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ABSTRACT

This document explains how to construct a sabotage graph which models
any fixed-site facility and how to use the subroutine SPTH3 to find
shortest paths in the graph. The shortest sabotage paths represent
physical routes through the site which would allow an adversary to take
advantage of the greatest weaknesses in the system of barriers and alares.
The subroutine SPIH3 is a tool with which safeguards designers and analysts
can study the relative effects of design changes on the adversary routing

In addition to showing how to use SPTH3, this report discussesproblem.
the methods used to find shortest paths and several implementatica details
which cause SPTH3 to be extremely efficient.
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1. Introduction

This report documents the latest code for finding shortest paths in

thesabotagegraphsdescribedin(h]. A sabotage graph is a network
.

which models a fixed-site facility. Shortests paths in the graph represent

physical routes along which a saboteur could minimize time, or detection.

'

probability, or some other quantity reflected in the graph weights.

Currently path length in SPTH3 is the ordinary sum of the node and are

weights in the path, so that either delay times (for barrier penetration

at nodes and travel along arcs) or else distances could be used as weights.

So far shortest-time paths have been of principal interest. A trivial

modification to SPTH3 would allow it to accept detection probability

weights and produce sabotage paths which minimize cumulative detection

probability. In the remainder of the report we shall think of the graph

weights as times.

SPTH3 addresses the problem of a simultaneous attack by several teams

each having a single target. This provides a lower bound for the path

length of a single team with several targets to attack sequentially, and

it also addresses a very real possibility which would place great stress

upon the safeguards system. For further details motivating this model

and considering the length-independence of different shortest-time paths,

see[4].
'

.

It must be understood that the graph model and the pathfinding

techniques do not take into account battles between adversaries and

defenders. Such encounters require stochastic models. The sabotage

graphs used for pathfinding have constant weights which give representative
Since the delay times(perhaps minimum or average) values of delay times.

are in reality random variables, the graph-theoretic method of this
j

3
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report should be viewed as a deterministic approach to finding sabotage "

routes which exploit any weaknesses in the barrier and alarm systems.
~

Such paths require further evaluation either by simulation methods such

as FESEM [2] to assess the paths' effects upon guard encounters or else

by probabilistic methods such as EASI [1] to predict the likelihood of
Both of these path evaluators require a path tosabotage interruption.

Thus, SPTH3 may be used to derive input for FESDI or EASI orbe given.

else simply to indicate relative vulnerabilities in the barrier and alarm

systems.
Those

This document explains both what SPTH3 does and how to use it.

readers interested only in how to use it may ignore Section 6.
The

shortest path algorithm embedded in SPTH3 is that of Dijkstra [3] as
However,

modified by Yen [6,5]. This algorithm is the best available.

its use in SPTH3 differs somewhat from the description given in [4].

Rather than searching outward to the boundary from each target as described
A substantial

in[k],SPTH3see,rches$nwardfromtheboundarytoallnodes.

reduction in storage requirements and tenfold reductions in run time have

resulted from this and other improvements to the pathfinding code.
,

|
|

|

2. Description of SPTH3
.

SPTH3 finds shortest paths in a special graph called a sabotage.

This graph models a fixed-site facility to some level of detailgraph.
The details for

thought to be appropriate for the user's purpose.i

In brief, the nodes
constructing the graph are given in the next section.

doors,

are important locations in the plant (say, perimeter gates, building
locations),;

windows, vents, stairwells, storage vaults, and vital equipment

and the arcs are physical paths from one location to another.

|
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There are three types of nodes: (i) boundary nodes located at

possible perimeter penetration points, (ii) barrier nodes located on

internal barriers at possible penetration points, and (iii) target nodes *
.

at vital equipment or material locations. The simultaneous sabota6e
f

problem is to find all the shortest paths from the set of boundary nodes-

to each target. Given the graph (as a list of arcs) and the are and node
,

weights, SPTH3 uses the Dijkstra-Yen algorithm described in Section 6.5

to search from the boundary nodes of the graph until the lengths of the

shortest paths to all the other nodes are known. During the search SPTH3

keeps a list of the immediate predecessor (s) of each node along a shortest

path from the boundary. This allows all shortest paths to each target to

be retraced and stored without further arithmetic following the Dijkstra-

Yen search.

The output from SPTH3 is simply a list of the directed arcs which
;

belong to the shortest paths directed from the boundary to all the targets,'

together with a list of the number and length of the shortest paths to

each target. It is possible to have more than one shortest path to any

node, and this number can be obtained easily by a simple procedure

explained in Section 6.7

3 The Sabotage Graph

The first and most important part of the use of SPTH3 is the
.

constntetion and weighting of the sabotage graph. This invol*tes three

steps:

(1) partitioning the drawings of the plant into regions,

*Fomerly called hardware nodes.

5
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(2) specifying the nodes and arcs of the graph model,

(3) weighting the nodes and arcs with times (or detection
probabilities) derived from test data or analyst judgement.

31 The Regions

The boundary and the important internal barriers (fences, walls,

floors, stairvells, etc.) naturally partition a map of the site into .

regions R , r = 1,2,... . A region is a very general area within which
r

saboteurs may travel unimpeded by barriers. Some regions may appear on

the drawing as disjoint domains, e.g., a stairvell or elevator region may

appear as the union of the areas in which it intersects each floor of a

building. However, if there are no significant delays to entering the

stairvell, then the floors and the connecting stairwell may be treated as

The region structure is simply an aid to constructing theone region.

nodes and arcs which constitute the sabotage graph.

3.2. The Graph G

Next, the analyst must carefully place nodes at all the important

Since the model is discrete there is some arbitrariness inlocations.

the node selection process, and an analyst may want to try various graphs

The node set shoulddiffering in the number and location of the nodes.|

include representative penetration points along the boundary and along

I the barriers between regions as well as all targets of interest inside
|

the regions.

