XN-NF-82-18

ECCS AND PLANT TRANSIENT ANALYSES FOR H.B. ROBINSON UNIT 2 REACTOR OPERATING AT REDUCED PRIMARY TEMPERATURE

MARCH 1982

RICHLAND, WA 99352

EXON NUCLEAR COMPANY, Inc.

XN-NF-82-18 Issue Date: 03/12/82

ECCS AND PLANT TRANSIENT ANALYSES FOR

H.B. ROBINSON UNIT 2 REACTOR OPERATING AT

REDUCED PRIMARY TEMPERATURE

Prepared by: 15. Jansen 3/10/82 D.R. Swope cl=A C.H. Wu 11. Adams

Reviewed by :

Concur :

Cooke, Manager C ansient Analysis

Owsley, Manag Reload Fuel Liceusing

Approve :

9mm 3/1/12 J.N. Morgan Manager Licensing & Safety Engineering

Approve :

G.A. Sofer Manager Fuel Engineering & Technical Services

/mb

EXON NUCLEAR COMPANY, Inc.

NUCLEAR REGULATORY COMMISSION DISCLAIMER

IMPORTANT NOTICE REGARDING CONTENTS AND USE OF THIS DOCUMENT PLEASE READ CAREFULLY

This technical report was derived through research and development programs sponsored by Exxon Nuclear Company. Inc. It is being submitted by Exxon Nuclear to the USNRC as part of a technical contribution to facilitate safety analyses by licensees of the USNRC which ut lize Exxon Nuclear fabricated reload fuel or other technical services provided by Exxon Nuclear for light water power reactors and it is true and correct to the best of Exxon Nuclear's knowledge, information, and belief. The information contained herein may be used by the USNRC in its review of this report, and by licensees or applicants before the USNRC which are customers of Exxon Nuclear in their demonstration of compliance with the USNRC's regulations.

Without derogating from the foregoing, neither Exxon Nuclear nor any person acting on its behalf:

- A. Makes any warranty, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this document, or that the use of any information, apparatus, method, or process disclosed in this document will not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this document.

TABLE OF CONTENTS

i

Î

Ì

.

1

SEC	SECTION			PAGE
1.0	INTR	ODUCTIO	N AND SUMMARY	1
2.0	H.B. REDU	ROBINS	ON UNIT 2 LOCA ECCS ANALYSIS FOR PERATURE OPERATION	3
3.0	PLAN	T TRANS	IENT ANALYSIS	
	3.1	Introd	uction and Summary	36
	3.2	Calcul	ational Methods and Input Parameters	37
	3.3	Overte	mperature and Overpower ∆T Setpoints	41
	3.4	Transi	ent Analysis	
		3.4.1	Initial Conditions	42
		3.4.2	Uncontrolled Rod Withdrawal	43
		3.4.3	Rod Withdrawal from Hot Zero Power	44
		3.4.4	3-Pump Coastdown	45
		3.4.5	Locked Rotor	45
		3.4.6	Loss of Load	46
		3.4.7	Excess Load	47
		3.4.8	Steam Line Break	47
	3.5	Discus	sion of Transient Analysis Results	49
	3.6	Revise at Red	d Safety System Setpoints for Operation luced Temperature and Power	50
4.0	REFE	RENCES		116

PAGE

LIST OF TABLES

2.1	Input Data Changes for Reduced Temperature Operation	6
2.2	H.B. Robinson Limiting Break Event Times for Reduced Temperature Operation	7
2.3	H.B. Robinson Unit 2 Limiting Break ECCS Results for Reduced Temperature Operation	8
3.1	Summary of Results	53
3.2	Parameter Values Used in PTSPWR2 Analysis of H.B. Robinson Unit 2	54
3.3	H.B. Robinson Unit 2 Trip Setpoints	55
3.4	Exxon Nuclear Reload for H.B. Robinson Unit 2 Fuel Design Parameters	56
3.5	H.B. Robinson Unit 2 Kinetic Parameters	57
3.6	Moderator and Doppler Coefficients	58
3.7	Comparison of Operating Parameters for H.B. Robinson Unit 2	59

ii

.

ł

I

(

3

TABLE

LIST OF FIGURES

Figure		Page
2.1	Blowdown System Pressure - 0.8 DECLG	9
2.2	Blowdown Downcomer Flow - 0.8 DECLG	10
2.3	Blowdown Normalized Power - 0.8 DECLG	11
2.4	Blowdown Core Inlet Flow - 0.8 DECLG	12
2.5	Blowdown Core Exit Flow - 0.8 DECLG	13
2.6	Blowdown Total Break Flow - 0.8 DECLG	14
2.7	Blowdown Intact Loop Accumulator Flow - 0.8 DECLG .	15
2.8	Blowdown Broken Loop Accumulator Flow - 0.8 DECLG .	16
2.9	Hot Rod Clad Temperature at PCT Location - 0.8 DECLG	17
2.10	Hot Rod Average Temperature at PCT Location - 0.8 DECLG	18
2.11	Hot Rod Heat Transfer Coefficient at PCT Location - 0.8 DECLG	19
2.12	Hot Channel Inlet Flow - 0.8 DECLG	20
2.13	Hot Channel Exit Flow - 0.8 DECLG	21
2.14	Hot Channel Center Volume Average Quality - 0.8 DECLG	22
2.15	Hot Channel Center Volume Fluid Temperature - 0.8 DECLG	23
2.16	Extended Normalized Power - 0.8 DECLG	24
2.17	Containment Pressure - 0.8 DECLG	25
2.18	Core Mixture Level - 0.8 DECLG	26

iii

1

1

2

LIST OF FIGURES (Continued)

Figure		Page
2.19	Downcomer Mixture Level - 0.8 DECLG	27
2.20	Upper Plenum Pressure - 0.8 DECLG	28
2.21	Core Flow - 0.8 DECLG	29
2.22	Core Saturation Temperature - 0.8 DECLG	30
2.23	Reflood Rate - 0.8 DECLG	31
2.24	Peak Clad Temperature - 0.8 DECLG	32
2.25	LPSI Flow - 0.8 DECLG	33
2.26	HPSI Flow - 0.8 DECLG	34
2.27	Accumulator Flow - 0.8 DECLG	35
3.1	Average Primary System Temperature vs Power for H. B. Robinson Unit 2 Reduced TAVE and Reduced Power (85%) Operation	60
3.2	PTSPWR2 System Model	61
3.3	Axial Power Profile Used in Transient Analysis of H.B. Robinson Unit 2	62
3.4	H. B. Robinson Unit 2 Scram Curve	63
3.5	Power, Heat Flux and System Flows for Fast Control Rod Withdrawal	64
3.6	Core Temperature Responses for Fast Control Rod Withdrawal	65
3.7	Primary Loop Temperature Changes for Fast Control Rod Withdrawal	66
3.8	Pressure Changes in Pressurizer and Steam Generators for East Control Rod Withdrawal	67

iv

LIST OF FIGURES (Continued)

