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ABSTRACT

This document explains how to construct a sabotage graph which models
any fixed-site facility and how to use the subroutine SPTH3 to find
ghortest paths in the graph. The shortest sabotage paths represent
physical routes through the site which would allow an adversary to take
advantage of the greatest weaknesses in the system of barriers and alarms.
The subroutine SPTH3 is a tool with which safeguards designers and analysts
can study the relative effects of design changes on the adversary routing
problem. In addition to showing how to use SPTH3, this report discusses
the methods used to find shortest paths and gseveral implementatic: details
which cause SPTH3 to be extremely efficient.
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1. Introduction

This report documents the latest code for finding shortest paths in
the sabotage graphs described in [4]. A eabotage graph is & network
which models a fixed-site facility. Shortests paths in the graph represent
physical routes along which a saboteur could minimize time, or detection
probability, or some other qu‘ntity reflected in the graph weights.
Currently path length in SPTH3 is the ordinary sum of the node and arc
weights in the path, so that either delay times (for barrier penetration
at nodes and travel along arcs) or else distances could be used as weights.
So far shortest-time paths have been of principal interest. A trivial
modification to SPTH3 would allow it to accept detection probability
weights and produce sabotage paths which minimize curulative detection
probability. In the remainder of the report we shall think of the graph
weights as times.

SPTH3 addresses the problem of a simultaneous attack by several teams
each having a single target. This provides a lower bound for the path
length of a single team with several targets to attack sequentially, and
it also addresses a very real possibility which would place great stress
upon the safeguards system. For further details motivating this model
and considering the length-independence of different shortest-time paths,
see [L].

It must be understood that the graph model and the pathfinding
techniques do not take into account battles between adversaries and
defenders. Such encounters reguire stochastic models. The sabotage
graphs used for pathfinding have constant weights which give representative
(perhaps minimum or average) values of delay times. Since the delay times

are in reality random variables, the graph-theoretic method of this



report should be viewed as a deterministic approach to finding sabotage
routes which exploit any weaknesses in the barrier and alarm systems.
Such paths require further evaluation either by simulation methods such
as FESEM [2] to assess the paths' effects upon guard encounters or else
by probabilistic methods such as EASI [1] to predict the 1ikelihood of
sabotage interruption. Both of these path evaluators require a path to
pbe given. Thus, SPTH3 may be used to derive input for FESEM or EASI or
else simply to indicate relative vulnerabilities in the barrier and alarm
systems.

This document explains both what SPTH3 does and how to use it. Those
readers interested only in how to use it may igncre gSection 6. The
shortest path algorithm embedded {n SPTH3 is that of Dijkstra (3] as
modified by Yen [6,5]). This algorithm is the best available., However,
its use in SPTH3 differs somewhat from the description given in [h].

Rather than gearching outward to the boundary from each target as described
in (4], SPTH3 searches jnvard from the boundary to all nodes. A substantial
reduction in storage requirements and tenfold reductions in run time have

resulted from this and other improvements to the pathfinding code.

2. Description of SPTH3

SPTH3 finds ghortest paths in a special graph called a sabotage
graph. This graph models a fixed-site facility to rome level of detail
thought to be appropriate for the user's purpose. The details for
constructing the graph are given in the next section. In brief, the nodes
are important locations in the plant (say, perimeter gates, building doors,
windows, vents, stairwells, storage vaults, and vital equipment locations),

and the arcs are physical paths from one location to another.



There are three types of nodes: (i) boundary nodes located at

possible perimeter penetration points, (11) barrier nodes located on

internal barriers at possible penetration points, and (1ii) target nodes*

at vital equipment or material locations. The simultaneous sabotage
problem is to find all the shortest paths from the set of boundary nodes
to each target., Given the graph (as a list of arcs) and the arc and node
weights, SPTH3 uses the Dijkstra-Yen algorithm described in Section 6.5

to search from the boundary nodes of the graph until the lengths of the
gshortest paths to all the other nodes are known. During the search SPTH3
keeps a list of the immediate predecessor(s) of each node along a shortest
path from the boundary. This allows all shortest paths to each target to
be retraced and stored without further arithmetic following the Dijkstra-
Yen search.

The output from SPTH3 is simply a list of the directed arcs which
belong to the shortest paths directed from the boundary to all the targets,
together with a list of the number and length of the shortest paths to
each target, It is possible to have more than one shortest path to any
node, and this number can be obtained easily by a simple procedure

explained in Section 6.7.

3. The Sabotage Graph

The first and most important part of the use of SPTH3 is the
construction and weighting of the sabotage graph. This involves three

steps:

(1) partitioning the drawings of the plant into regions,

#Formerly called hardware nodes.




(2) specifying the nodes and arcs of the graph model,

(3) weighting the nodes and arcs with times (or detection
probabilities) derived from test data or analyst judgement.

3.1 The Regions

The boundary and the important internal barriers (fences, walls,
floors, stairwells, etc.) naturally partition a map of the site into
regions Rr, r=1,2,... «» Areglon {s a very general area within which
gaboteurs may travel unimpeded by barriers. Some regions may appear on
the drawing as disjoint domains, e.g., & stairwell or elevator region may
appear as the union of the areas in which it intersects each floor of a
building. However, if there are no significant delays to entering the
stairwell, then the floors and the connecting stairwell may be treated as
one region. The region structure is simply an aid to constructing the

nodes and arcs which constitute the sabotage graph.