Once the regions and the nodes are specified, the arcs are determined

by a fixed rule which gives sabotage graphs their special structure.

Every pair of nodes in region R is connected by an arc, forming ar

complete subgraph G ,, r = 1,2,... .

6
__

_ _ _ _ _ __
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An interface between two regions may contain more than one barrier

node, and this requires special attention from the analyst. Two reasons

for using such multiple barrier nodes are to model barriers that (a) have

varying hardness, or (b) have such physical extent that the are lengths

are significantly affected by the node locations. An are joining node i to
.

node j is denoted by the unordered integer pair (i,j) or (j,1). Multiple

barrier nodes on a single barrier cause an arc in one region to have the

same name, or node pair, as some are in the adjacent re6 on (Figure la).1

In order that each are have a unique node pair as its endpoints, the

analyst must split each of the multiple barrier nodes into two barrier

nodes connected by an arc (Figure Ib). Our decision to list the arcs of

G region by region for purposes of computer input requires that each are

belong to a single region. Consequently each are introduced by splitting

multiple barrier nodes must belong to its own specially created region.

b I R
E I I ,_.t.__,,,, 2l

I i k
,

( --_(___
I I I
| g|

I ___L___
%

J J 1
- .

_q-.
.

I _a- _ _.- _ L _ _
-

.

Figure la. Figure Ib.

Multiple barrier nodes. Splitting of multiple barrier nodes.

The regions created by splitting multiple barrier nodes are numbered

ngions R , each having a complete subgraph G *also, givin 6 a total of N3 rr

7
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The union of all these subgraphs is the sabotare graph _*

R
G= U Gr'

r=1

whcse nodes are then numbered as follows:

target nodes, 1 to n ,y

to n +n'barrier nodes, ny+1 2

to n +n = N.
boundary nodes, ny+n2+1 y 2 * "3

An example is shown in Figure 2, where squares are used for boundary nodes,
Three nodesc.rcles for barrier nodes, and shaded circles for targets.

have been split.on the barrier g n R2

_.__________._____.__________________q

l_ _ _ __ __ . _ _ _ _ _
i

_L.
l 14 J

1 | 9
r- i- , T10' I

, " - ,
, / Ih 5 8

: Rs || 6 3

| u _7_ _s
u_q_a ,3

I l |
1 I - i I'

I L _ _ _ _ _ _ _ _ _ _ __ _ _ _ _J I
I I
I I
I J
|_ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _

Figure 2.

A Sabotage Graph

*'Ihis graph differs slightly from the graph of [14] in which boundary-
boundary and target-target arcs were omitted.

8
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7 Notice that every barrier and boundary node belongs to exactly two

regions (counting the infinite off-site region), and every target node

belongs to only one region. Also, due to the completeness of the subgraphe,

the paths of G represent all the physically meaningful ways for saboteurs

to proceed using only the given penetration points and targets.

3.3 The Weights

Both the nodes and the arcs of G are assigned constant, nonnegative

weights. The node weights w 2 0, 1 s i s N, are penetration and targetg

2 0, (i,j) c G, aredestruction times, while the are weights a =a

transit times. Realizing that these constants are simply representative

values of random variables that depend on the physical characteristics of

the barriers and the amount and type of equipment postulated for the

attacking force, the analyst must decide whether to be conservative and

use minimum values reflecting best possible adversary performance or else

use intermediate or average values.

When the are weights are minimum values, they will autoratically

satisfy a regional triangle inequality. That is, if arcs (1,j), (j,k) and

(k,1) belong to G and their weights represent minimal transit times, then
r

it must be true that
.

( "i,k ' "i,j + "j,k *
,

Since saboteurs may travel at different rates in different regions, this
t

inequality need not hold for triangles whose arcs lie in different regions.

SPIT 3 tests all the trier.gle inequalities (1) for each region simply as a

check on date consistency for the user's benefit. The pathfinding

algorithm will perform perfectly well, of course, whether or not the
i

triangle inequalities hold, so that this data check can be deleted from

| 9



.

.

SPnI3

The weighting of the nodes and arcs which result from the splitting ,

of multiple barrier nodes may be done in many ways as long as the weights

of the two new nodes and their connectin6 are sum to the barrier penetration

time.

A weighting of the graph from Figure 2 is given in Figure 3*

3 - _-_- _-_ _..- -_ _ _.-- - - _ _ _ _ _._ _ _ _ _ -. _ _
|10

6 |
| _____4 o F_____q

||5 | g 1 16s
| L 4 J

20._L |

7 3 NO-

3,4 3( |0

~| 5 6 0 3 30 5 0 8 5
!'3 4 2

u _ l _ _., I| u_I__s 3h2
| l |I
I

3 4 | |
| L ._ _ _ _4 '_2 ___________i I
I 6

45 |
I 45 |
|

6 __ _ _ _ j
|

L_ __ __ _ _ _ _.
|

Figure 3

| A Weighted Sabotage Graph -

SPUI3 does not accept dire.:ted nodes and arcs, i.e. , nodes and arcs

whose weights depend on the direction of travel. Of course, directed nodes
,

and arcs could have been allowed, because Dijkstra's algorithm works

equally well for directed graphs (digraphs) as for undirected graphs.

However, we have deliberately omitted directedness from the sabotage

10
~ -. . _ _
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graphs because, in the applications for which SPTH3 is intended, are

lengths are essentially the same in both directions and the doors locked

on only one side are normally locked on the side first encountered by

the saboteur.*

~

h. How to Use SPTH3

h.1. The Call List

The call list for subroutine SPTH3 is

SPTH3 (N1, N2, N3 , NA ,W , MR , II , JJ , AWT , MAXE , IEDG E ,NE , N SP , XMINL ) .

