ENCLOSURE 3

North Anna

Technical Specifications Changes

for

Tavg of 582.8°F

::

8206090097 820608 PDR ADOCK 05000338 P PDR

Sec. *

REACTOR TRIP SYSTEM INSTRUMENTATION TRIP SETPOINTS

NOTATION

NOTE 1: Overtemperature
$$\Delta T \leq T_0 \left[K_1 - K_2 \left[\frac{1 + \tau_1 S}{1 + \tau_2 S} \right] (T - T') + K_3 (P - P') - f_1(\Delta I) \right]$$

Where: ΔT_0 = Indicated ΔT at RATED THERMAL POWER

T = Average temperature, °F

τ 1 8τ2

- T' = Indicated T avg at RATED THERMAL POWER < 582.8 °F
- P = Pressurizer pressure, psig
- P' = 2235 psig (indicated RCS nominal operating pressure)
- $\frac{1+\tau_1 S}{1+\tau_2 S}$ = The function generated by the lead-lag controller for T dynamic compensation
 - = Time constants stillized in the lead-lag controller for $T_{avg} \tau_1 = 25$ secs, $\tau_2 = 4$ secs.
 - S = Laplace transform operator (sec)

REACTOR TRIP SYSTEM INSTRUMENTATION TRIP SETPOINTS

NOTATION (Continued)

Operation with 3 Loops		Operation with 2 Loops (no loops isolated)*			Operation with 2 Loops (1 loop isolated)*			
K. =	1.113	к,	-	()	к1	- ()
K. =	0.0132	к2	-	()	к2	- ()
K ₂ =	0.000628	к3	-	()	к3	- ()

and f_1 (ΔI) is a function of the indicated difference between top and bottom detectors of the power-range nuclear ion chambers; with gains to be selected based on measured instrument response during plant startup tests such that:

- (i) for $q_t q_b$ between 35 percent and + 7 percent, $f_1 (\Delta I) = 0$ (where q_t and q_b are percent RATED THERMAL POWER in the top and bottom halves of the core respectively, and $q_t + q_b$ is total THERMAL POWER in percent of RATED THERMAL POWER).
- (11) for each percent that the magnitude of (q q) exceeds 35 percent, the ∆T trip setpoint shall be automatically reduced by 1.21 percent of its value at RATED THERMAL POWER.
- (iii) for each percent that the magnitude of $(q_{b} q_{b})$ exceeds + 7 percent, the ΔT trip setpoint shall be automatically reduced by 1.09 percent of its value at RATED THERMAL POWER.

*Values dependent on NRC approval of ECCS evaluation for these operating conditions.

REACTOR TRIP SYSTEM INSTRUMENTATION TRIP SETPOINTS

NOTATION (Continued)

NOTE 2: Overpower
$$\Delta T \leq \Delta T_0 [K_4 - K_5 \begin{bmatrix} T_3 S \\ 1 + T_3 S \end{bmatrix} T - K_6 (T - T'') - f_2(\Delta I)]$$

Where: ΔT_0 = Indicated ΔT at RATED THERMAL POWER
 T = Average temperature, °F
 T'' = Indicated T_{avg} at RATED THERMAL POWER $\leq 582.8^{\circ}F$
 K_4 = 1.088
 K_5 = 0.02/°F for increasing average temperature
 K_5 = 0 for decreasing average temperatures
 K_6 = 0.00119 for T > T''; K_6 = 0 for $T \leq T''$
 $\frac{T_3S}{1 + T_3S}$ = The function generated by the rate lag controller for T_{avg}
 T_3 = Time constant utilized in the rate lag controller for T_{avg}
 T_3 = Time constant utilized in the rate lag controller for T_{avg}
 T_3 = Laplace transform operator (sec⁻¹)
 $f_2(\Delta I)$ = 0 for all ΔI

NORTH ANNA - UNIT 1

2-10

DNB PARAMETERS

LIMITS

PARAMETER	3 Loops In Operation	2 Loops In Operation** & Loop Stop Valves Open	& Isolated Loop Stop Valves Closed		
Reactor Coolant System Tavg	<u><</u> 587°F		1		
Pressurizer Pressure	>2205 psig*				
Reactor Coolant System Total Flow Rate	<u>>278,400 gpm</u>				

*Limit not applicable during either a THERMAL POWER ramp increase in excess of 5% RATED THERMAL POWER per minute or a THERMAL POWER step increase in excess of 10% RATED THERMAL POWER.