3,2. The Graph G

Next, the analyst must carefully place nodes at all the important
locations. Since the model is discrete there is some arbitrariness in
the node selection process, and an analyst may want to try various graphs
differing in the number and location of the nodes. The node set should
include representative penetration points along the boundary and along
the barriers between regions as well as all targets of interest inside
the regions.

Once the regions and the nodes are specified, the arcs are determined
by a fixed rule which gives sabotage graphs their special structure.

Every pair of nodes in region Rr is connected by an arc, forming &



An interface between two regions mey contain more than one barrier
node, and this requires special attention from the analyst. Two reasons

for using such multiple barrier nodes are to model barriers that (a) have

varying hardness, or (b) have such physical extent that the arc lengths

are significantly affected by the node locations. An arc joining node ito
node j is denoted by the unordered integer pair (1,3) or (J,1). Multiple
tarrier nodes on a single barrier cause an arc in one region to have the
game name, or node pair, as some arc in the adjacent region (Figure la).

In order that each arc have a unigue node pair as its endpoints, the
analyst must split each of the multiple barrier nodes into two barrier
nodes connected by an arc (Figure 1b). Our decision to list the arcs of

G region by region for purposes of computer input requires that each arc
belong to a single region. Consequently each arc introduced by splitting

multiple barrier nodes must belong to its own specially created region.

(1 )—2—(
---r---
|
|
_—’%---
o D
--ﬂ—---
Figure la. Figure 1b,
Multiple barrier nodes. Splitting of multiple barrier nodes.

The regions created by splitting multiple barrier nodes are numbered

also, giving a total of ’R regions Rr’ each having a complete subgraph Gr'



The union of all these subgraphs is the sabotage graph*

Ny

G= U G_,
r=1 ¥

whose nodes are then numbered as follows:

target nodes, 1 to nys
barrier nodes, oy + 1 to n,

bovndary nodes, ny + 0, +1 ¢t

An example is shown in Figure 2,

+ nz,

3.“‘

© n,+n,+n
1

2

where squares are used for boundary nodes,

¢ reles for barrier nodes, and shaded circles for targets. Three nodes
on the barrier Rl n R2 have been split.
' |
| =7
: at :
| |R' | | | |
| LLy)d ‘
10 | 9
retdininy ' Gt
6 3 5 8
i J e il
T "

Figure 2.
A Sabotage Grap

#his graph differs slightly from the grap
boundary and target-target arcs were omit

h

h of [4] in which boundary-
ted.
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Notice that every barrier and boundary node belongs to exactly two
regions (counting the infinite off-site region), and every target node
belongs to only one region. Also, due to the completeness of the subgraphc,
the paths of G represent all the physically meaningful ways for saboteurs

to proceed using only the given penetration points and targets.

3.3. The Weights

Both the nodes and the arcs of G are assigned constant, nonnegative

weights. The node weights v, 20,1 <1 < N, are penetration and target

destruction times, while the arc weights a 20, (1,J) ¢ G, are

1, %3,1
transit times. Realizing that these constants are simply representative
values of random variables that depend on the physical characteristics of
the barriers and the amount and type of eguipment postulated for the
attacking force, the analyst must decide whether to be conservative and
use minimum values reflecting best possible adversary performance or else
use intermediate or ave-age values.

When the arc weights are minimum values, they will autoratically

satisfy a regional triangle inequality. That is, if arcs (i,J), (3,k) and

(k,i) belong to G, and their weights represent minimal transit times, then

it must be true that*

(1) 8 k

Since saboteurs may travel at different rates in different regions, this
inequality need not hold for triangles whose arcs lie in different regions.
SPTH3 tests all the triesngle inecualities (1) for each region simply as a
check on date consistency for the user's benefit. The pathfinding
algorithm will perform perfectly well, of course, whether or not the

triangle inequalities hold, so that this data check can be deleted from



SmB.
The weighting of the nodes and arcs which result from the splitting

of multiple barrier nodes may be done in many ways as long as the weights
of the two new nodes and their connecting arc sum to the barrier penetration

time.

A weighting of the graph from Figure 2 is given in Figure 3.

[
o

l

Figure 3.

A Weighted Sabotage Graph

SPTH3 does not accept dire.ted nodes and arcs, i.e., nodes and arcs
whose weights depend on the direction of travel, Of course, directed nodes
and arcs could have been allowed, because Dijkstra's algorithm works
equally well for directed graphs (digraphs) as for undirected graphs.

However, we have deliverately omitted directedness from the sabotage

10



graphs because, in the applications for which SPTH? is intended, arc
lengths are essentially the same in both directions and the doors locked
on only one side are normally locked on the side first encountered by

the saboteur,

L, How to Use SPTH3

L.1., The Call List

The call list for subroutine SPTH3 is
SPTH3(N1,N2,N3,NA,W,MR,II,JJ,AWT ,MAXE  IEDGE ,NE,NEP,XMINL).

The dummy arguments have the following meaninge:
N1l - the number of target nodes,
N2 - the number of barrier nodes,
N3 - the rumter of boundary aodes,
NA - the number of arcs,
W(:) = the node weight vector, di:zensioned N=N1+N2+N3,
(the next four vectors, dimensioned NA, give the arcs as quadruples

consisting of a region, two nodes, and an arc *eight)

MR(:) = the region index vector,
II(+) - a node index vector,
JJ(+) = a node index vector,
AWT(+) = the arc weight vector,

MAXE - the maximum number of edges (arces) in the digraph S of
shortest paths directed from the boundary to all target
nodes,

the edges in the digraph S, each edge being given by three
indices -- the region and two ordered nodes, dimensioned

(3,MAXE),

Img(”')

NE - the number of edges in digraph S,

NSP(*) the number of shortest paths to each target, dimensioned N1,

-



to each target, dimensioned

YMINL(+) - the length of the shortest paths

4,2, Input
To use SPTH3, first

Next, in the program which cal
and the vectors NSP and XMINL by Nl.

construct a weighted sabotage graph as indicated

{n Section 3. 1s SPTH3, dimension W by N,

the vectors MR, II, JJ and AWT by NA,

Set MAXE to some guess at the maximum number of edges S will have, and

Then store the node weights in W and the

dimension IEDGE by (3,MAXE).

