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Heat transfer coefficlent vs time
component thermal analysis
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Component heat flux vs. time
NUREG 0588
(convection, Uchida condensation, Tagami condensation)
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Containmert vapor temperature,
component surface temperature
vs time
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1

2)

3)

4)

SUMMARY OF THERMAL EGQUIVALENCE

CONTAINMENT TEMPERATURE VS. TIME IS CONSERVATIVE:
PEAK OF =400Q°F,

COMPONENT RESPONSE IN CONTAINMENT IS CONSERVATIVE:
PEAK OF =298°F, ~

MEASURED TEST RESULTS: PEAK OF =300°F VIA
THERMOCOUPLE MEASUREMENTS

CONCLUSION: THERMAL EQUIVALENCE HAS BEEN DEMONSTRATED
IN THAT THE COMPONENT HAS PHYSICALLY
BEEN HEATED AND TESTED TO THE CONSERVATIVELY
CAL-ULATED CONTAINMENT RELATED TEMPERATURE



ADDITIONAL NOTES

THE WORST CASE HAS BEEN ANALYZED R
COMPONENTS THERMAL RESPONSE (LARG

FOR THIS CASE A REACTOR TRIP OCCURRED ATa-3 SECONDS
AT & PSIG

NOTE AT THE TIME OF & PSIG:
CONTAINMENT TEMPERATURE IS APPROXIMATELY 220°F
THERMAL LAG OF COMPONENT AT APPROXIMATELY 120°F

T

PREAMPLIFIER IS EN
300°F; 400°F IS A

RONM
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LLY QUALIFIED AT APPROXIMATELY
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DDITIONAL CONSERVATISM
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PPENDIX B

ANALYSIS OF UNCERTAINTIES
IN HARSH ENVIRONMENT
TEST RESULTS WITH RESPECT TO
TIME MARGINS




QBJECTIVE

SHOW THAT A HARSH ENVIRONMENT TEST PERIOD IS SUFFICIENT TO
DEMONSTRATE THE CAPABILITY OF A COMPONENT TO REMAIN OPERATIONAL
CONSIDERING SAMPLE SELECTION, PRODUCTION, AND PHYSICAL PROPERTY
UNCERTAINTIES.

IEST CASE

A SAMPLE ANALYSIS TO JUSTIFY THE ADEQUACY OF THIS TEST PERIOD
(AS SPECIFIED IN CENPD 255, REV, 3) WAS PERFORMED UTILIZING THE

FOLLOWING UNCERTAINTY METHODOLOGY FOR AN ELECTRIC FILTER COMPONENT.

UNCERTAINTY METHQDOLOGY

C-E HAS PERFORMED A STOCHASTIC SIMULATION OF THE TEST COMPOMNENT
FAILURE MODELS IN ANTICIPATED OPERATION AND TESTING MODES. MARGIN
TC FAILURE WAS QUANTITATIVELY EVALUATED IN EACH CASE.



RESULTS

TEST PERIODS ON THE ORDER OF 10 MINUTES ARE MORE THAN ADEQUATE
TO DEMONSTRATE THE SELECTED COMPONENT WILL FUNCTION AS REQUIRED.



FAILURE MODE MODEL DEVELOPMENT CRITERIA

1. CONSERVATIVE

2. CALCULABLE
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CIRCUIT WITHOUT
CONFORMAB!E SKIN

CONFORMABLE COATING
N PLACE

FIGURE N
INTERIOR VIEWS OF THE CIRCUIT BOARD HOUSING
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CIRCUIT SCHEMATIC FOR THE LOW PASS FILTER



DEVICE

FIGURE 12
SIMPLIFIED HIGH VOLTAGE FILTER SCHEMATIC



TEMPERATURE EFFECTS ON ELECTRICAL PROPERTIES
MODEL INFORMATION

FAILURE CRITERION CIRCUIT OUTPUT VOLTAGE DROPS BENEATH
500

CONSERVATIVE ASSUMPTIONS 1. CIRCUIT COMPONENTS OPERATE AT THE
SURFACE TEMPERATURE EXPERIENCED BY
THE COMPONENT ENCLOSURE BOX. NO
CONDUCTION OR COMVECTION LOSSES ARE
INCORPORATED IN THE ANALYSIS.

