheet interface, the axial loading is zero.

5.6.1.7 Inside Flow Inducement

The axial loading due to inside flow inducement is dependent upon the fluid velocity and the pressure drop through one third of the total tube bend length. The equation for this type of loading is the pressure of the total tube.

| 12 1S DOCUMENT | 92.  | R-2 | 021 | 5 -( |
|----------------|------|-----|-----|------|
| АТТАСН. А      | PAGE | 39  | 05  | 41   |

07-164

COD.

CR-9417-CSE92-1102, REV. 0 Page 39 of 40

$$F_{\pi} = \frac{PA V^2}{g} + \Delta P \times \pi (Ri)^2$$

Where :

 $F_7$  = force due to inside flow inducement, lbf  $\rho$  = Density of fluid = 44.928 lb/ft A = Cross flow area = 0.336 in V = Fluid velocity, ft/sec = (Primary Flow Rate/Tube)/  $\rho$ A = (60.2 x 10<sup>6</sup> lb/hr/ 8411 tubes)/  $\rho$ A g = gravity = 32.2 ft/sec  $\Delta P$  = Pressure drop through one third of total tube bend length = 36 psi/3 (Page A-1014 of Reference 3.13) R = 0.327 in

Substituting:

$$F_{7} = pA \frac{\left[\frac{60.2 \times 10^{6}}{8411} \times \frac{1}{3600}\right]^{2}}{32.2 \quad pA \times 44.928 \times \frac{336}{144}} + 12 \times \pi (.327)^{2}$$

= 1.2 + 4.0= 5.2 lbs

Therefore, the total axial force is :

F = 839.8 + 0 + 0 + 13.5 + 18.8 + 0 + 5.2= 877.3 lbs

### 5.6.2 STRESS DUE AXIAL LOADING

The equation for calculating the stress due to the axial loading is:

$$\sigma = F/2\pi Rt$$

Where:

| 0   |   | Stress, psi                   |       |    |
|-----|---|-------------------------------|-------|----|
| F   | - | Total Axial Load, 877,3 lbs   |       |    |
| R   |   | Mean Radius of healthy tube,  | 0.351 | in |
| 1.1 | 2 | tube wall thickness, 0.048 in |       |    |

| TOOUMENT  | 9 | 2  |   | R | * | 2 | 0 | 2  | 5 |   | 0 | 1 |
|-----------|---|----|---|---|---|---|---|----|---|---|---|---|
| ATTACH. A |   | AC | Æ |   | 4 | 0 |   | 57 |   | 4 | 1 |   |

CR-9417-CSE92-1102, REV. 0 Page 40 of 40

Substituting:

 $\sigma = 877.3 / 2\pi \ge 0.351 \ge 0.048$ 

 $\sigma = 8287.4 \text{ psi} < 1.0 \text{ S}_m \text{ or } 23,300 \text{ psi}$ , the allowable value of the General Primary Membrane Stress Intensity (NB-3221.1 of reference 3.5) for the average stress across the solid section excluding discontinuities and concentrations.

## 5.6.3 ALLOWABLE CIRCUMFERENTIAL 100% THRU-WALL DEFECT

For a solid section which considers discontinuities, the allowable value for the local membrane stress intensity (NB-3221.2 of Reference 3.5) is  $1.5 \text{ S}_m$  or 34,950 psi. The NRC Regulatory Guide 1.121 (Reference 3.1) refers to NB-3225 of Reference 3.5 for Level D Service Limits which also refers to Appendix F of Reference 3.5. Paragraph F-1331.1(b) of Appendix F supports the 1.5 S<sub>m</sub> value for the localized membrane stress intensity of the case in Figure 5.6-1.

$$\sigma_{\max} = 1.5 S_{\pi} = \frac{F}{2\pi Rt \left(\frac{360 - \Theta}{360}\right)}$$

Where:

= Circumferential extent of thru-wall defect

Substituting,

$$34,950 = \frac{877.3}{2\pi \times .351 \times .048 (360 - \frac{3}{360})}$$

⇒ = 274°.

Therefore, the maximum circumferential extent of 100% thru-wall defect is 274°.

| POCUMENT<br>PE & NO. | 9 | 2  | * | R |   | 2 | 0 | 2  | 5 | -0 | 1        |
|----------------------|---|----|---|---|---|---|---|----|---|----|----------|
| A HOATTA             | P | AG | E |   | 4 | 1 |   | 07 | 4 | 1  | an radio |

August 26, 1992

Evaluation of Arkansas Nuclear One Unit 2 Steam Generator Tube Wall Degradation

Prepared for

Entergy Operation3 Arkansas Nuclear One Unit 2 Russellville, Arkansas 72801

| TYPE & NO. | p | 2  | - | R | * | 2 | 0 | 2  | 5 |   | 0 | 1 |
|------------|---|----|---|---|---|---|---|----|---|---|---|---|
| NATTACH B  | T | AC | Æ |   |   | 1 |   | OF |   | 4 | 1 |   |

MPR ASSOCIATES, INC.

# CONTENTS

| Sect | <u>1011</u>  |                                                                                                                                | Page  |
|------|--------------|--------------------------------------------------------------------------------------------------------------------------------|-------|
| 1    | INTRODUCTION |                                                                                                                                | 1-1   |
|      | Background   |                                                                                                                                | 1-1   |
|      | Purpose      |                                                                                                                                | 1-2   |
| 2    | SUMMARY      |                                                                                                                                | 2-1   |
| 3    | DISCUSSION   |                                                                                                                                | 3-1   |
|      | NRC Regul    | atory Guide 1.121 Requirements                                                                                                 | 3-1   |
|      | ABB Comb     | ustion Engineering Evaluations                                                                                                 | 3-5   |
|      | MPR Struct   | ural Evaluations                                                                                                               | . 3-7 |
|      | Allowable 7  | ube Wall Degradation                                                                                                           | 3-8   |
| 4    | REFERENCES   |                                                                                                                                | 4-1   |
|      | APPENDIX A   | MPR Calculation 62-81-HWM-1, "Acceptable Tube Wall<br>Thinning for 0.25 in. Axial Length, 360° Circumferential<br>Degradation" |       |
|      | APPENDIX B   | MPR Calculation 62-81-HWM-3, "Allowable Tube Wall<br>Degradation for Axial, Slot-type Defects"                                 |       |

| DOCUMENT<br>TYPE & NO. | 9 | 2  | × | R | - | 2 | 0 | 5  | 5 | -0 | 1]      |
|------------------------|---|----|---|---|---|---|---|----|---|----|---------|
| NATTACH B              | P | AG | E |   |   | 2 | 1 | OF | 4 | 1  | areast. |

ii

MPR ASSOCIATES. INC.

Section 1

### INTRODUCTION

### BACKGROUND

NRC Regulatory Guide 1.121 (Reference 1) describes a method for determining allowable limits for degradation of steam generator tubing. Tubes with degradation beyond these limits are required to be removed from service by the installation of plugs at each end of the tube (or modified to be acceptable for further service by the installation of suitable sleeves which meet Regulatory Guide 1.121 requirements).

As part of the technical justification for continued safe operation, structural adequacy of the tubing can be demonstrated by showing that tube degradation will not exceed Regulatory Guide 1.121 allowables at any time during plant operation. This report calculates maximum allowable degradation. Suitable NDT (sensitivity and frequency), conservative plugging/sleeving criteria and operating experience of Arkansas Nuclear One Unit 2 (ANO-2) and other similar plants can then be used to ensure tube degradation will not exceed the allowable degradation determined herein.

To further ensure tubing structural adequacy during plant operating periods between NDT inspections, an administrative limit is imposed at ANO-2 requiring shutdown for a leak rate of 0.1 gpm per steam generator. For ANO-2, this leak rate limit is estimated to provide reasonable assurance of tubing structural adequacy as well as being practical, e.g., in terms of detectability. ANO-2 experience and other work supports this.

In Reference 2, ABB Combustion Engineering (ABB CE) performed an evaluation of certain types of tube wall degradation recently found in the ANO-2 steam generators. The ABB CE report considered three bounding configurations of possible degradation as follows:

- Unlimited axial and circumferential extent and partially through-wall.
- Axial length of 0.25 in. maximum, unlimited circumferential extent and partially through-wall.
- Axial length of 0.25 in. maximum, essentially through-wall and limited circumferential extent.

| TYPE & NO. | 92 · R · | 3 | 025 | -01 |
|------------|----------|---|-----|-----|
| ATTACH B   | PAGE     | 3 | CF  | 41  |

These evaluations utilized what ABB CE considered to be the limiting requirements of Regulatory Guide 1.121 which pertain to the structural integrity of the tubing for normal operating and accident conditions.