JJ and AWT. The node weights are given in the obvious

arc data in MR, II,

Although there is no obvious order

order: W(I) for node I, 1sIsN

in which to give the arc data, a Very special ordering of the arcs is

required.

The arcs are given by the quadruples

MR(K), II(X), JJ(K), AWT(K), 1 = K< NA.

secutively, and the regions may

All the arcs of one region are listed con

be given in any order. For example, in a three region problem, the arcs
of region two could be listed first, followed by the arcs of regions

The arcs of each region, however, must be listed as if
jctly upper triangular part of

region are

three and on’.

they were taken Tow by row from the str

some node adjacency matrix. For example, if the nodes of one

{16,9,21,h,71, then an acceptable arc ordering based on the given node
ordering 1s (16,3), (16,21), (16,4), (16,7), (9,21), (9,4), (9,7), (21,4),

(21,7), (&,7). Notice that the arc ordering for a region may be based

on any ordering of the region's nodes. But once a node ordering is

st be given by pairing the first node

chosen for the region, the arcs mu
cond node with each

with each other node in order, then pairing the se




following node in order, and similarly for the third node, etc,

The reason for this requirement is that it produces tremendous savings
in storage. The special arc ordering allows SPTH3 to quickly compute the
address of any arc weight and, thereby, completely eliminates the need for
the usual N x N direct distance matrix. For graphs with several hundred

nodes this is very important.

L.3, Work Arrays

SPTH3 has several work arrays whose dimensions must be set by the
user before running the job. The meanings of these arrays are explained
in the program comments and in Section 6. In order to use SPTH3 it is
sufficient for the user to set the following dimensions:

XLABEL, NPATH,IPERM, ITEMP,NEXT - N,

NODE = (N,L),
IREG ~ (NR,2), where NR = the number of regions,

NPOOL - 4O, an arbitrary setting for an unpredictable total number of
extra predecessors for nodes which have more than one predecessor
along shortest paths. SPTH3 prints a message when this dimension
needs to be increased., In this case, tne results should be

considered incomplete, and the problem should be rerun with a
larger dimension for NPOOL.

L,L, Output

The output consists of

MAXE , IEDGE ,NE,NSP and XMINL ,

wvhose meanings are given above,

MAXE and NE serve as flags and must be tested upon return from SPTH2
to see if a normal execution took place. If MAXE = 0 upon return, there
was a failure of the triangle inequality on the arc weights of some

regicn, a message was printed, and the pathfinding algerithm was not

13



executed. The user should correct the arc data indicated by the message
and try again. Also, it is possible to return with NE = O, This means
that pathfinding was aborted because some node could not be reached from
the boundary. The user must check the arc 1ist to be sure that all the
arcs are present in each region.

It should be noted that the weight vectors W and AWT are changed by

SPTH3 in the following way:

w(r) - w(r)/e., m+1sIsN +N,

AT (K) ~ AWT(K) + W(1I(K)) + W[ (K)) , 1sKsNA.

If necessary, the user may restore W and AWT to their input values by
first subtracting W(II(K)) + w(37(k)) from AWT(X), for 1 s K < NA, and
then doubling each barrier node weight. This change of W and AWT is also
related to the above mentioned storage economy because it allows the

input vector AWT to be used for the direct distance storage in lieu of the

standard N x N matrix normally used in Dijkstra's algorithm,

5. Examples

5.1. A Sample Problem

Let us take the weighted graph of Figure 3 as an example. In
Figure L this graph is ghown with the digraph S of shortest sabotage paths

superimposed in dark lines.

The input consists of
NlL=2, N2=6, N3=2, NA=23,

W= (Ba,4.,5.,5.550,5.55.,5.,16.,20.} ,



JJ

II

10
1

VOOV FODONRAAAANNNNNMMOT Mg N
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Figure L,
The Digraph S of Shortest Sabotage Paths Superimpose

A
.

on a Weighted Sabotage Graph
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The output is

Target  NSP  )MINL

n -
n

T1.
IEDGE (NE = 9)

Regicn Node Node

HEESEDWMEHEWDR
H

VO Fuwodhww

NN EFWVM oW -

Since the digraph S is given compietely by IEDGE, S is easily drawn by
simply darkening the edges indicated by the ordered node pairs in IEDGE.
NSP and XMINL show that there are two shortest paths to each target, those

to node 1 having length 73. and those to node 2 having length T1l.

5.2. Run Time and Array Storage Results

SPTH3 is extremely fast. The 1_Jkstra-Yen algorithm used for
pathfinding has a worst-case run time on the order of O(NZ) for an N-node
graph. Although SPTH3 also checks all the triangle inequalities in each
region, does the bookkeeping for multiple predecessors, and retraces and
counts the number of shortest paths to each target, it uses almost a
negligible amount of run time. As shown in Table I a realistic sized
problem of 310 nodes and 1191 arcs requires only about a second and a half
of CDC 6600 run time, Consequently, we feel that execution time for
shortest path problems ghould be of very little concemrmn to most users.