. UNCERTAINTIES UTILIZED ARE CONSISTENT
WITH MAXIMUM VALUES SUPPLIED BY THE
MANUFACTURER OVER THE ENVIRONMENTAL
CONDITIONS CONSIDERED IN THE ANALYSIS.

" THE THERMAL RESISTANCE OF THE ENCLOSURE
QUTSIDE THE CIRCUIT BOX IS NOT
INCORPORATED.

. THE THERMAL CAPACITANCE OF THE
STRUCTURE TO WHICH THE COMPONENT
ENCLOSURE BOX IS ATTACHED IS NOT
INCORPORATED.

. THE THERMAL CAPACITANCE OF THE
CONFORMABLE COATING AND THE RESISTANCE
T0 HEAT FLOW ARE CONSIDERED MEGLIGIBLE.
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TYPICAL TEMPERATURE PROFILES FOR ENVIRONMENTAL QUALIFICATION TESTS



FAILURE CRITERION CIRCUIT BOARD TEMPERATURE DROPS BENEATH
DEW POINT TEMPERATURE IN CAVITY,

CONSERVATIVE ASSUMPTIONS ]. FAILED OUTER SEAL ASSUMED ON
COMPONENT ENCLOSURE BOX.

2, ALL MOISTURE DIFFUSION THROUGH
CONFORMABLE COATING BARRIER GOES INTO
CIRCUIT BOARD CAVITY.

3, NO BENEFIT FOR THE OUTER ENCLOSURE

AROUND THE COMPONENT ENCLOSURE BOX
WAS INCORPORATED.
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FIGURE 3

SIMPLIF/ED MODEL OF EQUIPMENT PROTECTION
AGAINST MOISTURE DIFFUSION



TEMPERATURE EFFECTS ON INDUCED
MECHANICAL STRAIN,MODEL INFORMATION

FAILUPE CRITERION A STRAIN LEVEL OF 1%

CONSERVATIVE ASSUMPTIONS 1. ANY STRAIN OVER THE FAILURE STRAIN
CAUSES CIRCUIT FAILURE, IN REALITY
EVEN IF CIRCUIT BOARD TEARS AT
STANDOFFS - NO CIRCUIT FAILURE IS
ANTICIPATED.

. STANDOFFS ARE ASSUMED NOT TO BEND
OR DEFORM.

. TOLERANCE ON CIRCUIT BOARD
PENETRATIONS FOR STANDOFFS ARE
ASSUMED NOT TO EXIST.

. CREDIT IS NOT TAKEN FOR THE THERMAL
CAPACITANCE OF THE STRUCTURE TO
WHICH THE COMPONENT ENCLOSURE IS
FIXED.
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SIMPLIFIED THERMAL STRAIN SCHEMATIC



”l =M+m-m

1. REALISTIC RESULTS
2. NO SENSITIVITY ASSUMPTIONS ARE REQUIRED
3, NO LIMITATIONS ON FUNCTION FORM

APPLICATIONS TO LICENSED UNCERTAINTY ANALYSES

1. CALVERT CLIFFS RELOAD FUEL SAFETY ANALYSIS

ro

. ST. LUCIE RELOAD FUEL SAFETY ANALYSIS
3. ARKANSAS RELOAD FUEL SAFETY ANALYSIS

4, ROD BOW TOPICAL REPORT
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CONCLUSIONS

THE ANALYSIS FORMS THE BASIS FOR JUSTIFYING THE ENVIRONMENTAL
TEST CONDITIONS AND THE TEST PERIOD UTILIZED.

EACH ANALYTICAL TEST RESULT WAS SUBSTANTIATED BY ACTUAL
COMPONENT TEST DATA IN HARSH ENVIRONMENTAL CONDITIONS.

THE ANALYSIS ILLUSTRATED THE FACT THAT REALITY WAS ENVELOPED
BY THE TEST CONDITIONS UTILIZED,

TEST CONDITIONS WERE MORE SEVERE THAN EVEN A CONSERVATIVE
CALCULATION OF REALITY WOULD INDICATE.



