# Use of Wireless Technologies for Plant Modernization

February 20, 2020





#### **Overview**

- Opportunities for implementation of wireless technologies
- Current and planned implementations
- Benefits and implementation considerations
- Next steps

# Opportunities For Wireless in Nuclear

ŊÊI

Wireless sensor technology advancements

Cost savings by avoiding need to pull cables and conduit

Diverse & redundant solution for some existing plant systems

Improved data & information availability

Ideal in locations where sensitive I&C devices are protected from RF emissions

Allow for remote analysis of test results

# **Exelon - Wireless Plant Applications**

## **Current and Near Term Applications:**

- Camera monitoring of in-plant equipment in hard to access areas
- Fire Watch Patrol Cart for in-plant hourly Fire Watch patrol
- Data collection for plant efficiency and equipment status analysis
- Electronic work packages

# Exelon - Wireless Plant Applications cont'd

NEI

## Cyber Security Analysis & Regulatory Certainty:

 Critical Digital Asset (CDA) Screening documentation and analysis demonstrate temporary devices are not CDAs and installed CDAs are not affected by the use of wireless.

## Future Applications

- Data Acquisition System (DAS) monitoring devices on/near safety related/important to safety (SR/ITS) for equipment health monitoring
- DAS monitoring devices on/near SR/ITS components for equipment performance data collection w/o local observation
- Use of DAS throughout the plant using Radio Frequencies (RF) through installed plant radio antenna system
- Dose rate monitoring, tracking and automated survey map updates

## **PSEG - Wireless Power Plant Applications**



Nuclear Wireless Technology Use Cases

| Nuclear Plant<br>System        | Wireless<br>Measurement(s)                     | Application                                                                     |
|--------------------------------|------------------------------------------------|---------------------------------------------------------------------------------|
| Heat Exchangers                | Temperature                                    | Monitor ambient temperatures to account for seasonal weather changes            |
| Secondary Side<br>Valves       | Position Indication                            | Replace labor intensive, periodic valve indication readings                     |
| Inlet Water Intake             | Level, temperature flow                        | Monitor process changes that affect performance                                 |
| Rotating<br>Equipment          | Temperature,<br>vibration, motor<br>current    | Monitor temperature, vibration signatures and load fluctuations                 |
| Diesel Generators              | Temperature, vibration, motor current          | Augment existing sensor readings to provide redundancy & performance assessment |
| Spent Fuel Dry<br>Cask Storage | Temperature, radiation levels                  | Eliminate the need for underground cable and conduit installation               |
| Weather Stations               | Temperature, wind velocity, pressure, humidity | Improve monitoring by replacing failure prone equipment                         |

## **PSEG - Wireless Power Plant**

ŊÊI

#### **Current applications**

- Dosimetry
- Voice communications
- Equipment monitoring (e.g. reliability analysis)
- Cameras
- Meteorological instruments
- Heavy equipment operation (e.g. crane controls)



#### **Future applications**

- Mobile worker in the field with tablet PC
- Redundant/Diverse systems to improve existing plant equipment reliability

## Benefits and Implementation Considerations



#### Benefits

- Cost-effective alternative to wired applications
- Easy to install
- Can be designed with built-in redundancy

#### Considerations

- Potential Electro Magnetic Induction/Radio Frequency Interference (EMI/RFI) impacts on I&C equipment
- Cyber security
- Network availability & data integrity
- Regulatory impacts

# National Lab Engagement and Focus



The NEI Cyber Security Task Force and members of the industry have engaged the National Laboratories.

## **Laboratory Experience:**

- Wireless technologies for nuclear applications
- Codes, standards, and regulatory guides
- Vulnerability assessments
- Security defense-in-depth analysis
- Practical experience and lessons learned

## **Industry**

- NEI, industry, National Labs, and EPRI identify acceptable cyber security protections for current and future use cases
- Consider industry guidance to provide acceptable alternatives and limitations for use of wireless technologies on SR/ITS & Security CDAs
- Identify impacts to Cyber Security Plans (e.g., D.1.17 and Defensive Architecture)

### **Industry and NRC**

- Address identified impacts to Cyber Security Plans
- Develop the criteria for demonstrating the use of wireless does not adversely impact the safety and security of the plant
- Conduct workshops to ensure consistent implementation strategies