SPTH3 is also very storage efficient. As mentioned in Section L.k,

the N x N matrix of direct distances normally used in Dijkstra's algorithm



has been eliminated in favor of a storage scheme which overwrites the

input vector AWT with direct distances between node centers. Thus, the

array storage, which dominates SPTH3' storage requirements for larger

problems, is linear in the number of nodes, a-cs, regions, etc. 1In

particular SPTH3's arrays need
1ON + LNA + 2NR + 2N1 + 3NE + %0

storege locations, where LO is an unpredictable dinension that proved
adequate for our set of test problems. Table I also gives the array
gstorage requirements for the larger probles in the test set.

The sample problem in Figure 4 is Problem 3 below.

Table I

CDC 6600 Run Time and Array Storage Results

Problem | N1-N2-N3 Noges Arnis RegNiRons Edge!sm in § s::::ze (l:uencoTni:se)
1 l1-5-1 7 i3 L 3 - 0.00k
2 5-«1-2 8 16 2 6 - 0.00k
3 2-6-2 10 23 5 9 - 0.005
L L-B-2 14 34 6 12 - 0.007
5 1-8-8 17 32 8 1 - 0.003
(3 1.10 -8 19 Lo 8 1 L1l 0.003
7 1-31-14 L6 112 20 2 3% 0.0kl
8 20-58-4 82 514 35 L3 3155 0.167
Rl 30-120-5] 155 656 82 81 L681 0.L46é

10 10-296-4| 310 | 1191 | 192 36 8u22 1.563




6.

Some Details of Implementation

6.1. A Flow Chart

Figure 5.

A Flow Chart of SPTH3

SPTH3

Any
triangle Yes
ipequality
failures
1

No

Store direct

distance DII(K),JJ(K)
between node

centers in AWT(X)

1 £ K s NA.

'

Set arrays
NODE, IRG

80 that DI,J may

be addressed in AWT.

1

Perform a
Dijkstra-Yen

search from the

boundary to all

—7

Retrace S, all
shortest paths to
targets, storing
arcs in 1EDGE.

.

Court number of

shortest paths to
each node I in S.
Store in NPATH(I).

'

Set
NSP(I)=NPATH(I)
XMINL(1)=

XLABEL(I)
l1siIsK

-

Return




6.2, The Triangle Inequality Tests

Finding the triangles of each region is very easy given the completeness
of the sutgrapn and the special ordering of the arcs. For example, consider

the arcs of region R, in the graph of Figure 4,

3.
ho
%o
3L,
2.
3k.
32.
33.
30.
3.

FwWwR PR |
wu Ew Fww Ewn |8

All the triangles containing arc (1,2) are found by taking each arc (1,7)
listed below (1,2) together with each arc (2,2). In this case, the
triangles are (1,2,3), (1,2,4) and (1,2,5). Next, all the triangles
containing arc (1,3) are obtained by taking each arc (1,2) listed below
(1,3) together with each arc (3,24). This yields triangles (1,3,4) and
(1,3,5). Finally, triangle (1,4,5) is obtained in a similar way.

Of course, each triangle (i,j,k) has three corresponding inequalities

which are tested separately

85,9 %,k " %k,

& x %, M

< a +a

dk 34 ik *

As mentioned earlier, this portion of SPTH3 could be delet: . without

affecting the pathfinding procedure.
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6.3. Computing Direct Distances

Dijkstra's algorithm {g defined in terms of a direct distance matrix
D, whose elements

direct distance from i to J , (1,3) e G,

(2) di,J’ 0, 1'3’

@ , otherwise.

The algorithm applies to any digraph having weights only on the arcs, since
the nodes are thought of as points. A sabotage graph has node weights wy
which SPTH3 combines with the arc weights ‘1,3 in forming the distances
di,J between node centers. The procedure is to halve the barrier node

weights (since these are the intermediate nodes on paths from the boundary

to the targets) and then to add each arc weight to its endpoint weights, i.e,

(3) w, = v1/2. y Byt 1sisn +n,,

(&) d = a W, +W (i,3) e G .

i,J s 1 3°

§.4. Storing and Accessing Direct Distances
SPTH3 avoids creating the N x N matrix D by storing the positive,

finite, D values in the input arc weight vector AWT when (L) is computed, 1.¢

I=1II(K), J=JJ(K)
(5)
AWT(K) = AWT(K) + W(I) +W(J) , 1sKs= NA .

This saves a great deal of storage for large N because the number of arcs
in G is always small with respect to N (see Table I).

The penalty we pay for this storage efficiency is in the cost of
finding any particular dI,J in AWT. That is, when Dijkstra's algorithm

needs dI R SPTH3 must find a value K such that
»



(6) MT(K) = & o,

instead of just referencing D(I,J). Fortunately, the completeness of the
subgraphs and the special ordering of arcs in each subgraph allows K tc be

computed very gquickly given I and J (see the run times in Table I).

To facilitate this index computation, two integer arrays are constructed

prior to the Dijkstra-Yen search. NODE(I,+) contains the two regions and
two local node numbers for node I, The local ncde number in each region
is determined by the node ordering used to order the arcs of the region.

For the sample problem in Section 5.1,
NODE(7)') - {l,?,h,e} ’

meaning that node '/ is the second node of region 1 and the second node of
region 4, Since only the finite, internal regions are numbered, boundary
nodes have only one region number and one local node number. Similarly

for target nodes which belong to only one region.