۷

, **6**7

Figure		Page
3.9	Level Changes in Pressurizer and Steam Generators for Fast Control Rod Withdrawal	68
3.10	Minimum DNB Ratio for Fast Control Rod Withdrawal	69
3.11	Reactivity Worth for Fast Control Rod Withdrawal	70
3.12	Power, Heat Flux and System Flows for Slow Control Rod Withdrawal	71
3.13	Core Temperature Responses for Slow Control Rod Withdrawal	72
3.14	Primary Loop Temperature Changes for Slow Control Rod Withdrawal	73
3.15	Pressure Changes in Pressurizer and Steam Generators for Slow Control Rod Withdrawal	74
3.16	Level Changes in Pressurizer and Steam Generators for Slow Control Rod Withdrawal	75
3.17	Minimum DNB Ratio for Slow Control Rod Withdrawal	76
3.18	Reactivity Worth for Slow Control Rod Withdrawal	77
3.19	Power, Heat Flux and Primary Coolant Flow for Control Rod Withdrawal at HZP	78
3.20	Core Temperature Responses for Control Rod Withdrawal at HZP	79
3.21	Power, Heat Flux and System Flows for Coolant Pump Trip	80
3.22	Core Temperature Responses for Coolant Pump Trip	81

XN-NF-82-18

ļ

ł

1

Ì

1

LIST OF FIGURES (Continued)

Figure		Page
3.23	Primary Loop Temperature Changes for Coolant Pump Trip	82
3.24	Pressure Changes in Pressurizer and Steam Generators for Coolant Pump Trip	83
3.25	Level Changes in Pressurizer and Steam Generators for Coolant Pump Trip	84
3.26	Minimum DNB Ratio for Coolant Pump Trip	85
3.27	Reactivity Worth for Coolant Pump Trip	86
3.28	Power, Heat Flux and System Flows for Coolant Pump Seizure	87
3.29	Core Temperature Responses for Coolant Pump Seizure	88
3.30	Primary Loop Temperature Changes for Coolant Pump Seizure	89
3.31	Pressure Changes in Pressurizer and Steam Generators for Coolant Pump Seizure	90
3.32	Level Changes in Pressurizer and Steam Generators for Coolant Pump Seizure	91
3.33	Minimum DNB Ratio for Coolant Pump Seizure	92
3.34	Reactivity Worth for Coolant Pump Seizure	93
3.35	Power, Heat Flux and System Flows for Loss of Load	94
3.36	Core Temperature Responses for Loss of Load	95
3.37	Primary Loop Coolant Temperature Changes for Loss of Load	96

XN-NF-82-18

LIST OF FIGURES (Continued)

Figure		Page
3.38	Pressure Changes in Pressurizer and Steam Generators for Loss of Load	97
3.39	Level Changes in Pressurizer and Steam Generators for Loss of Load	98
3.40	Minimum DNB Ratio for Loss of Load	39
3.41	Reactivity Worth for Loss of Load	100
3.42	Power, Heat Flux and System Flow for Excess Load	101
3.43	Core Temperature Responses for Excess Load	102
3.44	Primary Loop Coolant Temperature Changes for Excess Load	103
3.45	Pressure Changes in Pressurizer and Steam Generators for Excess Load	104
3.46	Level Changes in Pressurizer and Steam Generators for Excess Load	105
3.47	Minimum DNB Ratio for Excess Load	106
3.48	Reactivity Worth for Excess Load	107
3.49	Variation of Reactivity with Core Average Temperature at EOC	108
3.50	Variation of Reactivity with Power at Constant Core Average Temperature	109
3.51	Power, Heat Flux, and System Flows for H. B. Robinson Steam Line Break	110
3.52	Core Temperature Response for H. B. Robinson Steam Line Break	111

1

Ĵ

LIST OF FIGURES (Continued)

Figure		Page
3.53	Primary System Temperature Changes for H. B. Robinson Steam Line Break	112
3.54	Pressure Changes for H. B. Robinson Steam Line Break	113
3.55	Level Changes for H. B. Robinson Steam Line Break	114
3.56	Core Reactivity Response for H. B. Robinson Steam Line Break	115

l

1.0 INTRODUCTION AND SUMMARY

Safety analyses for the H.B. Robinson Unit 2 nuclear power plant have been performed to support reduced temperature operation at reduced power. The reduced coolant temperature (T_{AVE}) was taken at 537.1°F with power at 85% of full rated power. The LOCA ECCS analysis was performed in accordance with 10 CFR 50, Appendix K, for the limiting double-ended cold leg guillotine (DECLG) break (CD=0.8) at beginning-of-life conditions. The calculated peak clad temperature (PCT) for this break was 2077°F which is in conformance with 10 CFR 50.46 criteria. This result corresponds to a total linear heat generation rate (LHGR) of 11.8 kw/ft, and a total peaking (F_0^T) of 2.32 at 85% of rated power.

Plant transient analyses have also been performed to support operation of H.B. Robinson Unit 2 at reduced primary coolant temperature and reduced reactor power. The thermal margin criteria of MDNBR \geq 1.30 is met for all the limiting anticipated operational transients and the locked rotor accident which were analyzed for the new full power (1955 MWt) conditions. Among these transient events initializing from 1955 MWt the locked rotor accident MDNBR was the lowest with a value of 2.19. In all cases, MDNBR is improved relative to prior analyses owing to the reduced coolant temperature and core power being considered.

The large steam line break accident has also been re-analyzed. Since this event is initiated from hot zero power conditions, this accident is largely unaffected by the reduced temperature and power conditions. In the present analysis, the large steam line break results in a minimum critical heat flux ratio of 1.19 using Modified Barnett Critical Heat Flux

correlation. For the uncontrolled rod withdrawal transient at hot zero power conditions, MDNBR is calculated to be 2.11. The revised setpoints for overtemperature ΔT and overpower ΔT were confirmed as being adequate for the reduced primary coolant temperature and reactor power conditions of operation.

2.0 H.B. ROBINSON UNIT 2 LOCA ECCS ANALYSIS FOR REDUCED TEMPERATURE OPERATION

This section presents the results of a LOCA ECCS analysis for the H.B. Robinson Unit 2 reactor operating with reduced primary coolant temperature. Reduced temperature operation requires that the reactor operate at reduced power; therefore the analysis was performed at 85% of rated power (2300 MWt). The previously identified limiting break was recalculated with the NRC approved ENC WREM-IIA PWR ECCS evaluation model, and input appropriate for reduced temperature operation.

In addition to reduced operating temperature and power, Carolina Power & Light (CP&L) specified additional parameter changes to assure a bounding analysis for planned operation. These included: increased assumed steam generator tube plugging, reduced primary system flow, and increased radial peaking.

ENC revised the input data for the most recent previous ECCS analysis of H.B. Robinson Unit 2 to incorporate the specified reduced temperature operating conditions. Specific changes are listed in Table 2.1. The steady state pressure and energy balances were recalculated based on these changes. System nodalization and all other parameters remained the same as in previous analyses. The LOCA ECCS calculations were made for the limiting break (0.8 DECLG) and beginning-of-life fuel conditions. These calculations resulted in a peak clad temperature (PCT) of 2077°F and a predicted maximum local ZR/H₂O reaction of 6.05%. The allowed linear heat generation rate (LHGR) is 11.8 kw/ft which corresponds to an F $\frac{1}{6}$ of 2.32 at 85% of rated power. The calculated event times are listed in Table 2.2 and calculated results summarized in Table 2.3. Plotted results are shown in Figures 2.1 through 2.27.