The dummy arguments have the following meanings:

N1 - the number of target nodes,

N2 - the number of barrier nodes,

N3 - the number of boundary nodes,

| NA - the number of arcs,
l

W(-) - the node weight vector, dimensioned N=N1+N2+N3,

(the next four vectors, dimensioned NA, give the arcs as quadruples

( consisting of a region, two nodes, and an are reight)

| MR(-) - the region index vector,

II(+) - a node index vector,

JJ(-) - a node index vector,

ART (+) - the arc weight vector,

MAXE - the maximum number of edges (ares) in the digraph S of
, shortest paths directed from the boundary to all target

nodes,

IEDGE( ,*) - the edges in the digraph S, each edge being given by three
indices -- the region and two ordered nodes, dimensioned

| (3,MAXE),

NE - the number of edges in digraph S,

NSP(*) - the number of shortest paths to each target, dimensioned N1,

.

11
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XMINL(-) - the length of the shortest paths to each target, dimensioned
N1.

h .2. Input

To use SPTH3, first construct a weighted sabotage graph as indicated

Next, in the program which calls SPTH3, dimension W by N,in Section 3
the vectors MR, II, JJ and AWT by NA, and the vectors NSP and XMINL by N1.

Set MAXE to some guess at the maximum nu=ber of edges S will have, and
Then store the node weights in W and the

dimension IEDGE by (3,MAXE).
The node weights are given in the obvious

are data in MR, II, JJ and AWT.
Although there is no obvious order

order: W(I) for node I,1 s I s N.

in which to give the arc data, a very special crdering of the arcs is

required.

The arcs are given by the quadruples

MR(K), II(K), JJ(K), AWT(K),1 s K s NA .

All the arcs of one region are listed consecutively, and the regions may
For example, in a three region problem, the arcs

be givet. in any order.

of region two could be listed first, followed by the arcs of regions
The arcs of each region, however, must be listed as if

three and ona.
f

they were taken row by row from the strictly upper triangular part o
For example, if the nodes of one region are

some node adjacency matrix.

{l6,9,21,h,7}, then an acceptable are ordering based on the given node
.

) (21,4),
ordering is (16,9), (16,21), (16,4), (16,7), (9,21), (9,4), (9,7 ,

.

Notice that the arc ordering for a region may be based(21,7),(4,7).
But once a node ordering is

on any ordering of the region's nodes.
d

chosen for the region, the arcs must be given by pairing the first no e
h each

with each other node in order, then pairing the second node wit

12



.

.

following node in order, and similarly for the third node, etc.

The reason for this requirement is that it produces tremendous savings

in storage. The special are ordering allows SPTH3 to quickly compute the

address of any arc weight and, thereby, completely eliminates the need for

the usual N x N direct distance matrix. For graphs with several hundred

nodes this is very important.

b.3 Work Arrays

SPTH3 has several work arrays whose dimensions must be set by the

user before running the job. The meanings of these arrays are explained

in the program comments and in Section 6. In order to use SPTH3 it is

sufficient for the user to set the following dimensions:

XLABEL,NPATH,IPERM,ITDiP,NEXT - N,

NODE - (N,4),

IREG - (NR,2), where NR = the number of regions,

NPOOL - bO, an arbitrary setting for an unpredictable total number of
extra predecessors for nodes which have more than one predecessor
along shortest paths. SPTH3 prints a messa6e when this dimension
needs to be increased. In this case, tne results should be
considered incomp.lete, and the problem should be rerun with a
larger dimension for NP00L.

b '. h . Output

I The output consists of

.

MAXE,IEDGE,NE,NSP and XMINL ,

whose meanings are given above.'

MAXE and NE serve as flags and must be tested upon return from SPTH3

to see if a normal execution took place. If MAXE = 0 upon return, there
|
!

was a failure of the triangle inequality on the are weights of some
i region, a message was printed, and the pathfinding algorithm was not

13
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executed. The user should correct the arc data indicated by the message

and try again. Also, it is possible to return with NE = 0. This means

that pathfinding was aborted because some node could not be reached from
.

the boundary. The user must check the are list to be sure that all the

arcs are present in each region.

It should be noted that the weight vectors W and AWT are changed by

SPIH3 in the following way:

W(I) - W(I)/2. , N1 + 1 s I s N1 + N2 ,

AWT(K) - AWT(K) + W(II(K)) + W(JJ(K)) , 1 s K s NA .

If necessary, the user may restore W and AWT to their input values by

firstsubtractingW(II(K))+W(JJ(K))fromAWT(K),for1sKsNA,and

then doubling each barrier node weight. This change of W and AWT is also

related to the above mentioned storage economy because it allows the

input vector AWT to be used for the direct distance storage in lieu of the

standard N x N matrix noz'nally used in Dijkstra's algorithm.

I

5 Examples

5 1. A Sample Problem

Let us take the weighted graph of Figure 3 as an example. In

Figure b this graph is shown with the digraph S of shortest sabotage paths'

,

superimposed in dark lines.

| The input consists of

N1 = 2, N2 = 6, N3 = 2, NA = 23 ,

W = (4.,4.,5.,5.,5.,5.,5.,5.,16.,20.} ,

|

14
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MR II JJ AWT

1 6 7 40.
1 6 8 6.
1 6 9 45
1 6 lo 40.
1 7 8 40.
1 7 9 lo.

1 7 lo 6.
1 8 9 40.-

1 8 10 45
1 9 10 6.
2 1 2 3
2 1 3 4.
2 1 4 36.
2 1 5 34.
2 2 3 2.
2 2 4 34.
2 2 5 32.
2 3 4 33
2 3 5 30.
2 4 5 3

3 3 6 o.
4 4 7 o.
5 5 8 o.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ,
,

7 o
ho lo

l

g_a _ _ _ _ _ -1
F_--qi

I5 ii
L 4 J l d.

