EQDP-AE-3 Rev. 4 3/82

EQUIPMENT QUALIFICATION DATA PACKAGE

This document contains information, relative to the qualification of the equipment identified below, in accordance with the methodology of WCAP 8587. The Specification section (Section 1) defines the assumed limits for the equipment qualification and constitute interface requirements to the user.

Chempump Canned Motor Pump (Outside Containment)

Tura Center APPROVED:

Int. P. Rahe, Manager Nuclear Safety Department

Westinghouse Electric Corporation Nuclear Energy Systems P.O. Box 355 Pittsburgh, Pennsylvania 15230

*

4

SECTION 1 - SPECIFICATIONS

1.0 PERFORMANCE SPECIFICATIONS

1.1 Electrical Requirements

1.1.1	Voltage: 190 to 575 VAC +10% operating; +10%,-20%
	starting
1.1.2	Frequency: 50 or 60 Hz +5%; 3 phase.
1.1.3	Load: 0.5 to 25 Hp.
1.1.4	Electromagnetic Interference: None.
1.1.5	Other: Motors have Class H insulation system.

- 1.2 Installation Requirements: As specified in the instruction manual provided with the equipment.
- 1.3 Auxiliary Devices: None rejuired for safeguard operation.
- 1.4 Preventative Maintenance Schedule: Normal preventative maintenance must be performed in accordance with the instruction manual provided with the equipment. The qualification of lubricants, greases and bearings is discussed in Reference 2. The lubricant from the Chempump motors is water.
- 1.5 Design Life: 40 years.
- 1.6 Operating Cycles (Expected number of cycles during design life, including test): Boric Acid Transfer Pump motors, 43,800; Boron Injection Recirculation Pump Motors, 14,600.

		Norma 1	Abnormal	Containment Test	DBE	Conditions(a)		Post	DBE Condition	s(a)
	Parameter	Conditions	Conditions	Conditions	FLB/SLB	LOCA	Seismic	FLB/SLB	LOCA	Seismic
1.7.	I ⊺ime requirement	87,600 hrs.	12 hrs.	N/A	N/A	N/A	Event Duration	Same as Normal	Same as Normal	Cont inuous
1.7.	2 Performance requirement	6 Hrs/Day Full Speed					Same as Normal	Same as Normal	Same as Normal	Same as Normal
1.8 Envi	conmental Conditions	for Same Fund	ction(b)							
1.8.	l Temperature(⁰ F)	40-120 ⁰ F ^(c)					Same as Normal			Same as Normal
1.8.	Pressure (psig)	0	0				0			Û
1.8.	3 Humidity (% RH)	N/A since mo sealed unit	otor is							
٤.8.	4 Radiation (R)	<u>≤</u> 400	Same as Normal				Same as Normal			Same as Normal
1.8.	5 Chemicals	None	None				None			None
1.8.	6 Vibration (in.) ^(d)	0.002	Same as Normal				Same as Normal			Same as Norma I
1.8.	7 Acceleration (g)	None	None				Figure 1			Figure 1

8697A

w

w

1.7 Performance Requirements for (b): Boric Acid Transfer (212, 312, 412, 3XL, 4XL)

Notes: a: DBE is the Design Basis Event. b: Margin is not included in the parameters of this section. c: Maximum water temperature environment 175°F. d: Bearing housing vibration filtered to running speed.