## PURPOSE

The purpose of this report is to address all of the structural requirements in Regulatory Guide 1.121, utilizing the ABB CE evaluations of Reference 2, as applicable, and additional MPR structural evaluations as needed based on our review of Reference 2. These additional evaluations included consideration of axial, slot-type defects (axial cracks). Consistent with NDT findings and expectations for ANO-2 this report is limited (except as discussed herein) to tube degradation either within or close to a tube support or at the top of the tube sheet.

| PE & NO  | 92 - | R - 2 | 50 | 5-01 |
|----------|------|-------|----|------|
| ATTACH B | PAGE | 4     | CF | 41   |

### Section 2

### SUMMARY

The evaluations in this report address the structural requirements of NRC Regulatory Guide 1.121 for certain types of degradation in the Arkansas Nuclear One Unit 2 steam generator tubing. The evaluations are based on the structural analyses performed by ABB Combustion Engineering and additional MPR structural evaluations and calculations. The tubing degradation considered is either within or close to a tube support or at the top of the tube sheet. Slightly reduced values would be calculated for allowable tube wall degradation for non-axisymmetric degradation configurations at other locations due to tube bending stresses resulting from less lateral support of the tube, e.g., in areas between supports. For tubing degradation configurations which are axisymmetric and therefore do not result in tube bending stresses, the degradation allowables in this report are also applicable at areas away from tube supports (as well as at supports).

The maximum allowable tube wall degradation determined herein is summarized in Tables 2-1 and 2-2. For the intended purpose of determining the maximum allowable tube degradation per Regulatory Guide 1.121, we consider use of the "probable tubing material properties", as appropriate, rather than ASME Code minimums. Further, if desired, Entergy could possibly obtain as-built materials properties which we believe would allow even greater degradation than indicated herein for "probable" material properties. Accordingly, we consider the maximum allowable degradation as shown in Table 2-1 to be appropriate and conservative.

Notably, the values for maximum allowable degradation calculated herein are somewhat different from the values calculated in Reference 2 by ABB CE. The main causes of these differences are discussed later in this report. Other differences are in the details of the calculations, also presented later in this report. For convenience, Table 2-3 shows a comparison of the ABB CE and MPR calculated values for the case of a .25 in. maximum axial, 360° circumferential, part through-wall tube degraded area. Also shown is the value from public documents (Reference 3) for Millstone 2 (which has the same tubing size as ANO-2).

As indicated, the values in Table 2-3 are similar as they should be. Notably a lower value (59%) has been published for Maine Yankee (Reference 4); however, this is not applicable since this (lower) value was based on a defect of unlimited axial extent along with some other minor differences in calculations. Accordingly, we conclude the value of 79% as computed herein is appropriate for ANO-2.

| DOCUMENT<br>TYPE & NO | 92 - F | 2-20 | 5( | 5 - | 0 | 1 |
|-----------------------|--------|------|----|-----|---|---|
| ATTACH B              | PAGE   | 5    | 05 | 4   | 1 |   |

## Table 2-1

## Allowable Steam Generator Tube Wall Degradation for Various Degradation Types (For Probable Tubing Material Properties)<sup>1</sup>

| Type of Degradation <sup>2</sup>                       | Allowable Tube Wall Degradation                        |
|--------------------------------------------------------|--------------------------------------------------------|
| Unlimited axial and circumferential extent             | 66% maximum                                            |
| 0.25 in. maximum axial length,<br>360° circumferential | 79% average around the tube circumference <sup>3</sup> |
| Axial slot-type defect                                 |                                                        |
| - Less than 0.25 in. long                              | $100\%^{4}$                                            |
| - 0.25 - 0.50 in. long                                 | 84% <sup>5</sup>                                       |
| - 0.50 - 1.5 in. long                                  | 73% <sup>5</sup>                                       |
| - Longer than 1.5 in.                                  | 66%                                                    |

- <sup>1</sup> Mill test certificates with actual properties were not available for use at this time, otherwise, actual materials properties would have been used.
- <sup>2</sup> Any of the types of degradation indicated herein can be considered applicable to either a support location or a location at the top of the tubesheet. If the degradation is symmetric about the tubing axis, the specified degradation allowable is also applicable at locations away from support locations.
- <sup>3</sup> As an example, this 79% <u>average</u> value equates to an <u>accumulated</u> total of 234° of 100% deep defect penetration together with the remainder at 40% deep. As discussed later in this report, burst test data for actual defect configurations confirm that the accumulated average penetration is the controlling parameter for these defects at ANO-2.

<sup>4</sup> Burst pressure data is available for tube wall degradation to 84%. Extrapolation of this data indicates that the allowable slot depth would be 100% (i.e., essentially through-wall).

These values actually apply for the maximum of the slot defect lengths indicated. Other values can be obtained from Figure 1 if desired.

| E & NO   | 92 - R | 2 | 025 | ŝ |
|----------|--------|---|-----|---|
| ATTACH B | PAGE   | 6 | OF  | 4 |

## Table 2-2

## Allowable Steam Generator Tube Wall Degradation for Various Degradation Types (For ASME Code Minimum Tubing Material Properties)

| Type of Degradation <sup>1</sup>                       | Allowable Tube Wall Degradation           |
|--------------------------------------------------------|-------------------------------------------|
| Unlimited axial and circumferential extent             | 62% maximum                               |
| 0.25 in. maximum acial length,<br>360° circumferential | 76% average around the tube circumference |
| Axial slot-type defect                                 |                                           |
| - Less than 0.25 in long                               | 100% <sup>2</sup>                         |
| - 0.25 - 0.50 in. long                                 | 77%                                       |
| - 0.50 + 1.5 in. long                                  | 67%                                       |
| - Longer than 1.5 in.                                  | 62%                                       |

<sup>&</sup>lt;sup>2</sup> Burst pressure data is available for tube wall degradation of 84%. Extrapolation of this data indicates that the allowable slot depth would be 100% (i.e., essentially through-wall).

| TODUMENT   | 92 - R | 5 | 02 | 5-01 |   |
|------------|--------|---|----|------|---|
| B ROATTACH | PAGE   | 7 | CF | 41   | - |

Any of the types of degradation indicated herein can be considered applicable to either a support location or a location at the top of the tubesheet. If the degradation is symmetric about the tubing axis, the specified degradation allowable is also applicable at locations away from support locations.

# Table 2-3

# Average Percent Through-Wall Defect Penetration Allowable per Regulatory Guide 1.121 for Degradation of Tube at Top of Tube sheet

| For A  | NO-2 | For Millstone-2       |
|--------|------|-----------------------|
| ABB-CE | MPR  | Per Reference 3       |
| 77     | 75   | 79                    |
|        |      | and the second second |

| PE & NO  | 9 | 2  |   | R |   | 2 | 0 | 2   | 5 | -0 | 1    |
|----------|---|----|---|---|---|---|---|-----|---|----|------|
| напась В | F | AC | E |   | - | 3 |   | C/F | 4 | 1  | 2744 |



## ALLOWABLE TUBE WALL DEGRADATION FOR AXIAL SLOT TYPE DEFECTS (AXIAL CRACKS)

FIGURE 1

| PODUMENT<br>PE & NO | 9 | 2  | • | R | 5 | 0 | 5   | 5 | ~  | 0 | 1     |
|---------------------|---|----|---|---|---|---|-----|---|----|---|-------|
| ATTACH B            | F | AG | E |   | 9 | 1 | CIF |   | 41 | 1 | Carry |

MPR ASSOCIATES, INC.

### Section 3

### DISCUSSION

### NRC REGULATORY GUIDE 1.121 REQUIREMENTS

Regulatory Guide 1.121 provides requirements for evaluating the allowable wall degradation of steam generator tubing, beyond which the defective tubing must be removed from service. As stated, the Regulatory Guide requires the consideration of three factors: (1) the wall thickness required to sustain the imposed loadings under normal and accident conditions; (2) an allowance for further degradation during operation until the next inservice inspection; and (3) the crack size permitted to meet the primary-to-secondary leakage limit allowed by the plant's technical specifications.