The ENC WREM-IIA model includes the following computer codes: RELAP4-EM/ENC28FC for the blowdown and hot channel analyses; CONTEMPT LT/22 for the containment backpressure analysis; REFLEX for the core reflood analysis; and TOODEE2/MAY79 for the heatup analysis. These code versions are identical to those used for several previous ENC analyses including H.B. Robinson Unit 2 except for RELAP4-EM/ENC28FC. This version differs from the previous versions (RELAP4-EM/ENC28FA used for blowdown and RELAP4-EM/ENC28FB used for hot channel) in that the 28FB and 28FC versions include an improved stored energy convergence procedure and a corrected calculation of the critical heat flux. PCT changes resulting from these changes are negligible. Version 28FC differs from 28FB only by adaptation to the Cyber 176 in addition to the Cyber 175 and gives identical results.

The calculated Peak Cladding Temperature (PCT) for reduced temperature operation of 2077°F at 85% power compares with a PCT of 2185°F for the full power, high temperature operation at the same peaking (F_Q^T = 2.32). This confirms the ENC position that the reduction in linear heat generation rate (LHGR) associated with the 15% reduction in power would be sufficient to offset expected detrimental effects associated with reduced temperature operation. Several detrimental effects of the reduced temperature conditions and assumptions were identified in the analysis. They are: (1) Reduced heat transfer during blowdown primarily due to decreased core flow; (2) A slower power decay in the core due to reduced voiding. The lower quality conditions in the core for the

XN-NF-82-18

reduced temperature case affect the power decay but have little effect on the core heat transfer due to the early lockout of the quality dependent heat transfer regimes required by 10 CFR 50 Appendix K. (3) Reduced containment pressure results from the reduced energy release, and reflood rates are reduced due to the decreased steam density associated with this pressure reduction. (4) Reduced saturation pressures for the lower operating temperatures result in a longer blowdown time with lower pressure early in the blowdown. As a result, accumulators inject early and flow for a longer time during blowdown. 10 CFR 50 Appendix K requires all ECCS coolant injected during blowdown to be assumed lost. The reduced remaining accumulator inventory for low temperature operation gives a lower downcomer water level vs. time, and thus reduced flood rates. (5) The additional conservatisms (increased steam generator tube plugging, reduced system flow, and increased radial peaking) also contribute to increased calculated PCT's.

In conclusion, the analysis for H.B. Robinson Unit 2 with ENC fuel, operating under the specified reduced temperature and power conditions, with a total LHGR equal to or less than 11.8 kw/ft (F_Q^T = 2.32) shows that the maximum PCT that the plant can experience due to the limiting LOCA is 2077°F. The maximum local metal-water reaction calculated is 6.05%, well below the 17% limits of 10 CFR 50.46, and the total core-wide metal-water reaction is less than 1.0%.

-

1

Table 2.1 Input Data Changes for Reduced Temperature Operation

	Previous Analysis	This Analysis
Tube Plugging	15%	20%
Power (nominal)	2300 MW	1955 MW
FAH	1.55	1.60
FQ	2.32	2.32
Primary Coolant Flow at Pumps	89965 gpm/loop	82700 gpm/loop
Vessel TAVE OF	579.5	537.1
S.G. Tubes (per loop):		
Fluid Volume	580.4 ft ³	538.4 3
Flow Area	36.316 ft ²	34.176 ft ²
Heat Transfer Area - inside)		
Heat Transfer Area - outside >	85% nominal	80% nominal
Slab Volume		
Secondary Pressure	781.2 psi	580 psi
Temperature	426.4 ⁰ F	416.63 ⁰ F
TSAT	525.7°F	482.57°F
Flow/loop	932.2 1bm/s	777.4 1bm/s

Table 2.2 H.B. Robinson Limiting Break Event Times for Reduced Temperature Operation

Event	Time (seconds)
Start	0.0
Initiate Break	0.1
Safety Injection Signal	0.6
Accumulator Injection, Broken Loop	1.3
Accumulator Injection, Intact Loop	11.0
Pressurizer Empties	8.5
End-of-Bypass	23.9
Safety Pump Injection, HPSI	25.6
Start of Reflood	47.39
Safety Pump Injection, LPSI	48.9
Accumulators Empty	55.27
Peak Clad Temperature Reached	61.2

1

ľ

Table 2.3 H.B. Robinson Unit 2 Limiting Break ECCS Results for Reduced Temperature Operation

Parameter	Results
Peak Cladding Temperature, ^{OF}	2077
Peak Temperature Location, ft.	6.0
Local Zr/H ₂ O Reaction (max) %	<7.0
Local Zr/H ₂ O Location, ft.	6.0
Total Zr/H ₂ O Reaction, %	<1.0
Hot Rod Burst Time, sec.	38.7
Hot Rod Burst Location, ft.	6.0

H.B. ROBINSON UNIT 2 LOW TEMPERATURE OPERATION AT 85% POWER

Figure 2.2 Blowdown Downcomer Flow - 0.8 DECLG

10

XN-NF-82-18

.

H.B. ROBINSON UNIT 2 LOW TEMPERATURE OPERATION AT 85% POWER

Figure 2.4 Blowdown Core Inlet Flow - 0.8 DECLG

12

.

H.B. ROBINSON UNIT 2 LOW TEMPERATURE OPERATION AT 85% POWER

Figure 2.7 Blowdown Intact Loop Accumulator Flow - 0.8 DECLG

15

en

UMUD

B10

2 a

H.B. ROBINSON UNIT 2 LOW TEMPERATURE OPERATION AT 85% POWER

Figure 2.9 Hot Rod Clad Temperature at PCT Location - 0.8 DECLG

3

17

H.B. ROBINSON UNIT 2 LOW TEMPERATURE OPERATION AT 85% POWER

CRI5

Hot Rod Heat Transfer Coefficient at PCT Location - 0.8 DECLG Figure 2.11

H.B. ROBINSON UNIT 2 LOW TEMPERATURE OPERATION AT 85% POWER

Figure 2.12 Hot Channel Inlet Flow - 0.8 DECLG

20

H.B. ROEINSON UNIT 2 LOW TEMPERATURE OPERATION AT 85% POWER

21

XN-NF-82-18

H.B. ROBINSON UNIT 2 LOW TEMPERATURE OPERATION AT 85% POWER

G19

Figure 2.15 Hot Channel Center Volume Fluid Temperature - 0.8 DECLG

23

Containment Pressure - 0.8 DECLG Figure 2.17

25

XN-NE-82-18

27

XN-NF-82-18

- 1899.