WESTINGHOUSE LLASS 60

				Containment	DRF	UBE Conditions a)		Post	Post DBE Conditions(a)	s(a)
		Norma I	Abnormal	fest						
	Parameter	Conditions	Conditions	Conditions	F18/518	LOCA	Seismic	FL8/SL8	1.00.4	Setsmic
1.7.1	Time requirement 350,400 hrs. 12 hrs.	350,400 hrs	. 12 hrs.	N/A	N/A	N/A	Event	Same as	Same as	Cont inuous
							Duration	Normal	Norma I	
1.7.2	Performance	Cont inuous					Same as	Same as	Same as	Same as
	requirement	Full Speed					Norma 1	Normal	Normal	Norma I
nvirou	1.8 Environmental Conditions for Same Function ^(b)	for Same Fun	ction ^(b)							
	. 0.	() (c)								
1.8.1	lemperature(F) 40-120 F	40-1202F					Same as			Same as
							Norma 1			Normal
1.8.2	Pressure (psig)	0	0				0			0
1.8.3	Humidity (% RH)	N/A since motor is sealed unit	otor is							
1.8.4	Radiation (R)	<400	Same as Normal				Same as Normal			Sille as
										1710 2.000
1.8.5	Chemicals	None	None				None			N
i.8.6	Vibration	0.002	Same as				Same as			Some at.
	(1n.) ⁽³⁾		Norma 1				Normal			New no. 1
1.8.7	Acceleration (g) None	None	None				Figure 1			Figure 1

4

Margin is not included in the parameters of this section. Marginum water temperature environment 1750F. Bearing housing vibration filtered to running speed. 334

•

•

3

3

- 1.9 Qualified Life: The demonstrated qualified life is 40 years, based on 6 hours/day operation of the Boric Acid Transfer (BAT) pump and 24 hours/day for the Boron Injection Recirculation (BIR) pump. The qualified life is based on a 140°C rise above an assumed ambient of 40°C. Also see Table 1.
- 1.10 Remarks: Canned motors are hermetically sealed and protected from the outside environment.

SECTION 2 - QUALIFICATION BY TEST

- 2.0 TEST PLAN
- 2.1 Equipment Description: Motorettes (random wound), Teflon and Nomex insulated leads. Lead connectors with Nomex insulated leads and Vespel and Kalrez seals.
- 2.2 Number Tested: Motorettes (28); Teflon leads (10), Vespel and Kalrez, seals (12 each), lead connectors with Nomex insulated leads (12), graphite bearings (16).
- 2.3 Mounting: Motorettes and motor lead connectors were bolted to a common support plate. The actual mounting configuration to be used in the field in accordance with the instruction manual is represented in the seismic analysis performed for the pump.
- 2.4 Connections: Motorette leads terminated at binding posts mounted on the base plate.
- 2.5 Aging Simulation Procedure: The motorettes were subjected to thermal, radiation, and vibration aging. The Teflon insulated leads were subjected to thermal aging only. Nomex insulated leads, Vespel and Kalrez seals, and motor lead connectors were subjected to thermal, mechanical and radiation aging (Reference 1).

6

2.6 Service Conditions to be Simulated by Test $^{(1)}$

w

24

		Normal	Abnormal	Containment Test	Seismic	HELB	Post-HELB
2.6.1	Temp. (⁰ F)	Ambient	Included Under Normal	N/A	Included Under Normal	N/A	N/A
2.6.2	Pressure (psig)	0	0		0	N/A	N/A
2.6.3	Humidity (% RH)	N/A	N/A		N/A	N/A	N/A
2.6.4	Radiation (R)	10 ⁴ (a)	Included Under Normal		N/A	N/A	N/A
2.6.5	Chemicals	None	None		None	N/A	N/A
2.6.6	Vibration (b)	0.008 In. @ 60 Hz for 1 Hr.	Included Under Normal		Included Under Normal	N/A	N/A
2.6.7	Acceleration (g)	None	None		Figure 1	N/A	N/A

- (a) Requirement is less than 10^4 ; however, radiation testing was extended to 2 x 10^8 Rads for some components.
- (b) Equipment is qualified for inservice vibration by experience, however, in addition this test was performed as suggested by IEEE-117-1974.

..

2.7 Measured Variables

2

This section identifies the parameters required to be measured during the test sequence(s).