Section C of Regulatory Guide 1.121 provides the specific structural requirements which must be satisfied for degraded steam generator tubing for normal operation and accident conditions. Most of these requirements can be bound by a reduced set of requirements at the end of this section; and, others are shown to be not pertinent as follows:

## For normal operation, the requirements from NRC Regulatory Guide 1.121 are:

From C.2., "Minimum Acceptable Wall Thickness,"

- "Tubes with detected part through-wall cracks should not be stressed during the full range of normal reactor operation beyond the elastic range of the tube material" (C.2.a.(1)).
- "Tubes with part through-wall cracks, wastage, or combinations of these should have a factor of safety against failure by bursting under normal operating conditions of not less than three at any tube location" (C.2.a(2)).
- "The margin of safety against tube rupture under normal operating conditions should be not less than three at any tube location where defects have been detected" (C.2.a(4)).
- "Any increase in the primary-to-secondary leakage rate should be gradual to provide time for corrective action to be taken" (C.2.a(5)).

| PE & NO  | 9 | 2 - | R | 4 | 2 | 02 | 5 | -0 | 1 |
|----------|---|-----|---|---|---|----|---|----|---|
| ATTACH B | P | AGE |   | 1 | 0 | 05 | 4 | 1  |   |

Experience at ANO-2 and at other similar plants has demonstrated this requirement to be met; accordingly, this requirement is not included in the reduced set of requirements at the end of this section.

"An additional thickness degradation allowance should be added to the minimum acceptable tube wall thickness to establish the operational tube thickness acceptable for continued service. An imperfection that reduces the remaining tube wall thickness to less than the sum of the minimum acceptable wall thickness plus the operational degradation allowance is designated as an unacceptable defect. A tube containing this imperfection has exceeded the tube wall thickness limit for continued service and should be plugged before operation of the steam generator is resumed" (C.2.b).

This requirement is addressed by the current practice at ANO-2 of sufficient NDT examinations and sleeving or plugging (and stabilizing) for any actual indicated degradation (irrespective of tube wall penetration) for tube locations where experience (at ANO-2 and others) indicates sufficiently rapid degradation should be expected. Also, experience (at ANO-2 and others) is used to ensure degradation between NDT examinations will not exceed structural allowables.

From C.3, "Analytical and Loading Criteria Applicable to Tubes with either Part Thruwall or Thru-wall Cracks and Wastage,"

 "Loadings associated with normal plant conditions, including start up, operation in power range, hot standby, and cooldown, as well as all anticipated transients (e.g., loss of electrical load, loss of offsite power) that are included in the design specifications for the plant, should not produce a primary membrane stress in excess of the yield stress of the tube material at operating temperature" (C.3.a.(1)).

 "The margin between the maximum internal pressure to be contained by the tubes during normal plant conditions and the pressure that would be required to burst the tubes should remain consistent with the margin incorporated in the design rules of Section III of the ASME Code" (C.3.a.(2)).

"The fatigue effects of cyclic loading forces should be considered in determining the minimum tube wall thickness. The transients considered in the original design of the steam generator tubes should be included in the fatigue analysis of degraded tubes corresponding to the minimum tube wall thickness established. The magnitude and frequency of the temperature and pressure transients should be based on the estimated number of cycles anticipated during normal operation for the maximum service interval expected between tube inspection periods. Notch effects resulting from tube thinning should be taken into account in the fatigue evaluation" (C.3.b(2)).

This requirement is addressed by the current practice at ANO-2 of sufficient NDT examinations and sleeving or plugging (and stabilizing) for any actual indicated degradation (irrespective of tube wall penetration) for tube locations where experience (at ANO-2 and others) indicates sufficiently rapid degradation should be expected. Also, experience (at ANO-2 and others) is used to ensure degradation due to fatigue between NDT examinations will not exceed structural allowables.

"The maximum permissible length of the largest single crack should be such that the internal pressure required to cause crack propagation and tube rupture is at least three times greater than the normal operating pressure. The length and geometry of the largest permissible crack size should be determined analytically either by tests or by refined finite element or fracture mechanics techniques. The material stress-strain characteristics at temperature, fracture toughness, stress intensity factors, and material flow properties should be considered in making this determination" (C.3.d(1)).

"The primary-to-secondary leakage rate limit under normal operating pressure is set forth in the plant technical specifications and should be less than the leakage rate determined theoretically or experimentally from the largest single permissible longitudinal crack. This would ensure orderly plant shutdown and allow sufficient time for remedial action if the crack size increases beyond the permissible limits during service" (C.3.d(3)).

This requirement is addressed by an administrative limit requiring shutdown for a leak rate of 0.1 gpm per steam generator. For ANO-2, this leak rate limit is estimated to provide reasonable assurance of tubing structural adequacy as well as being practical, e.g., in terms of detectability. ANO-2 experience and other work supports this.

"Conservative analytical models should be used to establish the minimum acceptable tube wall thickness generally applicable to those areas of tube length where tube degradation is most likely to occur in service due to cracking, wastage, intergranular attack, and the mechanisms of fatigue, vibration, and flow-induced loadings. The wall thickness should be such that sufficient tube wall will remain to meet the design limits specified by Section III of the ASME Boiler and Pressure Vessel Code for Class 1 components, as well as the following criteria and loading conditions" (C.3.a.).

3-3

92 · R · 2025 ·01

PAGE 12 ct 41

ATTACK B

This requirement is interpreted as being covered by other requirements in Regulatory Guide 1.121 as discussed herein. The only conflict is per requirement C.3.a(1) which limits to yield stress versus a lower limit per Section III of the ASME Code. In this case we consider the stated Regulatory Guide limit per C.3.a.(1) of yield stress to be appropriate and note that others have done the same.

For accident conditions, the requirements from NRC Regulatory Guide 1.121 are:

From C.2, "Minimum Acceptable Wall Thickness,"

- "If through-wall cracks with a specified leakage limit occur either on a tube wall with normal thickness or in regions previously thinned by wastage, they should not propagate and result in tube rupture under postulated accident conditions" (C.2.a(3)).
- "The margin of safety against tube failure under postulated accidents, such as a LOCA, steam line break, or feedwater line break concurrent with the SSE, should be consistent with the margin of safety determined by the stress limits specified in NB-3225 of Section III of the ASME Boiler and Pressure Vessel Code" (C.2.a(6)).

From C. 3, "Analytical loading criteria applicable to tubes with either part through-wall or through-wall cracks and wastage,"

- "Loadings associated with a LOCA or a steam line break, either inside or outside the containment and concurrent with the SSE, should be accommodated with the margin determined by the stress limits specified in NB-3225 of Section III of the ASME Code and by the ultimate tube burst strength determined experimentally at the operating temperature" (C.3.a.(3)).
- "The stress calculations of the thinned tubes should consider all the stresses and tube deformations imposed on the tube bundle during the most adverse loadings of the postulated accident conditions. The dynamic loads should be obtained from the modal analysis of the steam generator and its support structure. All major hydrodynamic and flow-induced forces should be considered in this analysis" (C.3.b.(1)).

мент 92 - R - 2025 -01 аттасн В Раде /3 ст 41

3-4

- The combination of loading conditions for the postulated accident conditions should include, but not be limited to, the following sources:
  - Impulse loads due to rarefaction waves during blowdown,
  - Loads due to fluid friction from mass fluid accelerations,
    - Loads due to the centrifugal force on U-bend and other bend regions caused by high velocity fluid motion.
  - Seismic loads,
  - Transient pressure load differentials" (C.3.c).
- "Adequate margin should be provided between the loadings associated with a large steam line break or a LOCA concurrent with an SSE and the loading required to initiate propagation of the largest permissible longitudinal crack resulting in tube rupture. The loadings associated with the postulated accident conditions should include the transient hydraulic and dynamic loads listed in C.3.c." (C.3.d.(2)).

The pertinent NRC Regulatory Guide 1.121 tube structural requirements as stated above can be reduced to the following set of requirements:

#### For Normal Operation:

- The tube stress intensity should be less than the tube material yield stress.
- The tube burst pressure should be greater than three times the pressure difference across the tube wall.

### For Accident Conditions:

- The tube stress intensity should be less than the lesser of 2.4 times the design stress intensity (S<sub>m</sub>) or 0.7 times the ultimate stress.
- The tube burst stress should be greater than the pressure difference across the tube wall.