XN-NF-82-18

Figure 2.21 Core Flow - 0.8 DECLG

XN-NF-82-18

Figure 2.26 HPSI Flow - 0.8 DECLG

34

Figure 2.27 Accumulator Flow - 0.8 DECLG

35

3.0 PLANT TRANSIENT ANALYSIS

٥.,

3.1 INTRODUCTION AND SUMMARY

This analysis considers the reactor operation of the H.B. Robinson Unit 2 Nuclear Power Plant with a reduced primary coolant temperature and power. With this new T_{AVE} schedule (Figure 3.1), thermal power at H.B. Robinson Unit 2 is limited to 85% of 2300 MWt: The present analysis is in support of H.B. Robinson operation with these new conditions. Results of the analysis will envelope steam generator tube plugging up to 20% (average for three steam generators) and a slightly reduced primary coolant flow associated with this plugging. Results of the analysis for the more limiting transients for H.B. Robinson Unit 2 demonstrate that ENC reload fuel continues to meet plant safety margin requirements during design base events. The transients were analyzed using the Exxon Nuclear plant transient simulation code PTSPWR2⁽¹⁾. Supporting subchannel analysis was performed using standard ENC methodology⁽²⁾. The results of the analyses for the following design base events, as well as the input parameters used to simulate the reactor system, are reported herein.

Event

1. Uncontrolled Control Rod Withdrawal

Incident Class*

 Fast Rod Withdrawal Slow Rod Withdrawal 2. 3-Pump Coastdown 3. Locked Rotor 4. Loss of External Electric Load 5. Excess Load 6. Lamos Steam Line Press	
 Slow Rod Withdrawal 3. Pump Coastdown 3. Locked Rotor 4. Loss of External Electric Load 5. Excess Load 6. Lamos Steam Line Press 	II
 3-Pump Coastdown Locked Rotor Loss of External Electric Load Excess Load Longo Steam Ling Press 	II
 Locked Rotor Loss of External Electric Load Excess Load Longo Steam Ling Press 	DÍ
 Loss of External Electric Load Excess Load Longo Steam Ling Press 	١V
5. Excess Load	II
6 Janua Staam Line Bursh	ΙI
o. Large Steam Line Break	ΙV

* Consistent with current FSAR incident classification for PWR's.

82

Events 1 through 5 were initiated from 85% of 2300 MWt, while event 6 was initiated from hot standby. The thermal margin criteria for the Class II and III events is a Minimum Departure from Nucleate Boiling Ratio (MDNBR) \geq 1.30 based on the W-3 correlation⁽²⁾. In the case of Class IV accidents, some fuel damage is acceptable provided it is confined to a limited number of fuel rods in the core.

The analyses are based on an ENC fueled core using conservative neutronic parameters calculated for the H.B. Robinson Unit 2 core. The results of the analyses are summarized in Table 3.1. The lowest MDNBR for Class II and III events initiated at 1955 MWt was 2.48 for the uncontrolled slow rod withdrawal transient. The locked rotor accident, a Class IV event, was analyzed and the MDNBR was found to be 2.19. The large steam line break resulted in a minimum critical heat flux ratio of 1.19 which is based on the Modified Barnett Critical Heat Flux Correlation. Based on the Modified Barnett Correlation statistics and the fact that high peaking is limited to the vicinity of the stuck control rod it is concluded that the number of rods which potentially might experience boiling transition is very small (<1%).

In summary, the transients initiated from the new full power at reduced TAVE showed increased thermal margins relative to prior analysis and all transients showed acceptable thermal margins.

3.2 CALCULATIONAL METHODS AND INPUT PARAMETERS

The present analysis for the H.B. Robinson plant was performed using the Exxon Nuclear Plant Transient Simulation Model for Pressurized Water Reactors (PTSPWR2)(1). The PTSPWR2 code is an Exxon Nuclear digital

XN-NF-82-18

computer program developed to model the behavior of pressurized water reactors under normal and abnormal operating conditions. The model is based on the solution of the basic transient conservation equations for the primary and secondary coolant systems. The transient conduction equation is solved for the fuel rods, and a point kinetics model is used to calculate the core neutronics. The program calculates fluid conditions such as flow, pressure, mass inventory and steam quality, heat flux in the core, reactor power, and reactivity during the transient. Various control and safety system components are included as necessary to analyze postulated events. A hot channel model is included to trace the departure from nucleate boiling (DNB) during transients. The DNB evaluation is based on the hot rod heat flux in the high enthalpy rise subchannel and uses the W-3 correlation⁽²⁾ to calculate the DNB heat flux. Model features of the PTSPWR2 code are described in detail in Reference 1.

A diagram of the system model used by PTSPWR2 is shown in Figure 3.2 As illustrated, the PTSPWR2 code models the reactor, two independent primary coolant loops (the second loop includes loop # 2 and #3 in the actual reactor configuration) including all major components (pressurizer, pumps) two steam generators (the second steam generator includes steam generators #2 and #3 in the actual reactor configuration), and the steam lines, including all major valves (turbine stop valves, isolation valves, pressure relief valves, etc.)

XN-NF-82-18

The present calculations were performed using the NOV76A version of ENC's PTSPWR2 code along with updates. The updates included an update to the pressurizer model and a correction to the mass balance on the secondary side of the steam generator. The pressurizer model update replaced the model used in the prior analysis with one which takes into account adiabatic compression of the steam when the steam is compressed by liquid insurges into the pressurizer. An equilibrium (flashing) model is maintained for liquid outsurges or whenever the pressure of the steam phase drops below saturation with liquid remaining in the pressurizer. With this model realistic increases in primary system pressurization are calculated for present plant transients that involve volumetric expansion of the primary system liquid due to temperature increases. The code correction for the steam generator secondary side mass balance provides a better representation of secondary response for the rod withdrawal, loss of primary flow and loss of load transients. The correction does not impact MDNBR for these transients since the time of MDNBR is generally before the secondary begins to impact primary system response. The mass balance correction is not a factor in the steam line break transients since this area of the code is bypassed in the steam line break calculations.

To ensure conservative predictions of system responses with resulting minimum values for the DNB ratios, conservative asumptions are applied. These assumptions can be grouped into two general categories:

 Generic assumptions, applicable to all transients, based on steady state offsets.

 Assumptions which conservatively encompass H.B. Robinson Unit 2 neutronic parameters.

The generic assumptions (Category 1) are applied to all full power transients to account for steady state and instrumentation errors. The initial DNBR conditions are obtained by adding the maximum steady state errors to rated values as follows:

Reactor Power =	1955 MWt + 2% (39.1 MWt) for
	calorimetric error.
Inlet Coolant Temperature =	510 + 4°F for deadband and measure-
	ment error.
Primary Coolant System Pressure =	2250 - 30 psia for steady state

fluctuation and measurement errors.

The combination of the above parameters acts to minimize the initial minimum DNB ratio. It is noted that the above steady state errors are not included in the plant system modeling but rather are used to conservatively bound the initial MDNBR. Table 3.2 shows a list of operating parameters used in the analysis.

The trip setpoints incorporated into the PTSPWR2 model for H.B. Robinson Unit 2 are based on the Technical Specification limits and have been revised for the changed system conditions. These limiting trip setpoints with their associated time delays for each trip function are listed in Table 3.3. Overtemperature and overpower ΔT trip functions are detailed in Section 3.6. The ENC fuel design parameters for H.B. Robinson Unit 2 are summarized in Table 3.4. Table 3.5 lists the neutronics parameter values which conservatively bound the H.B. Robinson Unit 2 core for both the beginning and end of cycle. A design axial power profile with a peaking factor $F_Z = 1.55$ was used in the analysis. This profile is shown in Figure 3.3. The scram reactivity curve used in the analysis is shown in Figure 3.4.