2.7.1	Category	I - Environment	Required	Not Required	
	2.7.1.1	Temperature	A	BCD	
	2.7.1.2	Pressure		ABCD	
	2.7.1.3	Moisture		ABCD	
	2.7.1.4	Composition		ABCD	
	2.7.1.5	Seismic Acceleration	D	ABC	
	2.7.1.6	Time	ABCD		

2.7.2 Category II - Input Electrical Characteristics

2.7.2.1	Voltage	ABCD
2.7.2.2	Current	ABCD
2.7.2.3	Frequency	ABCD
2.7.2.4	Power	ABCD
2.7.2.5	Other	ABCD

2.7.3 Category III - Fluid Characteristics

2.7.3.1	Chemical Composition	ABCD
2.7.3.2	Flow Rate	ABCD
2.7.3.3	Spray	ABCD
2.7.3.4	Temperature	ABCD

2.7.4 Category IV - Radiological Features

2.7.4.1	Energy Type	В	ACD
2.7.4.2	Energy Level	В	ACD
2.7.4.3	Dose Rate	В	ACD
2.7.4.4	Integrated Dose	В	ACD

Required Not Required

2.7.5	Category	V - Electrical Characteristics	
	2.7.5.1	Insulation Resistance	ABCD
	2.7.5.2	Output Voltage	ABCD
	2.7.5.3	Output Current	ABCD
	2.7.5.4	Output Power	ABCD
	2.7.5.5	Response Time	ABCD
	2.7.5.6	Frequency Characteristics	ABCD
	2.7.5.7	Simulated Load	ABCD
2.7.6	Category	VI - Mechanical Characteristics	
	2.7.6.1	Thrust	ABCD
	2.7.6.2	Torque	ABCD
	2.7.6.3	Time	ABCD
	2.7.5.4	Load Profile	ABCD

2.7.7 Category VII - Auxiliary Equipment

None required for safeguard operation.

9

- A Thermal Aging
- B Radiation Aging
- C Vibration Aging
- D Seismic

2.8 Test Sequence Preferred

This section identifies the preferred test sequences as specified in IEEE-323-74

2.8.1 Inspection of Test Item
2.8.2 Operation (Normal Condition)
2.8.3 Operation (Performance Specifications Extremes, Section 1)
2.8.4 Simulated Aging
2.8.5 Seismic Vibration
2.8.6 Operation (Simulated High Energy Line Break Conditions)
2.8.7 Operation (Simulated Post HELB Conditions)
2.8.8 Inspection

2.9 Test Sequence Actual

This section identifies the actual test sequence(s) employed which when used in conjunction with these seismic analyses constitutes the overall qualification program for this equipment. The separate subsections indicate the separate test sequences completed on the same components.

Step Notes

2.9.1 Functional motor tests are performed by the manufacturer for each pump. Data taken during hydraulic runout tests or individual tests determine the following:

2.9.1.1 Running current at shutoff
2.9.1.2 Phase balance (at design point)
2.9.1.3 Winding resistance
2.9.1.4 High potential
2.9.1.5 Vibration
2.9.1.6 Overall efficiency at design point
2.9.1.7 Power factor at design point

In addition, the first motor for each pump application is sujected to the following tests:

2.9.1.8 Full load heat run
2.9.1.9 Percent Slip
2.9.1.10 Locked rotor current
2.9.1.11 Pullout torque
2.9.1.12 Starting torque
2.9.1.13 Efficiency at design point, shutoff, and runout
2.9.1.14 Power factor at design point, shutoff, and runout
2.9.1.15 Power factor at design point, shutoff, and runout
2.9.1.16 Minimum starting voltage

2.9.2 Motorettes, Motor Lead Connectors, Nomex Insulated Leads, Vespel and Kalrez Seals Test Sequence

> 2.8.1 Canned Motor Pump is located outside of the 2.8.4 containment building and does not require 2.8.5 HELB simulation. 2.8.8

2.9.3 Teflon Insulated Lead Test Sequence 2.8.1 Canned Motor Pump is located outside of the 2.8.4 containment building and does not require HELB 2.8.8 simulation.