!
'

20,_L

r- - --7 33 0
o 4 3

b_l_
'*

5 4 2
| 7__ 2 34
| i l I
i I 4 3 4 I |
I L ____'_____i.

I
-

| 6
45 I

| 45 |
i

u_____.__________________----_1| 6

Figure 4.

The Digraph S of Shortest Sabotage Paths Superimposed
on a Weighted Sabotage Graph

15
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The output is

Target NSF XMINL ,

1 2 73
2 2 71.

IEDGE (NE = 9)

Region Node Node

2 3 1
2 3 2

3 6 3
1 8 6

5 5 8

2 h 5

4 7 4

1 lo 7
1 9 7 .

Since the digraph S is given completely by IEDGE, S is easily drawn by

simply darkening the edges indicated by the ordered node pairs in IEDGE.

NSP and XMINL show that there are two shortest paths to each target, those

to node 1 having length 73. and those to node 2 having length 71.

5.2. Run Time and Array Storage Results

The li.jkstra-Yen algorithm used forSPTH3 is extremely fast.

pathfinding has a worst-case run time on the order of O(N ) for an N-node

Although SPIH3 also checks all the triangle inequalities in eachgraph.

region, does the bookkeeping for multiple predecessors, and retraces and

counts the number of shortest paths to each target, it uses almost a '

.

As shown in Table I a realistic sizednegligible amount of run time.

problem of 310 nodes and 1191 arcs requires only about a second and a half
Consequently, we feel that execution time forof CDC 6600 run time.

shortest path problems should be of very Little concern to most users.
As mentioned in Section 4.4,

SPTH3 is also very storage efficient.

the N x N matrix of direct distances nomally used in Dijkstra's algorithm

16
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has been eliminated in favor of a storage scheme which overwrites the

input vector AWT with direct distances between node centers. Thus, the

array storage, which dominates SPTH3' storage requirements for larger

problems, is linear in the number of nodes, arcs, regions, etc. In

particular SPTH3's arrays need

loN + 4NA + 2NR + 2N1 + 3NE + ho

storege locations, where 40 is an unpredictable diuension that proved

adequate for our set of test problems. Table I also gives the array

storage requirements for the larger probleias in the test set.

The sample problem in Figure 4 is Problem 3 below.

Table I

CDC 6600 Run Time and Array Storage Results

N des &s Regions Edges in S hray Run Time
Problem N1-N2-N3 N NA NR NE Storage (seconds)

0.0041 1- 5- 1 7 13 4 3 -

2 5-1-2 8 16 2 6 o.004-

0.0053 2 - 6 -2 lo 23 5 9 -

0.0074 4 - 8 -2 14 34 6 12 -

o.0095 1-8-8 17 32 8 1 -

6 1-10 -8 19 40 8 1 411 0.009
.

7 1-31-14 46 112 20 2 996 0.041

8 20-58-4 82 514 35 43 3155 o.167

9 30-120-5 155 656 82 81 4681 o.446

10 10-296-4 310 1191 192 38 8422 1.563

17
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6. Some Details of Implementation

6.1. A Flow Chart .

SPnD

u

Arty
triangle Yes a ~

inequality MAXE=O f Return
failurss

T

u
,-

Store direct
* ** II(K).JJ(K)

between node
centers in KdI(K)

1 s K s NA.

Set arrays
NODE, IRE

so that D ,y Wg

be addressed in AWT.

+
Perform a

Dijkstra-Yen
Figure 5 search from the

boundary to all
" d'*-
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1
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6.2. The Triangle Inequality Tests

Finding the triangles of each region is very easy given the conpleteness
.

of the subgrapn and the special ordering of the arcs. For exa:::ple, consider

the arcs of region R in the graph of Figure 4,
2

.

II JJ AWT

1 2 3
1 3 4.
1 4 36.
1 5 34.
2 3 2.

2 4 34.
2 5 32.
3 4 33
3 5 30.
4 5 3

All the triangles containing arc (1,2) are found by taking each arc (1,t)

listed below (1,2) together with each arc (2,4). In this case, the

triangles are (1,2,3), (1,2,4) and (1,2,5). Next, all the triangles

containing arc (1,3) are obtained by taking each are (1,t) listed below

(1,3) together with each arc (3,4). This yields triangles (1,3,4) and

(1,3,5). Finally, triangle (1,4,5) is obtained in a similar way.

Of course, each triangle (1,j,k) has three corresponding inequalities

which are tested separately

"i,j ' "i,k "k,j '*

"i,k # "i,j + "j,k *

"j,k # "j,i + "i,k *

As mentioned earlier, this portion of SPTH3 could be delete 2 without
i

I affecting the pathfinding procedure.

{
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6.3 Cornputing Direct Distances

Dijkstra's algorithm is defined in tems of a direct distance matrix

D, whose elements

(direct distance from i to j , (1,j ) c G ,

0, i=j,(2) d =

<= , otherwise.

The algorithm applies to any digraph having weights only on the ares, since

the nodes are thought of as points. A sabotage graph has node weights wg
in forming the distanceswhich SPTH3 combines with the are weights a

d between node centers. The procedure is to halve the barrier node

weights (since these are the intermediate nodes on paths from the boundary

to the targets) and then to add each are weight to its endpoint weights, i.e.

1+1sisn1+n2*= v /2. , n(3) t
w

1

1 + v) , (i,j) c G .
(b) d =a +v

6.h. Storing and Accessing Direct Distances

SPTH3 avoids creating the N x N matrix D by storing the positive,

finite, D values in the input are weight vector AWT when (4) is computed, i.e

I = II(K) , J = JJ(K)
(5)|

I AWT(K) = AWT(K) + W(I) + W(J) , 1 s K s NA .

f
This saves a great deal of storage for large N because the number of arcs

in G is always small with respect to N2 (see Table I).