## ABB COMBUSTION ENGINEERING EVALUATIONS

In Reference 2, ABB Combustion Engineering performed an evaluation of ANC Unit 2 steam generator tubing structural adequacy for degradation in the expansion transition

3-5

92 - R · 2025 -01

PAGE 14 05 41

ISTTACH B

region (at the top of the tube sheet). For each type of degradation the ABB CE evaluations considered the requirements of NRC Regulatory Guide 1.121 and determined the allowable tube wall degradation. Based on our review of this work, we have the following comments:

- The tubing degradation in the expansion transition region is in close proximity to the tube sheet. As a result of the constraint to tubing lateral displacement due to the close clearance between the tubing outside diameter and the tube sheet bore, and as a result of lateral support of the tube from the adjacent tube support grid, the axial load on the tube for accident conditions does not result in primary bending stresses in the tubing even for a non-uniform degradation profile around the tubing circumference. As a result, the average cross-sectional area of the degraded area of the tube determines its axial load capability. This is based on the results of tube burst tests with typical degradation profiles which are reported in References 4 and 6.
- The pressure difference calculations across the tube for the case of a steam line break do not include stress amplification due to rapid depressurization of the steam line. We consider this appropriate based on previous MPR calculations which demonstrate that the pressure around the tubes inside the steam generator does not fall rapidly (relative to the appropriate natural frequency of the tubes) and no amplification of tube stress will occur. In essence, even though the pressure will fall rapidly within the steam line, it does not fall rapidly within the steam generator -- because the resulting boiling of the water tends to hold the pressure up inside the steam generator (as in a pressurizer).
- The ABB CE evaluations considered degradation which originated either from the tubing outside diameter or inside diameter. In all cases, the required tubing remaining wall thickness is greater for the degradation which originates from the tubing inside diameter.
- The ABB CE evaluations considered both ASME Section III minimum tubing properties (yield and ultimate stress) as well as "probable" material properties. We consider this appropriate as discussed herein.
- The ABB CE evaluations for 0.25 in. axial-length, through-wall, partialcircumference defects are not applicable if the defects are actually .25 in. long for their full penetration (up to 100%) extent, since premature failure would occur within the essentially 100% through-wall portion of the .25 in. long defect due to circumferential stresses from internal pressure.

However, this would not be the case for a circumferential <u>slot</u>-type defect (due to support of the defected portion of the tube from non-defected adjacent areas). Accordingly, these evaluations are applicable to circumferential slot-type defects (circumferential cracks) with essentially no axial extent. This ABB CE analysis may be applicable for actual defect areas .25 in. long in the steam generator (e.g., with ligaments between cracks); however, burst tests would be needed to demonstrate this.

Notably, the circumferential defects found thus far at ANO-2 are not of the type which need to be covered by the ABB CE analysis mentioned above (.25 in. long, 100% through-wall, partial circumference). Instead, all circumferential defects found thus far at ANO-2 can be covered by the case analyzed herein for .25 in. maximum axial length, 360° circumferential extent with average penetration of 79% per Table 2-1. Accordingly, there is no need to use the above mentioned part of the ABB CE analysis (which otherwise requires either limiting to a slot-type defect or tube burst tests).

For the case of interest for circumferential defects (.25 in. maximum axial extent, 360°, partial through-wall, i.e., 79% average per Table 2-1), local areas around the defected portion of the tube may be degraded greater than the 79% average value. This is acceptable based on burst tests from tube pulls with similar defects at another plant (Reference 6). These tests show that the average (and not maximum) penetration is the pertinent parameter to establish structural adequacy; and, in any event, even in the worst-case, only a tube leak would result if a local area of a defect goes through wall. Accordingly, the 79% average defect case is considered the controlling case for circumferential defects at ANO-2.

### MPR STRUCTURAL EVALUATIONS

MPR performed additional tubing stress analyses based on the tubing loads determined by ABB CE in order to adjust certain ABB CE evaluation results based on our interpretation of Regulatory Guide 1.121 requirements. (See Appendices A and B of this report.) The following should be noted:

The ABB CE evaluations for 0.25 in. long 360° circumferential degradation utilized burst test data to determine the allowable degradation. This burst test data was obtained for simulated degradation originating from the tube outside diameter. In addition, the measured burst pressure for the tested 77 percent defect was significantly greater than the required pressure of 4050 psi. The MPR evaluations in Appendix A estimate the permitted wall degradation from the inside diameter which would provide a margin of three to burst based on the tubing wall differential pressure during normal

3-7

92 - R - 2025 -01

plant operation. The calculations consider code minimum and probable tubing material properties.

 Evaluations are provided in Appendix B for axial, slot-type defects of lengths 0.25 in., 0.50 in. and 1.5 in. These evaluations used burst-test data from Reference 5. The calculations consider code minimum and probable tubing material properties.

### ALLOWABLE TUBE WALL DEGRADATION

Based on the ABB CE and MPR evaluations, the allowable tube wall degradation for various types of degradation of the ANO Unit 2 steam generator tubing was determined. The results of the evaluations in Table 3-1 and Table 3-2 show the permitted degradation extent for the types of degradation which were addressed.

| PE & NO   | 9   | 2  | r | R. |   | 2 | 0 | 2  | 5 |   | 0 | 1 |
|-----------|-----|----|---|----|---|---|---|----|---|---|---|---|
| аттасн. В | 1.5 | AG | - |    | 1 | 7 | 1 | 05 |   | 4 | 1 | - |

## Table 3-1

## Allowable Steam Generator Tube Wall Degradation For Various Degradation Types (For Probable Material Properties)<sup>1</sup>

| Type of<br>Degradation <sup>2</sup>                                                                                             | Limiting Regulatory<br>Guide 1.121 Structural<br>Requirement   | Allowable Tube Wall<br>Degradation        |
|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------|
| Unlimited axial and circumferential extent                                                                                      | Burst pressure should be greater than $3x(p_{res}-p_{sec})$    | 66% maximum                               |
| 0.25 in. axial length, 360° circumferential                                                                                     | Burst pressure should be greater than $3x(p_{ros}-p_{sec})$    | 79% average around the tube circumference |
| Axial slot-type defect<br>- Less than 0.25 in. long<br>- 0.25 - 0.50 in. long<br>- 0.50 - 1.5 in. long<br>- Longer than 1.5 in. | Burst pressure should be<br>greater than $3x(p_{res}-p_{sec})$ | 100% <sup>3</sup><br>84%<br>73%<br>66%    |

<sup>&</sup>lt;sup>3</sup> Burst pressure data is available for tube wall degradation to 84%. Extrapolation of this data indicates that allowable slot depth would be 100% (i.e., essentially through-wall).

| TYPE & NO. | 92 - R | - 5 ( | 250 | 0-01 |
|------------|--------|-------|-----|------|
| attach. B  | PAGE   | 18    | OF  | 41   |

<sup>&</sup>lt;sup>1</sup> Mill test certificates with actual properties were not available for use at this time, otherwise, actual materials properties would have been used.

Any of the types of degradation indicated herein can be considered applicable to either a support location or a location at the top of the tubesheet. If the degradation is symmetric about the tubing axis, the specified degradation allowable is also applicable at locations away from support locations.

## Table 3-2

## Allowable Steam Generator Tube Wall Degradation For Various Degradation Types (For ASME Code Minimum Tubing Material Properties)

| Type of<br>Degradation <sup>1</sup>            | Limiting Regulatory<br>Guide 1.121 Structural<br>Requirement | Allowable Tube Wall<br>Degradation        |
|------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|
| Unlimited axial and circumferential extent     | Burst pressure should be greater than $3x(p_{res}-p_{sec})$  | 62% maximum                               |
| 0.25 in. axial length, 360°<br>circumferential | Burst pressure should be greater than $3x(p_{res}-p_{sec})$  | 76% average around the tube circumference |
| Axial slot-type defect                         | Burst pressure should be greater than $3x(p_{ros}-p_{sec})$  |                                           |
| - Less than 0.25 in. long                      |                                                              | 100% <sup>2</sup>                         |
| - 0.25 - 0.50 in. long                         |                                                              | 77%                                       |
| - 0.50 - 1.5 in.long                           |                                                              | 67%                                       |
| - Longer than 1.5 in.                          |                                                              | 62%                                       |

<sup>&</sup>lt;sup>1</sup> Any of the types of degradation indicated herein can be considered applicable to either a support location or a location at the top of the tubesheet. If the degradation is symmetric about the tubing axis, the specified degradation allowable is also applicable at locations away from support locations.

<sup>&</sup>lt;sup>2</sup> Burst pressure data is available for tube wall degradation to 84%. Extrapolation of this data indicates that the allowable slot depth would be 100% (i.e., essentially through-wall). **Burst pressure data is available for tube wall degradation to 84%. Extrapolation of this data indicates that the allowable slot depth would be 100% (i.e., essentially 100% (i.e., essential) 100% (i.e., essentially 100** 

MPR ASSOCIATES, INC.