3

2.10 Type Test Data

2.10.1 Objective

The objective of this test program is to demonstrate, employing the recommended practices of Reg. Guide 1.89 (IEEE-323-1974) and Reg. Guide 1.100 (IEEE 344-1975), the capability of the canned pump motor to complete its safety-related function described in EQDP Section 1.7 while exposed to the applicable environments defined in EQDP Section 1.8. This objective is accomplished through test of critical components and evaluation of less critical components with well known material properties and performance characteristics.

2.10.2 Equipment Tested

Twenty-eight motorettes, twelve motor lead connectors, ten Teflon and twelve Nomex insulated leads, and twelve Vespel and Kalrez seals were tested.

2.10.3 Test Summary

2.10.3.1 Motorette and Motor Lead Connectors

Active canned pump motors used in Westinghouse plants are located outside of the reactor containment and will not be exposed to the adverse environmental conditions that may arise from a design base HELB. In addition, the canned pump motors are hermetically sealed isolating the motor environment from the external environment with the exception of temperature. Consequently, environment testing is only required to demonstrate equipment capability under normal and abnormal temperature extremes.

3

2.10.3.1.1 Aging and Radiation Testing

Prior to testing, the twenty-eight motorettes and motor lead connectors were subjected to a voltage screening test to verify the integrity of the electrical insulation.

The motorettes and motor lead connectors were baked in an oven to accelerate thermal aging equivalent to 40 years of normal plant operation at an equivalent temperature of 180°C. The motorette and motor lead connector electrical insulation integrity was again confirmed by the voltage check.

Subsequent to thermal aging, the motorettes and motor lead connectors were irradiated to an accumulated gamma dose of 2×10^8 Rads which is significantly greater than that expected from 40 years of normal and one year post accident operation. The insulation integrity was again confirmed.

2.10.3.1.2 Vibration Aging

3

3

The motor is qualified by experience and engineering judgement for the expected inservice vibration. However, in addition the motorettes and motor lead connectors were subjected to the vibration, or mechanical stress, test described in the qualification report, Reference 1. All motorettes and connectors passed the electrical insulation voltage tests after vibration.

2.10.3.1.3 Seismic Testing

The twenty-eight motorettes and motor lead connectors were seismically tested using a multi-axis multi-frequency input in accordance with Reg. Guide 1.100(1). The test response spectrum was significantly greater than the required response spectrum envelope generated from many Westinghouse plants, Figure 1. The post-seismic voltage test verified the integrity of the motorette and connector lead electrical insulation. 2.10.3.2 Teflon Insulated Leads

Ten (10) teflon insulated leads were thermally aged to an equivalent service life of 40 years at 180°C. No changes or damage were evident from a visual examination.

2.10.3.3 Graphite Bearings

Sixteen (16) graphite beaming were aged to the equivalent of 5 years of service life and exposed to 2×10^8 R of gamma radiation. No significant changes were noted.