The penalty we pay for this storage efficiency is in the cost of
in AWT. That is, when Dijkstra's algorithm

finding any particular dy,y

y,y, SPTH3 must find a value K such thatneeds d

20
|



.

.

(6) AWT(K) = d7,y ,

instead of just referencing D(I,J). Fortunately, the c mpleteness of the
,

subgraphs and the special ordering of arcs in each subgraph allows K to be

computed very quickly given I and J (see the run times in Table I).

To facilitste this index c mputation, two integer arrays are constructed

prior to the Dijkstra-Yen search. NODE (I, ) contains the two regions and

two local node numbers for node I. The local nede number in each region

is detemined by the node ordering used to order the arcs of the region.

For the sample problem in Section 5 1,

NODE (7,*) = (1,2,4,2} ,

meaning that node '/ is the second node of region 1 and the second node of

region b. Since only the finite, internal regions are numbered, boundary

nodes have only one region number and one local node number. Similarly

for target nodes which belong to only one region.

IREG(R,*) contains the first word address minus one in AWT of the arcs

of region R followed by the number of nodes in R. Thus, when SPTH3 needs

y,y(IM ), h does the fo h ng:d

,

(a) compares region numbers for I and J to see if arc (I,J) belongs
I to G,

| (b) if(I,J)/G,noaddresscomputationisneededsinced ==,

en e st word adhess dus me of We arcs
| [ (c) if (I,J) c G ,

R
of region R, the number of nodes in region R, the local number
of node'I in R, t , and the local number of node J in R, t , arey y

c abined to yield .

K = <qIRm(R,1) + (t -1)IREG(R,2) - 4 (4 +1)/2 + t
4 st

y 7 7 y, 7 y,|

IRE (R,1) + (4 -1)IRM(R,2) - 4 k +1)/2 + 47, ty<47y y y

K satisfies (6).
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6.5 The Dijkstra-Yen Search

The Dijkstra-Yen search finds the length of the shortest paths from

the boundary to every node I in G and stores the value in XMINL(I),

1 s I s N. During the search the (immediate) predecessor of node J along

a shortest path is stored in NEXT(J), 1 s J s N. When some node has more

than one such predecessor, the extras are stored in a vector NPOOL. A

link (an index for NP00L) is stored in the upper portion of the word NEXT(J)

to indicate where the second predecessor of J is stored. This second

predecessor, NPOOL(LINK), is linked to another entry in NP00L if there is

a third predecessor of J, etc.* These data allow the efficient retracing

of all (not just one) ahortest paths to each target, as explained in the

next section.

In Dijkstra's algorithm [3] each node has a label which eventually

becomes the length of the shortest paths from the boundary to the node.

These labels are temporary as long as they represent only the shortest

path lengths currently found by the search, and they beccane permanent labels

as soon as they are known to be the absolutely shortest lengths.

l SPUI3 initially sets all boundary node labels to zero and all other
i

labels to = (a large machine number). The boundary node label XLABEL(N)

is made permanent first by setting IPERM(1)=N. All the other labels are

|
temporary. From the last permanently labeled node I, all the temporary

labels XLABEL(J) are examined and reduced if

XLABEL(J) > XLABEL(I) + dy,y ,

where d must be found in AWT as described in the previous section. Each

*We are indebted to Louann Grady, 57hl, for giving us this idea for linking
together multiple predecessors.
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time XLABEL(J) is reduced, the predecessor I is stored in NEXT(J). If
4

XLABEL(J)=XLABEL(I)jg,y,-
,

,

(to machine precision), then I is an extra predecessor of J which must be -
-

stored in the next available entry of NPOOL, and for which an additional
'

link nrast be created at the end of the chain beginning with the link in the ,

upper 3 portion of NEXT(J). After all the temporary nodes have been examined

from the one with the least temporary label is r.a e pemanent by placing
?/

it in IPERM. This is correct because the nonnegativity of the d 'im;. liess

I,J-

)

that this label cannot be reduced further. In the case of a tie, it does,

j

not matter which of the nodes is pemanently labeled ne'xt. I is sit to

this new pemanent node number and the process is repeated until all the

nodes are pemanently labeled. Notice that IPERM has become a list of the

nodes of G in order of nondecreasing distance from the boundary, and the '

shortest sabotage path lengths are XLABEL(J),1 s J s N1.
/

Yen's contribution [6] to this search procedure is one of improved ,

implementation. Rather than letting J range from 1 to N at each stage and

asking if each J is temporary, Yen suggests the following coding device.
|

Initialize ITDE(I) = I,1 s I s N, and K = N - 1. The temporary nodes,

then, are the first K entries of IT0 ''. While trying to reduce each
,

h. temporary node label, keep track of the minimizing temporary node IP as
.

well as its position IQ in ITEMP. Then, when IP is stored in IPER4, set'

ITDT(IQ) = ITDG(K). This has the double effect of removing IP from

ITEMP and leaving the new set of temporary nodes in the first K entries
i

'

of ITDG. Yen's modification saves SPTH3 about 25% in run time.

If, because of omissions in arc data, some node is isolated from the
. boundary, its infinite label will eventually become the least temporary
|
|

|

/
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When this happens, NE is set to zero and SPIH3 returnslabel at some stage.

to the user, who must supply the missing data before trying again.

.

6.6. Retracing the Shortest Paths

Given the predecessors NEXT(*) and possibly some predecessors in

NPOOL(*), SPTH3 can retrace the digraph S of all the shortest paths from

the boundary to the targets. No label-arithmetic is needed. As each

directed arc of S is obtained, it is stored as an ordered pair of integers

in IEDGE(2,-) and IEDGE(3,-), and the arc's region number is stored in

IEDGE(1,-). The retrace proceeds as follows.
Find the last target node in IPERM, i.e., the one

Initialize NE = 0.
Let I = NEXT(J),

furthest from the boundary, and set J to this node number.
Add one to NE, and if NE

the predecessor of J, assuming J has only one.

does not exceed MAXE, store arc (I,J) and its region number in IEDGE(*,NE).