The assumptions in Category 2 refer to the reactivity feedback effects from moderator temperature changes and Doppler broadening. For full power transients, a 1.25 multiplier is applied to the moderator temperature coefficient. An attenuation factor of 0.8 or a magnification factor of 1.2 has been applied to the Doppler feedback coefficient, depending on which factor results in the worst case. Table 3.6 contains the multipliers used and the resulting moderator and Doppler feedback coefficients applicable for full power transients.

3.3 OVERTEMPERATURE AND OVERPOWER AT SETPOINTS

A major aspect of the present study has been the verification of adequately conservative safety system setpoints for plant operation at reduced primary coolant temperature and reactor power. For reduced temperature operation, the principal setpoint changes were to the overtemperature ΔT and overpower ΔT trip functions. In both cases, the essential change has been to reduce the reference T_{AVE} parameter, T', in order that the operating margin to trip would not increase for the new reduced temperature conditions. The increased MDNBR (increased thermal margin) results for the transients analyzed in this report at reduced temperature conditions substantiate the setpoints for reduced temperature operation. A listing of the overtemperature and overpower ΔT trip functions can be found in Section 3.6.

3.4 TRANSIENT ANALYSIS

3.4.1 Initial Conditions

Evaluation of the effects of the proposed reduced temperature and reactor power operation on steady state thermal margin was performed in accordance with standard ENC thermal hydraulic calculational methodology described and referenced in (2). H.B. Robinson Unit 2 cycle 9 has an all ENC fuel core. The reduced temperature calculations have been performed for a TAVF of 537.90F, and a thermal power equal to 1955 MWt (85% of rated 2300 MWt) versus prior analyses at 575.40F and 2300 MWt. System pressure remains unchanged at 2250 psia. For the reduced temperature conditions with 1955 MWt, the initial steady state DNBR is conservatively calculated to be equal to or greater than 3.13. This represents a significant increase in initial MDNBR when compared with the previous analysis at 2300 MWt(3) in which the initial MDNBR was 1.87. It is noted that both the reduced temperature and power contribute to the improved initial DNBR. A comparison of the most limiting transients for the reduced temperature and reactor power conditions illustrates that this gain in initial DNBR more than offsets any changes in DNBR during the transients for reduced temperature operation. The improved MDNBR for the transients supports the revised core safety system setpoints. The analysis results presented include the most limiting rod withdrawals at full power conditions, and the most limiting loss of flow accidents which have previously been shown as the worst accidents relative to thermal margin. The large steam line break and excess load transients demonstrate the characteristics of reactor coolant cooldown incidents. The loss of load completes the transients analyzed.

3.4.2 Uncontrolled Rod Withdrawal

The withdrawal of a control rod bank adds reactivity to the reactor core, causing both the power level and the core heat flux to increase. Since the heat extraction from the steam generator remains relatively constant, there is an increase in primary coolant temperature. Unless terminated by manual or automatic action, this power mismatch and the resultant coolant temperature rise could eventually result in a DNB ratio of less than 1.3. While the inadvertent withdrawal of a control rod bank is unlikely, the reactor protection system is designed to terminate such a transient while maintaining an adequate margin to DNB.

In this incident, the reactor may be tripped by the overtemperature ΔT function, by the nuclear overpower function, or by other reactor protective safety system setpoints. The analysis presented here confirms the adequacy of the setpoints protecting the plant. Both a fast rod withdrawal and a slow rod withdrawal were analyzed from an initial power level of 1955 MWt. Beginning-of-cycle kinetics coefficients were used with an appropriate multiplier applied to the Doppler coefficient (see Table 3.6.)

Figures 3.5 to 3.11 show plant responses for a fast rod withdrawal (5.625 x $10^{-4} \Delta p/sec$) from 1955 MWt. A nuclear overpower trip (121% setpoint) occurs at 2.70 seconds. The DNB ratio drops from an initial value of 3.13 to 2.82. Pressure increases to a maximum of 2310 psia with core average temperature increasing by less than 3°F.

The system responses to a slow rod withdrawal of 2.5 x 10^{-5} $\Delta p/sec$ are depicted in Figures 3.12 to 3.18. The nuclear overpower trip setpoint (121%) is reached at 44.01 seconds, and the minimum DNB ratio

during the transient is 2.48. The slow rod withdrawal transient is terminated by an overtemperature ΔT trip when the nuclear overpower trip mechanism is defeated purposely in order to show that the overtemperature ΔT trip will function properly. The overtemperature ΔT trip setpoint is reached at 44.35 sec, scramming the reactor after a 2.3 second delay. The minimum DNB ratio during the transient is then 2.43. At slower rates of reactivity insertion, the overtemperature ΔT trip potentially could occur prior to the high flux trip. For the rod withdrawal accidents at reduced coolant temperature condition, power peaking increases about the withdrawn rod are not expected to be more than a few percent and these are more than offset by the significantly improved MDNBR results presented here.

3.4.3 Rod Withdrawal from Hot Zero Power

This transient is analyzed in two steps. First, the PTSPWR2⁽¹⁾ code is used to calculate the reactor conditions during the transient. The reactor is assumed to be at a hot zero power condition (HZP, power=1.0 x 10^{-13} MWt at t=0) with a uniform core average temperature of 530°F. A moderator temperature coefficient of +2.5 x $10^{-5} \Delta \rho/°F$, a Doppler coefficient of -1.0 x $10^{-5} \Delta \rho/°F$ and a reactivity insertion rate of 60 x $10^{-5} \Delta \rho/sec$ were used in the calculations. The peak core average heat flux from PTSPWR2 calculations was then used to establish DNBR for the limiting rod in the core. Standard ENC methodology⁽²⁾ for core thermal margin analysis was used to calculate this MDNBR. The resulting MDNBR for the control rod withdrawal transient initiated from hot zero power was calculated to be 2.11 which is significantly greater than 1.30. Figures 3.19 and 3.20 show the plant responses during the transient.

3.4.4 3-Pump Coastdown

The 3-pump coastdown transient is postulated to occur as a result of a loss of electric power to the primary coolant pumps. The transient results in an increase in coolant temperature which, in combination with the reduced flow, reduces the margin to DNB. Only the most severe case has been analyzed. This case is the loss of power to all three pumps when the reactor system is operating at 1955 MWt. Beginning-of-cycle values of kinetics coefficients are assumed. For conservatism, a multiplier of 0.8 was applied to the Doppler coefficient. The loss of power to all pumps will result in a reactor trip due to either under-voltage or under-frequency at the bus. For conservatism, however, the trip was taken to be on a low flow signal. This allows a further flow reduction at full power, and a more conservative calculation of margin to DNB.

Figures 3.21 to 3.27 depict plant responses after the loss of all three pumps. A reactor trip occurs at 2.63 seconds. A minimum DNB ratio of 2.58 is reached 3.50 seconds after the beginning of coastdown. System pressure peaks at 2314 psia.

