ASSUMPTIONS FOR THERMAL ANALYSIS

OF PREAMPLIFIER UNIT

- CONTAINMENT TEMPERATURE VS. TIME USED AS A FORCING FUNCTION
- NUREG 0588 (EARLY VERSION) ITEMS USE LARGEST POSSIBLE Q

Q_{CONVECTION} = (AS PER NUREG 0588)

QCONDUCTION = 4*UCHIDA

QCONDUCTION = 4*TAGAMI

 HEAT CONDUCTION IN WALL VIA A SUBROUTINE IN CONTRANS CODE

74

Generated by CE SGN/CONTRANS Codes

CE calculated containment response pressure and temperature vs. time CESSARF generic mass/energy release Arizona containment data

φ.

. .

.

٠

.

Bechte1 Palo Verde Nuclear Generating Station FSAR CONTAINMENT PRESSURE AND TEMPERATURE RESPONSE MELE (SLOT) WITH LOSS OF ONE CONTAINMENT COOLING TRAIN

*

102% power MSLB 8.78 ft² (worst case) temperature vs time

*

. .

Heat transfer coefficient vs time component thermal analysis

(1) per NUREG 0588

(2) with factor of 4

10

Component heat flux vs. time NUREG 0588 (convection, Uchida condensation, Tagami condensation)

.,

TIME FOLLOWING BREAK (SECONDS)

.

.

10 M

 \mathcal{F}_{ij}

PREAMPLIFIER MODEL INFORMATION

Containment vapor temperature, component surface temperature vs time

SUMMARY OF THERMAL EQUIVALENCE

- CONTAINMENT TEMPERATURE VS. TIME IS CONSERVATIVE: PEAK OF ≈400°F.
- COMPONENT RESPONSE IN CONTAINMENT IS CONSERVATIVE: PEAK OF≈298°F.
- 3) MEASURED TEST RESULTS: PEAK OF ≈ 300°F VIA THERMOCOUPLE MEASUREMENTS
- 4) CONCLUSION: THERMAL EQUIVALENCE HAS BEEN DEMONSTRATED IN THAT THE COMPONENT HAS PHYSICALLY BEEN HEATED AND TESTED TO THE CONSERVATIVELY CALCULATED CONTAINMENT RELATED TEMPERATURE

ADDITIONAL NOTES

- 1) THE WORST CASE HAS BEEN ANALYZED REGARDING THE COMPONENTS THERMAL RESPONSE (LARGEST BREAK AREA)
- 2) FOR THIS CASE A REACTOR TRIP OCCURRED AT~3 SECONDS AT 6 PSIG
- 3) NOTE AT THE TIME OF 6 PSIG:
 - . CONTAINMENT TEMPERATURE IS APPROXIMATELY 220°F
 - . THERMAL LAG OF COMPONENT AT APPROXIMATELY 120°F
- 4) PREAMPLIFIER IS ENVIRONMENTALLY QUALIFIED AT APPROXIMATELY 300°F; 400°F IS ADDITIONAL CONSERVATISM

APPENDIX B

ANALYSIS OF UNCERTAINTIES IN HARSH ENVIRONMENT TEST RESULTS WITH RESPECT TO TIME MARGINS

T W

14

-

OBJECTIVE

SHOW THAT A HARSH ENVIRONMENT TEST PERIOD IS SUFFICIENT TO DEMONSTRATE THE CAPABILITY OF A COMPONENT TO REMAIN OPERATIONAL CONSIDERING SAMPLE SELECTION, PRODUCTION, AND PHYSICAL PROPERTY UNCERTAINTIES.

TEST CASE

A SAMPLE ANALYSIS TO JUSTIFY THE ADEQUACY OF THIS TEST PERIOD (AS SPECIFIED IN CENPD 255, REV. 3) WAS PERFORMED UTILIZING THE FOLLOWING UNCERTAINTY METHODOLOGY FOR AN ELECTRIC FILTER COMPONENT.

UNCERTAINTY METHODOLOGY

C-E HAS PERFORMED A STOCHASTIC SIMULATION OF THE TEST COMPONENT FAILURE MODELS IN ANTICIPATED OPERATION AND TESTING MODES. MARGIN TO FAILURE WAS QUANTITATIVELY EVALUATED IN EACH CASE.

RESULTS

TEST PERIODS ON THE ORDER OF 10 MINUTES ARE MORE THAN ADEQUATE TO DEMONSTRATE THE SELECTED COMPONENT WILL FUNCTION AS REQUIRED.

FAILURE MODE MODEL DEVELOPMENT CRITERIA

1. CONSERVATIVE

38

2. CALCULABLE

4.

a desire a

FIGURE 11 INTERIOR VIEWS OF THE CIRCUIT BOARD HOUSING Section Sec.

×

FIGURE 10 CIRCUIT SCHEMATIC FOR THE LOW PASS FILTER

 $\mathcal{L}_{ij}^{i} = \mathcal{L}_{ij}^{i} = \mathcal{L}_{ij}^{i$

.

х.