IREG (R, ) contains the first word address minus one in AWT of the arcs

of region R followed by the pumber of nodes in R. Thus, when SPTH3 needs
dI’J(I#J), it does the following:

(a) compares region numbers for I and J to see if arc (1,J7) belongs
te G,

(b) if (I,J) £ G, no address computation is needed since dI g*®,
s

(¢) if (1,J) ¢ Ggs then the first word address minus one of the arcs

of region R, the number of nodes in region R, the local number
of node I in R, LI, and the local number of node J in R, &J, are

combined to yield

& IREG(R,1) + (LI-l)IRm(R,Z) - LI(LI+1)/2 +45 LI 1y,
IREG(R,1) + (LJ-I)IRm(R,Z) - LJ(LJ+1)/2 +4;, 25< i .

K satisfies (6).

2l



6.5. The Dijkstra-Yen Search

The Dijkstra-Yen search finds the length of the shortest paths from

the boundary to every node I in G and stores the value in XMINL(I),

1 €I sN. During the search the (immediate) predecessor of node J along

a shortest path is stored in NEXT(J), 1 s J s N. When some node has more
than one such predecessor, the extras are stored in a vector NPOOL. A

link (an index for NPOOL) is stored in the upper portion of the word NEXT(J)
to indicate where the second predecessor of J is stored. This second
predecessor, NPOOL(LINK), is linked to another entry in NPOOL if there is

a third predecessor of J, etc.* These data allow the efficient retracing
of all (not just one) shortest paths to each target, as explained in the
next section.

In Dijkstra's algorithm [37] each node has a label which eventually
becomes the length of the shortest paths from the boundary to the node.
These labels are temporary as long as they represent only the shortest
path lengths currently found by the search, and they become permanent labels
as soon as they are known to be the absolutely shortest lengths.

SPTH3 initially sets all boundary node labels to zero and all other
labels to » (a large machine number). The boundary node label XLABEL(N)
is made permanent first by setting IPERM(1)=N. All the other labels are
temporary. From the last permanently labeled node I, all the temporary

labels XLABEL(J) are examined and reduced if

XLABEL(J) > XLABEL(I) + d; ; »

where dI 7 must be found in AWT as described in the previous section. Each
’

#We are indebted to Louann Grady, 574l, for giving us this idea for linking
together multiple predecessors.



time XLABEL(J) is reduced, the predecessor I is stored in NEXT(J). If

XLABEL(J) = XLABEL(I) + 1I,J .

(to machine precision), then I is an extra predecessor of J which must be
stored in the next available entry of NPOOL, and for which an additional
1ink mast be created at the end of the chain beginning with the link in the
upper portion of NEXT(J). After all the temporary nodes have been examined
from 7, the on. with the least temporary label is ' ade permanent by placing
it in IPERM. This is correct because the nonnegativity of the dI,J impiies
that tnis label cannot be reduced further. In the case of a tie, it does
not matter which of the nodes is permanently labeled next. I is sct to
this new permanent node number and the process is repeated until all the
nodes are permanently labeled. Notice that IPERM has become a list of the
pnodes of G in order of nondecreasing distance from the boundary, and the
shortest sabotage path lengths are XLABEL(J), 1 s J s Nl.

Yen's contribution [6] to this search procedure is one of improved
implementation. Rather than letting J range from 1 to N at each stage and
asking if each J is temporary, Yen suggests the following coding device.
Initialize ITEMP(I) = I, 1 s I s N, and K= N - 1. The temporary nodes,
thén, are the first K entries of IT2.>. While trying to reduce each
temporary node label, keep track of the minimizing temporary node IP as
well as its position IQ in ITEMP. Then, when IP is stored in IPERM, set
1TEMP(IQ) = ITEMP(K). This has the double effect of removing IP from
ITEMP and leaving the new set of temporary nodes in the first K entries
of ITEMP. Yen's modification saves SPTH3 about 25% in run time.

If, because of omissions in arc data, some node is isolated from the

boundary, its infinite label will eventually become the least temporary
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label at some stage. When this happens, NE is set to zero and SPTH3 returns

to the user, who must supply the missing data before trying again.

6.6. Retracing the Shortest Paths

Given the predecessors NEXT(+) and possibly some predecessors in
NPOOL(*), SPT'3 can retrace the digraph S of all the shortest pa*hs from
the boundary to the targets., No label-arithmetic is needed. As each
directed arc of S is obtained, it is stored as an ordered pair of integers
in IEDGE(2,+) and IEDGE(3,*), and the arc's region number is stored in
1EDGE(1l,*). The retrace proceeds as follows.

Initialize NE = O, Find the last target node in IPERM, i.e., the one
furthest from the boundary, and set J to this node number, Let I = NEXT(J),
the predecessor of J, assuming J has only one. Add one to NE, and if NE
does not exceed MAXE, store arc (1,J) and its region number in 1EDGE(*,NE).
Now record the fact that a shortest sabotage path passes through I by
negating ITEMP(I) if it is positive. If J has another predecessor, it is
NPOOL(LINK), where LINK is packed in the upper portion of NEXT(J). In this
case, set I = NPOOL(LINK), repeat the above arc-storage process and continue
until all the predecessors of J contribute arcs to 1EDGE. (Notice that all
the arcs of S leading into J are listed consecutively in IEDGE.) Set J
to the node in IPERM just before the one last used to set J, i.e., let J
range over the nodes in the order opposite that in which they were made
permanent, If J is & target node or a barrier node with negative ITEMP(J),
then repeat the above procedure for this new J. If J is a boundary node
or & barrier node that does not belong to a shortest sabotage path, then
skip it, continuing until J = IPERM(1) has been treated.