**Values dependent on NRC approval of ECCS evaluation for these conditions.

.

REACTOR TRIP SYSTEM INSTRUMENT TION TRIP SETPOINTS

NOTATION

NOTE 1: Overtemperature
$$\Delta T \leq T_0 \left[K_1 - K_2 \left[\frac{1 + \tau_1 S}{1 + \tau_2 S}\right] (T - T') + K_3 (P - P') - f_1(\Delta I)\right]$$

Where: ΔT_0 = Indicated ΔT at RATED THERMAL POWER

- T = Average temperature, °F
- T' = Indicated T avg at RATED THERMAL POWER < 582.8 °F
- P = Pressurizer pressure, psig
- P' = 2235 psig (indicated RCS nominal operating pressure)
- $\frac{1+\tau_1 S}{1+\tau_2 S}$ = The function generated by the lead-lag controller for T_{avg} dynamic compensation
- $\tau_1 = \frac{\xi_1}{2}$ = Time constants utilized in the lead-lag controller for $T_{avg} \tau_1 = 25$ secs, $\tau_2 = 4$ secs.
 - S = Laplace transform operator (sec)

REACTOR TRIP SYSTEM INSTRUMENTATION TRIP SETPOINTS

NOTATION (Continued)

Operation with 3 Loops	Operation with 2 Loops (no loops isolated)*	Operation with 2 Loops (1 loop ischated)*		
$K_1 = 1.113$	$\kappa_1 = ()$	κ ₁ = ()		
$K_2 = 0.0132$	$\tilde{\kappa}_2 = ()$	$\kappa_2 = ()$		
$K_{2} = 0.000628$	$K_3 = ()$	к ₃ = ()		

and f_1 (ΔI) is a function of the indicated difference between top and bottom detectors of the power-range nuclear ion chambers; with gains to be selected based on measured instrument response during plant startup tests such that:

- (i) for $q_t q_b$ between 35 percent and + 7 percent, $f_1 (\Delta I) = 0$ (where q_t and q_b are percent RATED THERMAL POWER in the top and bottom halves of the core respectively, and $q_t + q_b$ is total THERMAL POWER in percent of RATED THERMAL POWER).
- (11) for each percent that the magnitude of $(q_1 q_2)$ exceeds 35 percent, the ΔT trip setpoint shall be automatically reduced by 1.21 percent of its value at RATED THERMAL POWER.
- (iii) for each percent that the magnitude of (q q) exceeds + 7 percent, the AT trip setpoint shall be automatically reduced by 1.09 percent of its value at RATED THERMAL POWER.

*Values dependent on NRC approval of ECCS evaluation for these operating conditions.

. .

DNB PARAMETERS

LIMITS

PARAMETER	3 Loops In Operation	2 Loops In Operation** & Loop Stop Valves Open	a Isolated Loop Stop Valves Closed		
Reactor Coolant System Tavg	<u><</u> 587°F		1		
Pressurizer Pressure	<u>>2205</u> psig*				
Reactor Coolant System Total Flow Rate	>278,400 gpm				

*Limit not applicable during either a THERMAL POWER ramp increase in excess of 5% RATED THERMAL POWER per minute or a THERMAL POWER step increase in excess of 10% RATED THERMAL POWER.

**Values dependent on NRC approval of ECUS evaluation for these conditions.