SIMPLIFIED HIGH VOLTAGE FILTER SCHEMATIC

TEMPERATURE EFFECTS ON ELECTRICAL PROPERTIES MODEL INFORMATION

FAILURE CRITERION

CONSERVATIVE ASSUMPTIONS

CIRCUIT OUTPUT VOLTAGE DROPS BENEATH

- 1. CIRCUIT COMPONENTS OPERATE AT THE SURFACE TEMPERATURE EXPERIENCED BY THE COMPONENT ENCLOSURE BOX. NO CONDUCTION OR CONVECTION LOSSES ARE INCORPORATED IN THE ANALYSIS.
- 2. UNCERTAINTIES UTILIZED ARE CONSISTENT WITH MAXIMUM VALUES SUPPLIED BY THE MANUFACTURER OVER THE ENVIRONMENTAL CONDITIONS CONSIDERED IN THE ANALYSIS.
- THE THERMAL RESISTANCE OF THE ENCLOSURE OUTSIDE THE CIRCUIT BOX IS NOT INCORPORATED.
- 4. THE THERMAL CAPACITANCE OF THE STRUCTURE TO WHICH THE COMPONENT ENCLOSURE BOX IS ATTACHED IS NOT INCORPORATED.
- 5. THE THERMAL CAPACITANCE OF THE CONFORMABLE COATING AND THE RESISTANCE TO HEAT FLOW ARE CONSIDERED NEGLIGIBLE.

MOISTURE EFFECTS ON CIRCUIT OPERATION MODEL INFORMATION

FAILURE CRITERION

CIRCUIT BOARD TEMPERATURE DROPS BENEATH DEW POINT TEMPERATURE IN CAVITY.

CONSERVATIVE ASSUMPTIONS

- 1. FAILED OUTER SEAL ASSUMED ON COMPONENT ENCLOSURE BOX.
- 2. ALL MOISTURE DIFFUSION THROUGH CONFORMABLE COATING BARRIER GOES INTO CIRCUIT BOARD CAVITY.
- 3. NO BENEFIT FOR THE OUTER ENCLOSURE AROUND THE COMPONENT ENCLOSURE BOX WAS INCORPORATED.

SIMPLIFIED MODEL OF EQUIPMENT PROTECTION AGAINST MOISTURE DIFFUSION

FIGURE 3

8

1. S. S.

in a second

TEMPERATURE EFFECTS ON INDUCED MECHANICAL STRAIN, MODEL INFORMATION

FAILURE CRITERION

A STRAIN LEVEL OF 1%

1

CONSERVATIVE ASSUMPTIONS

- 1. ANY STRAIN OVER THE FAILURE STRAIN CAUSES CIRCUIT FAILURE, IN REALITY EVEN IF CIRCUIT BOARD TEARS AT STANDOFFS - NO CIRCUIT FAILURE IS ANTICIPATED.
- STANDOFFS ARE ASSUMED NOT TO BEND OR DEFORM.
- TOLERANCE ON CIRCUIT BOARD PENETRATIONS FOR STANDOFFS ARE ASSUMED NOT TO EXIST.
- 4. CREDIT IS NOT TAKEN FOR THE THERMAL CAPACITANCE OF THE STRUCTURE TO WHICH THE COMPONENT ENCLOSURE IS FIXED.

FIGURE 5

Sugar at

STOCHASTIC SIMULATION TECHNIQUES EMPLOYED

Y = X + Z

BENEFITS

- 1. REALISTIC RESULTS
- 2. NO SENSITIVITY ASSUMPTIONS ARE REQUIRED
- 3. NO LIMITATIONS ON FUNCTION FORM

APPLICATIONS TO LICENSED UNCERTAINTY ANALYSES

- 1. CALVERT CLIFFS RELOAD FUEL SAFETY ANALYSIS
- 2. ST. LUCIE RELOAD FUEL SAFETY ANALYSIS
- 3. ARKANSAS RELOAD FUEL SAFETY ANALYSIS
- 4. ROD BOW TOPICAL REPORT

TYPICAL HISTOGRAM OUTPUT FROM SIGMA

SIMULATED OUTPUT VOLTAGE AS A FUNCTION OF TIME

SIMULATED DISTRIBUTION OF MOISTURE EFFECTS (AT) AS A FUNCTION OF TIME (ONE MOISTURE BARRIER - THERMAL EQUIVALENCE TEMPERATURE MODEL)

SIMULATED CIFCUIT BOARD STRAIN AS A FUNCTION OF TIME (2000 SIMULATIONS - TEST TEMPERATURE PROFILE)

SIMULATED CIRCUIT BOARD STRAIN AS A FUNCTION OF TIME (2000 SIMULATIONS - THERMAL EQUIVALENCE TEMPERATURE PROFILE)

CONCLUSIONS

٩

- 1. THE ANALYSIS FORMS THE BASIS FOR JUSTIFYING THE ENVIRONMENTAL TEST CONDITIONS AND THE TEST PERIOD UTILIZED.
- 2. EACH ANALYTICAL TEST RESULT WAS SUBSTANTIATED BY ACTUAL COMPONENT TEST DATA IN HARSH ENVIRONMENTAL CONDITIONS.
- 3. THE ANALYSIS ILLUSTRATED THE FACT THAT REALITY WAS ENVELOPED BY THE TEST CONDITIONS UTILIZED.
- 4. TEST CONDITIONS WERE MORE SEVERE THAN EVEN A CONSERVATIVE CALCULATION OF REALITY WOULD INDICATE.