Now record the fact that a shortest sabotage path passes through I by
If J has another predecessor, it isnegating ITEMP(I) if it is positive.

In this
NPOOL(LINK), where LINK is packed in the upper portion of NEXT(J).

case, set I = NPOOL(LINK), repeat the above arc-storage process and continue

until all the predecessors of J contribute arcs to IEDGE. (Notice that all

i the arcs of S leading into J are listed consecutively in IEDGE.) Set J

to the node in IPERM just before the one last used to set J, i.e., let J

range over the nodes in the order opposite that in which they were made
~

|

f
If J is a target node or a barrier node with negative ITEMP(J),permanent.

If J is a boundary nodei

then repeat the above procedure for this new J.

or a barrier node that does not belong to a shortest sabotage path, then
1

skip it, continuing until J = IPERM(1) has been treated.

Thus, IEDGE contains all the arcs in the digraph S of all shortest

Moreover, the second nodes of these arcs occur in thei

sabotage paths.

| 24
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order of nonincreasing distance from the boundary.

.

6.7 Counting the Shortest Paths

The fact that the second nodes in IEDGE have nonincreasing distance

from the boundary allows the shortest paths to be counted quickly as follows.

Set
f1, boundary node,

NPATH(I) = J,0 , barrier or target node.

Then for each arc K in IEDGE, taken from bottom to top, i.e., from the

boundary to the last target, set

I = IEDGE(2,K)
J = IEDGE(3,K)

NPATH(J) = NPATH(J) + NPATH(I), K = NE,...,1 .

The final value of NPATH(J) ic just the sum of NPATH(I) over all the nodes

Notice that each such node I willI in S which have an are leading to J.

have its final NPATH value co=puted before NPATH(I) is added to NPATH(J)

because of the ordering of the arcs in IEDGE. Hence, NPATH(J), is the

number of shortest paths from the boundary to each node J in S, in

particular to J = 1,2,...,N1.

l

..

|

t

I
,
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7 Listing of SPTH3.

SUBROUTINE SPTH3(N1,N2,N3,NA,W,MR,II,JJ.AWT,MAXE,IEDGE,NE,NSP,
W(1),MR(1),II(1) JJ(1),AWT(1) ! EDGE (3,1),NSP(1),XMINL(1)1 XMINL)

XLA9EL(155),NPATH(155),! PERM (155),ITEMP(155), NODE (155,4),DIMENSION
COMMON

IREG(82,2),NFXT(155),NPOOL(40)SAROTAGF PROBLEM--ONE TEAM PER HARDWARE NODE.USES1

DIJKSTRA-TYPE SABOTAGE ALGORITHM--UNDIRECTED NODES, TIME WEIGHTS.SIMULTANEOUSC
HARDWARE NODE.C

SAVFS SHORTEST PATHS FROM OFF-SITE TO EACH
INWARD AND USES NO DISTANCE MATRIX.C

C SPTH3 SEARCHES
C IMPUT.
C N1 NO. OF HARDWARE NODES.
C N2 NO. OF BARRIER NODES.
C N3 NO. OF BOUNDARY NODES. .

C NA NO. OF ARCS.
C W NODE WEIGHT VECTOR, DIMENSIONED N=NL+N2+N3.

C W IS CHANGED. ARCS MUST BE LISTED REGION BY
REGION.

ARC DATA--FOUR NA VECTORS.FURTHERMORE, WITH!N EACH REGION HAVING P NODES THERE MUSTC
IN STRICTLY UPPER

BE P*(P-1)/2 ARCS LISTED ROW BY ROW
C s.1 1, I P ) ,

TRIANGULAR FORM.
THAT IS, (11,12), (11,131, ....C

(13,IP), ...,C (12,IP), (13,I4), ....(12,I3), ...,
C

(IPM1,IP).
C

C MR REGION INDEX VECTOR.
C II N00E INDEX VECTOR.
C JJ NODE INDEX VECTOR.
C AWT ARC NEIGHT VECTOR. AWT IS CHANGED.

C MAXE MAXIMUM NO. EDGES (ARCS) IN THE DIGRAPH S OF SHORTEST PATHS
OFF-%ITE TO ALL HARDWARE NODES.FROM IEDGE.

THIS VALUE IS THE SECOND DIMENSION OF
C
C
C OUTPUT. THE UNION OF ALL SHORT EST PATHS
C IEDGE EDGES IN THE DIGRAPH 5,

DIRFCTED FROM THE BOUNDARY TO ALL HARDWARE NODES.
IEDGE WILL

3 INDICES - THE REGION,
HOLD MAXE EDGES, EACH BEING GIVEN BYC

THE EDGES ARE LISTED IN IEDGE SOC
AND TWO ORDERED NODES.

THE SECOND NODES HAVE A DECREASING DISTANCE FROMC'

C THAT

( C OFF-SITE.
C NF NO. EDGES IN DIGRAPH S.
C NSP NO. SHORTEST PATHS TO H, H=1,2 ...,N1'

C XMINL LENGTH OF SHORTEST PATHS TO H,
H=1,2,... N1.

AND XMINL MUST BE AT LEAST AS LARGE AS N1THE DIMENSION OF NSP THERE WAS A FAILURE OF THE TRIANGLEC
C MAXE IF MAXE=0 UPON EXIT,|

,

C
INEQUALITY ON THE ARC WEIGHTS OF A REGION, AND THE

' -

C ALGORITHM WAS NOT EXECUTED.
ARRAYSWORKC

FOUR VECTORS DIMENSIONED N=N1+N2+N3
C XLAAEL TEMPORARY AND PERMANENT DISTANCE LABELS.