Thus, IEDGE contains all the arcs in the digraph S of all shortest

sabotage paths, Moreover, the second nodes of these arcs occur in the



order of nonincreasing distance from the boundary.

6.7. Counting the Shortest Pathe

The fact that the second nodegs in IEDGE have nonincreasing distance

from the boundary allows the shortest paths to be counted quickly as follows.

Set

‘1 , boundary node,
NPATH(I) =
lO , barrier or target node.

Then for each arc K in 1EDGE, taken from bottom to top, i.e., from the

boundary to the last target, set

I = IEDGE(2,K)
J = IEDGE(3,K)
NPATH(J) = NPATH(J) + NPATH(I), K= BBy osond »

The final value of NPATH(J) is just the sum of NPATH(I) over all the nodes
I in S which have an arc leading to J. Notice that each such node I will
have its final NPATH value computed before NPATH(I) is added to NPATH(J)
because of the ordering of the arcs in IEDGE. Hence, NPATH(J), is the
number of shortest paths from the boundary to each node J in S, in

particular to J = 1,2,00098
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7. Listing of SPTH3

SURROUTINE S?TH3‘NI.N2.N3QNA.N0MRolloJJoAHTQMA!EolEDGEoNEoNSPo
1 XMINL)
DIMENSION W(liO"R‘l'Oll(l)oJJ(l)OANT(I)olEDGE(301)0NSP(I,QXMINL(1)
COMMON XLA“EL(155)0N9ATH(ISS)OIPERM(I55)O!TEM9(155)0NODE|155o6)0
1 IRFG(HZ.?)oN‘XT(lSS)oNPOOL(b“!
& I MUL TANEOUIS SAROTAGF PRORLEM=-=-0ONE TEAM PER HARNDWARE NODE. USES
DIJKSTRA—TVPE ¢AROTAGE ALGOR]THM--UND[RECTED NODESs TIME WEIGHTSe
SAVFS GHORTEST PATHS FROM OFF-<ITE T0 EACH HARDWARE NODE «
SPTH3 SEARCHES INWARD AND USES NO NISTANCE MATRIXe
IMPUT,
N1 NO. OF HARDWARE NODESe
N2 MO, OF RARRIER NODESe
N3 NO. OF BOUNDARY NONESe
NA NOe. OF ARCSe
W NODE WEIGHT VECTOR» DIMENS IONED N=N1+N2+N3.
wis CHANGED S
ARC DATA-=FOUR NA VECTORSe ARCS MUST RE LISTED REGION BY REGION.
FURTHERMORE » WITHIN EACH REGION HAVING P NODES THERE MUST
RE P#(P-11/2 ARCS LISTED ROw BY ROW IN STRICTLY UPPER
TRIANGULAR FOR™, THAT 1Se (11e12)0 (11913)s eeep 11191P) s
(720‘3,! cean? (IZOIP,! (lavl“)' DR (I3vlp" see?
(1PM1,41P) .
MR REGINN INDEX VECTOR
11 NONE INDEX VECTOR,
JJ NODE INDEX VECTOR.
AWT ARC WEIGHT VECTORe AWT IS CHANGFDe
MAXFE MAXIMUM NOe. EDGES (ARCS) IN THE DIGRAPH § OF SHORTEST PATHS
FROM NFF=SITE TO ALL HARDWARE NODESe
THIS VALUE IS THE SECOND DIMENSION OF 1EDGE «
OUTPUT,.
1EDGE EDGES IN THF DIGRAPH S» THE UNION OF ALL SHORTEST PATHS
DIRFCTED FROM THE ROUNDARY TO ALL HARDWARE NODESe 1EDGE wILL
HOLD MAXE EDGES» EACH BEING GIVEN BY 3 INDICES == THE REGION»
AND TwO ORDERED NODESe THE EDGES ARE LISTED IN 1EDGE SO
THAT THE SECOND NODES HAVE A DECREASING DISTANCE FROM
OFF“SlTEo
NE NO. EDGES IN NIGRAPH Se
NSP  NOe. CSHORTFST PATHS TO He H=192seeesNle
XMINL LENGTH OF SHORTEST PATHS TO H» H=1929eeesNle
THE DIMENSION OF NsP AND XxMINL MUsT Bt AT LEAST AS LARGE AS N1
MAXF IF MAXE=0 UPON EXITo THERE WAS A FAILURE OF THE TRIANGLE
INEQUALITY ON THE ARC WEIGHTS OF A REGIONs AND THE
ALGORITHM wAS NOT FXECUTED.
WORY ARRAYS
FOUR VECTORS DIMENSIONED N=N1+N2+N3.
XLAREL TEMPORARY AND PERMANENT DISTANCE LABELSe THESE LABELS
REPRESENT THE LENGTH OF THE CURRENTLY SHORTEST
PATHS FROM OFF=SITE TO EACH NODE »
NPATH NUMBER OF SHORTEST PATHS FROM OFF=-SITE TO EACH NODE OF Se
IPFRM  NODES WHERE DISTANCF LARELS HAVE REEN MADE PERMANENT «
[TEMP  NODES WHERFE DISTANCE LARELS ARE STILL TEMPORARY .
NODF RFGION AND LOCAL NODE NIIMBERS FOR EACH NODE «
DIMENSION (Nsb)e
NOPNE(1s1) e NODE(1+3) ARF RFGION NUMBFRS FOR NODE 1.
NORE (142)s NODE(1s4) ARF CORRESPONDING LOCAL NODE NUMRERS.
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C

15

20

25
30

IREG REGION DATA CONCERNING ARCS. DIMENSIONED (NOs REGIONSy 2)e
IREG(Ry1) 16 THE FIRST WORD ADDRESS MINUS ONE IN - {E ARC

LIST OF THE ARCS OF REGION R.
IREG(Ry2) 1S THE NUMBER OF NODES IN REGION Ry IMPLYING
THERE ARE IREG(R2)*(IREGIRs2)=1)/2 ARCS IN REGION R.