### Section 4

### REFERENCES

- US Nuclear Regulatory Commission Regulatory Guide 1.121, "Bases for Plugging Degraded PWR Steam Generator Tubes," August 1976.
- ABB Combustion Engineering NCS Engineering Calculation Report CR-9417-CSE 92-1102, Rev. 0, "Evaluation of Circumferential Defects at the Expansion Transition in Arkansas Nuclear One-Unit 2 Steam Generator Tubes," April 23, 1992.
- US Nuclear Regulatory Commission Docket No. 50-336, "Summary of Meeting with Representatives of Northeast Utilities Concerning the Assessment of the Steam Generators at Millstone 2, August 28, 1991," September 23, 1991.
- Maine Yankee letter from S. E. Nichols, Manager Nuclear Engineering & Licensing, to Document Control Desk, US Nuclear Regulatory Commission dated June 20, 1991, "Maine Yankee Steam Generator Tube Evaluation (RG 1.121 Report)".
- PNL-2684 (NUREG/CR-0277), "Steam Generator Tube Integrity Program -Annual Progress Report for January 1 - December 31, 1977," Battelle Pacific Northwest Laboratory, August 1978.
- 6. US Nuclear Regulatory Commission Docket No. 50-336, "Summary of Meeting with Representatives of Northeast Utilities Concerning the Assessment of the Steam Generators at Millstone 2, February 22, 1990," March 22, 1990; and Summary of Meeting with Representatives of Northeast Utilities Concerning the Assessment of the Steam Generators at Millstone 2, August 28, 1991, September 23, 1991.

4-1

92 · R · 2025 · 01 B PAG 20 0 41 MPR ASSOCIATES. INC.

# APPENDIX A

MPR Calculation 62-81-HWM-1, "Acceptable Tube Wall Thinning for 0.25 in. Axial Length, 360° Circumferential Degradation"

| 10 5                                                              | MPR ASSOCIAT    | ES, INC.<br>Vashington, DC 2003 | 6                            |                                  |
|-------------------------------------------------------------------|-----------------|---------------------------------|------------------------------|----------------------------------|
|                                                                   | CALCULATION T   | TTLE PAGE                       |                              |                                  |
| ELATERION O                                                       | 2 CADITADIS     |                                 | PAGE                         | 1 OF 10                          |
| PROJECT<br>BNO UNA2 S                                             | STERM GENEIZET  | OR                              | TASK                         | NO.<br>2-81                      |
| CALCULATION TITLE<br>ACCEDTABLE<br>D.ZEIN. AXIAL L<br>DEGRADATION | TUBE WALL THING | SUNG FOR                        | CALCI<br>IOPTK               | ULATION NO.<br>ONAL)<br>BI-HUSHI |
| PREPARER(S)/DATE                                                  | CHECKER(S)/DATE | REVIEWER(S)/DA                  | TE                           | REV. NO.                         |
| HWHECURDY<br>6-30-92                                              | Michael Flancis | Satorso<br>6-30-92              | -                            |                                  |
|                                                                   |                 |                                 | 2. YENT<br>E.A. VIC<br>MCH B | 92 - R - 2025 -<br>PAGE 22 C 4   |

| 1050            | MPR ASSOCIA<br>Connecticut Ave., NW-  | TES, INC.<br>Washington, DC | 20036        |                      |
|-----------------|---------------------------------------|-----------------------------|--------------|----------------------|
| CALCULATION NO. | PREPARED BY                           | CHECK<br>M Flan             | ED BY        | PAGE 2               |
| SULLARY         |                                       |                             |              |                      |
| THIS CALCU      | LATION COTAL                          | KIJES TH                    | e recec      | あいましま                |
| AMOUNT OF       | WALL DEGR                             | 2027/00                     | FOR AND      | 50000                |
| STRAM GBN       | BERT SOTASE                           | s for w                     | DALLOBG      | NADALION             |
| WHICH 15        | 0.25 W. AXIALI                        | ENGTH AND                   | 0 260°       | ŝ                    |
| CURCOMERT       | SENTIAL EXT                           | ENT.                        |              | *                    |
| THE LIMIT       | IDG STRUCTU                           | DIZAL REC                   | DUSBER       | DIT RROM             |
| NRC Rec         | OUR-ORY GUT                           | 28 (12) 1                   | STURT        | a marcow             |
| OF BRYI         | 57 70 8028-                           | DOBSSI                      | ous sou      | 1 7 14 3             |
| NORMAL          | OPERLATION                            | -038 W                      | all pr       | 550025               |
| DIFEBUS         | NCE. 128200                           | es anta,                    |              |                      |
| ULTIMAT         | 121                                   | E00.200                     | ALLO         | waraus .             |
| DULLEBR         | ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( | were (m)                    | WALL I       | HAINDEL (Q.          |
| 80,000          | .0                                    | 115                         | 79           | 8,0                  |
| 90,000          | * .0                                  | 501                         | 1 78         | 8.8                  |
|                 |                                       |                             |              |                      |
| * 27 G500F      |                                       | i.                          | TTACH B PAGE | R·2025-01<br>23 ⇔ 41 |

| 105                           | MPR ASSOCIAT   | TES, INC.<br>Vashington, DC 20036 |              |
|-------------------------------|----------------|-----------------------------------|--------------|
| CALCULATION NO.<br>G2-B1-HWH1 | PREPARED BY    | CHECKED BY                        | PAGE 3       |
| THE PURDO                     | SE OF THIS CAL | CULATION IS TA                    |              |
| DETERMIN                      | ACC80          | 1018 2-0007 0                     | e wall       |
| DECREDATI                     | 00 FOR ANO U   | DIT Z BTBAM G                     | 20745756     |
| TOBES, TH                     | E CALCULATION  | CONSIDERS DE                      | CONTACIANO   |
| is circore                    | EDIN. IN AXIAL | - LENGTH ADD                      | 360*         |
| BECAUSE OF                    | THE SHORT A    | YUNC EXTENT O                     | E THE        |
| DEGENDATION                   | THECAPABILITY  | OF THE TOBIO                      | 0 7 0        |
| SUBTRIN THO                   | CIRCOMERRA     | DTIAL PRESSOR                     | re forces    |
| IS DOT AFF                    | BCTOD SIGNIEL  | CADTUR, I.E. THE                  | r            |
| FORCES ANT                    | E REDISTRIBUTI | OF BHT OF Q6                      | PCIES        |
| MATERIAL                      | ABONE FOD &    | paron the degu                    | CHONTION.    |
| AS A TZESU                    | UT, THE ATIAL  | 57735585                          | THE C        |
| 2000000000                    | E TO PRESS     | or and app                        | CIBID        |
| SIGUIEICAN                    | e, and the or  | 178 DUIBUT FUC                    | 1922222      |
| LONG DEG                      | REDATION.      | PE & NO 92                        | · R· 2025-01 |

| 105             | MPR ASSOCIAT<br>Connecticut Ave., NW-W | ES, INC.<br>ashington, DC 20036 |                  |
|-----------------|----------------------------------------|---------------------------------|------------------|
| CALCULATION NO. | PREPARED BY                            | CHECKED BY                      | PAGE 🛰           |
| THE GEOF        | BHT OF THE                             | TOBE AT THE                     | DEGRADATIO       |
| 15 54000        | HELS'                                  |                                 |                  |
|                 | Ro<br>R. P.                            | P.º                             | ŧ                |
| NOTE THA        | T FOR THE TU                           | DA LAR DUR                      | 52028            |
| FORCE AC        | -V EWF CO 25                           | BEND END OF                     | 5007 BUT         |
| THE AXIA        | L FORCE BALS                           | LOCE GIVES,                     |                  |
| JA TT (R        | -12, )= (P,-Po)                        | - 12,                           |                  |
| whave,          |                                        |                                 |                  |
| 12, = 7         | AN EQUEU BEC                           | 0105,10.                        |                  |
| Rom TO          | DE OUTSIDE T                           | ADIUS IN.                       |                  |
| p= p            | LAPPOLA IN PID                         | a LOBA DRIA                     |                  |
| Do= D           | LASSING EINAZEI                        | DE TOBE PSIA                    |                  |
| VA= TO          | DE AVAL STR                            | 225, PSI                        |                  |
|                 |                                        | PE & NO                         | 92 - R - 2025 -0 |