THESE LABELSC

REPRESENT THE LENGTH OF THE CURRENTLY SHORTESTC

PATHS FROM OFF-SITE TO EACH NODE. SHORTEST PATHS FROM OFF-SITE TO EACH NODE OF
S.

C
NUMBER OF
NODES WHERE DISTANCF LABELS HAVE BEEN MADE PERMANENT.

C NPATH

N00ES WHERE DISTANCE LARELS ARE STILL TEMPORARY.C IPERM
C ITEMP

RFGION AND LOCAL NODE NUMBFRS FOR EACH NODE.C NODE
C

DIMENSION (N,4).
ARF RFGION NUMBERS FOR NODE

I.

NODE (1,11, NODE (I,3) ARF CORRESPONDING LOCAL NODE NUMBERS.C

C
NODE (I 2), NODF(1,4)
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C IREG REGION DATA CONCERNING ARCS. DIMENSIONED (NO. REGIONS, 2).

C IREG(R,1) IS THE FIRST WORD ADDRESS MINUS ONE IN iE ARC

C LIST OF THE ARCS OF REGION R.
C IREG(R,2) IS THE NUMBER OF NODES IN REGION R, IMPLYING
C THERE ARE IREG(R,2)*(IREG(R,21-11/2 ARCS IN REGION R.

.

C NEXT PREDECESSOR OF EACH NODE J ALONG A CURRENTLY SHORTEST PATH
C FROM OFF-SITE TO J. DIMENSIONED N.*

C NPOOL A LINKED LIST IN WHICH ADDITIONAL PREDECFSSORS MAY BE
C STORED WHEN NODE J HAS MORE THAN ONE. THE LINK FROM

C NEXT(J) TO NPOOL(LINK) IS STORED IN THE LEFT 51 BITS OF
S

C NEXT(J). SIMILARLY, IF THERE IS A THIRD PREDECESSOR OF
C J, THEN LINK 1 FROM NPOOL(LINK) TO NPOOL(LINK 1) IS STORED
C IN THE LEFT 51 BITS OF NPOOL(LINK), ETC. DIMENSIONED 40

C IF THE DIMENSION OF NPOOL IS CHANGED, THEN THE FOURTH -

C STATEMENT NPLDP=41 MUST BE CHANGED. NPLDP IS THE NPOOL

C DIMENSION PLUS ONE. IF THE DIMENSION N IS INCREASED TO
C MORE THAN 511 NODES, THEN THE FIRST THREE STATEMENTS MUST
C BE CHANGED TO ALLOW MORE THAN 9 BITS IN THE RIGHT OF
C EACH MoSK.

DATA EPS BIG / 1.0F-13,1 0E321 /
LTEST=1000B
LOW =7778
IHIGH=77777777777777777000R
NPLDPn41
MAXEP=MAXE+1
OMEPS=1 0-EPS
OPEPS=1.0+EPS
N12=N1+N2
N=N12+N3
NM1=N-1
N1P=N1+1
N12P=N12+1

C CHECK EACH REGION FOR TRIANGLE INEQUALITY ON ARC WEIGHTS
ICT=0
IREG=1

5 IAEGP=IREG+1
IF(MR(IAEG) .NE. MR(IREGP)) GO TO 52
LIKE=II(IBEGI
DO 10 !=IBEGP,NA

| IF(II(I) .NE. LIKE) GO TO 15
10 CONTINUE

GO TO 52*

15 NM=I-IBEG
IF(NM .LF. 1) GO TO 52

70 17=IREG+NM
~

IEND=I2-2
NMT=NM-1
DO 50 11=IBEG,IEND
AWTOM=AWT(11)*0MEPS
13=I1+1
DO 45 J=1,NMT
IF(AWT(12)+AWT(13) .GE. AWTOM) GO TO 35

25 FORMAT (* TRIANGLE *313* FAILS. ARC WEIGHTS--*3E15.5)
30 PRINT 25,II(II).JJtII)pJJ(I3),AWT(II),AWT(I2),AWT(I3)

ICT=1

27
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GO TO 40
35 IF(AWT(II)+AWT(12) .LT. AWT(13)*OMEPS) GO TO 30

IFIAWT(II)+AWT(13) .LT. AWT(12)*0MEPS) GO TO 30 ,

40 12=12+1
45 13=I3+1
50 NMT=NMT-1 ,

NM=NM-1
IAEG=IFNO+2
IF(NM .GE. 2) GO TO 20

52 IREG=IBEG+1
IF(IBEG .LT. NA) GO TO 5

290 IF(ICT .EO. O) GO TO 55
MAXE=O

.

RET (IRN
C COMRINE NODF WEIGHTS INTO ARC WEIGHTS

55 00 65 != NIP N12
W(!)=0.5*W(I)

65 CONTINUE
DO 68 IA=1,NA
!=II(IA)
J=JJ(!A)
AWT(IA)=AWT(IA)+W(I)+W(J)

68 CONTINUE
C %ET THE ARRAYS NODE, IREG.

DO 70 !=1,N
NODF(I,1)=0

70 NODF(I.3)=0
L=1

72 K=1
IR=MR(L)
IREG(IR,1)=L-1
!=II(L)
IF(NODF(I,1) .EO. O) GO TO 73
NODE (I,3)=IR
NODE (I,4)=K
GO TO 74

73 NODF(I,1)=IR
NODF(I,2)=K

74 K=K+1
J=JJtL)
IF(NODE (J,1) .EO. 0) GO TO 75
NODE (J,3)=IR
NODE (J,4)=K
GO TO 76

75 NODE (J,1)=IR
NODF(J,2)=K

76 IF(L .EO. NA) GO TO 77
L=L+1
IF((I .EO. II(L)) .AND. (IR .EO. MR(L))) GO TO 74
IREG(IR,2)=K
L=L-K+K*(K-11/2+1
IF(L .LE. NA) GO TO 72

77 IPEG(IR,2)=K

C DIJKSTRA-YEN SEARCH INWARD.
C INITIALIZE.
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00 125 I=1,N12
XLABEL(I)= RIG
NPATH(11=0
ITEMP(I)=I

125 CONTINUE
,

DO 127 !=N12P,N
XLAREL(I)=0.
NPATH(!)=1
ITEMP(I)=1

127 CONTINUF
IPL=1
L=1

C PERMANENTLY LAREL NODE N.
IPERM(1)=N

,

!=N
IR=NOOF(I,1)
LI= NODE (I,21
M=IREGt!R,1)+(LI-1)*IREG(IR,21-LI*(LI+11/2
IR2=0
K=NMI
V= RIG

C TREAT EACH TEMPORARILY LABELED NODE.
C V IS THE SMALLEST SUCH LAREL.