NEXT PREDECESSOR OF EACH NODE J ALONG A CURRENTLY SHORTEST PATH
FROM OFF-SITE TO Jes DIMENSTONED N

NPOOL A LINKED LIST IN WHICH ADDITIONAL PREDECFSSORS MaY RE

STORED WHEN NODE J HAS MORE THAN ONE. THE LINK FROM
NEXT(J) TO NPOOL(LINK) 1S STORED IN THE LEFT 51 BITS OF
NEXT(J)e SIMILARLYs IF THERE 1S A THIRD PREDECESSOR OF

Js THEN LINK1 FROM NPOOL (LINK) TO NPOOL(LINK1) IS STORED
IN THE LEFT 51 BITS OF NPOOL(LINK)s ETCe DIMENSIONED 40

IF THE DIMENSION OF NPOOL 1S CHANGED» THEN THE FOURTH
STATEMENT NPLDP=4]1 MUST BE CHANGEDe NPLDP 1S THE NPOOL
DIMENSION PLUS ONE. IF THE DIMENSION N 1S INCREASED 7O
MORE THAN 511 NODESs THEN THE FIRST THREE STATEMENTS MUST
BE CHANGED TO ALLOW MORE THAN 9 BITS IN THE RIGHT OF
FACH MASK.

DATA EPSsRIG / 1.0F=-13+1.0E321 /

LTEST=10008

LOW=TT77R

!M!GH-777777777777777770008

NPLNP=4]

MAXFP=MAXF 41

OMEPS=]1."-EPS

OPEPS=],N+EPS

N12=N1+N2?

N=N12+N3

NM]1=N-1

N1P=N1+1

N12P=N12+1

CHECK EACH REGION FOR TRIANGLE INFQUALITY ON ARC WEIGHTS

ICT=0

12EG=]

IREGP=IRFG+]

IF(MR(I1REG) (NF, MRIIREGP)) GO T0 52
LIKE=II(IBEG)

DO 10 I=1BEGPyNA

IF(I1(1) oNEe LIKE) GO TO 15

CONTINUE

GO TO 52

NM=1=1REG

IF(NM +LF. 1) GO TO 52

12=1REG+NM

{END=12-2

NMT=NM=-1

DO 5N 11=1REGIEND

AWTOM=AWT ( 11)*#OMEPS

13=]1+1

DO 4% J=)+NMT

IF(AWTI12)+AWT(13) +GEs AWTOM) GO 10 35
FORMAT(#* TRIANGLE#313# FAILS. ARC WEIGHTS--#3E15.5)
PRINT 250!!(!1)0JJ(ll)oJJ(l3)oANT(ll’oAHT(lZ)chT(l3)

1CT=1

27



GO TO 40
2%  JF(AWTI(T1)+AWTI(12) LT AWT(13)#0OMEPS) GO TO 30
IF(AWTITI1)+AWT(I3) oLT. AWT(12)#OMEPS) GO TO 30
4n 12=12+1
45 13=13+1
50 NMT =NMT =]
NM=NM=]
1REG=FNN+2
IFINM ,GFs 2) GO TO 20
52 IREG=RFG+]
IF(IREG +LTe NA) GO TO S
260 IF(ICT «FQes 0) GO TO 55
MAXE =0
RFTLIRN
C COMRINE NODF WEIGHTS INTO ARC WFIGHTS
8 DO 65 1=N1PsN12
wil)=N.5*w(])
65 CONTINUE
DO 68 I[A=]14NA
[=11(14)
J=JJtlA)
AWT(TA)Y=AWT(TA)+WIlT)+W D)
68 CONTINUE
C CFT THF ARRAYS NODE, IREG.
DO 70 I=1sN
NODF (141120
7 NODF(143)="
L=1
72 K=]
[R=MR (L)
IREG(IRs1)=L=]
I=11(L)
IFINODF(1s1) oEQe 0) GO TO 73
NODE(1+3)=IR
NODE (1 +4) =K
6N TO 74
72 NODF(Ts1)=1R
NODF (142)=K
T4 K=K+
J=JJ(L)
IFI(NODE(Jsl) «EQe 0) GO TO 75
NODEtJs3)=1[R
NODE(Js&) =K
GO TO 76
™ NODE(Js1)=1IR
NONF(Je2) =K
76 IF(L «F0s NA) GO TO 77
L=L+]
IF((] «EQe 11(LY)) «ANDe (IR +EQe MR(L))) GO TO T4
IRFAIIR2) =K
LelL=-K+K®(K=1)/2+1
IF(L «LFe NA) GO TO 72
77 IREGIIRL2) =X
C DIJKSTRA-YEN SEARCH INWARD.
C INITIALIZE.