3

4

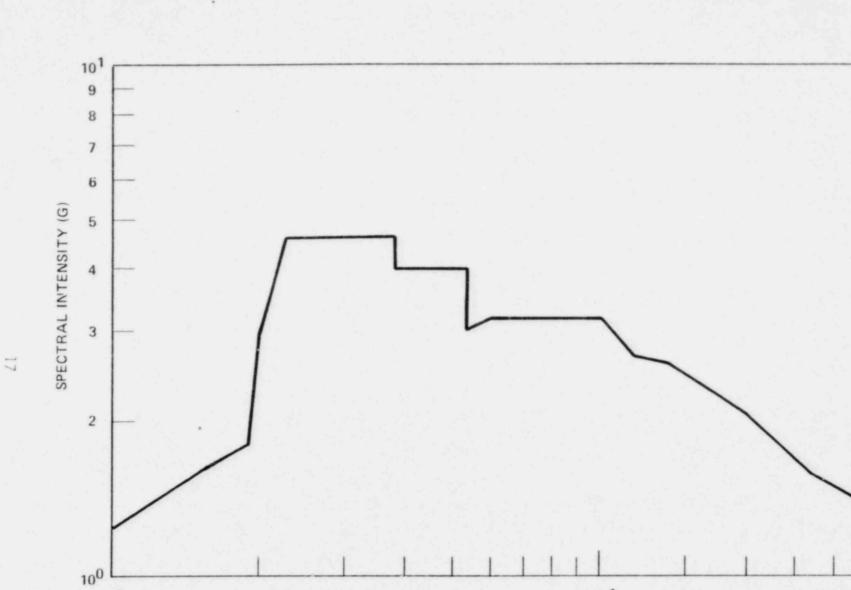
2.10.4 Conclusion

The qualified 1 fe of the canned pump motor is defined in Section 1.9. The results of aging and seismic testing, and seismic analysis combined with an assessment of components with known characteristics, ensure that the motor will meet the qualification criteria recommended by Reg. Guides 1.89 and 1.100.

2.11 Section 2 Notes

 The successfully completed motorette, motor lead connectors, Nomex insulated leads and Vespel and Kalrez seal seismic tests employ parameters designed to envelope a number of plant applications. Margin is a plant specific parameter and will be established by the applicant.

2.12 References


- Marinkovich, Philip S., "Equipment Qualification Test Report for the Chempump Canned Pump Motor," WCAP-8687 Supplement 2-A03A (Proprietary).
- Draughon, C. G., Anderson, A. A., "Lubricants and Bearings Report for Medium, Large and Chempump Motors," Letter NS-I&CSL-82146 (Proprietary) in progress.

SECTION 3 - QUALIFICATION BY EXPERIENCE

Westinghouse does not employ operating experience in support of the qualification program for the Chempump canned motors with the exception of gaskets and inservice vibration.

SECTION 4 - QUALIFICATION BY ANALYSIS

4.1 Analysis is employed to qualify the motor for operation during and after the seismic event. A static seismic analysis is applicable since the canned motor has no natural frequencies below 33 Hz. The analysis considers the effect of pressure loads, operating loads, attached piping loads, and seismic loads on the pump assembly. The natural frequency of the rotor and pump assembly is calculated. Deflection is calculated for the impeller and rotor. Stress in the mounting bolts, cradle bolts, bearing loads and loads in the cradle spot welds are calculated. A plant specific seismic analysis is completed for each application and maintained by Westinghouse.

7 8 9 10¹

Figure 1. Chempump Motor Required Response Spectrum - SSE

FREQUENCY (Hz)

. 8

10⁰

TABLE 1

ACTUAL QUALIFICATION TEST CONDITIONS

													QUAL
EQUIPMENT (1)	LOCATION	MANUFACTURER	ABNORMAL / ACC IDEN	T ENVIRONMENTAL	EXTREMES	OPERABI	LITY	ACCURA	CY(I)	QUAL	QUAL	QUAL	PROGRAM
SYSTEM/CATEGORY	STRUCTURAL/ARE A	TYPE/MODEL	PARAME TER	SPECIFIED (2)	QUALIFIED (3)	REQ	DEM	REQ	DEM	LIFE	ME THOD	REF	STATUS
Boric acid	Safeguards	Chem.	Temperature		40°C	6 hrs.6	hrs.	N/A	N/A	40	Seq.	AE - 3	Completed
transfer	building	Pump	Pressure		Atmos.	Per	Per			yrs.	Test		
pump motor/			Rel. humidity		95	Day	Day						
CVCS/			Radiation		$4 \times 10^2 R(\gamma)$								
Category d			Chemistry		None								

NOTES

1. For definition of the category letters, refer to NUREG 0588 "Interim Staff Position on Environmental Qualification of Safety-Related Electrical Equipment," Appendix E, Section 2.

2. Plant specific environmental parameters are to be inserted by the applicant.

3. The values listed represent the design conditions plus margin. For completed programs, the values listed were met in the test. Any variations from the values listed were in a conservative direction or were not considered significant.