130 00 140 I T = 1,K
J=ITEMP(IT)
IF(NODE (J,1) .NE. IR) GO TO 131
LJ=HODE(J,2)
GO TO 132

131 IF(NODE (J,3) .NE. IR) GO TO 133
LJ= NODE (J,4)

132 IF(LI .GT. LJ) GO TO 138
IAR=M+LJ
GO TO 137

138 IAR=IRc3(IR,11+(LJ-1)*IREG(IR,21-LJ*(LJ+11/2+LI
GO TO 137

133 IF(NODE (J,1) .NE. IR2) GO TO 134

f
LJ= NODE (J,2)

| GO TO 136
134 IF(NODE (J,3) .NE. IR2) GO TO 135

IF(IR2 .EO. 01 GO TO 135
LJmNODE(J,41

| 136 IFILI2 .GT. LJ) GO TO 139
IAR=M2+LJ*

| GO TO 137
139 IAR=IREG(IR2,11+(LJ-1)*IRFG(IR2,21-LJ*(LJ+11/2+LI2
137 DIJ=AWT(IAR)'

Z=XLABEL(I)+DIJ;

XJPEPS=XLABEL(J)*0 PEPS
IF(Z .GT. XJPEPS) GO TO 135
XJMFPS=XLABEL(J)*OMEPS
IF(Z .GE. XJMEPS) GO TO 300
XLAREL(J)=Z
NEXT(J)=I
GO TO ISS'

300 IF(IPL-NPLDP) 305,302,340

1 29
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301 FORMAT (* NPOOL NEEDS TO STORE MORE LINKS *)
302 PRINT 301

GO TO 340
305 NPRFD=NEXT(J) -

310 IF(NPRED .LT. LTEST) GO TO 320
LINK = SHIFT (NPRED .AND. IHIGH,-9)
NPRED=NDOOL(LINK)
GO TO 310

320 NPOOL(IPL)=I
11= SHIFT (IPL,91 .OR. NPREn
IF(NPRED .EO. NEXT(J)) GO TO 330
NPOOL(LINK)=f1 -

GO TO 340
330 NEXT(J)=Il '

340 IPL=IPL+1
135 IF(XLABEL(J) .GE. v) GO TO 140

V=XLABEL(J)
IP=J
IO=IT

140 CONTINUE
IF(V .NF. PIG) GO TO 155
NF=0
DO 152 I=1,N1

-

NsP(!)=0
XMINL(1)= RIG

152 CONTINUE
RETURN

C NODE IP IS TO BE PERMANENTLY LABELEO.
155 V= RIG

L=L+1
IPERMIL)=IP

-

!=IP
IR=NODF(I,1)
LI=N00E(1,21
M=IREG(IR,11+(LI-1)*1RFG(IR,21-LI*(LI+11/2
IR2=NODF(I,3)
LI2= NODE (I,4)
M2=IREG(IR2,11+(LI2-1)*IREGtlR2,21-LI2*(L12+11/2

/

! 1 TEMP (IO)=ITEMP(K)
f K=K-1

IF(K .GT. 01 GO TO 130
| ALL NODES ARE PERMANENTLY LABELED.

RETRACE ANO STORF. THE SHORTEST PATHS TO ALL HARDWARE NODES.
'

C-

C *

NF=0
18n J=IPERM(L)

L*L-1
IF(J .GT. N11 GO TO 180

182 !=NrXT(J)
183 'NPRED=I

IF(I .GE. LTEST) !=1 .AND. LOW .

NF=NF+1
193,192,205 13i IF(NE-MAXEP)

DIGRAPH OF SHORTEST PATHS CONT AINS MORE THAN*191 FORMAT (*
I * EDGFS*)'

!
192 PRINT 191, MAXE

30
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GO TO 205
193 IEDGF(2,NE)=1

IEDGr(3,NF)=J
IR=NOOr(J-1)

,

IR2=NonE(J,3)
IF((NODE (1,1) .EO. IR) .OR. (NODE (1,3) .EO. IR)) IR2=IR

.
IEDGE(1,NE)=IR2
IT=ITEMP(!)
IF(IT .GT. 0) ITEMP(I)=-IT

.

205 IF(I .EO. NPRED) GO TO 215
LINK = SHIFT (NPRED .AND. IHIGH,-9)
!=NPOOL(LINK)
GO TO 183

215 IF(L .ro. 01 GO TO 220
-

Jz!PFRM(L)
L=L-1
IF(J .LE. N11 GO TO 182
IF(J .GT. N12) GO TO 215
IF(ITEMP(J) .LT. 0) GO TO 182
GO TO 215

C COUNT THE SHORTEST PATHS TO EACH HARDWARE NODE.
220 K=NE

DO 225 L=1,NE
!=IEDGE(2 K)
J=IEDGE(1,K)
NPaTH(J)=NPATH(J)+NDATH(I)
K=<-1

225 CONTINUE
00 210 Isl,N1
NSP(I)=NPATH(I)
XMINL(I)=XLAREL(I)

230 CONTINUE
RETilRN
FND

e

e

t
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