28



C

C
C

125%

127

DO 125 I=14N12
XLAREL(1)=RIG
NPATH(1)=0
ITEMP(I)=]
CONTINUE

PO 127 1=N12PN
XLAREL(1)=0,
NPATH(I1)=1
ITEMP () =]
CONT INUF

1PL=1

L=1

PERMANENTLY LARFL NODE N

IPERM( 1) =N

I=N

IR=NONF(1+1)

LI=NODE(1+2)
"'lREG(IRol)*(Ll'l)'lREG(IRO?)-LI’(LI*I)IZ
IR2=0

K=NM]

v=R1G

TREAT EACH TEMPORARILY LABELED NODE.
V 1S THE SMALLEST SUCH LAREL.

130

131

132

138

133

134

136

139
137

300

DO 140 IT=1.K

JeITEMP(IT)

IF(NODE(Js1) «NEe IR) GO TO 131
LJ=HODE(J+2)

GO T0 132

IF(NODE(Js3) «NEe IR) GO TO 133
LJ=NODE(Js &)

IFI(L] «GTe LJ) GO TO 138
IAR=M4LJ

GO T0 137
IAROIRL3(!Ro1$¢(LJ—l)’lPEG(lRoZ)-LJO(LJOI)/2¢LI
GO 70 137

IF(NODE(Js1) «NEe IR2) GO TO 134
LJ=NODE(Je2)

GO TO 136

IF(NODE(Js3) <NEs IR2) GO TO 135
IF(IR2 +EQe 0) GO TO 135
LJ=NODE(Js &)

IF(LI2 «GTe LJ) GO TO 139
[AR=M24+L )

GO T0 137
!AR'XREG(lRZOI’O(LJ-l"]RFG(YRZoZ,'LJ'(LJ#1)I20L12
DIJ=AWT(1AR)

2=XLAREL(T+D1J

XJPEPS=XLABEL (J)*#OPEPS

1£(2 «GTe XJPEPS) GO TO 135
XJMFPS=XLABEL (J)*OMEPS

IF(? +GF. XJMFPS) GO TO 300
XLARFL(J)=2

NEXT(J) =]

GO 70 135

IF(IPL=NPLDP) 305,3024340
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301
322

305
310

330
40
135

140

152

FORMAT(* NPOOL NEFDS TO STORE MORE LINKS*)
PRINT 301

GO TO 340

NPRFD=NEXT (J)

IF(NPRED «LTe LTEST) GO TO 320
LINK=SHIFT(NPRED «ANDe IHIGH=9)
NPRED=NPOOL (L INK)

GO TO 21N

NPOOL(IPL) =]

IIUQHIFT(YPL.Q) +NDRe NPRED
IFINPRFN LEQs NEXT(J)) GO TO 330
NPOOL (LINK) =11

GO 1O 24N

NEXT(J)=11

[PL=1PL+]

IF(XLABEL(J) «GEe V) GO TO 140
v=XLAREL(J)

1P=J

10=17

CONTINUE

IF(V «NF. RIG) GO TO 155

NFeN

00 152 1=1,N1

NER(1)=0

XMINL(1)=RIG

CONTINUE

RETURN

C NODE IP IS TO BE PERMANENTLY LABELED.

15%

v=R1G6

L=L+1

IPERM(L)=IP

1=1P

[R=NONF(1,1)

LI=NONE(1+2)
M"REG(!RoI’0(L“l,.|R‘G(lRo?)-Ll.(Ll*l)/z
[R2=NODF(1+3)

L12=NODF(T4+4)
MZ‘lREG(19201\*(L12'1)’XREG(IRZo?)'LI2’(LlZ*l)/2
ITEMP(1Q)=TTEMP (K]

K=K~]

IF(K «GT, 0) GO TO 130

C ALL NODES ARE PERMANENTLY LABELED.
C RETRACE AND STORF THE SHORTEST PATHS TO ALL HARDWARE NODES.

180

182
183

191

NF=0

J=1PERMIL)

L=L~-1

IFtJ «GTe N1) GO TO0 180

I=NFXT(D)

NPREDN=|

IF(] «GEe LTEST) I=1 «ANDe LOW

NF=NF+1

[FINF=MAXEP) 19341924205

FORMAT(#* DIGRAPH OF SHORTEST PATHS CONTAINS MORE THAN® 13

1 # EDGFS*)

192 PRINT 191, MAXE
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193

205

215

GO TO 205§

1EDAF({24NF) =1

IENGFE (3 NF ) =J

IR=NONF(J-1)

IR2=NNNE(Js3)

IF(INODE(T91) «FQe IR) «ORs (NODE(143) «EQe
1EDGE(1sNF ) =]R2

IT=1TEMPI(])

IF(IT «GTe 0) ITEMP(])==1T

1F(]1 «FQe NPRFD) GO TO 215
LINK=SHIFT(NPRED oANDe IHIGH,-9)
[=NPOOL (LTINK)

GO Y0 183

IFIL «FNe M) GO TO 220
Je1PFRM(L)

L=L-1

IF(J «LEe N1) GO TO 182

IF(J «GT4 N12) GO TO 215
IF(ITEMP(J) oLTe 0O) GO TO 182
GO T0 215

IR))

C COUNT THE SHORTEST PATHS TO EACH HARDWARE NODE.

220

225

230

K=NF

DO 225 L=1sNE
1=1EDNGF(24+X)
J=1ENGE (34K)
NPATHI J)Y=NPATHIJ)+NPATHIT)
K=K=1

CONTINUE

NO 23N 1=]14N1
NGP(T)=NPATHI(T)
XMINL(I)=XLARFLI(])
CONTINUE

RFTUIRN

FND

IR2=1R
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