3.4.5 Locked Rotor

In the unlikely event of a seizure of a primary coolant pump, flow through the core is drastically reduced. The reactor is tripped by the resulting low flow signal. The coolant enthalpy rises, decreasing the margin to DNB. The locked rotor transient was analyzed assuming three loop operation with instantaneous seizure of one pump from 1955 MWt. The feedwater pumps were assumed to trip with the reactor. Beginning-of-cycle kinetics coefficients were used as the BOC moderator

coefficient is the most adverse. A 0.8 multiplier was applied to the Doppler coefficient.

The responses for the locked rotor transient are shown in Figures 3.28 to 3.34. The reactor is scrammed at 1.03 seconds by a low flow signal. Core average temperature increases by 10.7°F with system pressure reaching 2321 psia, well below peak pressure limit of 2750 psia. The DNB ratio in the analysis reaches a minimum of 2.19 after a 5% MDNBR penalty is imposed to account for future potential differences in the degree of plugging between steam generators. The 5% penalty accounts for the case in which the seized rotor loop is the one with the least tube plugging (highest flow) since the flow impact would be highest for this case. This penalty is considered more than adequate to cover a 10% difference in tube plugging between loops.

3.4.6 Loss of Load

Loss of load involves plant behavior after a trip of the turbine-generator without a direct reactor trip. This transient has been reanalyzed to ascertain the MDNBR for reduced temperature operation. Since thermal power is 15% less than in previous analyses, reanalysis relative to peak pressurization is not considered necessary. The transient responses for this event are evaluated from 1955 MWt with the most severe assumptions; namely, loss of load at BOC with a positive moderator coefficient, and no automatic reactor control. The steam dump and turbine bypass were not allowed. The feedwater pumps were assumed to trip with the reactor. The steam line power operated relief valves are neglected. The steam line safety valves are assumed to operate. For conservatism, a multiplier of 0.8 was applied to the Doppler coefficient.

Figures 3.35 to 3.41 show the plant responses following a loss of load from 1955 MWt. After closure of the turbine stop valves, the pressure in both steam generators increases and reaches 1051 psia at 19.89 seconds. The steam line safety valve setpoint is not reached. The reactor is tripped at 12.46 seconds on high pressure after 1.0 sec delay. The peak primary pressure was 2460 psia. The average primary coolant temperature increases by less than 23°F. The lowest value for the minimum DNB ratio during the transient is 2.91 which occurs at 12.50 seconds.

3.4.7 Excess Load

In an excess load incident, an increase in steam flow through the steam generator causes a power mismatch between reactor power and steam generator demand. For this case, a 10% step increase in rated turbine load is analyzed at 1955 MWt. Since excess load is a reactor coolant cocldown transient the excess load incident is analyzed at EOC with no automatic control assumed. Figures 3.42 to 3.48 illustrate plant responses to this transient. Core power reaches 2114.8 MWt after 41.89 seconds as power level rises due to the large negative moderator coefficient. The lowest MDNBR during the transient is 2.79 which occurs at 51 sec. Core conditions achieve a new steady state without a reactor scram.

3.4.8 Steam Line Break

The break of a steam pipe (or safety valve failure) results in a sharp reduction in steam inventory in a steam generator. The resulting pressure decrease causes an energy demand from the primary coolant which reduces coolant temperature and pressure. With a negative moderator temperature coefficient, this causes reactivity insertion into the core

which could, under pessimistic circumstances, lead to criticality and core damage if unchecked.

The steam line break transient is simulated with the PTSPWR2 plant transient simulation code. As a worst case, the steam line break is assumed to occur at hot zero power conditions corresponding to a core average temperature of 530°F. At this time, the steam generator secondary side water inventory is at a maximum, prolonging the duration and increasing the magnitude of the primary loop cooldown. For conservatism, the most reactive control rod is assumed to be stuck out of the core when evaluating the shutdown capability of the control rods. The reduction in primary to secondary heat transfer area occasioned by steam generator tube plugging has been conservatively accounted for by assuming that the loop in which the steam line break occurs is that loop having the least number of plugged tubes (8% of tubes plugged). This assumption maximizes the heat transfer rate from the primary coolant to the broken loop, and thus maximizes the moderator cooldown and the magnitude of the return to power.

The reactivity as a function of core average temperature and the variation of local reactivity (near the stuck rod) as a function of core power used in this analysis are shown in Figures 3.49 and 3.50. A shutdown reactivity of 1.77% $\Delta\rho$ was assumed.

The initial steam flow is calculated from the Moody curve for critical flow of saturated steam⁽⁵⁾. It is assumed that the two intact steam generators also blow down to the containment until the closure of the main steam isolation valves. The initial break flow is 7229 lb/s per loop.

Figures 3.51 to 3.56 depict the transient responses for the worst steam line break: a large break inside the containment with outside power available. The core returns to power at 7.5 seconds, somewhat earlier than in the reference $case^{(4)}$. The larger initial break flow used in this analysis results in a faster cooldown of the moderator than observed in the reference case. The consequent higher rate of reactivity insertion causes a faster return to power. Boron reaches the core at 43. seconds, terminating the power increase. The safety injection actuation signal occurred at 10 seconds on a low pressurizer pressure signal. The time required to sweep the safety injection lines clear of residual water is implicitly accounted for in the calculation. The core average heat flux peaks shortly after the power increase is terminated. Maximum heat flux is 40% of the rated value of 179,218 BTU/hr-ft².[†]

The minimum critical heat flux ratio is calculated to be 1.19 at the time of peak core average heat flux. The Modified Barnett critical heat flux correlation⁽⁶⁾ was employed in the calculation in conjunction with an overall hot channel factor of 13.7 and core conditions corresponding to the time of peak heat flux. This is judged to be an acceptable outcome for the steam line break event, with few if any fuel rods $\prodespective conditions$ ing boiling transition. (<1%)

3.5 DISCUSSION OF TRANSIENT ANALYSIS RESULTS

The transient analyses for the H.B. Robinson Unit 2 Nuclear Power Plant for conditions of reduced primary coolant temperature and reactor

t The rated value of 179,218 BTU/hr-ft² corresponds to a power rating of 2300 MWt.

15P

8

power all show adequate margin to safety limits. The neutronics data used in this analysis are consistent with or conservative with respect to the previous analysis⁽⁴⁾. A comparison of operating parameters used in the present analyses with those used in the previous analysis⁽⁴⁾ is shown in Table 3.7. For reduced primary coolant temperature and reactor power the limiting transient analyses reported in sub-section 3.4 all showed increased margins when compared to the previous analysis⁽⁴⁾.

Several additional transients previously analyzed⁽⁴⁾ were not reanalyzed. These included:

- startup of an inactive loop
- loss of feedwater
- RCCA drop
- loss of A.C. power
- chemical and volume control system malfunction
- reduction in feedwater enthalpy accident.

They are not considered to be limiting transients and should remain nonlimiting for reduced temperature and reactor power because their rate of reactivity addition is enveloped by the more limiting transients of subsection 3.4, and the steady state MDNBR increases with reduced temperature and reactor power.