| 105              | MPR ASSOCIAT<br>O Connecticut Ave., NW-W            | ES, INC.<br>ashington, DC 20036 |             |
|------------------|-----------------------------------------------------|---------------------------------|-------------|
| CALCULATION NO.  | PREPARED BY                                         | CHECKED BY                      | PAGE 5      |
| THE ANIAL        | 8-1285615                                           |                                 |             |
| VA = TT          | 2;(D-P)<br>7(12,2-12,2)                             |                                 |             |
| THE AVERA        | CE RADIAL STR                                       | 2822 2728 -                     | 380         |
| DUA 10 DO        | TEPEOULE IS,                                        |                                 |             |
| A <sup>5</sup> = | 2                                                   |                                 | ï           |
| THE TUBE         | STRESS INTE                                         | DBITTY 15,                      | Equation of |
| S= VA            | - Ta                                                |                                 |             |
| S= <u>7 12</u>   | $(P_{2}^{\circ} - P_{2}) + (P_{2}^{\circ} - P_{2})$ | 2.+20                           |             |
| FROM SECT        | 100 5.3 OF REF                                      | ECENCE 1, THE                   | S MILLING   |
| 15 BODIN & HB    | NT FROM REGU                                        | LATORY GUIDE                    | 1.12115     |
| THAT THE         | DEGRADED TU                                         | BE HAVE A MS                    | or close    |
| BURST OF         | 3 BASED ON                                          | THE PRESSOR                     | 28          |
| DIREBURN         | CE FOR DORHE                                        | AL OPERATION.                   | ALSO,       |
| Section 5        | 5 OF REFERENCE                                      | 8   972785 741                  | AT BURST    |
| TEST DAT         | 10 # 41575 FOR                                      | A STEAM GEN                     | NOTAL       |
|                  |                                                     |                                 |             |
| 10              | MPR ASSOCIATE<br>50 Connecticut Ave., NW-Wa | ES, INC.<br>ashington, DC 20036 |               |
|-----------------|---------------------------------------------|---------------------------------|---------------|
| CALCULATION NO. | PREPARED BY                                 | CHECKED BY                      | PAGE G        |
|                 |                                             |                                 |               |
| DECHODE         | D SECTION WITH                              | 75-80°% wa                      |               |
| C300271         | ON. THE ABOVE                               | EQUATION WILL                   | 15 W          |
| 05 25 70        | DETERMINETEC                                | HE STRES IS                     | 7806177       |
| AT WHILE        | u the privers                               | ocurred is                      | THIS .        |
| TBST. N         | OT & FROM FIGUR                             | all of Sateveno                 | EN PLANES     |
| LSacaua         | 3.18 . N TZEE.                              | BUT () THE                      |               |
| Dacurd          | an day contra                               | CHIDED ID THE                   | 8 TOD8        |
| FRON TO         | LE OUTSIDE DIA                              | N8762.                          |               |
| Spacine         | NUMBER 3-35-                                | SEE ADDENS                      | DIX EOC       |
| C#F 2)10        | USED FOR THE C                              | ALCULATION BIDG                 | A CAN TO      |
| NEDUES          | EDTATIVE DEPECT                             | UNIFORM THINN                   | 100, 73%      |
| WASTAGE         | , 1825 10. DECEC                            | TURDOTH), PAR                   | omerans fue   |
| 12,21           | 315051438                                   | 36 1 m. (1284.2 A.              | POBLOIXE      |
| 12 = 18         | 15 0315 = . 40                              | 47 004<br>2.7857) .000          | Appendix E)   |
| P.= -           | 1700 PSIL                                   | (REF.2, ADDE                    | DOWE)         |
| Do= T           | 2250 PSIA                                   | (REF.2, 2005.                   | SDIXE)        |
| 5               | 861 (1700-2250)                             |                                 | 300 PS1       |
|                 | -003861-                                    | C TOUR                          | R PAGE 27 - 4 |

|                  | MPR ASSOCIA<br>1050 Connecticut Ave., NW-                             | TES, INC.<br>Washington, DC 20036 |                       |
|------------------|-----------------------------------------------------------------------|-----------------------------------|-----------------------|
| CALCULATION NO.  | PREPARED BY                                                           | CHECKED BY                        | PAGE 7                |
| THIS STRE        | ESSAT FALLORS 1                                                       | 5 ABOUT 85%00                     | BUNNESS BUT           |
| STRESS OF        | ~ 93,000 PSI FOR T                                                    |                                   | 2010. 708100          |
| SEE DEF.         | (HOURS SAUDA)                                                         | THEREFORE, T                      | « coùcusiou           |
| 18 7427 71       | 13 TOBIOG BURGT                                                       | S WHEN THE AT                     | AL PRESSORE           |
| S-RESS 18        | 5 RQUAL TO 0.85                                                       | STINESTHE MA                      | WERLAL                |
| ULTIMATE         | STARSS.                                                               |                                   | -                     |
| NEXT, SO         | NR THE TOBES                                                          | SCIETCH 228MT6                    | 1777                  |
| 128CATIOD3       | 20. ( <u>S- Pi+Po</u><br>20. ( <u>S- Pi+Po</u><br><u>Pi-Po+S- Pi+</u> | Do De IZADIOS                     | (121),                |
| THE PAR          | PHETERS FOR TH                                                        | A B NO-S P-WA                     | -                     |
| GENERAT<br>Ro= 0 | STEW. (REF. 1,                                                        | 0208 (2)                          |                       |
| p.= 2            | 250PSIA (REF. 1                                                       | PAGE 12)                          |                       |
|                  | 100 PSIA ( REF. 1                                                     | 20G8 12                           |                       |
|                  |                                                                       | B                                 | 92-R-2025-01<br>28 41 |

| 105             | MPR ASSOCIATE                                       | S, INC.                    |                   |
|-----------------|-----------------------------------------------------|----------------------------|-------------------|
| 105             | U Connecticut Ave., NW-Wa                           | Isnington, DC 20036        |                   |
| CALCULATION NO. | PREPARED BY                                         | CHECKED BY                 | PAGE S            |
| THE TUBIL       | OG RADIUS ISG                                       | UBU BY                     |                   |
| R'= 0'3         | $75 \cdot \left( \frac{S}{2250 - 900 + 15} \right)$ | $\frac{+200}{2}$           |                   |
| TO PROVIDE      | E THE REQUIR                                        | ALLOWARIE :                | F 3               |
| IS EQUAL        | TO - TO BURSTE                                      | aware stress.              | Two CASES         |
| ARE CODE        | DERED - WITH                                        | - 05 80,000 PS             | 8<br>(5 <b>66</b> |
| REF. 1 OF       | CE (3) AND WITH                                     | A 40079 BUT 4              | ~~                |
| OLTIMATE        | STRESSOF 90,000                                     | १८ (२ व व १२ व व           | 1, PACE 23).      |
| FOR Sor         | = 80,000 PS1, B.                                    | DUBL EDITORE -             | in ocean          |
| AT A ST ?       | ass of .85.80,0                                     | 200 = 68,000 P             | SI. THE           |
| 123 001178      | D TUBING INSIE<br>68000                             | , 21 COIDAST BO            |                   |
| 12,=0           | 375-15                                              | 25) <sup>2</sup>           | 92 · R · 2025 ·01 |
| * R.= 0         | 3635 W. (WALL<br>0.37                               | THICKNESS 15<br>5-0.3635=0 | 011510.)          |

| 105             | MPR ASSOCIAT<br>0 Connecticut Ave., NW-W             | ES, INC.<br>Vashington, DC 20036 |          |
|-----------------|------------------------------------------------------|----------------------------------|----------|
| CALCULATION NO. | PREPARED BY                                          | CHECKED BY                       | PAGE Q   |
| FOR SOUTES      | 0 000 PSI PU                                         | ELUCESENS FEE                    | 101-L    |
| 000.10 27 D     | ander de se                                          | 5.90 000 - 76                    | EDD PL   |
|                 |                                                      |                                  | 000 - 01 |
| ITE CEROO       | 12 201 201 20 10 10 10 10 10 10 10 10 10 10 10 10 10 | SIDE COUDS IS                    | · •      |
| 15'= 0'3.       | 15. (                                                | <u>s</u> )''                     |          |
|                 | 3 - 22                                               | 5 1                              |          |
| 72 = 0.36       | 4810 LWALL -                                         | HICKDESS IC                      |          |
|                 | 0.375-                                               | 0.3648= 0.0107                   | (.u.)    |
|                 |                                                      |                                  |          |
|                 |                                                      |                                  |          |
|                 |                                                      |                                  |          |
|                 |                                                      |                                  |          |
|                 |                                                      |                                  |          |
|                 |                                                      |                                  |          |
|                 |                                                      |                                  |          |
|                 |                                                      |                                  |          |
|                 |                                                      |                                  |          |
|                 |                                                      |                                  |          |
|                 |                                                      |                                  |          |

B PAGE 30 41

| 105             | MPR ASSOCIATI<br>0 Connecticut Ave., NW-W | ES, INC.<br>ashington, DC 20036 |             |
|-----------------|-------------------------------------------|---------------------------------|-------------|
| CALCULATION NO. | PREPARED BY                               | CHECKED BY                      | PAGE 10     |
| ZEFERRENC       | K %. :                                    |                                 |             |
| () SBB CE       | NCS EUGIDEEN                              | SCALESLATIO                     | 1729007     |
| 012-9417-       | C5692-1102 17.                            | IN DEFED O VE                   | 22/03       |
|                 | " Same Co                                 |                                 |             |
| 101 - 000       | a sterm De                                | Deteriore tore                  | 8.          |
| NALA CULA       | Y MROGRAM, AN                             | source program                  | s Rapona    |
| JANUARY         | - December 3                              | 1,1977.                         | 1           |
|                 |                                           |                                 |             |
|                 |                                           |                                 |             |
|                 |                                           |                                 |             |
|                 |                                           |                                 |             |
|                 |                                           |                                 |             |
|                 |                                           |                                 |             |
|                 |                                           |                                 |             |
|                 |                                           |                                 |             |
|                 |                                           |                                 |             |
|                 |                                           |                                 |             |
|                 |                                           |                                 |             |
|                 |                                           | PE & NO                         | 92-R-2025-0 |

MPR ASSOCIATES. INC.