3.6 REVISED SAFETY SYSTEM SETPOINTS FOR OPERATION AT REDUCED TEMPERATURE AND POWER

The current safety system protective settings for reduced temperature operation are:

(a) High flux, power range ≤109% (of 1955 MWt)

(b) High Pressurizer Pressurizer Pressure <2385 psig

- (c) Low Pressurizer Pressure ≥ 1835 psig
- (d) Overtemperature ∆T

<
$$\Delta T_0 [K_1 - K_2(T - T') + K_3(P - P') - f(\Delta I)]$$

where

ΔTo	=	indicated ${\rm \Delta T}$ at 85% of 2300 MWt, $^{\rm OF}$
Т	=	average temperature, ^{OF}
T١	=	537.9°F
р	=	pressurizer pressure, psig
р' К1	= =	2235 psig 1.1619
К2	=	0.01035
Ka	-	0.0007978

and $f(\Delta I)$ is a function of the indicated difference between top and br tom detectors of the power range nuclear ion chambers; with gains to be selected based on measured instrument response during plant startup tests, where q_t and q_b are the percent power in the top and bottom half of the core respectively, and $q_t + q_b$ is the total core power in percent of rated power such that:

(i) for qt - qb within -17, +12 percent,

f (Δ I) = 0. For every 2.4% below rated power level, the permissible positive flux difference range is extended by +1 percent. For every 2.4% below rated power level, the permissible negative flux difference range is extended by -1 percent.

(ii) for each percent that the magnitude of $q_t - q_b$ exceeds +12 percent, the ΔT trip setpoint shall be automatically reduced by an equivalent of 2.4% of rated power.

(iii) for each percent that the magnitude of $q_t - q_b$ exceeds -17 percent, the ΔT setpoint shall be automatically reduced by an equivalent of 2.4% of rated power.

(e) Overpower ∆T

 $\leq \Delta T_0 [K_4 - K_5 \frac{dT}{dt} - K_6(T-T') - f(\Delta I)]$

To	=	indicated ∆T at 85% of 2300 MWt, ^O F
	=	average temperature, ^{OF}
1	=	537.9°F
4	=	1.07
5	=	0.0 for decreasing average temperature
		0.2 seconds per $^{\rm OF}$ for increasing average temperature
6	=	0.002235 for T>T'
		0.0 for T <t'< td=""></t'<>
(∆I) =	as defined in (d) above
f)	Low	reactor coolant flow $\geq 90\%$ of normal indicated flow.
g)	Low	reactor coolant pump frequency \geq 57.5 H _z .
(h)	High	pressurizer water level ≤ 92% of span.
(i)	Low	low steam generator water level \geq 14% of narrow

range instrument span

(j) Startup protection - high flux < 25% rated power.

The present analyses used setpoints which are consistent with or conservative with respect to the above. It is important to note that the high flux trip (item a) as a percent of power is not changed. However, the absolute trip function has been changed since full power has been reduced from 2300 MWt to 1955 MWt. Based on the analyses, the limiting accidents being presented in this report verified that the overtemperature and overpower ΔT setpoints are adequate.

With the effects of reduced coolant temperature and reactor power included, the safety system setpoints are confirmed to provide conservative protection for the plant.

Table 3.1 Summary of Results

Transient (Class)	Maximum Power Level (MWt)	Maximum Core Average Heat Flux (Btu/hr-ft ²)	Maximum Pressurizer Pressure (psia)	MDNBR (W-3)
Initial Conditions for Transients	1955.0	152,336	2250.0	3.13
Uncontrolled Rod Withdrawal (II)	2480.6	165,871	2310	2.82
@ 5.625 x 10 ⁻⁴ Ap/sec				
Uncontrolled Rod Withdrawal (II)	2369.8	180,322	2353	2.48
@ 2.5 x 10 ⁻⁵ Δρ/sec				
Loss of Flow - (III) 3-Pump Coastdown	1988.3	152,335	2314	2.58
Loss of Flow - (IV) Locked Rotor	2009.1	152,335	2321	2.19*
Loss of Load (II)	2090.9	154,968	2460	2.91
Excess Load (II)	2114.8	164,742	2251	2.79
Large Steam Break (IV)	945.9	71,981	**	1.19***

A 5% penalty was applied to account for less steam generator plugging in the locked rotor loop. Pressure decreases from initial value. *

**

Calculated with the Modified Barnett Critical Heat Flux Correlation. ***

53

Table	3.2	Parameter	rV	alu	es	Used in	P	TSPWR	2
		Analysis	of	Η.	Β.	Robinso	n	Unit	2

	Analysis input Value
Core	
Total Core Heat Output, MWt	1955.
Heat Generated in Fuel, %	97.4
System Pressure, psia	2250.
Hot Channel Factors	
Total Peaking Factor F _Q ^T	2.55
Enthalpy Rise Factor, $F_{\Delta H}^{N}$	1.60
Total Core Flow, 106 lb/hr	101.
Effective Core Flow, 10 ⁶ lb/hr	96.4
Coolant Average (Vessel) Temperature, ^O F	537.9
Heat Transfer	
Average Heat Flux, BTU/hr-ft ²	152,336
Steam Generators	
Total Steam Flow, 10 ⁶ lb/hr	8.16
Steam Temperature, ^O F	478.5
Feedwater Temperature, ^O F	408.0

1

l

I

I

1

Table 3.3 H	. B.	Robinson	Unit 2	Tri	o Setpoints
-------------	------	----------	--------	-----	-------------

	Setpoint	Used in Analysis	Delay Time
High Neutron Flux	109%	121%	0.5 sec.
Low Reactor Coolant Flow	90%	87%	1.0 sec.
High Pressurizer Pressure	2400 psia	2400 psia	1.0 sec.
Overtemperature ΔT^*			2.3 sec.

* The overtemperature ∆T trip is a function of pressurizer pressure, coolant average temperature, and axial offset. The T' and P' setpoints are contained within the function relationship. This is discussed in Section 3.6.

Table 3.4 Exxon Nuclear Reload for H. B. Robinson Unit 2 Fuel Design Parameters

Fuel Radius	0.17825	Inch
Inner Clad Radius	0.1820	Inch
Outer Clad Radius	0.2120	Inch
Active Length	144.0	Inch
Number of Fuel Rods in Core	32.028	

		Value			
Symbol	Parameter	Beginning- of-Cycle	End-of- Cycle		
α _M	Moderator Coefficient $(\Delta \rho / {}^{\text{OF}} \times 10^{-5})$	+2.0	-35.0		
αD	Doppler Coefficient $(\Delta \rho / {}^{\text{OF}} \times 10^{-5})$	-1.0	-1.7		
αp	Pressure Coefficient (∆p/psia x 10 ⁻⁶)	-0.2*	+4.0*		
α _V	Moderator Density Coefficient (%∆p)/(g/cm ³)	-1.8*	+31.5*		
α _B	Boron Worth Coefficient (Δρ/ppm x 10 ⁻⁵)	-7.0	-9.0		
^β eff	Delayed Neutron Fraction (%)	0.700	0.510		
α CRC	Total Rod Worth, N-1, (%Δp)	-4.0	-4.0		

Table 3.5 H. B. Robinson Unit 2 Kinetic Parameters

* For the limiting transients being analyzed, they are assumed to be zero for conservatism.