## APPENDIX B

MPR Calculation 62-81-HWM-3, "Allowable Tube Wall Degradation for Axial, Slot-type Defects"

| PE & NO     | 9  | 2  |     | R |     | 2  | 0 | 2  | 5 |   | 0 | 1 |
|-------------|----|----|-----|---|-----|----|---|----|---|---|---|---|
| stracting B | 17 | AC | iE. |   | 1.1 | 32 |   | 03 |   | 4 | 1 |   |

10.00

| 10 5                            | MPR ASSOCIAT<br>0 Connecticut Ave., NW-1 | TES, INC.<br>Washington, DC 200 | 36                         |                             |
|---------------------------------|------------------------------------------|---------------------------------|----------------------------|-----------------------------|
|                                 | CALCULATION T                            | ITLE PAGE                       |                            |                             |
| CLIENT<br>ENTEROY OF            | 20017955                                 |                                 | PAGE                       | 1 OF 9                      |
| PROJECT<br>ANO UNA Z            | S-EAN GELERA                             | 5002                            | TASK 6                     | 2-81                        |
| CALCULATION TITLE<br>ALLOWFRETT | DEE WALL DEGO                            | ZADATION<br>ICTS                | CALCU<br>IOPTIC<br>G Z - S | NAL)                        |
| PREPARER(S)/DATE                | CHECKER(S)/DATE                          | REVIEWER(S)/D                   | ATE                        | REV. NO.                    |
| 4WMCCURDY<br>7-27-92            | Michael Francis<br>7-29-92               | 7-29-                           | .92                        |                             |
|                                 |                                          | TTACK.                          | 92 -<br>B PAGE             | <u>R-2025-01</u><br>33 ⊂ 41 |

| 1050                          | MPR ASSOCIAT<br>Connecticut Ave., NW-W                         | ES, INC.<br>ashington, DC 20036                          |                                                      |
|-------------------------------|----------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|
| CALCULATION NO.<br>G2-81-HWH3 | PREPARED BY                                                    | CHECKED BY                                               | PAGE 2                                               |
| c                             |                                                                |                                                          |                                                      |
| DUMMARZY_                     |                                                                |                                                          |                                                      |
| THIS CALCULA                  | 2000 DE-EUNINE                                                 | STUT ALLOWA                                              | 312 2038                                             |
| WALL DEGTRA                   | ONTION FOR AL                                                  | 00 0017 2 57 8A                                          | ~                                                    |
| GENERATOR .                   | 10355 FOR 241                                                  | AL SLOT -TYPE                                            | DEFECTS.                                             |
|                               |                                                                |                                                          |                                                      |
| IMA ISACON                    | LED LEMAIDIN                                                   | C WALL AND A                                             | LCCN BOLD                                            |
| WALL DEGR                     | ADVION FOUL L                                                  | 082 Merenier                                             | BTANITUO -                                           |
|                               |                                                                |                                                          |                                                      |
| STUBSERS OF                   | 80 AND 90 1881                                                 | FUS:                                                     |                                                      |
| STUBSERS OF                   | 8020090 1681                                                   | FISE:                                                    |                                                      |
| Detect                        | BOAND 90 KSI                                                   | NRE:                                                     | DEGRADATE.                                           |
| LENGIHLUS)                    | BOAND 90 KSI<br>ULTIMATS<br>STREES(KSI)                        | NRE:<br>REQUIRED<br>WOLL (IN.)                           | DECRUMDATE.<br>(%)                                   |
| DEFECT<br>DEFECT              | BOAND 90 1681<br>ULTIMATS<br>STREES(KSI)<br>BO                 | 2.0075                                                   | DEGRADATIO<br>(%)<br>784.4                           |
| DEFECT<br>LENGTHLUN)          | 8020090 KSI<br>ULTIMATS<br>STREES(KSI)<br>80<br>90             | 22001220<br>WALL (11)<br>4.0075<br>4.0075                | DEGRENDATE.<br>(%)<br>784.4<br>784.4                 |
| DEFECT<br>LENGTHLUD)          | 8020090 KSI<br>ULTIMATS<br>STRESS(KSI)<br>80<br>90<br>80       | 122001220<br>Wall(12)<br>4.0075<br>4.0075                | DEGRADATE.<br>(%)<br>784.4<br>284.4<br>784.4         |
| DEFECT<br>LENGTHLUS)          | 8020090 KSI<br>ULTIMATS<br>STRESS(KSI)<br>80<br>90<br>80<br>90 | 22001220<br>Wall(12)<br>4.0075<br>4.0075<br>.011<br>.011 | DEGRENDATIO<br>(%)<br>784.4<br>784.4<br>77.1<br>83.8 |

NOTE: UNDEGRADED WALL THICKNESS IS , OHB W.

80 90

.013

| TIDOLMENT | 92-  | R - 2 | 025 | -01 |
|-----------|------|-------|-----|-----|
| ATTACH B  | PAGE | 34    | C2  | 41  |

P.ST

|         | 1         | MPF<br>050 Connecticu | ASSOCIAT        | ES, INC.<br>/ashington, DC | 20036            |                                        |
|---------|-----------|-----------------------|-----------------|----------------------------|------------------|----------------------------------------|
| CALCUI  | ATION NO. | PREPA                 | RED BY          | CHECK                      | ED BY            | PAGE 3                                 |
|         |           |                       |                 |                            |                  |                                        |
| 7.      | E POCC    | DOPE OF -             | a e ca          |                            | 07610            |                                        |
| 50<br>1 | ANO ANO   | NULINE A              | TEAM G          | LA WALL                    | L TUBE           | S FOR                                  |
| A       | White S   | 5102-240              | 8 DECE          | . 252                      |                  |                                        |
| 0       | 30000     | TEST DAT              | A IS CO         | CECIATO                    | N REF            | ecence /                               |
| iter.   | 012 708   | ALIC 250              | axiau s         | Lors wa                    | 104 400          | ur f                                   |
| iper    | エアクチンの    | O PART                | WAT TH          | 120064 7                   | HB WAL           | - USWOG                                |
| P       | EOM.      | THIS DAT              | ALSCLO          | bely ad                    | PLICAD           | LE BUT                                 |
|         |           | a. 50708.             | TBD FO          | NC TINB F                  |                  | 100:                                   |
|         | u eacu    | HIGHER T              | CABDITC         | TOF THE                    | ANO U.           | 20000000000000000000000000000000000000 |
|         | - 742     | JALL THI              | cus355          | or-wa-                     | 085780           | Devact                                 |
|         | و م د     | GREATER               | 2 74200 7       | MPL OF LAR                 | 20000            | 172 TUBWG.                             |
| 2       | BURST     | DUBPROU.              | 5 <i>C</i> 8501 | 75 FOR                     | 0.750 .          | 05000.                                 |
|         | COBIOGR   | ARE SHOWN             | N FIGS          | na 26 01                   | 5 12 & C & C & C | cence 1.                               |
| (       | 10 049    | מער 2 דיום            | 10 20           | 750.048                    | Sus. Del         | 2                                      |
|         | COFSIL    | inca c, pp            | 108 21. )       | , FIGURA                   | CONCIMENT        | 192-R-2025-A                           |