Transient	Moderator Feedback Multiplier	Resulting Coefficient ∆p/°F x 10 ⁻⁵	Doppler Feedback Multiplier	Resulting Coefficient Δρ ^{OF} x 10 ⁵
Fast Rod Withdrawal	1.25	+2.5	1.2	-1.2
Slow Rod Withdrawal	1.25	+2.5	0.8	-0.8
3-Pump Coastdown	1.25	+2.5	G.8	-0.8
Locked Rotor	1.25	+2.5	0.8	-0.8
Loss of Load	1.25	+2.5	0.8	-0.8
Excess Load	1.25	-43.8*	0.8	-1.36*
Large Steam Line Break		***		**

Table 3.6 Moderator and Doppler Coefficients

* Excess load transient is more limiting at EOC due to large negative α_{M} .

** See Figure 3.50

*** See Figure 3.49

Table 3.7 Comparison of Operating Parameters for H.B. Robinson Unit 2

Nominal Values

	This Analysis	Previous Analysis(4)
Reactor Power, MWt	1955	2300
Primary Coolant Flow Rate, 10 ⁶ lb/hr	101.0	101.5
Reactor Coolant Pressure, psia	2250	2250
Reactor Coolant Temperature, OF		
Vessel Outlet	564.4	604.7
Vessel Average	537.9	575.4
ΔΤ	54.4	58.5
Steam Generators		
Steam Temperature, ^O F	478.5	523.0
Steam Pressure, psia	558.0	850.0
Steam Flow, 10 ⁶ lb/hr total	8.16	10.07
Feed Temperature, ^O F	408	441.7
Zero Load Temperature, OF	530	547

power (85%) operation

60

Figure 3.2 PTSPWR2 System Model

Figure 3.5 Power, heat flux and system flows for fast control rod withdrawal

.

Figure 3.7 Primary loop temperature changes for fast control rod withdrawal

Figure 3.8 Pressure changes in pressurizer and steam generators for fast control rod withcrawal

-

XN-NF-82-18

Figure 3.9 Level changes in pressurizer and steam generators for fast control rod withdrawal

Figure 3.10 Minimum DNB ratio for fast control rod withdrawal

XN-NF-82-18

ROBINSON FAST ROD WITHDRAWAL

3

70

A see

H.B. ROBINSON SLOW ROD WITHDRAWAL

Figure 3.12 Power, heat flux and system flows for slow control rod withdrawal

71

Core temperature responses for slow control rod withdrawal Figure 3.13

72

Figure 3.14 Primary Loop temperature changes for slow control rod withdrawal

1

I

H.B. ROBINSON SLOW ROD WITHDRAWAL

74

H.B. ROBINSON SLOW ROD WITHDDRAWAL

XN-NF-82-18

I

ĺ

and a little - real and and

77

CONTROL ROD WITHDRAWAL AT HZP

79

H. B. ROBINSON 3 PUMP COASTDOWN

81

Figure 3.23 Primary loop temperature changes for coolant pump trip.

82

H. B. ROBINSON 3 PUMP COASTDOWN

Figure 3.24 Pressure changes in pressurizer and steam generators for coolant pump trip.

83

Figure 3.25 Level changes in pressurizer and steam generators for coolant pump trip.

84

Figure 3.26 Minimum DNB ratio for coolant pump trip.

Figure 3.27 Reactivity worth for coolant pump trip.

86

Core temperature responses for coolant pump seizure. Figure 3.29

88

Figure 3.30 Primary loop temperature changes for coolant pump seizure.

68

XN-NF-82-18

Ę

.

Figure 3.32 Level changes in pressurizer and steam generators for coolant pump seizure.

1

I

I

1

Ø

E.

92

2.6

Figure 3.35 Power, heat flux and system flows for loss of load.

. . .

94

Figure 3.36 Core temperature responses for loss of load.

XN-NF-82-18

I

I

Figure 3.37 Primary loop coolant temperature changes for loss of load.

96

XN-NF-82-18

Figure 3.38 Pressure changes in pressurizer and steam generators for loss of load.

1

1

i I

1

1

1

Level changes in pressurizer and steam generators for loss of load. Figure 3.39

98

Figure 3.41 Reactivity worth for loss of load.

100

Figure 3.42 Power, heat flux and system flow for excess load.

1

1

I

I

101

Figure 3.43 Core temperature responses for excess load.

102

Figure 3.44 Primary loop coolant temperature changes for excess load.

Figure 3.47 Minimum DNB ratio for excess load.

106

100 3 00 -30 0 LOAD ÷, TIME, SEC -30 40 Ŧ -00 3 2 1234 01-122

ริยษาวังป $(\gamma\gamma)$ 14 \odot 60 ι.

107

XN-NF-82-18

Reactivity worth for excess load.

Figure 3.48

R

0

1

108

XN-NF-82-18

H. B. ROBINSON STEAM LINE BREAK

110

Figure 3.52 Core temperature response for H. B. Robinson steam line break.

111

H. B. ROBINSON STEAM LINE BREAK

112

H. B. ROBINSON STEAM LINE BREAK

Figure 3.55 Level changes for H. B. Robinson steam line break.

114

Figure 3.56 Core reactivity response for H. B. Robinson steam line break.

115

4.0 REFERENCES

- "Description of the Exxon Nuclear Plant Transient Simulation Model for Pressurized Water Reactors (PTSPWR)", XN-74-5, Revision 1, Exxon Nuclear Company, Inc., Richland, Washington, May 1975.
- "Definition and Justification of Exxon Nuclear Company DNB Correlation for Pressurized Water Reactors", XN-75-48, Exxon Nuclear Company, Inc., Richland, Washington, October 1975.
- "H.B. Robinson Fuel Design Report Volume 1 Mechanical and Thermal Hydraulic Design for Cycle 4", XN-75-25, Exxon Nuclear Company, Inc., Richland, Washington, June 1975.
- "Plant Transient Analysis of the H.B. Robinson Unit 2 PWR for 2300 MWt", <u>XN-75-14</u>, Exxon Nuclear Company, Inc., Richland, Washington, July 1975.
- 5. F.J. Moody, ASME Transactions, February 1965, P. 134.
- 6. E.D. Hughes, <u>IN-1412</u>, "A Correlation of Rod Bundle Critical Heat Flux for Water in the Pressure Range 150 to 725 psia".

XN-NF-82-18 Issue Date: 03/12/82

DISTRIBUTION

F. T. Adams G. J. Busselman G. C. Cooke N. F. Fausz L. J. Federico T. J Helbling S. E. Jensen W. V. Kayser R. H. Kelley M. R. Killgore J. E. Krajicek T. R. Lindquist J. N. Morgan W. T. Nutt G. F. Owsley F. B. Skogen G. A. Sofer D. R. Swope T. Tahvili C. H. Wu

> CP&L/T.J. Helbling (3) Document Control (10)

8