P28 NO 92-R 2025-01



| 10                                                                    | MPR ASSOCIAT                 | ES, INC.<br>Vashington, DC 20036 |                         |
|-----------------------------------------------------------------------|------------------------------|----------------------------------|-------------------------|
| CALCULATION NO.                                                       | PREPARED BY CHECKED BY       |                                  | PAGE 5                  |
| BURST Pr                                                              | LESSURE OATA                 | POIDTS ARE                       |                         |
| DEFECT<br>LENGTH (IN)                                                 | MAXIMOH<br>DEGRADATION(%)    | REMAINING<br>Wall (10)           | BURST<br>PRESSURE (KSI) |
| 14                                                                    | 0                            | .050                             | 11.4                    |
|                                                                       | 25                           | .0075                            | G.O                     |
| 5                                                                     | 0                            | 050                              | 11.4                    |
|                                                                       | 90<br>90                     | 0075                             | ч.з. 🛊                  |
| 142                                                                   | 0                            | .050                             | 1.4                     |
|                                                                       | 28                           | 2100.                            | 3.3                     |
| BEST-FIT<br>FOR 1410.<br>PB= 11.<br>PB= 5<br>UNERE.<br>DB= 5<br>Tu= 7 | STRAIGHT LINE<br>DEFELTI<br> | 5 205 x6 00<br>50- tw)<br>(X.51) |                         |
|                                                                       |                              | ES & N                           | B PAGE 37 41            |

| 105                           | MPR ASSOCIA<br>0 Connecticut Ave., NW-V | TES, INC.<br>Vashington, DC 20036   |                                          |
|-------------------------------|-----------------------------------------|-------------------------------------|------------------------------------------|
| CALCULATION NO.<br>GZ-BI-HWMB | PREPARED BY                             | CHECKED BY<br>MICHIEL FLAMOS        | PAGE 6                                   |
| For 1/2 12. 5                 | Sacar:                                  |                                     |                                          |
| Do= 1.4                       | - <u>11.4-4.3</u> . (<br>.0500075       | .050- tu)                           |                                          |
| Po= 3.0                       | 5+ G1t.                                 |                                     |                                          |
| For 1 1/2 12 15               | : 725750                                |                                     |                                          |
| Po= 11-1                      | - 11.4 - 3.3 . (                        | (wJ-020                             |                                          |
| Po= 1.8                       | マナリアレン                                  |                                     | ł                                        |
| FROM TABLE                    | 3 OF REFERENCE                          | 1, -123 -10 120                     | used for                                 |
| THE BURST                     | TUS CAN ETEET                           | ULTIMATE STRES                      | s ot                                     |
| 96.5KD1.5                     | FROM PAGE 130                           | E LEEELENCE 5                       | 2-00A EN                                 |
| TUBING WAS                    | A CODE MINIMO                           | m ultimate stre                     | 522 05                                   |
| 80 KSI. Fr                    | 2000 PAGE 230F                          | 12369200CE 2, TU                    | R                                        |
| DUOBADE                       | SUCTIMATE STR                           | 862 15 90 KS1. 3                    | SUNCE                                    |
| SOURT DU                      | LESONA E DUG                            | CTUY PROPORTION                     | Dec to                                   |
| OFTMATE                       | STRESS, THE                             | DOULDE DUIESSONS                    | N2,                                      |
| CAMPIONO                      | NOALL IZELATIC                          | Nemina Cho Be                       |                                          |
| -LOLD T BL                    | HA FOLLOWA.                             | - <u>s vc</u><br>- <u>s vc</u><br>B | 92 - R - 2025 -01<br>PAGE <b>38</b> - 41 |

| MPR ASSOCIATES, INC.<br>1050 Connecticut Ave., NW-Washington, DC 20036 |                 |                       |                   |  |
|------------------------------------------------------------------------|-----------------|-----------------------|-------------------|--|
| G2-BI-HUNA3                                                            | PREPARED BY     | CHECKED BY            | PAGE              |  |
|                                                                        |                 |                       |                   |  |
| 23(05L)=                                                               | 96.5 P. 096.5   | 5 (10)                |                   |  |
| DEFECT                                                                 | Sulliss         | PB(KSI)               |                   |  |
| - and in (w.)                                                          |                 |                       | - 김 김 왕의 김 영      |  |
| N / ma                                                                 | 80              | 419+ 105 tw           |                   |  |
|                                                                        | 90              | 4.71+ 118 Tw          |                   |  |
|                                                                        |                 |                       |                   |  |
| 12                                                                     | 80              | 2.53+ 3820            |                   |  |
|                                                                        | 90              | 2.84 + 156tw          | 1                 |  |
| A Mar                                                                  | 90              | and the second second |                   |  |
| 1.15                                                                   | 00              | 554 158 Lw            |                   |  |
|                                                                        | 1 40            | 1.74 + 17850          |                   |  |
| FORM DACE                                                              | 3 OF TREATAL    | NUMBER SHIT SHOL      | 180               |  |
| i wei ense                                                             |                 | ,                     |                   |  |
| BURST PRES                                                             | 5) . 5 21 25700 | 25-0.90)= 4.05        | KSI               |  |
|                                                                        |                 |                       |                   |  |
| THE REQUIR                                                             | ad is which are | S WALL THICKNE        | 25 15,            |  |
| Pros.                                                                  | 1               |                       |                   |  |
| DEFECT                                                                 | SILVEN          | + 1                   |                   |  |
| LENSTH (W))                                                            | 2012013         | ~~~~~                 |                   |  |
| N la                                                                   | 80              | 4.0015                |                   |  |
|                                                                        | 90              | 4.0015                |                   |  |
|                                                                        |                 |                       |                   |  |
| 112                                                                    | 80              | ,011                  |                   |  |
|                                                                        | 90              | 8100.                 |                   |  |
|                                                                        |                 |                       |                   |  |
| 1,15                                                                   | 08              | .016                  |                   |  |
|                                                                        | 90              | , O 1 SOCUMENT        | 92 - R - 2025 -01 |  |
|                                                                        |                 | ATTACH B              | PAGE 39 Cr 41     |  |

| MPR ASSOCIATES, INC.<br>1050 Connecticut Ave., NW-Washington, DC 20036 |                |            |        |        |
|------------------------------------------------------------------------|----------------|------------|--------|--------|
| CALCULATION NO.                                                        | PREPARED BY    | CHECKE     | D BY   | PAGE & |
|                                                                        |                |            |        |        |
| NOTE THAT                                                              |                | 2 2210823. | DATAIS |        |
| AUDILABUE                                                              | FOR A TUBE     | ALL 185    | S THAN |        |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                |                |            |        |        |
| 301313. 1                                                              | MILLE, IMCILOF | orce, the  | 123001 | 12812  |
| CEMENDIDG                                                              | TUBE WALL      | THICILDE   | 2123   |        |
| CODSETEVATI                                                            | VELY LIMITED   | TO THIS    | VALUS. |        |
|                                                                        |                |            |        | ţ      |
|                                                                        |                |            |        |        |
|                                                                        |                |            |        |        |
|                                                                        |                |            |        |        |
|                                                                        |                |            |        |        |
|                                                                        |                |            |        |        |
|                                                                        |                |            |        |        |
|                                                                        |                |            |        |        |
|                                                                        |                |            |        |        |

| POCUMENT<br>PE & NO | 92-  | R-2 | 025 | 5-0 | 1 |
|---------------------|------|-----|-----|-----|---|
| аттасн. В           | PAGE | 40  | CF. | 41  |   |

| 1050       | Connecticut Ave., NW-Was | shington, DC 20036 |        |
|------------|--------------------------|--------------------|--------|
| G2-81-HUH3 | HWMCCORDY                | CHECKED BY         | PAGE Q |

## SBERUSERCES :

1. NUREG (CR-0277 (DUL-2084), "STEAM GENERATOR TUBE UTEGRITT PROGRAM - ANNUM PROGRESS REPORT - DANUMENT - DECEMBER 31,1977," BATTELLE PACIFIC NORTHWEST LABORATORY, AUGUST 1978.

92 - R - 2025 -01

2. ABB CE ENGINEERING CALCULATION REPORT CR-9417- CEE92-1102, REV.O, ADRIL "25, 1992.

## ATTACHMENT 2

ANO-2 Predicted Tube Repair Curves





FS SGB TR1 WP-90%

840.

Ъ.



1/16/93

FS LB SGA TR1 WP-90%



Service Time (EFPY)

FS LB SGB TR1 WP-90%

1/16/93



FS UB SGA TR1 WP-90%

i.



Service Time (EFPY)

FS UB SGB TR1 WP-90%

1/15/93





FOR INFORMATION ONLY

Service Time (EDY)

LIGAGE WARE MILENE F

7

DRAFT